Applications of Finite Linear
Temporal Logic to Communication
Protocols

Arvydas GUSCIA, Stanislovas NORGELA'!

Department of Computer Science, Vilnius University
Naugarduko 24, LT-03225, Vilnius, Lithuania

Abstract. Using finite linear temporal logic as a specification language for
the communication protocols problems, we formalize an alternative bit with the
aggregate manager task. The problem is described by formulas in which the
degree of modal operators does not exceed two. This allows the described for-
malization to apply practically. Theoretically, the number of possible questions
about aggregate work can be more than one million. Search of answers for con-
cerned questions is transformed into appropriate linear temporal logic formula
set satisfiability. The described formalism allows to automate the search of an
answer. A positive answer, then and only then, when the set under consid-
eration is satisfiable. Moreover, from the obtained model we can find a finite
sequence of actions to be executed in order to achieve the goal. In addition,
alternative bit protocol problem was described using PDDL. Experiments were
made using the LPG-TD planner.

Keywords: knowledge representation, artificial intelligence planning, commu-
nication protocols, finite linear temporal logic.

LCorresponding Authors: e-mail Arvydas.Guscia@mif.stud.vu.lt, stasys.norgela@mif.vu.lt

1. Introduction.

At first, temporal logic was being created in order to formalize time tense
in natural language. It occurred later that temporal logic can be success-
fully used as a specification language to solve the problems in informatics.
One of the first uses of temporal logic was a formalization and verification
of concurrent and distributed systems. The circle of application expanded
later. Now temporal logic is used in such fields as program specification,
temporal databases, knowledge representation and natural language.

Temporal logics are classified according to whether time is assumed to
have a linear or branching structure. CTL is the most used of branching
time logics. The formulas describe properties of computation trees. The
tree is formed by designating a state in a transition graph as the initial
state and then unwinding the structure into an infinite tree with the des-
ignated state at the root [4].

The complexity of satisfiability problem for the logics CTL (computa-

tion tree logic), CTL*, LTL (linear temporal logic) is PSPACE or EXP.
The complexity of model checking problem for CTL* and LTL formulas is
PSPACE. Only the model checking problem for formulas of CTL can be
solved in polynomial time. That is why the most widely used algorithms
for the search of goal is model checking for the CTL formulas. We can
find problems discribed in LTL but inexpressible by CTL formulas. We
will show that finite LTL can be successful used for applications. Model
checking involves establishing that a temporal formula is satisfied in the
set of models representing the problem. Typically, solutions of problems
of communication protocols used model checking (see, G.H.Holzman [8]).
An alternative approach is to find at least one model. We consider this
second approach. We consider the application of finite LTL to the problem
of communication protocols. The applications of satisfiability of formulas
of LTL over finite structures to the problems of communication protocols
are not examined.
Suppose that a finite LTL formula has a model. In this case, we can find
at least one model using the tableau calculus [1]. If we find a cycle in the
proof-search tree, then we have a model or it is a failure. This allows the
described formalization to apply practically. Describe a communication
protocol task by giving him planning problem [9] form.

The planning problem task is to describe a finite sequence of actions
(actions order is fixed) which have to be performed in order to achieve
goals. If the problem can’t be solved, i.e., the goal can’t be achieved by
a finite sequence of actions and an initial condition, the answer is fail-
ure. The required finite sequence of actions can be extracted from a finite
model of the problem under consideration. Finite linear temporal logic
operators O, <, o are used to describe the problem. Description consists
of initial conditions, actions and the goal. Initial conditions are described

by using classical propositional logic formulas. The goal is described in
a formula OF - ”sometime F' will be true”. F - a classical propositional
logic formula. Actions are described in formulas O(C — do(a)) - ”at any
time moment, if condition C is true, action ”a” can be completed”. C
- a classical propositional logic formula, ”a” - action which creates data
changes. Data changes are described in formulas O(do(a) — oH). H
- a classical propositional logic formula which is true at the next time
moment. It is possible to describe the restrictions too. A restriction is
additional data which accelerates the search of goal.

The use of finite linear temporal logic as a specification language for
the problems of communication protocols has several advantages. An im-
portant aspect of finite linear temporal logic is its simple model of time
and actions. We have a natural representation of a world that changes
over time. This logic is more expressive than classical propositional logic.
Note that finite quantified LTL is undecidable [5]. The validity problem
for first-order linear temporal logic over finite time structures is not re-
cursively axiomatizable. The search of answer is reduced to model search.
Our task is based on the ”planning as satisfiability” approach. An answer
corresponds to a model of the problem specification.

The alternative bit protocol defines the relation between sender and
receiver. Time to time sender sends data packets via the channel. Packet
data can be deformed or even the packet can be lost. Packet contains
sending data and control data. The control data is defined by using a
packet number which can be equal to 1 or 0. What’s why these packets
are called alternative bit packets. At any time moment sender has packets
which have to be sent. When the packet is sent, sender activates timer.
If at the particular time moment sender doesn’t get data which confirms
that receiver has got the packet, then sender repeats the sending process
by resending the same packet. But this time control data is altered. Bit is
replaced by the opposite bit. If a sent packet control data bit is equal to
an acknowledgement packet control data bit, then packet is sent without
deformation.

Sender and receiver can exchange information with the aggregate man-
ager about an aggregate functionality via the other channel - administra-
tive channel which can’t deform packet data. If sender sends the same
packet k times (k normally equals 3) and doesn’t get any information that
receiver has got the packet, then sender aborts the sending process and
informs the aggregate manager about situation. The manager can order
sender to repeat the sending process (no more than k times) or to send
the same packet via the administrative channel or to abort the sending
process and wait for other orders.

Manager can ask receiver why the acknowledgement packet isn’t sent.

Receiver’s answer to the manager can be: a) I get packets and I send ac-
knowledgement packets, for some reason sender doesn’t get my acknowl-
edgement packets b) there are temporal technical problems ¢) I don’t get
data packets from sender, but I don’t know why. If receiver doesn’t get
packets from sender for a long time or suspects that packet data is de-
formed, then receiver informs the aggregate manager about situation.

The knowledge of the aggregate work is formed using a basic concept
which is described in propositional variables (acknowledgement packet
waiting time has ended, sender is ready to send and etc). What is time
in our task? Firstly, time is discrete. At one time moment (or step), one
particular action is performed (sending of the packet, stopping the timer,
informing the manager and etc). All possible actions are present in the
action list. These actions are performed when particular conditions are
fulfilled. Step by step, when actions are performed, we get into various
states. A graph represents all the possible states. The aggregate opera-
tion may be seen as a way to go through the graph nodes, regarding to
available information. The number of steps is equal to the number of time
moments. There are many situations (possible ways).

Questions about the aggregate operation are made by using the propo-
sitional variables as key words. Since there are 20 propositional variables,
theoretically the number of possible questions can’t be less than 2 to the
power of 20, i.e., more than one million. So it is essential to automate
the knowledge of the aggregate work, to make the artificial intelligence
system which analyses work and provides answers to the questions of in-
terest. S.Cerrito and others described a tableau calculus using which it is
possible to get answers to the formalized alternative bit protocol problem
queries [1,2].

Verification of aggregate specifications using the classical first order
predicate logic formulas is described in documents [12, 13, 14]. Aggregate
states, transition and output operators, their properties are described by
formulas. Formulas are quite sophisticated: there are functional symbols,
a set of individual constants is split into subsets that have no common
elements, formulas contains predicates in which number of seats depends
on discrete and continuous power (it can be large enough) of set of co-
ordinates. The main formalization results were obtained in eighties of
the last century by group of Kaunas technology researchers headed by H.
Pranevi¢ius. The method has not been realized. That is, it has not been
programmed.

2. Alternative bit protocol problem realization using finite lin-
ear temporal logic.

The language of finite linear temporal logic considered in this paper
extends classical propositional logic by means of the unary modal opera-
tors O (always), ¢ (eventually), o (next). OA means that A is true now
and will always be true, GA that A is either true now or sometime in the
future and oA that A holds in the next state.

A temporal structure is a finite sequence of elements called states or
time points. Interpretation M consists of states s — 0, sy, ..., s, repre-
sentation from N to set of literals. For every s;, propositional variables
subset v(7) is assigned. The satisfiability relation M; = F is inductively
defined as follows:

e M; =pifpewv(i),pisa propositional letter.

e M; = Aif A is not satisfiable.

e M; EAANBIif M; = Aand M; = B.

o M; = AV B if either M; = A or M, = B.

e M; = A — B if either A is not satisfiable or M; = B.
e M; = OAif for all j >4, M; = A.

o M; = OA if there exists j > i such that M; = A.

o M; EoAif M;yq1 | A and i # n; if ¢ = n, then failure.

The degree of modal operators in a propositional formula of classical
logic is 0. If the degree of modal operators in a formula A is n, then the
degree of time operators in the formulas OA, CA, oA is n + 1.

The protocols are modeled as state-transition systems. Such struc-
tures are called Kripke structures.

Propositional variables describe statements which are elementary
(can’t be separated to simpler statements) and which formalizes the al-
ternative bit protocol problem. Examples of propositional variables (the
graph representing sender states has 20 nodes):

o sending_bit — true if and only if sender is working with the data packet
which control bit is equal to 1.

e received — true if and only if receiver received the data packet.

e timer — true if and only if timer is activated.

States. We describe the ordering of events in time without introducing
time explicitly. Using the propositional variables and Boolean connectives,
we can build up formulas describing properties of states. We represent
only some formulas describing the state of communication protocols:

e sg: sending_bit, —ack_received, ~sent, —ready_to_send, ~timeout, —timer, ack_good
Access is gained when sender starts the sending process for the first time or
when the correct acknowledgement packet is received or the packet is sent
via the administrative channel. A number of sent packets is incremented
by one. In this sg state the new packet is made (action begin_sending).
Moving to state sj.

e s3: sending_bit, —ack_received, ~sent, —ready_to_send, ~timeout, timer, —ack_good
Access is gained when timer is activated. Waiting for the acknowledge-
ment packet. The acknowledgement packet can be received (then moving
to state S9) or acknowledgement packet waiting time can end (then action
is_timeout is performed, moving to state S4).

Actions. The transition relation can be expressed as a temporal logic
formula. Actions which can be performed at any time moment if only
conditions on the left implication side are fulfilled are described here.
Examples of actions:

o O(do_send — o(sent A —ready_to_send))
Sending the packet via the channel.

o O(is_timeout — o(timeout A —timer A —timer_of f))
Ending acknowledgement packet waiting time.

Channel. When sender is communicating with receiver via the chan-
nel, channel can be in many states. Possible data deformation or data loss
situations are described using actions. Some examples: States of channel:

e —sent, ~ack_sent.
In this state there is no sending via the channel.

o sent,—(i =k),~(y =1).
In this state the packet is sent via the channel.

Actions of channel:

o O(((do-receive Asending_bit) — o(—sent Areceivedwedgereceiving_-bit))V
V((do_receive A msending_bit) — o(—sent A received N —receiving_bit)))
If the packet is sent, timer is activated and there is no packet loss ((i =
k)) and there is no packet deformation ((y = 1)), action do_receive is
performed. After performance of action, at the next time moment, a
control bit of received packet is equal to a control bit of sent packet, in
other words, the packet isn’t deformed. The packet is received by receiver
(received) and the new packet isn’t sent yet (sent).

We describe the states and the actions for receiver in a similar manner.
The complete list of variables and actions can be obtained via home page
of S.Norgéla: http://www.mif.vu.lt/katedros/cs/

Manager and administrative channel can be in many states be-
cause of performed actions. Logic of knowledge (epistemic logic) is used
to formalize manager’s operation. Logic of knowledge has two operators
[, <>, what have following meaning: [F] - we know that F, < F >
- is possible, that we know, that F. The operators satisfy equivalence
[F]=-<F >.

3. Experiment

To accomplish an experiment, alternative bit protocol problem was
described using PDDL [6]. Many actions such as "do_send” were trans-
formed into actions of PDDL easily without needing more attention.

(:action do_send
:precondition(and(not(sent)) (ready_to_send))
:effect (and(sent) (not (ready_to_send)))

)

But, for example, action ”do_select” which has "OR” operator in its
effect field was transformed into more than one action. This is done to
abolish "OR” operator since PDDL syntax does not allow disjunctive op-
erators to appear in effect field. By abolishing the operator, we have
actions with same preconditions but different effects so planner decides
which action to use. Moreover, action ”do_receive” is transformed into
more than one action too. This is needed to avoid not only ”OR” opera-
tor but also conditional effects. So if action has ” OR” operator in its effect
field or is using conditional effects, it is transformed into more than one
action of PDDL. In addition, to implement packet deformation, packet
loss and to count packets, fluents are needed. For example, functions ”i”
and ”k” are implemented to achieve packet loss. When packet is sent via
the channel, ”i” value is incremented by one. When ”i” value is equal to
”k” value which is defined in problem file, init field, the packet is lost and
71" starts to count from zero. So packet loss, packet deformation frequen-
cies can be defined in problem file to obtain different plans.

(:action do_receive_1

:precondition(and(timer) (sent) (sending bit) (<(i) (k)) (<(j)(1)))
reffect(and(received) (receiving bit) (increase(i) 1) (increase(j)
1) (not(sent)))

)

(:action do_receive_2

:precondition(and(timer) (sent) (not (sending bit)) (<(i) (k)) (<(j) (1)))
reffect(and(received) (not(receiving bit)) (increase(i) 1) (increase(j)

1) (not(sent)))
)

Basically, to make this experiment work, planners which support flu-
ents and negative preconditions are needed. There are not so many plan-
ners which support these. LPG-TD planner [7] is chosen because it runs
on Microsoft Windows. Experiment is performed by trying five times to
send particular number of packets via the channel using different packet
loss and packet deformation frequency. It is also taken into account that
sender informs aggregate manager about failure after 3 attempts to send
the same packet. Let’s study experiment results (see table below). For
example, if five times 1 packet is sent via the channel with packet loss and
packet deformation frequency 1/2, then the average plan length needed
to send 1 packet is 38 actions and average time needed to find the plan
is 1.42 seconds. The table shows that if packet deformation and loss fre-
quencies are higher, then bigger plans will be needed and, of course, plan
length depends on number of packets needed to be sent. Results are the
same as we had expected.

pakets/deformation,
loss frequencies 1/2,1/2 1/2,1/4 | 1/4,1/2 | 1/4,1/4 | 1/8,1/8
1 38a, 1.42s | 28a, 2.10s | 29a, 2.2s 8a, 0.05s 8a, 0.04s
2 53a, 18.18s | 52a, 23s 52a, 20s | 27a, 0.88s | 15a, 0.08s
3 7ha, 52.2s | Tha, 82.3s | 77a, 80.2s | 60a, 0.5s 21a, 0.1s

Concluding remarks

The knowledge which represents relation between sender and receiver
is described using finite linear temporal logic formulas. The core of
computer-assisted answering system to questions about the alternative
bit protocol aggregate operation at various time moments has been cre-
ated. Questions are formulated in form of ©GA. Is there any possi-
ble situation that A is true? For example, can we access the situa-
tion where packet acknowledgement waiting time has ended and the ac-
knowledgement packet isn’t received? Question is described by formula
O(—timer A —ack_received). Software [3,11] is developed for this type of
information processing. This software is available on the internet. Next
step is to describe restrictions and to create proof-search tactic. To make
the search more effective, the knowledge about impossible events and situ-
ations which are not needed to be considered must be added to the system.

References

[1] S.Cerrito, M.Cialdea Mayer, S.Praud. A tableau calculus for first order
linear temporal logic over bound time structures, Technical Report
LRI, N. 1207, 1999.

[2] S.Cerrito, M.Cialdea Mayer. Using linear temporal logic to model and
solve planning problems, In: Proceedings of the 8th International
Conference on Artificial Intelligence: Methodology, Systems, Applications,
141-152, 1998.

[3] M.Cialdea Mayer, C.Limongelli, A.Orlandini, V.Poggioni. Linear tem-
poral logic as an executable semantics for planning languages,

Journal Logic, Language and Information, 16, 63-89, 2007.

[4] E.M.Clarke, O.Grumberg, D.Peled. Model Checking, MIT Press, 2000.

[5] S.Cerrito, M.Cialdea Mayer, S.Praud, First Order Linear Temporal
Logic over Finite Time Structures, LNAI 1705, 62-76, 1999.

[6] M. Fox, D.Long. PDDL 2.1: an extension to PDDL for expressing
temporal planning domains. Journal of Artificial Intelligence Re-
search, 20, 61-124, 2003.

[7] A. Gerevini, A.Saetti, I. Serina. LPG-TD: a Fully Automated Planner
for PDDL2.2 Domains (short paper), in 14th Int. Conference
on Automated Planning and Scheduling (ICAPS-04), booklet of the
system demo section, Whistler, Canada, 2004.

[8] G.J.Holzman. The SPIN Model Checker, Addison-Wesley, p. 596, 2003.

[9] H.Kautz, B.Selman. Planning as satisfiability, In: Proceedings of the
10th European Conf. in Artificial Intelligence,Vienna, Austria,
360-363, 1992.

[10] H.Kautz, B.Selman. Unifying SAT-based and graph based planning,
In: Proceedings of the 16th International Joint Conference of Artifi-
cial Intelligence, Stockholm, Sweden, 318- 325, 1999.

[11] H.Kautz, D.McAllester, B.Selman. Encoding plans in propositional
logic, In: Proceedings of the 4th International Conference on Know-
ledge Representation and Reasoning, 374- 385, 1996.

[12] H.Pranevi¢ius. Analysis and formalizations of complex systems, Kauno
technologijos universitetas, 240 p, 2008. (in Lithuanian).

[13] H.Pranevicius, R.Ceponyte. Application of logic programming based
for validation of computers network protocols aggregate specifica-
tions, Automatic and computing technique, 2, 22-27, 1992.

[14] H.Pranevicius, R.Miseviciene. Transformation of aggregate specifica-
tions to the predicate logic models, The international workshop on
harbour, maritime and multimodal logistics modelling & simulation.
Riga, 378-384, 2003.

