Mathematical Competition for Students of the Department of Mathematics and Informatics of Vilnius University Problems and Solutions

Paulius Drungilas ${ }^{1}$, Artūras Dubickas ${ }^{2}$ and Jonas Jankauskas ${ }^{3}$

2014-02-08

PROBLEMS

Problem 1. Find all real y for which the equation $x^{2}+x \sin (\pi y)+2 \cos (\pi y)=0$ has two roots of the form $x_{1}=\sin z$ and $x_{2}=\cos z$, where $z=z(y) \in[0,1]$.

Problem 2. Suppose $a_{0}>a_{1}>a_{2}>a_{3}>\ldots$ is a decreasing sequence of positive numbers satisfying $\sum_{k=0}^{\infty} a_{k}=1$. Is there a constant C for which the inequality

$$
(n+1)^{2} \sum_{k=n}^{\infty} a_{k}^{3} \leqslant C
$$

holds for each integer $n \geqslant 0$? If so, find the smallest such constant.
Problem 3. Let $a \geqslant 2$ and b be two integers. Prove that the sequence $a^{n^{2014}}+b$, $n=1,2,3, \ldots$, contains infinitely many composite numbers. (An integer $n \geqslant 2$ is called composite if it is not a prime number.)

Problem 4. Let S be a nonempty set, and let $*$ be an operation which to any $a, b \in S$ assigns some element $a * b \in S$ and satisfies the associativity property $(a * b) * c=a *(b * c)$ for all $a, b, c \in S$. Assume that for each $a \in S$ there is a unique $b=b(a) \in S$ satisfying $a * b * a=a$.
a) Prove that S contains an idempotent. (An element $e \in S$ is called idempotent if $e * e=e$.)
b) Prove that S contains a unique idempotent.

Each problem is worth 10 points.

[^0]
PROBLEMS WITH SOLUTIONS

Problem 1. Find all real y for which the equation $x^{2}+x \sin (\pi y)+2 \cos (\pi y)=0$ has two roots of the form $x_{1}=\sin z$ and $x_{2}=\cos z$, where $z=z(y) \in[0,1]$.

Answer. $y=2 k-1 / 2$, where $k \in \mathbb{Z}$.
Solution. Assume that such $z=z(y)$ exists for some $y \in \mathbb{R}$. Then

$$
1=x_{1}^{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}=(-\sin (\pi y))^{2}-4 \cos (\pi y)=\sin ^{2}(\pi y)-4 \cos (\pi y) .
$$

This yields $4 \cos (\pi y)=\sin ^{2}(\pi y)-1=-\cos ^{2}(\pi y)$. Since $\cos (\pi y) \neq-4$, we obtain $\cos (\pi y)=0$, and thus $\sin (\pi y)= \pm 1$. It follows that one of the roots of the equation $x^{2}+x \sin (\pi y)+2 \cos (\pi y)=0$ must be 0 and the other root, $-\sin (\pi y)$, either -1 or 1 . However, for $z \in[0,1]$, both roots $x_{1}=\sin z$ and $x_{2}=\cos z$ are nonnegative. Hence, the roots must be 0 and 1 , and thus $\sin (\pi y)=-1$. It follows that $\pi y=-\pi / 2+2 \pi k$ with $k \in \mathbb{Z}$, i.e., $y=2 k-1 / 2$. Conversely, for $y=2 k-1 / 2$, where $k \in \mathbb{Z}$, we have $\cos (\pi y)=0$ and $\sin (\pi y)=-1$, so the equation is $x^{2}-x=0$. It has two roots $x_{1}=0$ and $x_{2}=1$, so we can select $z=0 \in[0,1]$ for each y of the form $2 k-1 / 2$.

Problem 2. Suppose $a_{0}>a_{1}>a_{2}>a_{3}>\ldots$ is a decreasing sequence of positive numbers satisfying $\sum_{k=0}^{\infty} a_{k}=1$. Is there a constant C for which the inequality

$$
(n+1)^{2} \sum_{k=n}^{\infty} a_{k}^{3} \leqslant C
$$

holds for each integer $n \geqslant 0$? If so, find the smallest such constant.
Answer. The smallest such constant is $C=1$.
Solution. Note that

$$
a_{n} \leqslant \frac{1}{n+1} \sum_{k=0}^{n} a_{k}<\frac{1}{n+1} \sum_{k=0}^{\infty} a_{k}=\frac{1}{n+1}
$$

for $n \geqslant 0$. Hence, for each integer $n \geqslant 0$ we obtain

$$
\sum_{k=n}^{\infty} a_{k}^{3}<\sum_{k=n}^{\infty} a_{n}^{2} a_{k}=a_{n}^{2} \sum_{k=n}^{\infty} a_{k} \leqslant a_{n}^{2} \sum_{k=0}^{\infty} a_{k}=a_{n}^{2}<\frac{1}{(n+1)^{2}}
$$

so the required inequality (even strict inequality) holds for $C=1$. To show that $C=1$ is the smallest such constant, we assume that the inequality $C_{n}:=(n+1)^{2} \sum_{k=n}^{\infty} a_{k}^{3} \leqslant C$ holds for some $0<C<1$ and each $n \geqslant 0$. Consider the sequence $a_{0}:=1-\varepsilon$ and $a_{n}:=\varepsilon 2^{-n}$ for $n \in \mathbb{N}$, where $0<\varepsilon<\min \left(2 / 3,1-C^{1 / 3}\right)$. (It is a decreasing sequence of positive numbers satisfying $\sum_{k=0}^{\infty} a_{k}=1$.) Inserting $n=0$ into C_{n}, by the choice of ε, we find that $C \geqslant C_{0}=\sum_{k=0}^{\infty} a_{k}^{3}>a_{0}^{3}=(1-\varepsilon)^{3}>C$, a contradiction.

Problem 3. Let $a \geqslant 2$ and b be two integers. Prove that the sequence $a^{n^{2014}}+b$, $n=1,2,3, \ldots$, contains infinitely many composite numbers. (An integer $n \geqslant 2$ is called composite if it is not a prime number.)

Solution. Set $f(n):=a^{n^{2014}}+b$ and assume that there exists $N \in \mathbb{N}$ such that the numbers $f(n), n=N, N+1, \ldots$, are all prime. Select any $m \geqslant N$ for which the inequality $a^{m^{2014}} \geqslant|b|+2$ holds. Then $p=f(m) \geqslant 2$ is a prime number. By Fermat's little theorem, for any positive integers A, d we have

$$
A^{p^{d}} \quad(\bmod p) \equiv A^{p^{d-1}} \quad(\bmod p) \equiv \cdots \equiv A^{p} \quad(\bmod p) \equiv A \quad(\bmod p)
$$

Applying this to $A:=a^{m^{2014}}$ and $d:=2014$, we find that

$$
f(m p)-p=f(m p)-f(m)=a^{(m p)^{2014}}-a^{m^{2014}}=A^{p^{d}}-A
$$

is divisible by p. Hence, $p \mid f(m p)$. Therefore, the number $f(m p)$ is composite, since $f(m p)>f(m)=p$, and $m p>m \geqslant N$, a contradiction.

Here is an alternative solution. The statement is clear for $b=0$, so assume that $b \neq 0$. Also, we may assume that the numbers a and b are coprime, since otherwise the result is trivial. Select $m \in \mathbb{N}$ so large that $c=a^{m^{2014}}$ is greater than $|b|+2$. Since c and b are coprime, the integers $c+b \geqslant 2$ and b are also coprime. Hence, by Euler's theorem, $c^{\varphi(c+b)}$, where $\varphi(m)$ is Euler's function, is equal to 1 modulo $c+b$. Selecting $n=m(\varphi(c+b) k+1)$, where $k=1,2,3, \ldots$, we obtain

$$
a^{n^{2014}}=c^{(\varphi(c+b) k+1)^{2014}}=c^{\varphi(c+b) K+1}
$$

with $K \in \mathbb{N}$, thus $a^{n^{2014}}$ is c modulo $c+b$. Hence, for each $k \geqslant 2$, the number $a^{n^{2014}}+b=$ $c^{\varphi(c+b) K+1}+b$ is divisible by $c+b \geq 2$ and is greater than $c+b$, so it is a composite number.

Problem 4. Let S be a nonempty set, and let $*$ be an operation which to any $a, b \in S$ assigns some element $a * b \in S$ and satisfies the associativity property $(a * b) * c=a *(b * c)$ for all $a, b, c \in S$. Assume that for each $a \in S$ there is a unique $b=b(a) \in S$ satisfying $a * b * a=a$.
a) Prove that S contains an idempotent. (An element $e \in S$ is called idempotent if $e * e=e$.)
b) Prove that S contains a unique idempotent.

Solution. Take any $a \in S$ and a unique $b \in S$ for which $a=a * b * a$. Then $a * b=$ $a * b * a * b=(a * b) *(a * b)$, so $a * b$ is an idempotent. This proves part $a)$. Moreover, as $a * b * a * b * a=a * b * a=a$, in view of the uniqueness of b we must have $b * a * b=b$.

Thus, if b is the unique for a satisfying $a * b * a=a$ then a is also the unique for b satisfying $b * a * b=b$.

To prove part b) let us assume that there are at least two distinct idempotents $x \neq y$ in S. Take $z \in S$ for which $x * y=x * y * z * x * y$. (By the above, we also have $z=z * x * y * z$.) As $y=y * y$ and
$x * y=x * y * z * x * y=x * y * y * z * x * y=x * y *(y * z) * x * y$,
by the uniqueness property, we must have $z=y * z$. By a similar argument, $z=z * x$. Hence, $z=z * x * y * z=z * x * z$ and $z=z * x * y * z=z * y * z$. By the uniqueness property, we now obtain $x * y=x=y$, contrary to $x \neq y$.

[^0]: ${ }^{1}$ Vilnius University, Department of Mathematics and Informatics, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~drungilas/
 ${ }^{2}$ Vilnius University, Department of Mathematics and Informatics, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~dubickas/
 ${ }^{3}$ Vilnius University, Department of Mathematics and Informatics, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~jonakank/ and Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

