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PROBLEMS

Problem 1. Find all real y for which the equation z? + xsin(7y) + 2 cos(ry) = 0 has
two roots of the form z; = sin z and xy = cos z, where z = z(y) € [0, 1].

Problem 2. Suppose ag > a; > as > az > ... is a decreasing sequence of positive
numbers satisfying >~ a; = 1. Is there a constant C' for which the inequality

(n+1)° Z a; <C
k=n
holds for each integer n > 07 If so, find the smallest such constant.

Problem 3. Let a > 2 and b be two integers. Prove that the sequence a4 b,
n=1,2,3,..., contains infinitely many composite numbers. (An integer n > 2 is called

composite if it is not a prime number.)

Problem 4. Let S be a nonempty set, and let * be an operation which to any a,b € S
assigns some element axb € S and satisfies the associativity property (a*b)*c = ax(bxc)
for all a,b,c € S. Assume that for each a € S there is a unique b = b(a) € S satisfying

axbxa=a.

a) Prove that S contains an idempotent. (An element e € S is called idempotent if
exe=e.)

b) Prove that S contains a unique idempotent.

Each problem is worth 10 points.
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PROBLEMS WITH SOLUTIONS

Problem 1. Find all real y for which the equation 2% + x sin(7y) + 2 cos(ry) = 0 has
two roots of the form z; = sin z and x9 = cos z, where z = z(y) € [0, 1].

Answer. y = 2k — 1/2, where k € Z.
Solution. Assume that such z = z(y) exists for some y € R. Then
1 =224+ 22 = (11 + 29)* — 22129 = (—sin(my))? — 4 cos(my) = sin®(7y) — 4 cos(my).

This yields 4 cos(my) = sin?(ry) — 1 = —cos?(ry). Since cos(ry) # —4, we obtain
cos(my) = 0, and thus sin(ry) = £1. It follows that one of the roots of the equation
22 + xsin(my) + 2 cos(my) = 0 must be 0 and the other root, — sin(7y), either —1 or 1.
However, for z € [0, 1], both roots z; = sinz and xs = cosz are nonnegative. Hence,
the roots must be 0 and 1, and thus sin(ry) = —1. It follows that 7y = —7/2 + 27k
with k € Z, i.e., y = 2k — 1/2. Conversely, for y = 2k — 1/2, where k € Z, we have

cos(my) = 0 and sin(my) = —1, so the equation is 2 — z = 0. It has two roots z; = 0
and x5 = 1, so we can select z =0 € [0, 1] for each y of the form 2k — 1/2. O
Problem 2. Suppose ag > a; > as > az > ... is a decreasing sequence of positive

numbers satisfying > 7, ar = 1. Is there a constant C for which the inequality
(n+ 1) Z a; < C
k=n

holds for each integer n > 07 If so, find the smallest such constant.

Answer. The smallest such constant is C' = 1.

Solution. Note that

1 — 1 = 1
a, < ap < ay =
n+1kZ:0k n—i—lkgok n+1

for n > 0. Hence, for each integer n > 0 we obtain

) ) 00 00 1
E 3 § 2 2 E 2 E 2

a, < a,ar = a, ag San ap = a, < m,
k=n k=n k=n k=0

so the required inequality (even strict inequality) holds for C' = 1. To show that C' =1
is the smallest such constant, we assume that the inequality C), := (n+1)2Y ;7 a} < C
holds for some 0 < C' < 1 and each n > 0. Consider the sequence ag := 1 — ¢ and
an = 27" for n € N, where 0 < ¢ < min(2/3,1 — C'/3). (It is a decreasing sequence of
positive numbers satisfying >~ a; = 1.) Inserting n = 0 into C,,, by the choice of ¢,
we find that C' > Cy =Y 1o a} > ai = (1 —¢)* > C, a contradiction. O
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Problem 3. Let a > 2 and b be two integers. Prove that the sequence a4 b,
n=1,2,3,..., contains infinitely many composite numbers. (An integer n > 2 is called

composite if it is not a prime number.)

n2014

Solution. Set f(n) := a + b and assume that there exists N € N such that the
numbers f(n), n = N,N + 1,..., are all prime. Select any m > N for which the
inequality a™""" > |b| + 2 holds. Then p = f(m) > 2 is a prime number. By Fermat’s

little theorem, for any positive integers A, d we have

A" (mod p) = A" (modp)=---=A” (modp)=A (mod p).

m2014

Applying this to A :=a and d := 2014, we find that

fmp) = p = f(mp) = f(m) = a7 =0 = A7 — A
is divisible by p. Hence, p|f(mp). Therefore, the number f(mp) is composite, since
f(mp) > f(m) = p, and mp > m > N, a contradiction.

Here is an alternative solution. The statement is clear for b = 0, so assume that
b # 0. Also, we may assume that the numbers a and b are coprime, since otherwise the
result is trivial. Select m € N so large that ¢ = a™" is greater than |b| + 2. Since
c and b are coprime, the integers ¢ + b > 2 and b are also coprime. Hence, by Euler’s
theorem, ¢#(“+?) where ¢(m) is Euler’s function, is equal to 1 modulo ¢ + b. Selecting
n=m(e(c+b)k+ 1), where k =1,2,3,..., we obtain

2014 2014
a® _ C(cp(c+b)k+1) _ Ccp(c-i—b)K-‘rl

0

with K € N, thus ™" is ¢ modulo ¢+b. Hence, for each k > 2, the number ™" +b =
cPHDEFL 1 p is divisible by ¢ + b > 2 and is greater than ¢ + b, so it is a composite

number. O

Problem 4. Let S be a nonempty set, and let * be an operation which to any a,b € S
assigns some element axb € S and satisfies the associativity property (a*b)*c = ax(bxc)
for all a,b,c € S. Assume that for each a € S there is a unique b = b(a) € S satisfying

axb*xa=a.

a) Prove that S contains an idempotent. (An element e € S is called idempotent if
exe=e.)

b) Prove that S contains a unique idempotent.

Solution. Take any a € S and a unique b € S for which @ = a*xb*a. Then axb =
axbxaxb= (axb)*(axb), so axbis an idempotent. This proves part a). Moreover, as

axbxaxbxa=axbxa=a,in view of the uniqueness of b we must have bxa x b = b.
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Thus, if b is the unique for a satisfying a * b * a = a then a is also the unique for b
satisfying bx a x b = b.

To prove part b) let us assume that there are at least two distinct idempotents x # y
in S. Take z € S for which x x y = x *y x z x x x y. (By the above, we also have
z=z*xx*xyx*xz) Asy =yx*y and

THRY=THRYRZRkT kY =THRYRY*x 25Ty =Txy* (Y*2)*T*y,

by the uniqueness property, we must have z = y * z. By a similar argument, z = z % x.
Hence, z = zxxxy*xz=zxx*xzand 2z = 2% x *y* 2z = z*xy * 2. By the uniqueness

property, we now obtain z * y = x = y, contrary to x # y. OJ



