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1. Introduction

In this paper, we present a resolution calculus for the first-order modal logic S4. The
formulas are given not necessary in a clausal form. This method can be used for automa-
tizable proof procedure of a quantified modal logic. We will consider formulas for which
the following conditions hold:

1. the formulasF contain only logical connectives¬,&,∨, and no logical or modal
symbol inF lies in the scope of a negation,

2. the formulas are closed, i.e., we consider the formulas without free variables,
3. the formulas are transformed into Skolem normal form (see [1],[2]),
4. the formulas are of the formG1 ∨G2 ∨ ...∨Gs, whereGi is a literal or a formula

beginning with�,3.
The order of formulas is not fixed in a disjunction or in a conjunction. In what fol-

lows,P, P1, P2 denote the atomic formulas. Formulas are denoted byF,G,K,H andM .
Moreover,H andM can be the empty formulas as well. The symbol⊥ denotes an empty
formula.

2. The resolution rules

2.1. Classical rules

(c1)
[P1 ∨H,¬P2 ∨M ]θ

[H ∨M ]θ

θ is an most general unifier of{P1, P2}. We assume that the formulas written over the
line have no common individual variables (this if necessary can be obtained by renaming
variables). Substitutionθ is a finite set of the formt1/x1, . . . , tn/xn, where everyxi is
a variable, everyti is a term, different fromxi, and for alli, j such thati 6= j, xi differs
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from xj. Moreover, if the level (see [1]) ofx isn and if the termt contains some symbol
whose level is greater thann, then the substitution oft for x is forbidden.

(c2)
(F&G) ∨H
F ∨H (c3)

res(P,¬P )

⊥

(c4)
res(F ∨K,G)

res(F,G) ∨K (c5)
res(F&K,G)

K&res(F,G)

(c6)
res(F ∨G)

G ∨ resF (c7)
res(F&G)

res(F,G)

(c8)
res(F&G)

G&resF

2.2. Modal rules

(m1)
[H ∨ �F,M ∨ �G]θ

[H ∨M ∨ �res(F,G)]θ
(m2)

[H ∨ �F,M ∨3G]θ

[H ∨M ∨3res(F,G)]θ

(m3)
[H ∨ �F ]θ

[H ∨ �resF ]θ
(m4)

[H ∨3F ]θ

[H ∨3resF ]θ

(m5)
res(�F,�H)

�res(F,H)
(m6)

res(�H,3F )

3res(H,F )

(m7)
res(�F,H)

res(F−, H)
(m8)

res(�F,H)

res(��F+, H)

(m9)
[H ∨ �F,K]θ

[H ∨ res(F−, K)]θ
(m10)

[H ∨ �F,K]θ

[H ∨ res(��F+, K)]θ

F− is obtained fromF (see [1]) by subtracting one from the level of those symbols
that have a level greater than the modal degree of�F .

F+ is obtained fromF by adding one to the level of those symbols whose level is
greater than the modal degree of�F .

2.3. Simplification rules

(s1)
F∨ ⊥
F

(s2)
F& ⊥
⊥ (s3)

� ⊥
⊥

(s4)
3 ⊥
⊥ (s5)

res(⊥, H)

⊥ (s6)
res(⊥ ∨F,H)

res(F,H)

(s7)
res(⊥ &F,H)

⊥ (s8)
res(� ⊥, H)

⊥ (s9)
res(3 ⊥, H)

⊥
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2.4. Duplication rule

(d1)
F (xn)

F (xn)&F (yn)
.

Herey is a new variable,xn occurs only inF (xn), F (xn) is not in the scope of more
thann modal, andF (xn) is not in the scope of a negation.

2.5. Factorization rule

(f1)
F ∨ F ∨H
F ∨H .

The main results

We define thegeneralized formulasas follows:
1. If F is a formula, thenresF is a generalized formula.
2. If F andG are formulas, thenres(F,G) is a generalized formula.
3. If F is a generalized formula, then¬F is also a generalized formula.
4. If F is a formula andG is a generalized formula, then

(F ∨G), (F&G), (F → G), (G→ F ),�G,3G are generalized formulas.
Note that we consider only Skolemized formulas.The formulasF,G,K,H andM

met in the resolution rules do not containres.
A derivation of the formula (generalized formula)F from a set of formulasS is a

finite sequenceG1, G2, . . . , Gs such that
1. Gs = F .
2. Gi is a formula or a generalized formula.
3. For everyi 6 s at least one of the following conditions holds:

(a) Gi ∈ S.
(b) For somej, k < i Fi follows fromGj, Gk by one of the rules(c1), (c2),

(m1)–(m4), (m9), (m10) or (s1)– (s4).
(c) For somej(j < i) Gj = G(resK), i.e.,resK is a generalized subformula of

G,Gi = G(resH) (orGi = G(H)) andresH (or H) follows fromresK by
one of the rules(c3)–(c8), (m5)–(m8) or (s5)–(s9).

(d) For somej Gj = G(F (xn)) andGi = G(F (xn)&F (yn)). Herey is a new
variable satisfying the conditions of the rule(d1).

(e) For somej < i Gj = G(K) is a formula,Gj = G(M) andM follows fromK
by one of the rules(s1)–(s4) or (f1).

Theorem 1. S `⊥ if and only if S is refutable.

Proof. Soundness and completness of a resolution modal systemS4 is proved in [1]. We
will show that every application of a rule of resolution modal system in [1] is simulated
by a finite sequence of applications of considered calculus.
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Assume that a formula which does not satisfy the Condition 4 described in the int-
roduction is obtained. In this case, we can obtain the required form by applying a finite
number of rule(c2).

Each application of rules(m1)–(m4), (m9) and(m10) introduces generalized for-
mulas containingres. The rules(c3)–(c8), (m5)–(m8), (s5)–(s9) and(d1) present re-
cursive transformation of generalized formulas,i.e., of the formulas containingres. We
simulate the applications of the rules(c1), (c2), (m1)–(m4), (m9) and(m10) for the
subformulas which are in the scope ofres using the above-introduced resolution rules.
As a result a simplified formula not containingres can be obtained by applying the rules
(s5)–(s9).

The rule(c2) from [1] of the formif C is a θ-resolvent ofS′ ∪ {A}, thenC ∨ Bθ is
a θ-resolvent ofS′ ∪ {A ∪ B} is simulated by rules(c1), (c4), (c6) of the calculus in
question.

Rule (c3) from [1] of the form if C is a θ-resolvent ofS′ ∪ {A}, thenC&Bθ is a
θ-resolvent ofS′ ∪ {A&B} is simulated by rules(c5) and(c8) of a considered calculus.

Rule(c4) from [1] of the formif C is aθ-resolvent of{A,B}, thenC is aθ-resolvent
of {A&B} is simulated by rule(c7) of a considered calculus.

Rules(m1)–(m4) from [1] are simulated by the corresponding rules(m2), (m3),
(m1) and(m4) of a considered calculus.

The simplifications rules from [1] are simulated by rules(s1)–(s9) of a respective
calculus. Moreover, each formula of a considered calculus is a particular case of some
rule from [1]. The theorem is proved.

Consider now the formulas of propositional modal logic for which the following con-
ditions hold:

• the formulasF contain only logical connectives¬ and∨,
• no logical or modal symbol lies in the scope of a negation.

Now, we shall present our calculus in this particular case (p denotes a propositional
variable).

Calculus MS4

(c1)
p ∨H,¬p∨M

H ∨M (c2)
res(p ∨H,¬p∨M)

H ∨M

(m1)
H ∨ �p,¬p ∨M

H ∨M (m2)
H ∨ �p,3¬p∨M

H ∨M

(m3)
H ∨ �F,M ∨ �G

H ∨M ∨ �res(F,G)
(m4)

H ∨ �F,M ∨3G
H ∨M ∨3res(F,G)

(m5)
res(H ∨ �p,¬p∨M)

H ∨M (m6)
res(H ∨ �p,3¬p∨M)

H ∨M

(m7)
res(H ∨ �F,M ∨ �G)

H ∨M ∨ �res(F,G)
(m8)

res(H ∨ �F,M ∨3G)

H ∨M ∨3res(F,G)
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(s1)
�F
F

(s2)
�F
��F

(s3)
� ⊥
⊥

(s4)
3F

⊥ (s5)
F∨ ⊥
F

(f1)
F ∨ F ∨H
F ∨H

DEFINITION 1. A derivation of a formulaF from the set of formulasS is a finite
sequenceG1, G2, . . . , Gs such that

1. Gi(i = 1, 2, . . . , s) is a formula or a generalized formula.
2. Gs = F .
3. For everyi 6 s at least one of the following conditions holds:

(a) Gi ∈ S,
(b) For somej andk < i F follows fromGj andGk by one of the rules(c1),

(m1)–(m4).
(c) For somej < iGj = G(resK), i.e.,resK is a generalized subformula ofG,
Gi = G(H) andH follows fromresK by one of rules(c2), (m5)–(m8).

(d) For somej < i Gj = G(K) (K does not containres),Gi = G(H) andH
follows fromK by one of the rules(s1)–(s5), (f1).

Disjunctions of modal literals are calledmodal clauses. Modal literalsare expressions
of the formq,�q or3q, whereq is a propositional variable or its negation.Initial modal
clausesare expressions of the form�C, whereC is a modal clause. The following pro-
position is improved in [3]:for any formulaF one can construct (by introduction of new
variables) the listXp of initial clauses and a propositional variable g such that`S4 F if
and only if`S4 &XF → g.

It means that, in the general case, we can consider the setS of input formulas contai-
ning only modal and initial clauses. Note that the rules of MS4 allow us to derive fromS

formulas which are not initial (or modal) clauses.
For example,�¬p ∨ �q,�(r ∨ ¬q ∨¬s) `MS4 �¬p ∨ �(r ∨ ¬s).
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Rezoliucij ↪u skaičiavimas modalum ↪u logikai S4

S. Norgėla

Darbe nagrin˙ejamos bendro pavidalo modalum↪u logikos formulės. Aprašomas rezoliucij↪u skai-
čiavimas modalum↪u logikai S4 bei↪irodomas jo pilnumas ir korektiškumas.


