Department of Computer Science
Faculty of Mathematics and Informatics
Naugarduko 24, 03225 Vilnius, Lithuania


Phone: +370 5  219 30 92
Fax: +370 5  215 15 85
E-mail: stasys.norgela@maf.vu.lt

        

Stanislovas Leonas Norgela

(Stanislovas Leonas Norgėla)

PhD in Computer Science, associated professor

 

 

PUBLICATIONS

more than 55 papers, among them:

  1. H.Pranevicius, S.Norgėla, Applications of finite linear temporal logic to piecewise linear aggregates, Informatica, 23(3), 427-441, 2012.

  2. S.Norgėla, Resolution for hybrid logic, Lietuvos matematikos rinkinys. LMD darbai, 52, 253-256, 2011.

  3. S.Norgėla, L.Petrauskas. Transformations of formulae of hybrid logic, Lietuvos matematikos rinkinys. LMD darbai, vol. 51, 342-346, 2010. LMD-51.pdf

  4. A.Guščia, S.Norgėla, Applications of finite linear temporal logic to communication protocols.  Proceedings of the 9th joint conference on knowledge-based software engineering (JCKBSE’10), Kaunas, Technologija, 79-84, 2010. CommProtocol.pdf

  5. A.Guščia, S.Norgėla. Communication protocols: variables and actions, 2010. variables and actions.doc

  6. D.Aleknaviciute, S.Norgela, Proof-search in hybrid logic, Liet. mat. rink. LMD darbai, 48/49, 252-255, 2008. konf-08.pdf

  7. S.Norgėla, A.Šalaviejienė. Some decidable classes of formulas of pure hybrid logic, Lithuanian Mathematical Journal, 2007, 47 (4), p. 462-469.

  8. S.Norgėla, J.Sakalauskaitė, Nonclassical logics for informatics, Vilnius : TEV, 132 p., 2007.

  9. D.Aleknavičiūtė, S.Norgela, Normal form of formulas of pure hybrid logic, Lithuanian Mathematical Journal, 2007, 47 (spec. issue), p. 341-345.

  10. S.Norgela, Logic and Artificial Intelligence (in Lithuanian), TEV, 256 p., 2007. turinys.pdf

  11. S.Norgėla, A.Šalaviejienė. Sequent calculus for hybrid logic, Lithuanian Mathematical Journal, 2006, 46 (spec. issue), p. 238-241. Nor-sal.pdf

  12. S.Norgela, L.Skripkauskas. On temporal logic S4Dbr, Lithuanian Mathematical Journal, 2006, 46 (2), p. 203-214.
  13. S.Norgela, A.Belovas. Sequent calculus Sk4 for skolemized formulas, Lithuanian Mathematical Journal, 2005, 45 (spec. issue), p. 316-320.Belo-nor.pdf
  14. S.Norgela. A path calculus for modal logic S4, Lithuanian Mathematical Journal, 2005, 45 (1), p. 94-101. 
  15. S.Norgela, L.Skripkauskas. Theorem prover for temporal logic S4Dio, 2005. s4d.zip
  16. S.Norgela. Resolution for one reduction class of formulas of modal logic S4, Lithuanian Mathematical Journal, 2004, 44, Nr.4, p. 481-492. 
  17. S.Norgela. Resolution method for some class of formulas of modal logic S4, Lithuanian Mathematical Journal, 2004, 44 (spec. issue), p. 521-524. 
  18. S. Norgela. Mathematical logic (in Lithuanian), TEV, Vilnius, 192 p. (2004)
  19. A. Birstunas, S. Norgela. Inverse method for modal logic S4, Lithuanian Mathematical Journal,  43 (spec. issue 3-10), p.429-433 (2003). konf03a.pdf
  20. S. Norgela. Herbrand expansions of some formulas of modal logic S4, Lithuanian Mathematical Journal,  43 (spec. issue 3-10), p. 434-437 (2003). konf03b.pdf

  21. S.Norgela, One calculus of nonderivable formulas of propositional modal logic, Liet. matem. rink., 43, No 1, p. 65-79 (2003).  

  22. S.Norgela, Decidability of a monadic subclass of modal logic S4, Lithuanian Mathematical Journal, 42 (spec. issue), (2002). konf02.pdf

  23. S.Norgela, Decidability of some classes of modal logic, Lithuanian Mathematical Journal, 42, No 2, p.218-229 (2002).

  24. S.Norgela, Some decidable classes of formulas of modal logic S4, Special issue of Lietuvos matematikos rinkinys, t. 41, pp. 408-412  (2001) decid1.pdf (129 KB) 

  25. S.Norgela, Development of computer science studies at the Faculty of Mathematics and Informatics of the Vilnius University, Special issue of Lietuvos matematikos rinkinys, t. 41, pp. 313-319 (2001). develop.pdf (82,7 KB) 

  26. S.Norgela. Two decidable classes of modal logic S5, Lithuanian Mathematical Journal, 40, No 3, p.350-360, 2000. in russian: Strp.dvi (43,9 KB) Strp.zip (18,4 KB), English version: Lmj0027.dvi (43,7 KB) Lmj0027.zip (17,1 KB) 

  27. S.Norgela. A resolution calculus for modal logic S4. Proceedings of XIL Conference of Lithuanian Mathematical . Lietuvos matematikų draugijos mokslo darbai. Vilnius, t.4, p. 1-5, 2000. res.pdf (125 KB) res.zip (71,8 KB)