Mathematical Competition for Students of the Department of Mathematics and Informatics of Vilnius University Problems and Solutions

Paulius Drungilas ${ }^{1}$, Artūras Dubickas ${ }^{2}$ and Jonas Jankauskas ${ }^{3}$
2013-02-23

PROBLEMS

Problem 1. Evaluate the integral

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x
$$

Problem 2. A polynomial $p(x) \in \mathbb{R}[x]$ is called positive if $p(y)>0$ for each $y \in \mathbb{R}$. Suppose that $p(x) \in \mathbb{R}[x]$ is positive. Prove that the polynomials

$$
p(x)-p^{\prime}(x)+\frac{p^{\prime \prime}(x)}{2!}-\frac{p^{\prime \prime \prime}(x)}{3!}+\cdots
$$

and

$$
p(x)+p^{\prime}(x)+p^{\prime \prime}(x)+p^{\prime \prime \prime}(x)+\cdots
$$

are both positive.
Problem 3. Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2, \ldots, n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subset is selfish.

Problem 4. For each positive integer n, let d_{n} denote the greatest common divisor of the four entries of the matrix

$$
\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right)^{n}+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

(For example, $d_{1}=\operatorname{gcd}(4,2,4,4)=2$.) Prove that $\lim _{n \rightarrow \infty} d_{n}=\infty$.

Each problem is worth 10 points.

[^0]
PROBLEMS WITH SOLUTIONS

Problem 1. Evaluate the integral

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x .
$$

Answer. The integral is equal to $\pi^{2} / 4$.
Solution. Put $f(x):=\operatorname{arctg}(\cos x)$ and observe that $f^{\prime}(x)=-\sin x /\left(1+\cos ^{2} x\right)$. Integrating by parts, we obtain

$$
I:=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=-\int_{0}^{\pi} x f^{\prime}(x) d x=-\left.x f(x)\right|_{0} ^{\pi}+\int_{0}^{\pi} f(x) d x
$$

Since $f(\pi)=\operatorname{arctg}(-1)=-\pi / 4$ and $f(x)=-f(\pi-x)$ for each $x \in[0, \pi]$, we find that

$$
I=-\pi \cdot f(\pi)+0 \cdot f(0)+0=\frac{\pi^{2}}{4}
$$

as claimed.
Here is another variation of this proof. By changing the variable x into $\pi-x$, we obtain

$$
I:=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x
$$

Adding both these integrals, we deduce that

$$
2 I=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x=-\pi \int_{0}^{\pi} f^{\prime}(x) d x=-\pi(f(\pi)-f(0))=-\pi\left(-\frac{\pi}{4}-\frac{\pi}{4}\right)=\frac{\pi^{2}}{2}
$$

whence the result.
Finally, we shall give an alternative proof (without the immediate introduction of the function $f(x)$ as above or using the fact that $\sin x d x=-d \cos x)$. Fix a positive real number $\varepsilon<\pi / 2$. For each $x \in[\varepsilon, \pi-\varepsilon]$ we have

$$
\frac{1}{1+\cos ^{2} x}=1-\cos ^{2} x+\cos ^{4} x-\cos ^{6} x+\cdots=\sum_{k=0}^{\infty}(-1)^{k} \cos ^{2 k} x
$$

Note that the above series converge uniformly in $[\varepsilon, \pi-\varepsilon]$. Hence

$$
\begin{gathered}
I(\varepsilon):=\int_{\varepsilon}^{\pi-\varepsilon} \frac{x \sin x}{1+\cos ^{2} x} d x=\int_{\varepsilon}^{\pi-\varepsilon} \sum_{k=0}^{\infty}(-1)^{k} x \sin x \cos ^{2 k} x d x \\
=\sum_{k=0}^{\infty}(-1)^{k} \int_{\varepsilon}^{\pi-\varepsilon} x \sin x \cos ^{2 k} x d x=\sum_{k=0}^{\infty}(-1)^{k+1} \int_{\varepsilon}^{\pi-\varepsilon} x\left(\frac{\cos ^{2 k+1} x}{2 k+1}\right)^{\prime} d x \\
=\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{2 k+1}\left(\left.x \cos ^{2 k+1} x\right|_{\varepsilon} ^{\pi-\varepsilon}-\int_{\varepsilon}^{\pi-\varepsilon} \cos ^{2 k+1} x d x\right)
\end{gathered}
$$

Observing that $\int_{\varepsilon}^{\pi-\varepsilon} \cos ^{2 k+1} x d x=0$ for each integer $k \geqslant 0$ and

$$
\left.x \cos ^{2 k+1} x\right|_{\varepsilon} ^{\pi-\varepsilon}=(\pi-\varepsilon) \cos ^{2 k+1}(\pi-\varepsilon)-\varepsilon \cos ^{2 k+1} \varepsilon=-\pi \cos ^{2 k+1} \varepsilon,
$$

we obtain

$$
I(\varepsilon)=\pi \sum_{k=0}^{\infty} \frac{(-1)^{k} \cos ^{2 k+1} \varepsilon}{2 k+1}=\pi \operatorname{arctg}(\cos \varepsilon)
$$

Therefore,

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=\lim _{\varepsilon \rightarrow 0} I(\varepsilon)=\lim _{\varepsilon \rightarrow 0} \pi \operatorname{arctg}(\cos \varepsilon)=\pi \operatorname{arctg}(1)=\frac{\pi^{2}}{4}
$$

Problem 2. A polynomial $p(x) \in \mathbb{R}[x]$ is called positive if $p(y)>0$ for each $y \in \mathbb{R}$. Suppose that $p(x) \in \mathbb{R}[x]$ is positive. Prove that the polynomials

$$
p(x)-p^{\prime}(x)+\frac{p^{\prime \prime}(x)}{2!}-\frac{p^{\prime \prime \prime}(x)}{3!}+\cdots
$$

and

$$
p(x)+p^{\prime}(x)+p^{\prime \prime}(x)+p^{\prime \prime \prime}(x)+\cdots
$$

are both positive.
Proof. Consider the Taylor expansion of the polynomial $p(z)$ at $z=x$:

$$
p(z)=p(x)+p^{\prime}(x)(z-x)+\frac{p^{\prime \prime}(x)}{2!}(z-x)^{2}+\frac{p^{\prime \prime \prime}(z)}{3!}(z-x)^{3}+\cdots .
$$

Putting $z=x-1$ into this expansion we obtain

$$
p(x-1)=p(x)-p^{\prime}(x)+\frac{p^{\prime \prime}(x)}{2!}-\frac{p^{\prime \prime \prime}(x)}{3!}+\cdots,
$$

so the polynomial on the right hand side is equal to $p(x-1)>0$ for each $x \in \mathbb{R}$. Therefore, it is positive.

Note that the degree of the positive polynomial $p(x)$ is either zero (in which case there is nothing to prove) or an even positive integer. Moreover, the leading coefficient of $p(x)$ is a positive real number and coincides with the leading coefficient of the polynomial

$$
g(x):=p(x)+p^{\prime}(x)+p^{\prime \prime}(x)+p^{\prime \prime \prime}(x)+\cdots
$$

Since $\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow+\infty} g(x)=+\infty$, the polynomial $g(x)$ attains its global minimum at some point, say, at $x=x_{0}$. Then $x=x_{0}$ is also a local minimum point, thus, by Fermat's theorem, $g^{\prime}\left(x_{0}\right)=0$. Therefore, it remains to prove that for each $y \in \mathbb{R}$ satisfying $g^{\prime}(y)=0$ we have $g(y)>0$. Indeed, in view of

$$
g^{\prime}(x)=p^{\prime}(x)+p^{\prime \prime}(x)+p^{\prime \prime \prime}(x)+\cdots=g(x)-p(x)
$$

we obtain $g(y)=p(y)+g^{\prime}(y)=p(y)>0$, since the polynomial p is positive. Thus $g(x) \in \mathbb{R}[x]$ is positive.

Problem 3. Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2, \ldots, n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subset is selfish.

Answer. The number of subsets is F_{n}, the nth Fibonacci number.
Solution. Let f_{n} denote the number of minimal selfish subsets of $\{1,2, \ldots, n\}$. We have $f_{1}=1$ and $f_{2}=1$. We claim that $f_{n}=f_{n-1}+f_{n-2}$ for $n \geqslant 3$. Indeed, for $n \geqslant 3$ the number of minimal selfish subsets of $\{1,2, \ldots, n\}$ not containing n is equal to f_{n-1}. On the other hand, for any minimal selfish set containing n, by removing n from the set and subtracting 1 from each remaining element, we obtain a minimal selfish subset of $\{1,2, \ldots, n-2\}$. (Note that 1 could not have been an element of the set, because the set $\{1\}$ is itself selfish.) Conversely, any minimal selfish subset of $\{1,2, \ldots, n-2\}$ gives rise to a minimal selfish subset of $\{1,2, \ldots, n\}$ containing n, by the inverse procedure. Hence the number of minimal selfish subsets of $\{1,2, \ldots, n\}$ containing n is f_{n-2}. If follows that $f_{n}=f_{n-1}+f_{n-2}$ for each $n \geqslant 3$, which together with the initial values $f_{1}=f_{2}=1$ implies that $f_{n}=F_{n}$.

Problem 4. For each positive integer n, let d_{n} denote the greatest common divisor of the four entries of the matrix

$$
\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right)^{n}+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

(For example, $d_{1}=\operatorname{gcd}(4,2,4,4)=2$.) Prove that $\lim _{n \rightarrow \infty} d_{n}=\infty$.
Proof. Denote

$$
A=\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right)
$$

By induction on n one can see easily that there exist positive integers a_{n}, b_{n} such that

$$
A^{n}=\left(\begin{array}{cc}
a_{n} & b_{n} \\
2 b_{n} & a_{n}
\end{array}\right)
$$

In fact, $a_{n+1}=3 a_{n}+4 b_{n}$ and $b_{n+1}=2 a_{n}+3 b_{n}$ for each $n \in \mathbb{N}$, so $a_{n}, b_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
Note that $a_{n}^{2}-2 b_{n}^{2}=\operatorname{det} A^{n}=(\operatorname{det} A)^{n}=(9-8)^{n}=1$. By the definition of d_{n},

$$
d_{n}=\operatorname{gcd}\left(a_{n}+1, b_{n}, 2 b_{n}, a_{n}+1\right)=\operatorname{gcd}\left(a_{n}+1, b_{n}\right)
$$

Thus

$$
2 d_{n}^{2}=2 \operatorname{gcd}\left(a_{n}+1, b_{n}\right)^{2}=\operatorname{gcd}\left(2\left(a_{n}+1\right)^{2}, 2 b_{n}^{2}\right)=\operatorname{gcd}\left(2\left(a_{n}+1\right)^{2}, a_{n}^{2}-1\right)
$$

is divisible by $a_{n}+1$, and hence $2 d_{n}^{2}>a_{n}$. From $\lim _{n \rightarrow \infty} a_{n}=\infty$ we conclude that $\lim _{n \rightarrow \infty} d_{n}=\infty$.

[^0]: ${ }^{1}$ Vilnius University, Department of Mathematics and Informatics, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~drungilas/
 ${ }^{2}$ Vilnius University, Department of Mathematics and Informatics, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~dubickas/
 ${ }^{3}$ Vilnius University, Department of Mathematics and Informatics, Naugarduko 24, Vilnius LT-03225, Lithuania, http://www.mif.vu.lt/~jonakank/ and Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6

