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PROBLEMS

Problem 1. Find all real y for which the equation x2 + x sin(πy) + 2 cos(πy) = 0 has
two roots of the form x1 = sin z and x2 = cos z, where z = z(y) ∈ [0, 1].

Problem 2. Suppose a0 > a1 > a2 > a3 > . . . is a decreasing sequence of positive
numbers satisfying

∑∞
k=0 ak = 1. Is there a constant C for which the inequality

(n+ 1)2
∞∑
k=n

a3k 6 C

holds for each integer n > 0? If so, find the smallest such constant.

Problem 3. Let a > 2 and b be two integers. Prove that the sequence an
2014

+ b,
n = 1, 2, 3, . . . , contains infinitely many composite numbers. (An integer n > 2 is called
composite if it is not a prime number.)

Problem 4. Let S be a nonempty set, and let ∗ be an operation which to any a, b ∈ S
assigns some element a∗b ∈ S and satisfies the associativity property (a∗b)∗c = a∗(b∗c)
for all a, b, c ∈ S. Assume that for each a ∈ S there is a unique b = b(a) ∈ S satisfying
a ∗ b ∗ a = a.

a) Prove that S contains an idempotent. (An element e ∈ S is called idempotent if
e ∗ e = e.)

b) Prove that S contains a unique idempotent.

Each problem is worth 10 points.
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PROBLEMS WITH SOLUTIONS

Problem 1. Find all real y for which the equation x2 + x sin(πy) + 2 cos(πy) = 0 has
two roots of the form x1 = sin z and x2 = cos z, where z = z(y) ∈ [0, 1].

Answer. y = 2k − 1/2, where k ∈ Z.

Solution. Assume that such z = z(y) exists for some y ∈ R. Then

1 = x21 + x22 = (x1 + x2)
2 − 2x1x2 = (− sin(πy))2 − 4 cos(πy) = sin2(πy)− 4 cos(πy).

This yields 4 cos(πy) = sin2(πy) − 1 = − cos2(πy). Since cos(πy) 6= −4, we obtain
cos(πy) = 0, and thus sin(πy) = ±1. It follows that one of the roots of the equation
x2 + x sin(πy) + 2 cos(πy) = 0 must be 0 and the other root, − sin(πy), either −1 or 1.
However, for z ∈ [0, 1], both roots x1 = sin z and x2 = cos z are nonnegative. Hence,
the roots must be 0 and 1, and thus sin(πy) = −1. It follows that πy = −π/2 + 2πk

with k ∈ Z, i.e., y = 2k − 1/2. Conversely, for y = 2k − 1/2, where k ∈ Z, we have
cos(πy) = 0 and sin(πy) = −1, so the equation is x2 − x = 0. It has two roots x1 = 0

and x2 = 1, so we can select z = 0 ∈ [0, 1] for each y of the form 2k − 1/2. �

Problem 2. Suppose a0 > a1 > a2 > a3 > . . . is a decreasing sequence of positive
numbers satisfying

∑∞
k=0 ak = 1. Is there a constant C for which the inequality

(n+ 1)2
∞∑
k=n

a3k 6 C

holds for each integer n > 0? If so, find the smallest such constant.

Answer. The smallest such constant is C = 1.

Solution. Note that

an 6
1

n+ 1

n∑
k=0

ak <
1

n+ 1

∞∑
k=0

ak =
1

n+ 1

for n > 0. Hence, for each integer n > 0 we obtain
∞∑
k=n

a3k <
∞∑
k=n

a2nak = a2n

∞∑
k=n

ak 6 a2n

∞∑
k=0

ak = a2n <
1

(n+ 1)2
,

so the required inequality (even strict inequality) holds for C = 1. To show that C = 1

is the smallest such constant, we assume that the inequality Cn := (n+1)2
∑∞

k=n a
3
k 6 C

holds for some 0 < C < 1 and each n > 0. Consider the sequence a0 := 1 − ε and
an := ε2−n for n ∈ N, where 0 < ε < min(2/3, 1− C1/3). (It is a decreasing sequence of
positive numbers satisfying

∑∞
k=0 ak = 1.) Inserting n = 0 into Cn, by the choice of ε,

we find that C > C0 =
∑∞

k=0 a
3
k > a30 = (1− ε)3 > C, a contradiction. �
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Problem 3. Let a > 2 and b be two integers. Prove that the sequence an
2014

+ b,
n = 1, 2, 3, . . . , contains infinitely many composite numbers. (An integer n > 2 is called
composite if it is not a prime number.)

Solution. Set f(n) := an
2014

+ b and assume that there exists N ∈ N such that the
numbers f(n), n = N,N + 1, . . . , are all prime. Select any m > N for which the
inequality am2014

> |b| + 2 holds. Then p = f(m) > 2 is a prime number. By Fermat’s
little theorem, for any positive integers A, d we have

Apd (mod p) ≡ Apd−1

(mod p) ≡ · · · ≡ Ap (mod p) ≡ A (mod p).

Applying this to A := am
2014 and d := 2014, we find that

f(mp)− p = f(mp)− f(m) = a(mp)2014 − am2014

= Apd − A

is divisible by p. Hence, p|f(mp). Therefore, the number f(mp) is composite, since
f(mp) > f(m) = p, and mp > m > N , a contradiction.

Here is an alternative solution. The statement is clear for b = 0, so assume that
b 6= 0. Also, we may assume that the numbers a and b are coprime, since otherwise the
result is trivial. Select m ∈ N so large that c = am

2014 is greater than |b| + 2. Since
c and b are coprime, the integers c + b > 2 and b are also coprime. Hence, by Euler’s
theorem, cϕ(c+b), where ϕ(m) is Euler’s function, is equal to 1 modulo c + b. Selecting
n = m(ϕ(c+ b)k + 1), where k = 1, 2, 3, . . . , we obtain

an
2014

= c(ϕ(c+b)k+1)2014 = cϕ(c+b)K+1

with K ∈ N, thus an2014 is c modulo c+ b. Hence, for each k > 2, the number an2014
+ b =

cϕ(c+b)K+1 + b is divisible by c + b ≥ 2 and is greater than c + b, so it is a composite
number. �

Problem 4. Let S be a nonempty set, and let ∗ be an operation which to any a, b ∈ S
assigns some element a∗b ∈ S and satisfies the associativity property (a∗b)∗c = a∗(b∗c)
for all a, b, c ∈ S. Assume that for each a ∈ S there is a unique b = b(a) ∈ S satisfying
a ∗ b ∗ a = a.

a) Prove that S contains an idempotent. (An element e ∈ S is called idempotent if
e ∗ e = e.)

b) Prove that S contains a unique idempotent.

Solution. Take any a ∈ S and a unique b ∈ S for which a = a ∗ b ∗ a. Then a ∗ b =

a ∗ b ∗ a ∗ b = (a ∗ b) ∗ (a ∗ b), so a ∗ b is an idempotent. This proves part a). Moreover, as
a ∗ b ∗ a ∗ b ∗ a = a ∗ b ∗ a = a, in view of the uniqueness of b we must have b ∗ a ∗ b = b.
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Thus, if b is the unique for a satisfying a ∗ b ∗ a = a then a is also the unique for b
satisfying b ∗ a ∗ b = b.

To prove part b) let us assume that there are at least two distinct idempotents x 6= y

in S. Take z ∈ S for which x ∗ y = x ∗ y ∗ z ∗ x ∗ y. (By the above, we also have
z = z ∗ x ∗ y ∗ z.) As y = y ∗ y and

x ∗ y = x ∗ y ∗ z ∗ x ∗ y = x ∗ y ∗ y ∗ z ∗ x ∗ y = x ∗ y ∗ (y ∗ z) ∗ x ∗ y,

by the uniqueness property, we must have z = y ∗ z. By a similar argument, z = z ∗ x.
Hence, z = z ∗ x ∗ y ∗ z = z ∗ x ∗ z and z = z ∗ x ∗ y ∗ z = z ∗ y ∗ z. By the uniqueness
property, we now obtain x ∗ y = x = y, contrary to x 6= y. �


