Mathematical Competition for Students of the Department of Mathematics and Informatics of Vilnius University Problems and Solutions

Paulius Drungilas¹, Artūras Dubickas² and Jonas Jankauskas³

2014-02-08

PROBLEMS

Problem 1. Find all real y for which the equation $x^2 + x\sin(\pi y) + 2\cos(\pi y) = 0$ has two roots of the form $x_1 = \sin z$ and $x_2 = \cos z$, where $z = z(y) \in [0, 1]$.

Problem 2. Suppose $a_0 > a_1 > a_2 > a_3 > \ldots$ is a decreasing sequence of positive numbers satisfying $\sum_{k=0}^{\infty} a_k = 1$. Is there a constant C for which the inequality

$$(n+1)^2\sum_{k=n}^\infty a_k^3\leqslant C$$

holds for each integer $n \ge 0$? If so, find the smallest such constant.

Problem 3. Let $a \ge 2$ and b be two integers. Prove that the sequence $a^{n^{2014}} + b$, $n = 1, 2, 3, \ldots$, contains infinitely many composite numbers. (An integer $n \ge 2$ is called *composite* if it is not a prime number.)

Problem 4. Let S be a nonempty set, and let * be an operation which to any $a, b \in S$ assigns some element $a*b \in S$ and satisfies the associativity property (a*b)*c = a*(b*c) for all $a, b, c \in S$. Assume that for each $a \in S$ there is a unique $b = b(a) \in S$ satisfying a*b*a = a.

- a) Prove that S contains an idempotent. (An element $e \in S$ is called *idempotent* if e * e = e.)
- b) Prove that S contains a unique idempotent.

Each problem is worth 10 points.

¹Vilnius University, Department of Mathematics and Informatics, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~drungilas/

²Vilnius University, Department of Mathematics and Informatics, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~dubickas/

³Vilnius University, Department of Mathematics and Informatics, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~jonakank/ and Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

PROBLEMS WITH SOLUTIONS

Problem 1. Find all real y for which the equation $x^2 + x\sin(\pi y) + 2\cos(\pi y) = 0$ has two roots of the form $x_1 = \sin z$ and $x_2 = \cos z$, where $z = z(y) \in [0, 1]$.

Answer. y = 2k - 1/2, where $k \in \mathbb{Z}$.

Solution. Assume that such z = z(y) exists for some $y \in \mathbb{R}$. Then

$$1 = x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = (-\sin(\pi y))^2 - 4\cos(\pi y) = \sin^2(\pi y) - 4\cos(\pi y).$$

This yields $4\cos(\pi y) = \sin^2(\pi y) - 1 = -\cos^2(\pi y)$. Since $\cos(\pi y) \neq -4$, we obtain $\cos(\pi y) = 0$, and thus $\sin(\pi y) = \pm 1$. It follows that one of the roots of the equation $x^2 + x\sin(\pi y) + 2\cos(\pi y) = 0$ must be 0 and the other root, $-\sin(\pi y)$, either -1 or 1. However, for $z \in [0, 1]$, both roots $x_1 = \sin z$ and $x_2 = \cos z$ are nonnegative. Hence, the roots must be 0 and 1, and thus $\sin(\pi y) = -1$. It follows that $\pi y = -\pi/2 + 2\pi k$ with $k \in \mathbb{Z}$, i.e., y = 2k - 1/2. Conversely, for y = 2k - 1/2, where $k \in \mathbb{Z}$, we have $\cos(\pi y) = 0$ and $\sin(\pi y) = -1$, so the equation is $x^2 - x = 0$. It has two roots $x_1 = 0$ and $x_2 = 1$, so we can select $z = 0 \in [0, 1]$ for each y of the form 2k - 1/2.

Problem 2. Suppose $a_0 > a_1 > a_2 > a_3 > \dots$ is a decreasing sequence of positive numbers satisfying $\sum_{k=0}^{\infty} a_k = 1$. Is there a constant C for which the inequality

$$(n+1)^2\sum_{k=n}^\infty a_k^3\leqslant C$$

holds for each integer $n \ge 0$? If so, find the smallest such constant.

Answer. The smallest such constant is C = 1. Solution. Note that

$$a_n \leqslant \frac{1}{n+1} \sum_{k=0}^n a_k < \frac{1}{n+1} \sum_{k=0}^\infty a_k = \frac{1}{n+1}$$

for $n \ge 0$. Hence, for each integer $n \ge 0$ we obtain

$$\sum_{k=n}^{\infty} a_k^3 < \sum_{k=n}^{\infty} a_n^2 a_k = a_n^2 \sum_{k=n}^{\infty} a_k \leqslant a_n^2 \sum_{k=0}^{\infty} a_k = a_n^2 < \frac{1}{(n+1)^2},$$

so the required inequality (even strict inequality) holds for C = 1. To show that C = 1is the smallest such constant, we assume that the inequality $C_n := (n+1)^2 \sum_{k=n}^{\infty} a_k^3 \leq C$ holds for some 0 < C < 1 and each $n \ge 0$. Consider the sequence $a_0 := 1 - \varepsilon$ and $a_n := \varepsilon 2^{-n}$ for $n \in \mathbb{N}$, where $0 < \varepsilon < \min(2/3, 1 - C^{1/3})$. (It is a decreasing sequence of positive numbers satisfying $\sum_{k=0}^{\infty} a_k = 1$.) Inserting n = 0 into C_n , by the choice of ε , we find that $C \ge C_0 = \sum_{k=0}^{\infty} a_k^3 > a_0^3 = (1 - \varepsilon)^3 > C$, a contradiction. \Box **Problem 3.** Let $a \ge 2$ and b be two integers. Prove that the sequence $a^{n^{2014}} + b$, $n = 1, 2, 3, \ldots$, contains infinitely many composite numbers. (An integer $n \ge 2$ is called *composite* if it is not a prime number.)

Solution. Set $f(n) := a^{n^{2014}} + b$ and assume that there exists $N \in \mathbb{N}$ such that the numbers f(n), $n = N, N + 1, \ldots$, are all prime. Select any $m \ge N$ for which the inequality $a^{m^{2014}} \ge |b| + 2$ holds. Then $p = f(m) \ge 2$ is a prime number. By Fermat's little theorem, for any positive integers A, d we have

$$A^{p^d} \pmod{p} \equiv A^{p^{d-1}} \pmod{p} \equiv \dots \equiv A^p \pmod{p} \equiv A \pmod{p}.$$

Applying this to $A := a^{m^{2014}}$ and d := 2014, we find that

$$f(mp) - p = f(mp) - f(m) = a^{(mp)^{2014}} - a^{m^{2014}} = A^{p^d} - A^{p^d}$$

is divisible by p. Hence, p|f(mp). Therefore, the number f(mp) is composite, since f(mp) > f(m) = p, and $mp > m \ge N$, a contradiction.

Here is an alternative solution. The statement is clear for b = 0, so assume that $b \neq 0$. Also, we may assume that the numbers a and b are coprime, since otherwise the result is trivial. Select $m \in \mathbb{N}$ so large that $c = a^{m^{2014}}$ is greater than |b| + 2. Since c and b are coprime, the integers $c + b \ge 2$ and b are also coprime. Hence, by Euler's theorem, $c^{\varphi(c+b)}$, where $\varphi(m)$ is Euler's function, is equal to 1 modulo c + b. Selecting $n = m(\varphi(c+b)k+1)$, where $k = 1, 2, 3, \ldots$, we obtain

$$a^{n^{2014}} = c^{(\varphi(c+b)k+1)^{2014}} = c^{\varphi(c+b)K+1}$$

with $K \in \mathbb{N}$, thus $a^{n^{2014}}$ is c modulo c+b. Hence, for each $k \ge 2$, the number $a^{n^{2014}} + b = c^{\varphi(c+b)K+1} + b$ is divisible by $c+b \ge 2$ and is greater than c+b, so it is a composite number.

Problem 4. Let S be a nonempty set, and let * be an operation which to any $a, b \in S$ assigns some element $a*b \in S$ and satisfies the associativity property (a*b)*c = a*(b*c) for all $a, b, c \in S$. Assume that for each $a \in S$ there is a unique $b = b(a) \in S$ satisfying a*b*a = a.

- a) Prove that S contains an idempotent. (An element $e \in S$ is called *idempotent* if e * e = e.)
- b) Prove that S contains a unique idempotent.

Solution. Take any $a \in S$ and a unique $b \in S$ for which a = a * b * a. Then a * b = a * b * a * b = (a * b) * (a * b), so a * b is an idempotent. This proves part a). Moreover, as a * b * a * b * a = a * b * a = a, in view of the uniqueness of b we must have b * a * b = b.

Thus, if b is the unique for a satisfying a * b * a = a then a is also the unique for b satisfying b * a * b = b.

To prove part b) let us assume that there are at least two distinct idempotents $x \neq y$ in S. Take $z \in S$ for which x * y = x * y * z * x * y. (By the above, we also have z = z * x * y * z.) As y = y * y and

$$x * y = x * y * z * x * y = x * y * y * z * x * y = x * y * (y * z) * x * y,$$

by the uniqueness property, we must have z = y * z. By a similar argument, z = z * x. Hence, z = z * x * y * z = z * x * z and z = z * x * y * z = z * y * z. By the uniqueness property, we now obtain x * y = x = y, contrary to $x \neq y$.