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Abstract

The 2019 novel infectious disease named COVID-19 has emerged to become a pandemic
that is rapidly spreading all over the world. Early detection of this disease, which has caused
serious effect on the healthcare system and global economy, is of vital importance. The chest
radiography imaging (CXR) has proved to be an effective screening technique in diagnosing
the COVID-19. This study is aimed to automatically detect COVID-19 disease from CXR
images while maximizing the accuracy in detection. The proposed framework involves image
enhancement technique called Contrast Limited Adaptive Histogram Equalization (CLAHE),
image segmentation using U-Net, feature extraction from pre-trained convolutional neural
networks (CNNs), namely VGG19 and ResNet-50 architectures, UMAP for dimensionality
reduction, and classification with SVM or XGBoost algorithms. Our dataset consists of three
classes: COVID-19, viral pneumonia and normal CXR imagery. To establish the robustness
of the proposed model, stratified 5-fold cross-validation is carried out. The results suggest
that image enhancement, segmentation and future fusion methods used in this paper could
indeed improve classification results. The proposed framework achieved a 94.96% balanced
accuracy rate, 94.96% precision, 89.31% recall, 96.01% specificity and 91.83% F1-score.

1 Literature review

There have been several studies trying to develop automatic COVID-19 classification systems,
mainly using Convolutional Neural Networks (CNNs) trained on an ImageNet [7] dataset
and machine learning classifiers. Dias Junior et al. [8] compared various classifiers applied
on deep features extracted from pre-trained CNNs (VGG19, Inception-v3 and ResNet50).
Authors showed that the results achieved with PSO-optimized XGBoost are superior to those
obtained using other classifiers. Besides, VGG19 performed better than other CNN architectures.
Saha et al. [30] trained a simple CNN network for extracting deep and high-level features from
CXR images. With the extracted features, an ensemble of binary machine learning classifiers
such as random forest, support vector machine, decision tree and AdaBoost was applied for
the detection of COVID-19. It was shown that ensemble learning could indeed obtain better
predictive performance.

Several studies showed that classification results might be improved with image segmentation
and enhancement at a preprocessing stage. Toğaçar et al. [32] restructured the original dataset
with the fuzzy color technique and then overlayed structured images over original ones to help
eliminate the noises. Rahman et al. [26] compared five different image enhancement techniques.
A modified U-Net model was proposed and compared with the standard U-Net model for
lung segmentation. Six different pre-trained CNN models and a shallow CNN model were
investigated on the plain and segmented lung CXR images. ChexNet with modified U-Net
and gamma correction-based enhancement technique outperformed other methods in detecting
COVID-19. Lung segmentation using U-Net was also proposed by Arias-Garzón et al. [2].
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Authors compared VGG16 and VGG19 network performance. On a test set the better results
were achieved using VGG19. The segmentation task showed a high probability of providing
extra information.

Feature extraction and selection from the dataset is one of the essential steps for classification
tasks. In most of the recent articles, features are extracted by neural networks. Some authors
suggested alternative methods for future extraction. Nabizadeh et al. [20] proposed a bag
of visual words approach with a Speeded-Up Robust Features (SURF) algorithm. Authors
achieved high accuracy and specificity, however, since SURF can be susceptible to noise, it might
misclassify low quality images. Rajpal et al. [27] considered a classification framework which
combines a set of handpicked features with those obtained from a CNN. Authors constructed
a pool of frequency and texture based features, then used PCA for dimensionality reduction,
concatenated these features with the ones extracted from ResNet-50 and finally passed them
to a feed forward neural network. It was shown that handpicked features can enhance the
learning ability of the transfer learning model. Toğaçar et al. [32] were able to produce faster
and more accurate results by applying Social Mimic Optimization (SMO) for future selection.
Koyuncu and Barstuğan [17] compared combinations of four types of radiomic features: first-
order statistics (FOS), gray level co-occurrence matrix (GLCM), gray level run length matrix
(GLRLM) and gray level size zone matrix (GLSZM). Authors conclude that FOS features are
necessary for achieving the best performance. Best results were achieved using a combination
of FOS and GLRLM features, minmax as the normalization approach, Bhattacharyya distance
or Receiver Operating Characteristic Curve (ROC) rankings as the feature selection method,
and Gauss-map-based chaotic particle swarm optimization – Neural network (GM-CPSO–NN)
as the classifier unit.

Some authors considered task-specific CNN model improvements. Ouchicha et al. [23]
discussed the impact of the size of CNN filters for ground-glass opacity detection. Ground-glass
opacities are considered as the typical early features of COVID-19 infection found in CXR images.
These features may appear in different sizes, shapes, quantities and locations. A small filter may
not capture holistic information of the large sized ground-glass opacities features. Meanwhile,
large filter might result in the loss of details and poor classification accuracy. Authors trained a
model called CVDNet based on the residual neural network. Proposed method is constructed
by using two parallel convolution levels with different filter sizes to capture local and global
features of the inputs. Fan et al. [10] suggested spatial attention and channel attention modules
which would learn to focus on the pathological features of the CXR images and suppress the
shadow and skeletal noise features.

Despite an excellent performance in computer vision, CNNs also have some drawbacks. Since
CNNs have a large number of parameters, they require large datasets for training purposes.
Furthermore, CNNs are not scale or rotation invariant. Afshar et al. [1] addressed these
shortcomings with a capsule network called COVID-CAPS. This model was able to achieve
satisfying performance with a much lower number of trainable parameters than traditional
CNNs. Authors also showed that pre-training could further improve the accuracy and AUC.
Quan et al. [24] extended capsule network by a fusion with DenseNet. Authors demonstrated
that on smaller datasets performance of the proposed framework is indeed better than that of
using CNN alone. Model significantly improved the recall compared to [1] but was much higher
in the number of network trainable parameters. Dixit et al. [9] suggested a highly accurate
approach without the use of CNNs. First, data preprocessing step involved image segmentation
using k-means clustering. Then features were selected using particle swarm optimization (PSO)
with differential evolution (DE) algorithm for local search to improve the efficiency and avoid
local optima trap. Finally, optimized features were classified with SVM.
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Table 1: Comparison of related works on COVID-19 detection from chest x-ray images

Study Dataset Proposed model Acc (%) Prec (%) Rec (%) Spec (%) F1 (%)

Afshar et al. [1] 266 COVID-19
13604 non-COVID COVID-CAPS 98.30 – 80.00 98.60 –

Arias-Garzón
et al. [2]

3240 COVID-19
5469 normal VGG19 + U-Net 96.90 – 98.10 94.60 97.90

Dias Junior
et al. [8]

206 COVID-19
1341 normal

VGG19 +
XGBoost + PSO 98.71 98.89 99.63 – 99.25

Dixit
et al. [9]

358 COVID-19
8066 normal
5551 pneumonia

k-means +
Differential
evolution +
PSO + SVM

99.35 100.00 99.30 – 99.30

Fan et al. [10] 500 COVID-19
500 normal

Multi-Kernel-Size
Spatial-Channel
Attention Network

98.20 98.10 98.10 98.30 98.10

Koyuncu and
Barstuğan [17]

80 COVID-19
160 normal
160 bacterial
pneumonia

Gauss-map-based
chaotic particle
swarm optimization
neural network

99.25 96.39 100.00 99.06 98.16

Nabizadeh
et al. [20]

1510 COVID-19
20723 normal

Bag of Visual
Words + SVM 99.84 – 99.65 99.95 –

Ouchicha
et al. [23]

219 COVID-19
1341 normal
1345 viral
pneumonia

CVDNet
(modified ResNet) 96.69 96.72 96.84 – 96.68

Quan
et al. [24]

250 COVID-19
250 normal
250 pneumonia

DenseNet-121 +
CapsNet 90.70 91.10 90.70 95.30 90.90

Rahman
et al. [26]

3616 COVID-19
8851 normal
6012 other
lung infections

ChexNet +
modified U-Net +
gamma enhancement

96.29 96.28 96.29 97.27 96.28

Rajpal
et al. [27]

520 COVID-19
520 normal
520 pneumonia

ResNet-50 +
handpicked
features +
PCA + FNN

97.40 96.03 96.90 – 96.90

Saha et al. [30] 2300 COVID-19
2300 normal

CNN +
ML classifiers 98.91 100.00 97.82 – 98.89

Toğaçar et al. [32]
295 COVID-19
65 normal
98 pneumonia

fuzzy color +
stacking + SMO +
MobileNetV2 +
SqueezeNet + SVM

99.27 99.27 99.30 99.80 99.27

2 Materials and methods

The overall structure of the proposed framework has 5 stages: image preprocessing,
segmentation, feature extraction, dimensionality reduction and classification. First, we perform
image augmentation using CLAHE image enhancement technique. Then we propose a modified
U-Net architecture for lung segmentation. Once U-Net is trained and applied on classification
dataset, we perform feature extraction using pre-trained CNNs. Extracted features are then
transformed and dimensionality is reduced with a UMAP algorithm. Finally, several machine
learning classifiers are compared.
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2.1 Datasets

2.1.1 Lung segmentation

Candemir et al. [3], [14] manually generated gold standard lung boundary segmentations for
two CXR datasets under the supervision of a radiologist. The first set was collected by the
tuberculosis control program of Department of Health and Human Services of Montgomery
County, MD, USA. This set was comprised of 138 posterior-anterior x-rays, of which 80 x-rays
were normal and 58 x-rays were abnormal with manifestations of tuberculosis. The second
set was collected by Shenzhen No. 3 Hospital in Shenzhen, Guangdong providence, China.
Set contains 326 normal x-rays and 336 abnormal x-rays showing various manifestations of
tuberculosis. We used the same 800 images and masks to train the segmentation network.
In this work, 80% of images were randomly chosen for training and the remaining 20% were
selected as the validation set.

2.1.2 Image classification

Classification task was performed on CXR images obtained from Kaggle’s COVID-19
Radiography Database [25]. Dataset is comprised of three different groups of CXR images:
patients infected with COVID-19, viral pneumonia and images of healthy individuals. 3615
images classified as COVID-19 were compiled using 6 databases: 2474 images are collected
from Valencia Region Image Bank (BIMCV) padchest dataset [6], 183 images from a Germany
medical school [33], 400 images compiled by Haghanifar et al. [12], 182 images compiled by
Cohen et al. [5], 258 images from Eurorad and 119 images provided by Italian Society of
Medical and Interventional Radiology (SIRM) [21]. 8851 normal CXR images were obtained
from RSNA Pneumonia Detection Challenge [22]. Finally, 1341 normal images as well as 1345
viral pneumonia images were obtained from a database (version 2) compiled by Kermany et al.
[16]. A random selection of 80% of images in each category was used for training and stratified
five-fold cross-validation, and the remaining 20% was used for testing.

Figure 1: A sample of CXR images

(a) Normal (b) COVID-19 (c) Viral Pneumonia

2.2 Contrast limited adaptive histogram equalization (CLAHE)

The histogram equalization (HE) is a computer image processing technique used to improve
contrast in images. The method is useful in images with backgrounds and foregrounds that are
both bright or both dark. For instance, the method can lead to better views of bone structure
in x-ray images. HE, however, also produces some undesirable effects such as oversaturation
of certain regions and noise artifacts. An improved HE variant is called adaptive histogram
equalization (AHE). It differs from ordinary histogram equalization in the respect that the
adaptive method computes several histograms, each corresponding to a distinct section of the
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image. It is therefore suitable for improving the local contrast and enhancing the definitions
of edges in each region of an image. AHE, however, has a tendency to overamplify noise in
relatively homogeneous regions of an image. A variant of adaptive histogram equalization
called contrast limited adaptive histogram equalization (CLAHE) prevents excessive contrast
enhancement by limiting the amplification with a clip boundary which represents the maximum
height of a histogram. In this study, we set a threshold value for contrast limiting to 4.0.
CLAHE is applied on the input image divided into equally sized rectangular tiles. We set the
size of these tiles in row and column to (16, 16).

Figure 2: Image preprocessing effect

After the original CXR image is preprocessed with CLAHE, the gray distribution is more
uniform, the lung contour is clearer and the contrast is more obvious, which can improve the
segmentation and classification capability.

2.3 U-Net

U-Net is a convolutional neural network that was developed for biomedical image segmentation
at the Computer Science Department of the University of Freiburg [29]. In the original network,
each encoding block consists of two consecutive 3× 3 convolutional layers each followed by a
rectified linear unit (ReLU) and a max pooling operation with a stride of 2 for down sampling.
In our modified U-net architecture two consecutive convolutional layers are followed by batch
normalization, which should help stabilizing the learning process and reduce the number of
training epochs. We have also added a dropout layer with a rate of 0.25 after the max pooling
layer to reduce overfitting. The expansive pathway combines the feature and spatial information
through a sequence of up-convolutions and concatenations with high-resolution features from the
contracting path. Our proposed model additionally has batch normalization after concatenation
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layer in each of the decoding blocks. At the final layer 1× 1 convolution is utilized to map the
output from last decoding block to 2 channel feature maps, where a pixel-wise sigmoid function
is applied to map each pixel into a binary class of background or lung.

Figure 3: Modified U-Net architecture
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2.4 Feature extraction using transfer learning

The concept of transfer learning has been introduced for solving deep learning problems arising
from insufficiently labeled data, or when the CNN model is too deep and complex. Aiming to
tackle these challenges, studies in a variety computer vision tasks demonstrated the advantages
of transfer learning strategies from an auxiliary domain in improving the detection rate and
performance of a classifier. In a transfer learning strategy, we transfer the weights already
learned on a cross-domain dataset into the current deep learning task instead of training a
model from scratch. With the transfer learning strategy, the deep CNN can obtain general
features from the source dataset that cannot be learned due to the limited size of the dataset in
the current task. Transfer learning strategies have various advantages, such as avoiding the
overfitting issue when the number of training samples is limited, reducing the computational
resources, and also speeding up the convergence of the network.

2.4.1 VGGNet

Visual Geometry Group (VGGNet) was proposed by Simonyan and Zisserman [31]. This
architecture obtained top performances on ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2014. This architecture provides better features extraction from input images
by using 3× 3 filter size. VGG16 and VGG19 are two versions of VGG-Net architecture with
different depths and layers. In this study, VGG19 was chosen for feature extraction.
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2.4.2 ResNet

Deep Residual Learning Network (ResNet) was proposed by He et al. [13]. This architecture
won ILSVRC classification task in 2015 with good results on ImageNet and MS-COCO object
detection competitions. ResNet introduced the concept of residual blocks. The main goal of
residual blocks is to add a connection (instead of concatenation) from the input of the first block
to the output of the next block in order to train a more deeper network with better recognition
ability. This architecture can solve the issues of vanishing gradients and parameter explosion by
shortcut connection using the residual blocks. In this study we have chosen a variant of ResNet
called ResNet50V2.

2.5 Dimensionality reduction using UMAP

Uniform Manifold Approximation and Projection (UMAP) [19] is an algorithm for dimension
reduction based on manifold learning techniques and ideas from topological data analysis.
UMAP constructs a high dimensional graph representation of the data then optimizes a low-
dimensional graph to be as structurally similar as possible. In order to construct the initial
high-dimensional graph, UMAP builds something called a ”fuzzy simplicial complex”, which
is a representation of a weighted graph, with edge weights representing the likelihood that
two points are connected. To determine connectedness, UMAP extends a radius outwards
from each point, connecting points when those radii overlap. Choosing this radius is critical
- too small a choice will lead to small, isolated clusters, while too large a choice will connect
everything together. UMAP overcomes this challenge by choosing a radius locally, based on
the distance to each point’s nth nearest neighbor. UMAP then makes the graph ”fuzzy” by
decreasing the likelihood of connection as the radius grows. Finally, by stipulating that each
point must be connected to at least its closest neighbor, UMAP ensures that local structure is
preserved in balance with global structure. Once the high-dimensional graph is constructed,
UMAP optimizes the layout of a low dimensional embedding to be as similar as possible.

Basic parameters of UMAP include dimensionality of the reduced dimension space, number
of neighbors, minimum distance and distance metric. Number of neighbors controls how UMAP
balances local versus global structure in the data. It does this by constraining the size of the
local neighborhood UMAP will look at when attempting to learn the manifold structure of
the data. This means that low values of number of neighbors will force UMAP to concentrate
on very local structure (potentially to the detriment of the big picture), while large values
will push UMAP to look at larger neighborhoods of each point when estimating the manifold
structure of the data, losing fine detail structure for the sake of getting the broader of the data.
Minimum distance controls how tightly UMAP is allowed to pack points together. It provides
the minimum distance apart that points are allowed to be in the low dimensional representation.
This means that low values of minimum distance will result in clumpier embeddings and larger
values will prevent UMAP from packing points together and will focus on the preservation of
the broad topological structure instead. Distance metric controls how distance is computed in
the ambient space of the input data. We have obtained 20-dimensional feature space using 100
neighbors, minimum distance of 0.1 and Manhattan distance, which are parameters obtained
using stratified 5-fold cross-validation that was repeated 3 times.

2.6 Classifiers

2.7 Support Vector Machine (SVM)

The SVM algorithm is highly preferred owing to its significant accuracy while requiring less
computational power. The objective of SVM is to find a hyperplane in an N -dimensional
space that distinctly classifies the data points. Our dimension N is equal to our number of
features, which is 2560 (512 features extracted from VGG19 and 2048 features extracted from
ResNet50V2). SVM has 3 main hyperparameters: kernel, C and gamma. The main function of
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the kernel is to take low dimensional input space and transform it into a higher-dimensional
space; C is the penalty parameter, which represents misclassification or error term that tells the
SVM optimisation how much error is bearable; gamma defines how far influences the calculation
of plausible line of separation, when gamma is higher, nearby points will have high influence,
whereas low gamma means far away points also be considered to get the decision boundary. In
order to achieve a good result and at the same time to avoid overfitting 5-fold cross-validation
was repeated 3 times and the following hyperparameters were tuned with: kernel = rbf (radial
basis function kernel), C = 1000 and gamma = 0.0001.

2.8 XGBoost

Another classifier used in this work is XGBoost, owing to its strong performance in terms
of speed, scalability and hardware resources compared to other existing solutions. XGBoost
consists of the library proposed in [4] and is based on the gradient increase framework developed
by Friedman [11]. XGBoost offers an efficient and scalable implementation of the gradient-
based decision tree algorithm. Its main hyperparameters include maximum depth of the tree
(max depth), learning rate (eta), minimum loss reduction gamma, subsample ratio (subsample),
subsample ratio of columns (colsample bytree), minimum child weight (min child weight), L1
(alpha) and L2 (lambda) regularization terms. Increasing max depth increases the complexity of
the model, however, the propensity for overfitting is also increased; eta determines the size of the
model’s evolution step in each iteration; gamma denotes the minimum loss reduction required to
form an additional partition in a leaf node of the tree, increasing this makes the algorithm more
conservative; subsample denotes subsample ratio of the training instances, subsampling is useful
to prevent overfitting; colsample bytree indicates the column subsample rate when building
each tree; min child weight denotes the minimum sum of the instance weights required in a
child node, increasing its value makes the algorithm more conservative; Increasing alpha and
lambda make model more conservative. Hyperparameters optimized with random search and
cross-validation were as follows: max depth = 8, eta = 0.045, gamma = 0 (default), subsample
= 0.84, colsample bytree = 0.73, min child weight = 2, alpha = 0.45 and lambda = 1.

2.9 Performance metrics

The different model’s performance in classification was evaluated using six performance metrics:
overall accuracy, balanced accuracy, recall (sensitivity), specificity, precision, and F1 score (Dice
coefficient) using the following equations:

Overall Accuracy = TP + TN

P + N

Balanced Accuracy = 1∑
ŵi

∑
i

1ŷi=yiŵi

Precision = TP

TP + FP

Recall = TN

TP + FN

Specificity = TN

TN + FP

F1 = 2 · Precision · Recall
Precision + Recall

ŵi = wi∑
j 1yj=yiwj

Here yi and ŷi are, respectively, true and predicted values of i-th sample, wi is the
corresponding sample weight and 1A is the indicator function. TP , TN , FP , FN represent
the true positive, true negative, false positive, and false negative, respectively. Since the
dataset is imbalanced and it is important to accurately classify minority class (COVID-19 or
pneumonia), macro-average method (arithmetic mean of individual scores) was chosen for
aggregation of precision, recall, specificity and F1 score.
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3 Experimental results

3.1 Segmentation performance

U-net model was trained for 20 epochs with a batch size 4 and a learning rate 0.0001, which
would decay with a factor of 0.5 if validation loss did not improve for 3 epochs.

Figure 4: Learning curves

Just after 3 epochs training and validation loss decreased to a point of stability with a
minimal generalization gap which indicates a good fit. We have obtained 98.05% accuracy and
96.24% Dice coefficient on the test set, which is a higher than several previous studies [3], [28],
[15]. Figure 5 shows an example of successfully segmented lungs.

Figure 5: Lung segmentation

(a) Original image (b) CLAHE enhancement (c) Segmented image

3.2 Classification performance

Proposed framework is compared against fine-tuned VGG19 and ResNet50V2 network
performance. Fully connected head of these networks was composed of Dense layer with 128
units with ReLu activation, followed by Dropout layer with a rate of 0.5, then followed by
another Dense layer with 64 units with ReLu activation and finally the softmax classifier. It
can be seen from Table 2 that the classification performance using combined features is
superior to the one using VGG19 or ResNet50V2 alone in all metrics. It is also observed that
CLAHE enhancement as well as segmentation indeed improved classification performance
across all models.
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Table 2: Binary classification network performance comparison

Model Data Accuracy Balanced
Accuracy Precision Recall Specificity F1

VGG19
Original 84.85 84.52 84.52 74.62 89.68 77.96
CLAHE 85.68 85.65 85.65 75.66 90.13 79.09
CLAHE & U-Net 86.07 86.36 86.37 76.22 90.34 79.70

ResNet50V2
Original 85.48 85.62 85.62 75.40 90.03 78.79
CLAHE 86.50 86.66 86.66 76.81 90.63 80.34
CLAHE & U-Net 87.62 87.69 87.69 78.05 91.33 81.52

SVM
Original 88.88 89.18 89.18 80.14 91.92 83.66
CLAHE 91.12 91.36 91.36 83.78 93.33 86.97
CLAHE & U-Net 93.50 93.51 93.51 86.89 95.00 89.75

XGBoost
Original 89.70 90.64 90.64 81.41 92.35 85.03
CLAHE 91.95 92.76 92.76 84.86 93.81 88.17
CLAHE & U-Net 94.88 94.96 94.96 89.31 96.01 91.83

Figure 6: Confusion Matrices (CLAHE & U-Net)
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4 Conclusion and future work

In this paper we have classified CXR images as normal, COVID-19 or pneumonia. X-ray
machines are widely available and provide images for a quick diagnosis, therefore techniques
discussed in this study could be very useful in early diagnosis of the aforementioned diseases. It
was shown that CLAHE algorithm could can indeed alleviate the heterogeneity of the image
which proved to be useful in the classification task. A modified U-Net architecture was proposed
and successfully trained with a 98.05% accuracy. Feature fusion of different pre-trained CNN
models combined with UMAP dimensionality reduction and machine learning classifiers reduced
the time and saved computational resources which would be needed to train CNN from scratch.
Moreover, the proposed framework outperformed the fine-tuned VGG-19 and ResNet50V2
networks.

A potential limitation of this work is a so called ”Frankenstein” dataset used in this study.
For pneumonia class we have used the dataset of Kermany et al. [16], which consists of paediatric
patients aged between one and five. Although this is arguably one of the most popular datasets
for pneumonia, many similar papers failed to mention the issue of combining CXR images of
adult patients with COVID-19 and very young patients with pneumonia. While the normal
class of our datasets also contains some child CXR images, classification models are likely to
overperform as they are merely detecting children versus adults. It is demonstrated by Maguolo
and Nanni [18] that by excluding the lung region entirely, the authors could identify the source
of the images in the Cohen et al. [5] and Kermany et al. [16] datasets with an AUC between
0.9210 and 0.9997, and ”diagnose” COVID-19 with an AUC = 0.68. Although in this study we
used lung segmentation to address this shortcoming, child lungs are still different from adult
lungs. Furthermore, it was found that since the lungs of children are not fully developed, it is
difficult to predict the diseases using their CXR image.

The proposed framework could be improved in several ways. First, a more reliable dataset
could be used to train the models. Also, U-Net could be trained on the dataset which would
additionally consist COVID-19 and pneumonia patient lungs and corresponding masks. Other
image enhancement techniques such as gamma correction or balance contrast enhancement
could as well be explored. Moreover, the model can be trained with images of more diseases.
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Wacker, M. M. Höper, and B. C. Meyer. Covid-19 image repository, May 2020.

14


	Literature review
	Materials and methods
	Datasets
	Lung segmentation
	Image classification

	Contrast limited adaptive histogram equalization (CLAHE)
	U-Net
	Feature extraction using transfer learning
	VGGNet
	ResNet

	Dimensionality reduction using UMAP
	Classifiers
	Support Vector Machine (SVM)
	XGBoost
	Performance metrics

	Experimental results
	Segmentation performance
	Classification performance

	Conclusion and future work
	Acknowledgements

