<< >> Up Title Contents Index

Video Parameters

We do not propose to describe the processing of dynamically changing images in this introduction. It is appropriate--given that many static images are derived from video cameras and frame grabbers-- to mention the standards that are associated with the three standard video schemes that are currently in worldwide use - NTSC, PAL, and SECAM. This information is summarized in Table 3.

Standard

NTSC
PAL
SECAM
Property



images / second
29.97
25
25
ms / image
33.37
40.0
40.0
lines / image
525
625
625
(horiz./vert.) = aspect ratio
4:3
4:3
4:3
interlace
2:1
2:1
2:1
us / line
63.56
64.00
64.00
Table 3: Standard video parameters

In an interlaced image the odd numbered lines (1,3,5,...) are scanned in half of the allotted time (e.g. 20 ms in PAL) and the even numbered lines (2,4,6,...) are scanned in the remaining half. The image display must be coordinated with this scanning format. (See Section 8.2.) The reason for interlacing the scan lines of a video image is to reduce the perception of flicker in a displayed image. If one is planning to use images that have been scanned from an interlaced video source, it is important to know if the two half-images have been appropriately "shuffled" by the digitization hardware or if that should be implemented in software. Further, the analysis of moving objects requires special care with interlaced video to avoid "zigzag" edges.

The number of rows (N) from a video source generally corresponds one-to-one with lines in the video image. The number of columns, however, depends on the nature of the electronics that is used to digitize the image. Different frame grabbers for the same video camera might produce M = 384, 512, or 768 columns (pixels) per line.

<< >> Up Title Contents Index