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PROBLEMS

Problem 1. Evaluate the integral∫ π

0

x sinx

1 + cos2 x
dx.

Problem 2. A polynomial p(x) ∈ R[x] is called positive if p(y) > 0 for each y ∈ R.
Suppose that p(x) ∈ R[x] is positive. Prove that the polynomials

p(x)− p′(x) + p′′(x)

2!
− p′′′(x)

3!
+ · · ·

and
p(x) + p′(x) + p′′(x) + p′′′(x) + · · ·

are both positive.

Problem 3. Define a selfish set to be a set which has its own cardinality (number of
elements) as an element. Find, with proof, the number of subsets of {1, 2, . . . , n} which
are minimal selfish sets, that is, selfish sets none of whose proper subset is selfish.

Problem 4. For each positive integer n, let dn denote the greatest common divisor of
the four entries of the matrix (

3 2

4 3

)n

+

(
1 0

0 1

)
.

(For example, d1 = gcd(4, 2, 4, 4) = 2.) Prove that limn→∞ dn =∞.

Each problem is worth 10 points.
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PROBLEMS WITH SOLUTIONS

Problem 1. Evaluate the integral∫ π

0

x sinx

1 + cos2 x
dx.

Answer. The integral is equal to π2/4.

Solution. Put f(x) := arctg(cosx) and observe that f ′(x) = − sinx/(1 + cos2 x). Inte-
grating by parts, we obtain

I :=

∫ π

0

x sinx

1 + cos2 x
dx = −

∫ π

0

x f ′(x) dx = −xf(x)
∣∣∣π
0
+

∫ π

0

f(x) dx.

Since f(π) = arctg(−1) = −π/4 and f(x) = −f(π − x) for each x ∈ [0, π], we find that

I = −π · f(π) + 0 · f(0) + 0 =
π2

4
,

as claimed.
Here is another variation of this proof. By changing the variable x into π − x, we

obtain
I :=

∫ π

0

x sinx

1 + cos2 x
dx =

∫ π

0

(π − x) sinx
1 + cos2 x

dx.

Adding both these integrals, we deduce that

2I =

∫ π

0

π sinx

1 + cos2 x
dx = −π

∫ π

0

f ′(x) dx = −π(f(π)− f(0)) = −π
(
− π

4
− π

4

)
=
π2

2
,

whence the result.
Finally, we shall give an alternative proof (without the immediate introduction of the

function f(x) as above or using the fact that sinx dx = −d cosx). Fix a positive real
number ε < π/2. For each x ∈ [ε, π − ε] we have

1

1 + cos2 x
= 1− cos2 x+ cos4 x− cos6 x+ · · · =

∞∑
k=0

(−1)k cos2k x.

Note that the above series converge uniformly in [ε, π − ε]. Hence

I(ε) :=

∫ π−ε

ε

x sinx

1 + cos2 x
dx =

∫ π−ε

ε

∞∑
k=0

(−1)kx sinx cos2k x dx

=
∞∑
k=0

(−1)k
∫ π−ε

ε

x sinx cos2k x dx =
∞∑
k=0

(−1)k+1

∫ π−ε

ε

x

(
cos2k+1 x

2k + 1

)′
dx

=
∞∑
k=0

(−1)k+1

2k + 1

(
x cos2k+1 x

∣∣∣π−ε
ε
−
∫ π−ε

ε

cos2k+1 x dx

)
.
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Observing that
∫ π−ε
ε

cos2k+1 x dx = 0 for each integer k > 0 and

x cos2k+1 x
∣∣∣π−ε
ε

= (π − ε) cos2k+1(π − ε)− ε cos2k+1 ε = −π cos2k+1 ε,

we obtain

I(ε) = π

∞∑
k=0

(−1)k cos2k+1 ε

2k + 1
= π arctg (cos ε).

Therefore,∫ π

0

x sinx

1 + cos2 x
dx = lim

ε→0
I(ε) = lim

ε→0
π arctg (cos ε) = πarctg(1) = π2

4
.

�

Problem 2. A polynomial p(x) ∈ R[x] is called positive if p(y) > 0 for each y ∈ R.
Suppose that p(x) ∈ R[x] is positive. Prove that the polynomials

p(x)− p′(x) + p′′(x)

2!
− p′′′(x)

3!
+ · · ·

and
p(x) + p′(x) + p′′(x) + p′′′(x) + · · ·

are both positive.

Proof. Consider the Taylor expansion of the polynomial p(z) at z = x:

p(z) = p(x) + p′(x)(z − x) + p′′(x)

2!
(z − x)2 + p′′′(z)

3!
(z − x)3 + · · · .

Putting z = x− 1 into this expansion we obtain

p(x− 1) = p(x)− p′(x) + p′′(x)

2!
− p′′′(x)

3!
+ · · · ,

so the polynomial on the right hand side is equal to p(x − 1) > 0 for each x ∈ R.
Therefore, it is positive.

Note that the degree of the positive polynomial p(x) is either zero (in which case there
is nothing to prove) or an even positive integer. Moreover, the leading coefficient of p(x)
is a positive real number and coincides with the leading coefficient of the polynomial

g(x) := p(x) + p′(x) + p′′(x) + p′′′(x) + · · · .

Since limx→−∞ g(x) = limx→+∞ g(x) = +∞, the polynomial g(x) attains its global
minimum at some point, say, at x = x0. Then x = x0 is also a local minimum point,
thus, by Fermat’s theorem, g′(x0) = 0. Therefore, it remains to prove that for each
y ∈ R satisfying g′(y) = 0 we have g(y) > 0. Indeed, in view of

g′(x) = p′(x) + p′′(x) + p′′′(x) + · · · = g(x)− p(x)
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we obtain g(y) = p(y) + g′(y) = p(y) > 0, since the polynomial p is positive. Thus
g(x) ∈ R[x] is positive. �

Problem 3. Define a selfish set to be a set which has its own cardinality (number of
elements) as an element. Find, with proof, the number of subsets of {1, 2, . . . , n} which
are minimal selfish sets, that is, selfish sets none of whose proper subset is selfish.

Answer. The number of subsets is Fn, the nth Fibonacci number.

Solution. Let fn denote the number of minimal selfish subsets of {1, 2, . . . , n}. We have
f1 = 1 and f2 = 1. We claim that fn = fn−1 + fn−2 for n > 3. Indeed, for n > 3 the
number of minimal selfish subsets of {1, 2, . . . , n} not containing n is equal to fn−1. On
the other hand, for any minimal selfish set containing n, by removing n from the set
and subtracting 1 from each remaining element, we obtain a minimal selfish subset of
{1, 2, . . . , n−2}. (Note that 1 could not have been an element of the set, because the set
{1} is itself selfish.) Conversely, any minimal selfish subset of {1, 2, . . . , n− 2} gives rise
to a minimal selfish subset of {1, 2, . . . , n} containing n, by the inverse procedure. Hence
the number of minimal selfish subsets of {1, 2, . . . , n} containing n is fn−2. If follows
that fn = fn−1 + fn−2 for each n > 3, which together with the initial values f1 = f2 = 1

implies that fn = Fn. �

Problem 4. For each positive integer n, let dn denote the greatest common divisor of
the four entries of the matrix (

3 2

4 3

)n

+

(
1 0

0 1

)
.

(For example, d1 = gcd(4, 2, 4, 4) = 2.) Prove that limn→∞ dn =∞.

Proof. Denote

A =

(
3 2

4 3

)
.

By induction on n one can see easily that there exist positive integers an, bn such that

An =

(
an bn
2bn an

)
.

In fact, an+1 = 3an+4bn and bn+1 = 2an+3bn for each n ∈ N, so an, bn →∞ as n→∞.
Note that a2n − 2b2n = detAn = (detA)n = (9− 8)n = 1. By the definition of dn,

dn = gcd(an + 1, bn, 2bn, an + 1) = gcd(an + 1, bn).

Thus

2d2n = 2gcd(an + 1, bn)
2 = gcd(2(an + 1)2, 2b2n) = gcd(2(an + 1)2, a2n − 1)
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is divisible by an + 1, and hence 2d2n > an. From limn→∞ an = ∞ we conclude that
limn→∞ dn =∞. �


