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Notations

t denotes a real vector (t1, . . . , td).

Rd denotes the set of real vectors t.

N denotes the set of natural numbers, N = {1, 2, . . .}.

Z denotes the set of integers, Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

H denotes Hilbert space.

0 denotes element (0, . . . , 0) from the space Rd.

1 denotes element (1, . . . , 1) from the space Rd.

tk:l denotes the “subvector” (tk, tk+1, . . . , tl).

t−k denotes the “subvector” (t1, . . . , tk−1, tk+1, . . . , td).

tK denotes the subvector (tk1 , . . . , tkl) with K = {k1, . . . , kl} and 1 ≤ k1 <

k2 < · · · < kl ≤ d.

s ≤ t means sk ≤ tk for all k = 1, . . . , d.

|t| denotes max(|t1|, . . . , |td|) for t ∈ Rd.

|A| denotes Lebesgue measure for the set A ⊂ Rd.

cardA denotes the cardinality of the set A ⊂ Rd.

st denotes (s1t1, . . . , sdtd), s/t denotes (s1/t1, . . . , sd/td).

π(n) denotes n1 · · ·nd for n ∈ Nd.

m(t) denotes min(t1, . . . , td).

[x] denotes integer part of real number x.
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{x} denotes the fractional part of real number x, ({x} = x− [x]).

[t] denotes ([t1], . . . , [td]), respectively {t} denotes ({t1}, . . . , {td}).

x ∧ y denotes min(x, y) for real numbers x and y.

x ∨ y denotes max(x, y) for real numbers x and y.

t∧s denotes (t1∧s1, . . . , td∧sd), respectively t∨s denotes (t1∨s1, . . . , td∨sd).

‖ · ‖ denotes the norm of Hilbert space H.

〈·, ·〉 denotes the scalar product of Hilbert space H.

C([0, 1]d) denotes the set of continuous functions x : [0, 1]d → R.

Ho
α([0, 1]d) denotes the set of continuous functions x : [0, 1]d → R satisfying

limδ→0 sup|t−s|<δ |x(t)− x(s)|/|t− s|α = 0.

Ho
α(H) denotes the set of continuous functions x : [0, 1]d → H satisfying

limδ→0 sup|t−s|<δ ‖x(t)− x(s)‖/|t− s|α = 0.

Xα = Yα + oP (1) iff ‖Xα − Yα‖ → 0 in probability.
D−→ denotes weak convergence in the space specified afterwards. If no space

is specified it is assumed that weak convergence takes place in R.

For the net {Xα} of Banach space valued random variables

1 (·) denotes the indicator function.

∆(m)
s denotes the difference operator acting on m-th coordinate, ∆(1)

s x(t) =

x(t)− x((t1 − s, t2, . . . , td)).

ξn denotes polygonal summation process.

ξn denotes continuous multi-parameter summation process.
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Introduction

Convergence of stochastic processes to some Brownian motion or related pro-
cess is an important topic in probability theory and mathematical statistics.
The first functional central limit theorem by Donsker and Prokhorov states
the C[0, 1]-weak convergence of n−1/2ξn to the standard Brownian motion
W . Here ξn denotes the random polygonal line process indexed by [0, 1]:

ξn(t) = S[nt] + (nt− [nt])X[nt]+1, t ∈ [0, 1],

where S0, Sk := X1 + · · · + Xk, k ≥ 1, are the partial sums of a sequence
(Xi)i≥1 of i.i.d. random variables such that EX1 = 0 and EX2

1 = 1. (We say
that sequence of random elements Yn with values in separable metric space
B converges weakly to random element Y , if E f(Yn) → E f(Y ), for every
continuous bounded functional f).

This theorem implies via continuous maping the convergence in distribu-
tion of f(n−1/2ξn) to f(W ) for any continuous functional f : C[0, 1] → R.
Clearly this provides many statistical applications. On the other hand, con-
sidering that the paths of ξn are piecewise linear and that W has roughly
speaking, an α-Hölder regularity for any exponent α < 1/2, it is tempting to
look for a stronger topological framework for the weak convergence of n−1/2ξn
to W . In addition to the satisfaction of mathematical curiosity, the practical
interest of such an investigation is to obtain a richer set of continuous func-
tionals of the paths. For instance, Hölder norms of ξn are closely related to
some test statistics to detect short “epidemic” changes in the distribution of
the Xi’s, see [30, 32].

In 1962, Lamperti [19] obtained the first functional central limit theorem
in the separable Banach spaces Ho

α, 0 < α < 1/2, of functions x : [0, 1]→ R
such that

‖x‖α := |x(0)|+ wα(x, 1) <∞,

with
wα(x, δ) := sup

0<|t−s|≤δ

|x(t)− x(s)|
|t− s|α

−−→
δ→0

0.
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More precise definitions are given in the section 1.2.
Assuming that E |X1|q < ∞ for some q > 2, he proved the weak con-

vergence of n−1/2ξn to W in the Hölder space Ho
α for any α < 1/2 − 1/q.

Račkauskas and Suquet in [29] (see also [27]) obtained a necessary and suffi-
cient condition for the Lamperti’s functional central limit theorem. Namely
for 0 < α < 1/2, n−1/2ξn converges weakly in Ho

α to W if and only if

lim
t→∞

tp(α)P (|X1| > t) = 0, (1)

where
p(α) := 1

1
2 − α

. (2)

Further extensions of Donsker-Prokhorov’s functional central limit the-
orem concern summation processes. Let |A| denote the Lebesgue measure
of the Borel subset A of Rd. For a collection A of Borel subsets of [0, 1]d,
summation process {ξn(A); A ∈ A} based on a random field {Xj , j ∈ Nd},
of independent identically distributed real random variables with zero mean
is defined by

ξn(A) =
∑

1≤j≤n
|Rn,j|−1|Rn,j ∩ A|Xj ,

where j = (j1, . . . , jd), n = (n1, . . . , nd), Rn,j is the “rectangle”

Rn,j :=
[
j1 − 1
n1

,
j1

n1

)
× · · · ×

[
jd − 1
nd

,
jd
nd

)

and the indexation condition “1 ≤ j ≤ n” is understood componentwise :
1 ≤ j1 ≤ n1, . . . , 1 ≤ jd ≤ nd. Of special interest are the partial sum
processes based on the collection of sets A = Qd where

Qd :=
{

[0, t1]× · · · × [0, td]; t = (t1, . . . , td) ∈ [0, 1]d
}
, (3)

Note that when d = 1 the partial sum process ξn based on Qd is the random
polygonal line of Donsker-Prokhorov’s theorem.

By equipping the collection A with some pseudo-metric δ, one define the
space C(A) of real continuous functions on A, endowed with the norm

‖f‖A := sup
A∈A
|f(A)|.

The usual semimetrics are δ(A,B) =
√
|A∆B|, or δ(A,B) =

√
m(A∆B),

for A,B ∈ A, where m is a probability measure on the σ-algebra of Borel
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subsets of [0, 1]d. When A is totally bounded with respect to δ, C(A) is a
separable Banach space.

A Brownian sheet process indexed by A is a mean zero Gaussian process
W with sample paths in C(A) and

EW (A)W (B) = |A ∩B|, A,B ∈ A. (4)

Existence of such process is proved by placing restrictions on collection A
which are usually expressed by some condition on its metric entropy. Dud-
ley [10] and Erickson [12] give conditions for W to exist in a general Hölder
space Hρ(A). It is defined as the subspace of the space C(A) of the functions
satisfying

sup
0<δ(A,B)<1

|x(A)− x(B)|
ρ(δ(A,B)) <∞,

with the weight function ρ. For ρ(h) = hα, Erickson [12] proves that for
process W , the Hölder exponent α cannot exceed 1/2 and it decreases as
the entropy of A increases. The functional central limit theorem (FCLT) in
C(A) or in Hρ(A) means the weak convergence of the summation process
{ξn(A);A ∈ A}, suitably normalized, to a Brownian sheet process indexed
by A.

The first FCLT for {ξn(A);A ∈ Qd} in C(Qd) was established by Kuelbs [18]
under some moment restrictions and by Wichura [40] under finite variance
condition. In 1983, Pyke [24] derived a FCLT for summation process in
C(A), provided that the collection A satisfies the bracketing entropy condi-
tion. However, his result required moment conditions which depend on the
size of the collection A. Bass [3] and simultaneously Alexander and Pyke [1]
extended Pyke’s result to i.i.d. random fields with finite variance. Further
developments were concerned with relaxing entropy conditions on the collec-
tion A, Ziegler [41], and with relaxing i.i.d. condition on the random field
{Xn, n ∈ Nd}, Dedecker [8], El Machkouri and Ouchti [11] to name a few.

The FCLT for summation process in Hρ(A) is not so extensively stud-
ied. Most general results are provided by Erickson [12] who shows that if
E |Xj|q <∞ for some q > 2 then the FCLT holds in Hρ(A) for some ρ which
depends on q and properties of A. For d = 1 and the class A of intervals [0, t],
0 ≤ t ≤ 1, Erickson’s results coincide with Lamperti’s ones [19], whereas his
case d > 1 requires moments of order q > dp(α) with the same p(α) as in (2).
In Račkauskas and Zemlys [34], the result by Erickson was improved in the
case d = 2. In thesis this result was extended for d > 2 and Hilbert space
valued random variables. Before stating it in full we need some definitions.
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With H as the real separable Hilbert space, define the Hölder space
Ho
α([0, 1]d) of Hilbert-valued multi-parameter functions as the vector space

of functions x : [0, 1]d → H such that

‖x‖α := ‖x(0)‖+ wα(x, 1) <∞,

with
wα(x, δ) := sup

0<|t−s|≤δ

‖x(t)− x(s)‖
|t− s|α

−−→
δ→0

0.

Note that for H = R, the space Ho
α([0, 1]d) is a subset of Hρ(Qd) with ρ(h) =

hα and Qd defined by (3).
Define H-valued Brownian sheet W with the covariance operator Γ, as a

H-valued zero mean Gaussian process indexed by [0, 1]d and satisfying

E 〈W (t), x〉〈W (s), y〉 = (t1 ∧ s1) · · · (td ∧ sd)〈Γx, y〉 (5)

for t, s ∈ [0, 1]d and x, y ∈ H. For H = R, the space of covariance operators
is isomorphic to R+ and (5) collapses to

EW (t)W (s) = σ2(t1 ∧ s1) · · · (td ∧ sd).

which is the same as (4) for A,B ∈ Qd and σ2 = 1.
The following theorem holds.

Theorem 1 For 0 < α < 1/2, set p = p(α) := 1/(1/2 − α). For d ≥ 2,
let {Xj; j ∈ Nd, j ≥ 1} be an i.i.d. collection of square integrable centered
random elements in the separable Hilbert space H and ξn be the summation
process defined by

ξn(t) =
∑

1≤j≤n
|Rn,j|−1|Rn,j ∩ [0, t]|Xj .

Let W be a H-valued Brownian sheet with the same covariance operator as
X1. Then the convergence

(n1 · · ·nd)−1/2ξn
Hoα([0,1]d)−−−−−−→
m(n)→∞

W

holds if and only if

sup
t>0

tp(α)P (‖X1‖ > t) <∞. (6)

As we see, condition (6) does not depend on the dimension d provided d > 1
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and is weaker than necessary and sufficient condition (1) in the extension
by Račkauskas and Suquet of Lamperti’s functional central limit theorem.
Moreover, we show that summation process considered along the diagonal,
namely the sequence n−d/2ξn = n−d/2ξn,...,n, n ∈ N, converges in Ho

α([0, 1]d) if
and only if

lim
t→∞

t2d/(d−2α)P (‖X1‖ > t) = 0. (7)

As dimension d increases, this condition weakens. For example, (7) is satisfied
for any d > 1 provided E ‖X1‖4 < ∞. This again shows up a difference
between the cases d = 1 and d > 1 for functional central limit theorems in
Hölder spaces.

The result in theorem 1 was obtained together with Račkauskas and Su-
quet [33]. Its proof and the prerequisites take up a sizeable part of the thesis.
Necessary results from Hölder spaces and probability theory are given in the
chapter 1. The properties of the summation process ξn are given in the
section 2.1 and the result is proved in the section 3.1.

After i.i.d. case we considered the case of triangular array, when ran-
dom variables are independent but not identically distributed. For general
summation processes, the case of non-identically distributed variables was
investigated by Goldie and Greenwood [13], [14]. They used classical con-
struction of summation process, so their result does not coincide with classical
Prokhorov [23] result for adaptive polygonal line process Ξn indexed by [0, 1]
with vertices (bn(k), Sn(k)), where bn(k) = EX2

n,1 + · · · + EX2
n,k, with as-

sumption that bn(kn) = 1, and Xn,k – independent non-identicaly distributed
random variables.

The attempt to introduce adaptive construction for general summation
processes was made by Bickel and Wichura [5]. However they put some re-
strictions on variance of random variables in triangular array. For zero mean
independent random variables {Xn,ij, 1 ≤ i ≤ In, 1 ≤ j ≤ Jn} with variances
EX2

n,ij = an,ibn,j satisfying ∑ an,i = 1 = ∑
bn,j, they defined summation

process as

ζn(t1, t2) =
∑

i≤An(t1)

∑
j≤Bn(t1)

Xn,ij,

where

An(t1) = max{k :
∑
i≤k

an,i < t1}, Bn(t2) = max{l :
∑
j≤l

bn,j < t2}.

It is easy to see that this construction is two-dimensional time generalization
of jump version of Prokhorov construction. Bickel and Wichura proved that
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the process ζn converges in the space D([0, 1]2) to a Brownian sheet, if an,i
and bn,j are infinitesimally small and the random variables {Xn,ij} satisfy
Lindeberg condition.

In this contribution we introduced new adaptive construction of sum-
mation process which reduces to classical construction for triangular arrays
in one dimensional case. Sufficient conditions for the weak convergence in
Hölder spaces are given. For the case d = 1 they coincide with conditions
given by Račkauskas and Suquet. The limiting process in general case is
not a standard Brownian sheet. It is a mean zero Gaussian process with
covariance depending on the limit of E Ξn(t)2. Examples of possible limiting
processes are given. In case of special variance structure of triangular array
as in Bickel and Wichura it is shown that the limiting process is a standard
Brownian sheet.

Finally we provide the application of the theoretical results by construct-
ing statistics for detecting the epidemic change in a given data with multi-
dimensional indexes. Such data naturally arise if for example we measure
some property of sample of individuals through time. It is natural then to
assign two indexes to observation, the number of the individual and the time
period when it was observed. This is so called longitudinal or panel data.
First we consider the detection of the change of the mean in the double in-
dexed sample {Xij, 1 ≤ i ≤ n, 1 ≤ j ≤ m}. We test the null hypothesis
of no change in mean against the alternative hypothesis of the change in
a epidemic rectangle, i.e. the mean is different for indexes in the rectangle
D∗ = [a∗, b∗]× [c∗, d∗]∩N2. Our proposed statistic for detecting such change
is the classical likelihood ratio statistic of Csörgő and Horváth [7], weighted
with the power of diameter of the epidemic rectangle. We show that this
statistic is the functional of summation process ξn, with the functional con-
tinuous in the Hölder space. Thus using continuous mapping theorem and
our theoretical result we find the asymptotic distribution of our statistic.
We give the conditions for the consistency of the test and show that division
by diameter, improves the ability to detect shorter epidemics, but that the
result is not optimal compared to the one-dimensional case considered by
Račkauskas and Suquet [31].

Next we turn our attention to panel regression models. We consider clas-
sical pooled or ordinary least squares and fixed effects regressions described
by Baltagi [2]. We prove functional central limit theorem (FCLT) for the re-
gression residuals under condition that regression disturbances satisfy FCLT
and classical conditions on the regressors. This result generalizes the result
of Ploberger and Krämer [22] for the time-series regression. Using the FCLT
for regression residuals we adapt our statistic for detecting the change of the
mean, to detect the change of the regression coefficient in both regression
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models. We find asymptotic distributions and give conditions for consis-
tency of the statistics. We also investigate the behaviour of these statistics
under local alternatives and derive results similar to those of Ploberger and
Krämer.
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Chapter 1

Weak convergence in Hölder
spaces

1.1 General results
1.1.1 Basic definitions
Let us introduce some notation. Vectors t = (t1, . . . , td) of Rd, d ≥ 2, are
typeset in italic bold. In particular,

0 := (0, . . . , 0), 1 := (1, . . . , 1).

For 1 ≤ k < l ≤ d, tk:l denotes the “subvector”

tk:l := (tk, tk+1, . . . , tl),

t−k denotes the “subvector”

t−k = (t1, . . . , tk−1, tk+1, . . . , td).

and tK denotes the “subvector”

tK = (tk1 , . . . , tkm),

with K = {k1, . . . , km} ⊂ {1, . . . , d} and 1 ≤ k1 < k2 < · · · < km ≤ d. The
set Rd is equipped with the partial order

s ≤ t if and only if sk ≤ tk, for all k = 1, . . . , d. (1.1)
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As a vector space, Rd is endowed with the norm

|t| = max(|t1|, . . . , |td|), t = (t1, . . . , td) ∈ Rd.

Together with the usual addition of vectors and multiplication by a scalar,
we use also the componentwise multiplication and division of vectors s =
(s1, . . . , sd), t = (t1, . . . , td) in Rd defined whenever it makes sense, by

st := (s1t1, . . . , sdtd), s/t := (s1/t1, . . . , sd/td).

Partial order as well as all these operations are also intended componentwise
when one of the two involved vectors is replaced by a scalar. So for c ∈ R
and t ∈ Rd, c ≤ t means c ≤ tk for k = 1, . . . , d, t+ c := (t1 + c, . . . , td + c),
c/t := (c/t1, . . . , c/td).

For n = (n1, . . . , nd) ∈ Nd, we write

π(n) := n1 · · ·nd,

and for t = (t1, . . . , td) ∈ Rd,

m(t) := min(t1, . . . , td).

For any real number x, denote by [x] and {x} its integer part and fractional
part defined respectively by

[x] ≤ x < [x] + 1, [x] ∈ Z and {x} := x− [x].

When applied to vectors t of Rd, these operations are defined componentwise:

[t] := ([t1], . . . , [td]), {t} := ({t1}, . . . , {td}).

The context should dispel any notational confusion between the fractional
part of x (or t) and the set having x (or t) as unique element.

We denote by H a separable real Hilbert space with norm ‖·‖ and inner
product 〈 · , · 〉.

1.1.2 Nets and asymptotic tightness
Let A be a set with a partial order and let A be a directed set. For a general
topological space X, a map from A to X is called a net and denoted by
{xα, α ∈ A} ⊂ X. We say that this net has a limit x if and only if for every
neighborhood U of x there exists α0 ∈ A such that xα ∈ U for each α0 ≤ α.
When the space X is Hausdorff, any net in X has at most one limit. All the
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spaces we are dealing with are Banach, therefore Hausdorff, soit is always
implicit that if the limit of the net exists, it is unique.

We are mainly interested in the nets {xn,n ∈ Nd}, where Nd is a directed
set with partial order s ≤ t defined in (1.1). Note that if we have n0 ≤ n,
then m(n) ≥ m(n0) and if m(n) ≥ N , then (N, . . . , N) ≤ n. Thus if the net
{xn,n ∈ Nd} has the limit x it makes sense to write

lim
m(n)→∞

xn = x.

We will use this notation throughout the thesis.
Let B be some separable Banach space and (Yα)α∈A be a net of random

elements in B. We write
Yα

B−→ Y,

for weak convergence in the space B to the random element Y , i.e. E f(Yα)→
E f(Y ) for any continuous and bounded f : B → R.

For proving weak convergence of the nets we use some variant of Prokhorov’s
theorem (see e.g. van der Vaart and Wellner [39] p.21 theorem 1.3.9) which
asserts that the net {Yα} has a weakly convergent subnet if it is asymptot-
icaly tight, i. e. for each ε > 0 there exists a compact set Kε ∈ B such
that

lim inf
α

P (Yα ∈ Kε) > 1− ε. (1.2)

Thus weak convergence of the net Yα can be proved by classical approach, by
checking the property of asymptotical tightness and proving the convergence
of the finite-dimensional distributions.

1.1.3 Schauder decomposition
To check the property of asymptotical tightness we need some way of char-
acterizing compact subsets of the paths space. Suquet [37] gives us a criteria
exploiting the notion of Schauder decomposition.

Definition 1 An infinite sequence (Bj, j ∈ N) of closed linear subspaces of a
Banach space B such that Bj 6= 0 (j ∈ N) is called a Schauder decomposition
of B if for every x ∈ B there exists an unique sequence (yn, n ∈ N) with
yj ∈ Bj (j ∈ N) such that:

x =
∞∑
j=0

yj
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and if the coordinate projections defined by vn(x) = yn, are continuous on B.

Let us denote Zj = ⊕
i≤j Bi and Ej = ∑

i≤j vi the continuous projections of
B onto Zj. Operation ⊕ here means the direct sum of vector subspaces, i.e.
if U = V

⊕
W then for each u ∈ U there exists an unique decomposition

u = v + w, with v ∈ V and w ∈ W .
Relatively compact subsets (whose closure are compacts) of separable

Banach spaces with Schauder decomposition are then characterized by the
following theorem.

Theorem 2 (Suquet, [37]) Let B be a separable Banach space having a
Schauder decomposition (Bj, j ∈ N). A subset K is relatively compact in B
if and only if:

i) for each j ∈ N, EjK is relatively compact in Zj := ⊕
i≤j Bi;

ii) supx∈K ‖x− Ejx‖ → 0 as j →∞.

1.2 Hölder space and its properties
The functional framework for our study of convergence of random fields is
a certain class of Hölder spaces whose definition and some useful properties
are gathered in this section.

1.2.1 Definition
For 0 < α < 1, define the Hölder space Ho

α([0, 1]d) as the vector space of
functions x : [0, 1]d → H such that

‖x‖α := ‖x(0)‖+ wα(x, 1) <∞,

with
wα(x, δ) := sup

0<|t−s|≤δ

‖x(t)− x(s)‖
|t− s|α

−−→
δ→0

0.

Endowed with the norm ‖.‖α, Ho
α([0, 1]d) is a separable Banach space. In

the special case H = R, we write Ho
α([0, 1]d) instead of Ho

α([0, 1]d). For other
Hilbert spaces H we write Ho

α([0, 1]d, H).

1.2.2 Pyramidal functions
From works of Račkauskas and Suquet [26, 31] we know that the space
Ho
α([0, 1]d) has a Schauder decomposition. The linear subspaces featuring
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in the decomposition contain linear combinations of certain pyramidal func-
tions. We give now the precise definitions.

For convenience we write T = [0, 1]d in this section. If A is a convex
subset of T , the function f : T → H is said to be affine on A if it preserves
the barycenter, i.e. for any finite sequence u1, . . . ,um in A and non negative
scalars r1, . . . , rm such that ∑m

i=1 ri = 1, f(∑m
i=1 riui) = ∑m

i=1 rif(ui).
Let us define the standard triangulation of the unit cube T = [0, 1]d.

Write Πd for the set of permutations of the indexes 1, . . . , d. For any π =
(i1, . . . , id) ∈ Πd, let ∆π(T ) be the convex hull of the d+ 1 points

0, ei1 , (ei1 + ei2), . . . ,
d∑

k=1
eik ,

where the ei’s are the vectors of the canonical basis of Rd. So, each simplex
∆π(T ) corresponds to one path from 0 to (1, . . . , 1) via vertices of T and such
that along each segment of the path, only one coordinate increases while the
others remain constants. Thus T is divided into d! simplexes with disjoint
interiors. The standard triangulation of T is the family T0 of simplexes
{∆π(T ), π ∈ Πd}.

Next, we divide T into 2jd dyadic cubes with edge 2−j. By dyadic trans-
lations and change of scale, each of them is equipped with a triangulation
similar to T0. And Tj is the set of the 2jdd! simplexes so constructed. For
j ≥ 1 the set Wj := vert(Tj) of vertices of the simplexes in Tj is

Wj = {k2−j; 0 ≤ k ≤ 2j}d.

In what follows we put V0 := W0 and Vj := Wj \Wj−1. So Vj is the set of
new vertices born with the triangulation Tj. More explicitly, Vj is the set of
dyadic points v = (k12−j, . . . , kd2−j) in Wj with at least one ki odd.

The Tj-pyramidal function Λj,v with peak vertex v ∈ Vj is the real valued
function defined on T by three conditions

i. Λj,v(v) = 1;

ii. Λj,v(w) = 0 if w ∈ vert(Tj) and w 6= v;

iii. Λj,v is affine on each simplex ∆ in Tj.

It follows clearly due to affinity from above definition that the support of
Λj,v is the union of all simplexes in Tj containing the peak vertex v. By
[35](Prop. 3.4.5) the functions Λj,v are obtained by dyadic translations and
changes of scale:

Λj,v(t) = Λ(2j(t− v)), t ∈ T,
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from the same function Λ:

Λ(t) := max
(
0, 1−max

ti<0
|ti| −max

ti>0
ti
)
, t = (t1, . . . , td) ∈ [−1, 1]d.

Since Λj,v are affine on each simplex ∆ in Tj, it is clear that Λj,v ∈
Ho
α([0, 1]d) for 0 < α < 1.Thus linear combinations ∑v∈Vj hvΛj,v with hv ∈

H are elements from Ho
α([0, 1]d). For each j such sums are continuous on

T , affine on each simplex ∆ of Ti and vanishing at the vertices of Wj−1.
Račkauskas and Suquet[31] prove that subspaces containning such functions
form Shauder decomposition of Ho

α([0, 1]d).

Theorem 3 (Račkauskas and Suquet [31]) The space Ho
α([0, 1]d) has the

Schauder decomposition

Ho
α([0, 1]d) =

∞⊕
i=0
Vi,

where V0 is the space of H-valued functions continuous on T and affine on
each simplex ∆ of T0 and for i ≥ 1, Vi is the space of H-valued functions
continuous on T , affine on each simplex ∆ of Ti and vanishing at the vertices
of Wi−1.

Each element x ∈ Ho
α([0, 1]d) then has unique representation

x =
∞∑
i=0

∑
v∈Vi

λi,v(x)Λi,v,

with the H-valued coefficients λj,v(x) defined as

λ0,v(x) = x(v), v ∈ V0;

λj,v(x) = x(v)− 1
2
(
x(v−) + x(v+)

)
, v ∈ Vj, j ≥ 1,

where v− and v+ are defined as follows. Each v ∈ Vj admits a unique
representation v = (v1, . . . , vd) with vi = ki/2j, (1 ≤ i ≤ d). The points
v− = (v−1 , . . . , v−d ) and v+ = (v+

1 , . . . , v
+
d ) are defined by

v−i =

vi − 2−j, if ki is odd;
vi, if ki is even

v+
i =

vi + 2−j, if ki is odd;
vi, if ki is even.

Having specified Schauder decomposition of the space Ho
α([0, 1]d) we adapt

theorem 2 specifically for space Ho
α([0, 1]d). DefineWj = ⊕j

i=0 Vj. Note that
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Wj corresponds to Zj in theorem 2. Define the projection operators Ej
(j ≥ 0) onto subspaces Wj by

Ejx :=
j∑
i=0

∑
v∈Vi

λi,v(x)Λi,v, x ∈ Ho
α([0, 1]d). (1.3)

Note that Ej is actually the operator of affine interpolation at the vertices of
Wj, i.e. value of Ejx depends only on values of x(w) for w ∈ Wj. Since Wj

is a finite set,Wj is clearly isomorphic to the Cartesian product of card(Wj)
copies of H, where card(wj) is the number of elements in Wj. We exploit
this fact later in proving tightness.

Having defined operators Ej, we give now some alternative representation
of ‖x− Ejx‖α. For any function x ∈ Hα(H), define its sequential seminorm
by

‖x‖seq
α := sup

j≥0
2αj max

v∈Vj
‖λj,v(x)‖.

Račkauskas and Suquet [31] show that this seminorm is actually a norm and
that it is equivalent to the norm ‖x‖α on Ho

α([0, 1]d). Furthermore

‖x− EJx‖α = ‖x− EJx‖seq
α := sup

j>J
2αj max

v∈Vj
‖λj,v(x)‖, (1.4)

is non increasing in J . Now we can state the adaptation of theorem 2 for the
space Ho

α([0, 1]d).

Theorem 4 A subset K is relatively compact in Ho
α([0, 1]d) if and only if:

i. for each j ∈ N, EjK is relatively compact in Wj;

ii. supx∈K supj>J 2αj maxv∈Vj‖λj,v(x)‖ → 0, as J →∞.

1.2.3 Tightness criteria
Now we prove the tightness criteria. Note that this is an adaptation of the
theorem 2 in [31] for nets {ζn,n ∈ Nd}.

Theorem 5 Let {ζn,n ∈ Nd} and ζ be random elements with values in the
space Ho

α([0, 1]d). Assume that the following conditions are satisfied.

i) For each dyadic t ∈ [0, 1]d, the net of H-valued random elements ζn(t)
is asymptoticaly tight on H.
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ii) For each ε > 0

lim
J→∞

lim sup
m(n)→∞

P (sup
j≥J

2αj max
v∈Vj
‖λj,v(ζn)‖ > ε) = 0.

Then the net ζn is asymptoticaly tight in the space Ho
α([0, 1]d).

Proof.
For fixed positive η, put ηl = 2−l, l = 1, 2, .. and choose a sequence (εl)

decreasing to zero. By (ii) there is and integer Jl and index n0 ∈ Nd such
that for set

Al := {x : sup
j≥Jl

2αj max
v∈Vj
‖λj,v(x)‖ < εl}

P (ζn ∈ Al) > 1− ηl, for all n, n0 ≤ n.
Recall now from subsection 1.2.2 thatWj is isomorphic to the Cartesian

product of card(Wj) copies of H. Thus from (i) there exists for all n, n0 ≤ n
a compact Kl ⊂ Ho

α([0, 1]d), such that for set Bl

Bl := {x ∈ Ho
α([0, 1]d) : EJlx ∈ Kl}

P (ζn ∈ Bl) > 1 − ηl. Take K the closure of ∩∞l=1(Al ∩ Bl). Then P (K) >
1− 2η, and K is compact due to theorem 4.

Since in R closed bounded sets are compact and vice versa we have fol-
lowing corollary for space Ho

α([0, 1]d)
Corollary 6 Let {ζn,n ∈ Nd} and ζ be random elements with values in the
space Ho

α([0, 1]d). Assume that the following conditions are satisfied.
i) lima→∞ P (supt∈[0,1]d |ζn| > a) = 0

ii) For each ε > 0

lim
J→∞

lim sup
m(n)→∞

P (sup
j≥J

2αj max
v∈Vj
|λj,v(ζn)| > ε) = 0.

Then the net ζn is asymptoticaly tight in the space Ho
α([0, 1]d).

1.3 Results in probability
1.3.1 Gaussian processes
Limiting random fields considered in this work are mainly Gaussian ones.
Recall that a real valued random field {G(t), t ∈ [0, 1]d} is called Gaussian
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if its finite-dimensional distributions are multivariate normal. Mean zero
real valued Gaussian processes can be uniquely defined by their covariance
function EG(t)G(s). The reverse problem is also of interest: when is a
given function g : [0, 1]d × [0, 1]d → R the covariance function of a certain
Gaussian random field ? The answer is a classical result which can be found
in Khoshnevisan [17] for example. For convenience we state it here.

Theorem 7 If the function g : [0, 1]d× [0, 1]d → R is symmetric and positive
definite, i.e. for n-tuple of reals x1, . . . , xn and n-tuple of vectors t1, . . . , tn
from [0, 1]d, expression ∑n

i,j=1 xig(ti, tj)xj ≥ 0, then there exists a zero mean
Gaussian random field {G(t), t ∈ [0, 1]d} with covariance function EG(t)G(s) =
g(t, s).

For d = 1 and g(s, t) = s∧t, we get a Brownian motion. Its generalization
for d > 1 is called Brownian sheet, a zero mean Gaussian process with
covariance function g(s, t) = (s1 ∧ t1) . . . (sd ∧ td). As Brownian motion is
usual limiting process in invariance principles for one parameter summation
processes, Brownian sheet is limiting process for multiparameter summation
processes.

We now define Hilbert space valued Brownian sheet. Recall that zero
mean Gaussian random variables in Hilbert space are uniquely defined through
their covariance operator. Covariance operator of H-valued random variable
X is linear operator Γ : H→ H satisfying

〈Γx, y〉 = E 〈X, x〉〈X, y〉, x, y ∈ H.

Linear operator Γ is the covariance operator of some H-valued random vari-
able if it is

1. Symmetric: 〈Γx, y〉 = 〈Γy, x〉 for all x, y ∈ H.

2. Positive: 〈Γx, x〉 ≥ 0, for all x ∈ H.

3. Nuclear: operator Γ is compact and for every orthonormal base {en} ⊂
H ∑

n

〈Γen, en〉 <∞.

Note that if E ‖X‖2 <∞ we have∑
n

〈Γen, en〉 =
∑
n

E 〈X, en〉2 = E ‖X‖2 <∞ (1.5)
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It is well known that in the Hilbert space H, every random element X such
that E ‖X‖2 <∞ is pregaussian, i.e. there is a Gaussian random element G
in H with the same covariance operator as X, see [21, Prop. 9.24]. Let the
Xi’s be i.i.d. copies of X. If moreover EX = 0, then n−1/2∑n

i=1 Xi converges
weakly to G in H, in other words X satisfies the CLT in H [21, Th. 10.5].

Existence of real valued Gaussian processes is given by Kolmogorov theo-
rem. Since it applies also for Cartesian products of Polish spaces it is natural
to call H-valued random field {G(t), t ∈ [0, 1]d} Gaussian if for every m-tuple
t1, . . . , tm vector (G(t1), . . . , G(tm)) is Hm valued Gaussian random variable.

Define then H-valued Brownian sheet with covariance operator Γ as a
H-valued zero mean Gausian process indexed by [0, 1]d and satisfying

E 〈W (t), x〉〈W (s), y〉 = (t1 ∧ s1) . . . (td ∧ sd)〈Γx, y〉 (1.6)

for t, s ∈ [0, 1]d and x, y ∈ H. To check that this definition is valid note at
first that for each t ∈ [0, 1]d, W (t) is H-valued zero mean Gaussian random
variable with covariance operor π(t)Γ. Denote by 〈 · , · 〉m the scalar product
in Hm which is defined by

〈h, g〉m :=
m∑
i=1
〈hi, gi〉, h = (h1, . . . , hm), g = (g1, . . . , gm) ∈ Hm.

Denote by Γt1,...,tm the covariance operator of (W (t1), . . . ,W (tm)). For x =
(x1, . . . , xm) ∈ H and y = (y1, . . . , ym) ∈ H from (1.6) we get

〈Γt1,...,tmx, y〉m = E
m∑
i=1
〈W (ti), xi〉

m∑
j=1
〈W (tj), yj〉

=
∑
i

∑
j

g(ti, tj)〈Γxi, yj〉

with g(ti, tj) = ∏d
k=1 tik ∧ tjk. Since Γ is symmetric we get that Γt1,...,tm is

symmetric also. Denote by X, a H-valued random variable with covariance
operator Γ. Then for x = (x1, . . . , xm) ∈ H

〈Γt1,...,tmx, x〉m =
∑
i

∑
j

g(ti, tj)〈Γxi, xj〉

=
∑
i

∑
j

g(ti, tj)E 〈X, xi〉〈X, xj〉

= E
∑

i

∑
j

〈X, xi〉g(ti, tj)〈X, xj〉
 ≥ 0.
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Thus Γt1,...,tm is positive. Now since

E ‖W (t1), . . . ,W (td))‖2 =
m∑
i=1

E ‖W (ti)‖2 <∞

(1.5) implies that Γt1,...,tm is nuclear. Thus there exists Hm-valued Gaussian
random variable with covariance function Γt1,...,tm and our definition of H-
valued Brownian sheet is valid.

It is well known that trajectories of the real valued Brownian sheet are in
Ho
α([0, 1]d) for 0 < α < 1/2. As the following estimate

E ‖W (t+ h) +W (t− h)− 2W (t)‖2 ≤ c|h| tr Γ,

is valid for all t − h, t, t + h ∈ [0, 1]d, it follows from Račkauskas and
Suquet [26] that W (t) has a version in Ho

α([0, 1]d) for any 0 < α < 1/2.

1.3.2 A variant of continuous mapping theorem
Classical continuous mapping theorem states that if the sequence (or net) of
random elements Xα converges weakly to X, then for any continuous func-
tional g, real random variable g(Xα) converges weakly to g(X). This result
is widely applied in statistics to obtain limiting distributions. Sometimes
though it is too restrictive, since sometimes it is more convenient to use the
converging sequence (or net) of continuous functionals. Recall that the net
of continuous functionals gα : B → R where (B, ‖ · ‖) is a normed Banach
space is called equicontinuous if for every ε > 0 and any x, y ∈ B such that
‖x− y‖ < δ we have

sup
α
|gα(x)− gα(y)| < ε.

Then following theorem holds (it is stated as lemma in [30], we restate it for
the case of nets).

Lemma 8 Let {ηα} be a asymptotically tight net of random elements in
the separable Banach space B, and gα, g be a continuous functionals B → R.
Assume that gα converges pointwise to g on B, and that gα is equicontinuous.
Then

gα(ηα) = g(ηα) + oP (1).

Proof. By the asymptotic tightness assumption there is for every ε > 0 a
compact subset K in B and α0 such that for every α0 ≤ α, P (ηα /∈ K) < ε.

26



Now by a Arzela-Ascoli theorem the net gα is totaly bounded on the compact
K with respect to norm of uniform convergence. Since gα converges pointwise
to g, this gives us uniform convergence of gα to g on K. Then for every δ > 0
there is some α1 depending on δ and K, such that

sup
x∈K
|gα(x)− g(x)| ≤ δ, α1 ≤ α.

Take now α2 such that α1 ≤ α2 and α0 ≤ α2. Then for α2 ≤ α we have

P (|gα(ηα)− g(ηα)| ≥ δ) ≤ P (ηα /∈ K) < ε,

which gives us the proof.
The following lemma from [30] provides some practical sufficient condi-

tions to check the equicontinuity of some families of functionals.

Lemma 9 Let (B, ‖ · ‖) be a vector normed space and q : B → R such that

(a). q is subadditive: q(x+ y) ≤ q(x) + q(y)), x, y ∈ B.

(b). q is symmetric: q(x) = q(−x), x ∈ B.

(c). For some constant C, q(x) ≤ C‖x‖, x ∈ B.

Then q satisfies the Lipschitz condition

|q(x+ y)− q(x)| ≤ C‖y‖, x, y ∈ B (1.7)

If F is any set of functionals q fulfilling (a), (b), (c) with the same con-
stant C, then (a), (b), (c) are inherited by g(x) := sup{q(x), q ∈ F} which
therefore satisfies (1.7).

1.3.3 Rosenthal inequality
Since the Hilbert space H has cotype 2, it satisfies the following vector valued
version of Rosenthal’s inequality for every q ≥ 2, see [20, Th. 2.6]. For any
finite set (Yi)i∈I of independent random elements in H with zero mean and
such that E ‖Yi‖q <∞ for every i ∈ I,

E
∥∥∥∥∥∑
i∈I

Yi

∥∥∥∥∥
q

≤ C ′q

(
E
∥∥∥∥∥∑
i∈I

G(Yi)
∥∥∥∥∥
q

+
∑
i∈I

E ‖Yi‖q
)
, (1.8)

where the constant C ′q depends only on q and the G(Yi) are centered Gaussian
independant random elements in H such that for every i ∈ I, G(Yi) has
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the same covariance structure as Yi. For real random variables Rosenthal
inequality simply reads

E
∣∣∣∣∣∑
i∈I

Yi

∣∣∣∣∣
q

≤ c

((∑
i∈I

σ2
i

)q/2

+
∑
i∈I

E |Yi|q
)
, (1.9)

where σ2
i = EY 2

i .
In the i.i.d. case with N = card(I), we note that ∑i∈I G(Yi) is Gaus-

sian with the same distribution as N1/2G(Y1) and using the equivalence of
moments for Gaussian random elements, see [21, Cor. 3.2], we obtain

E
∥∥∥∥∥∑
i∈I

Yi

∥∥∥∥∥
q

≤ C ′′q

(
N q/2

(
E ‖G(Y1)‖2

)q/2
+NE ‖Y1‖q

)
,

where C ′′q depends on q and does not depend on the distribution of Y1. Since
H has also the type 2, there is a constant a depending only on H such that
E ‖G(Y1)‖2 ≤ aE ‖Y1‖2, see [21, Prop. 9.24]. Finally there is a constant Cq
depending on H, q, but not on the distribution of the Yi’s, such that

E
∥∥∥∥∥∑
i∈I

Yi

∥∥∥∥∥
q

≤ Cq

(
N q/2

(
E ‖Y1‖2

)q/2
+NE ‖Y1‖q

)
, (N = card(I)).

(1.10)

1.3.4 Doob inequality
We shall need a generalization of maximal Doob inequality for multiparam-
eter martingales. We use definitions and results from Khoshnevisan [17].

Definition 2 Let d ∈ N and consider d (one parameter) filtrations F1, . . . ,Fd,
where F i = {F ik, k ≥ 1} (1 ≤ i ≤ d). A stochastic processM = (Mn,n ∈ Nd)
is an orthosubmartingale if for each 1 ≤ i ≤ d (Mn, ni ≥ 1) is a one param-
eter submartingale with respect to the one parameter filtration F i with other
coordinates nj 6= ni fixed.

The classical example of orthosubmartingale is the multiparameter random
walk {Sn,n ∈ Nd} defined as

Sn =
∑

1≤j≤n
Xj ,
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where {Xj , j ∈ Nd} is the collection of mean-zero random variables. The
process {Sn,n ∈ Nd} is an orthosubmartingale with respect to filtrations

F ik = σ(Xj , ji ≤ k)

where σ(. . . ) denotes the σ-field generated by the random variables in paren-
thesis.

For nonnegative orthosubmartingales the following so called Cairoli’s strong
(p, p) inequality holds.

Theorem 10 (Th. 2.3.1 in Khoshnevisan [17]) Suppose thatM = (Mn,n ∈
Nd) is a nonnegative orthosubmartingale with respect to one-parameter filtra-
tions F1, . . . ,Fd. Then for all n ∈ Nd and p > 1

E
[

max
0≤k≤n

Mp
k

]
≤
(

p

p− 1

)dp
E [Mp

n] .

Following lemma is useful

Theorem 11 (Lemma 2.1.1 in Khoshnevisan [17]) Suppose that M =
(Mn,n ∈ Nd) is a nonnegative orthosubmartingale with respect to one-parameter
filtrations F1, . . . ,Fd, that Ψ : [0,∞)→ [0,∞) is convex nondecreasing, and
that for all n ∈ Nd, E Ψ(Mn) < ∞. Then (Ψ(Mn),n ∈ Nd) is an orthosub-
martingale.

For independent zero mean real random variables {Xj , j ∈ Nd} introduce
one parameter filtrations F i = F ik = σ(Xj , ji ≤ k). Then process Sn =∑
j≤nXj is orthosubmartingale with respect to filtrations F i and process
|Sn| is nonnegative orthosubmartingale with respect to the same filtrations.
Thus we have

E max
1≤j≤n

|Sj|p ≤
(

p

p− 1

)dp
E |Sn|p. (1.11)

For i.i.d. Hilbert space valued random field {Xj , j ∈ Nd} introduce d
one parameter filtrations, F i = (F ik, k = 0, 1, . . . ), i = 1, . . . , d, where
F ik = σ(Xj , j ∈ Nd, ji ≤ k). Since Cairoli’s inequality applies for real val-
ued orthosubmartingales we cannot use it directly for Sn = ∑

j≤nXj , since
Sn is H valued stochastic process. On the other hand stochastic process
(‖Sn‖,n ∈ Nd) is real valued so to apply theorem 10 we must show that
‖Sn‖ is orthosubmartingale with respect to filtrations F1, . . . ,Fd. Since
norm is a continuous functional, the map ni → ‖Sn‖ is F ini-measurable for
each i = 1, . . . , d.
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Assume that E ‖X1‖ < ∞. Then the Xj’s are Bochner integrable and
according to [38] we can introduce conditional expectations with respect to
F i, i = 1, . . . , d. Let EXj = 0. From properties of conditional expectation
we have for i = 1, . . . , d, n ∈ Nd and k = 0, 1, . . .

E (‖Sn‖|F ik) ≥ ‖E (Sn|F ik)‖ =
∥∥∥∥∥ ∑
j≤n

E (Xj|F ik)
∥∥∥∥∥ = ‖S(n1,...,ni−1,k,ni+1,...,nd)‖.

Hence for each i = 1, . . . , d, ni → Sn is a one parameter submartingale with
respect to the filtration F i. Applying then theorem 10 we have

E max
1≤j≤n

‖Sj‖p ≤
(

p

p− 1

)dp
E ‖Sn‖p, (1.12)

for all n ∈ Nd and p > 1.
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Chapter 2

Summation processes

We call random process a summation process if its values are defined only
by the values of partial sums Sk = X1 + · · ·+Xk, where Xk, k = 1, . . . , n are
random variables. Usualy summation process is defined using interpolation
arguments. Classical example is polygonal line process indexed by [0, 1] with
vertices (k/n, Sk), k = 0, 1 . . . , n and S0 = 0. This process has continuous
and Hölderian trajectories. Sometimes it is convenient to drop the require-
ment of continuity and to analyze jump process defined as ∑[nt]

k=1 Xk. In this
section we define summation processes indexed by [0, 1]d and give some useful
representations. For reasons explained in section 2.2 we analyze separately
summation processes based on random variables with the same variance and
summation processes based on random variables with different variances.
Though the results in this chapter are presented in a context of probability
theory, they are derived without using any results from it. This chapter can
be viewed as investigation of properties of certain interpolation schema of
functions with domain [0, 1]d. To improve readability, more technical and
longer proofs are given at the end of each subsection.

2.1 Uniform variance case
2.1.1 Differences of partial sums
In this and following chapters we deal a lot with differences of partial sums
Sj = ∑

1≤i≤j Xi. Let us introduce the notation

∆(i)
k Sj = S(j1,...,ji−1,k,ji+1,...,jd) − S(j1,...,ji−1,k−1,ji+1,...,jd)
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Since Sk is really a function with domain Nd, we can say that ∆(i)
k is a

difference operator acting on i-th coordinate of the argument of function Sk.
Note that superposition of operators ∆(i)

k commute

∆(i)
ji ∆(l)

jl
Sj = ∆(l)

jl
∆(i)
ji Sj .

In particular for any j ∈ Nd we have

Xj = ∆(1)
j1 . . .∆

(d)
jd
Sj .

2.1.2 Definitions and representations
For d = 1 polygonal line and jump processes are given as

ξn(t) = S[nt] + (nt− [nt])X[nt]+1, (2.1)
ζn(t) = S[nt]. (2.2)

It is natural then to define [0, 1]d indexed jump summation process as

ζn(t) = S[nt]

It is not possible to do this for continuous version of [0, 1]d indexed summation
process, since the relation

Sk+1 − Sk = Xk+1

holds only for k = 0. The continuous version of summation process for d > 1
still can be defined using analogy. Note that for d = 1 we can write

ξn(t) =
∑

1≤i≤n
n

∣∣∣∣[i− 1
n

,
i

n

)
∩ [0, t]

∣∣∣∣Xi, (2.3)

where |A| denotes Lebesgue measure of the set A. Define then continuous
[0, 1]d indexed summation process as

ξn(t) =
∑
i≤n
π(n)

∣∣∣∣∣
[
i− 1
n

,
i

n

)
∩ [0, t]

∣∣∣∣∣Xi. (2.4)

where we write

[a, b) = [a1, b1)× · · · × [ad, bd) (2.5)
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for a, b ∈ [0, 1]d. As in one dimensional case we can see that ξn(k/n) = Sk,
i. e. the process is a continuous interpolation of the grid (k/n, Sk).

To prove tightness of summation process we must control the difference
of the process when the distance between points is small. For case d = 1 if s
and t are close together, they fall into interval [i/n, (i+ 1)/n] for some i. In
this interval we have

ξn(t) = Si + (nt− i)Xi+1

ξn(s) = Si + (ns− i)Xi+1

thus

ξn(t)− ξn(s) = n(t− s)Xi+1. (2.6)

Thus it is of interest to investigate properties of the summation process in
rectangles [(i − 1)/n, i/n]. For the case d = 1 the summation process has
the property that in interval [i/n, (i + 1)/n] it is the affine interpolation of
its values at interval endpoints:

ξn(t) = Si + (nt− i)Xi+1 = Si + (nt− i)(Si+1 − Si)
= (1− (nt− i))Si + (nt− i)Si+1 = (1− {nt})S[nt] + {nt}S[nt]+1

= (1− {nt})ξn(i/n) + {nt}ξ((i+ 1)/n),

with the weights coming from

nt = (1− {nt})[nt] + {nt}([nt] + 1) = [nt] + {nt}. (2.7)

The summation process ξn(t) retains this property. We show this directly for
the case d = 2 and then prove it for general case. Fix t ∈ [0, 1]2 and choose
i so that t ∈ [(i − 1)/n, i/n). Necessarily then [nt] = i − 1. In this case
the expression π(n)|[(j− 1)/n, j/n]∩ [0, t]| assumes only following possible
values:

π(n)
∣∣∣∣∣
[
j − 1
n

,
j

n

)
∩ [0, t]

∣∣∣∣∣ =


1, for j ≤ i− 1
0, for j, such that either j1 ≥ i1, or j2 ≥ i2

{n1t1}, for j, such that j1 = i1 and j2 < i2

{n2t2}, for j, such that j2 = i2 and j1 < i1

π({nt}), for j = i.
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Thus

ξn(t) = Si−1 + {n1t1}
i2−1∑
j=1

Xi1j + {n2t2}
i1−1∑
i=1

Xii2 + π({nt})Xi. (2.8)

We can rewrite this expression using difference operators as

ξn(t) = Si−1 + {n1t1}∆(1)
i1 Si−1 + {n2t2}∆(2)

i2 Si−1 + π({nt})∆(1)
i1 ∆(2)

i2 Si−1,
(2.9)

or alternatively

ξn(t) = π(1− {nt})Si−1 + π({nt})Si
+ {n1t1}(1− {n2t2})Si1,i2−1 + (1− {n1t1}){n2t2}Si1−1,i2 . (2.10)

Note that by doing so we expressed ξn(t) as linear combination of its values
at vertices of rectangle [(i − 1)/n, i/n]. Furthermore the weights in this
combination sum to one and

nt = π(1− {nt})[nt] + π({nt})([nt] + 1)
+ {n1t1}(1− {n2t2})([n1t1] + 1, [n2t2])
+ (1− {n1t1}){n2t2}([n1t1], [n2t2] + 1)
= [nt] + {nt}.

Thus in the point in the grid rectangle our summation process is weighted
sum of its values on rectangle vertexes with the weights comming from
barycentric decomposition of the point as it is in the case d = 1. Note
that though we derived this decomposition for real valued random variables
it holds for Banach space valued random variables also. We extend now (2.9)
and (2.10) for general d.

Proposition 12 For t ∈ [0, 1)d, denote s = {nt} and represent vertices of
the rectangle Rn,[nt]+1 as

V (u) := [nt]
n

+ u

n
, u ∈ {0, 1}d. (2.11)

It is possible to express t as a barycenter of these 2d vertices with weights
w(u) ≥ 0 depending on t, i.e.,

t =
∑

u∈{0,1}d
w(u)V (u), with

∑
u∈{0,1}d

w(u) = 1, (2.12)
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where

w(u) =
d∏
l=1

sull (1− sl)1−ul . (2.13)

Using this representation, define the random field ξ∗n by

ξ∗n(t) =
∑

u∈{0,1}d
w(u)S[nt]+u, t ∈ [0, 1]d.

Then ξ∗n coincides with the summation process defined by (2.4), where {Xi,1 ≤
i ≤ n} is a collection of Banach space valued random variables. Furthermore
ξn admits representation

ξn(t) = S[nt] +
d∑
l=1

∑
1≤i1<i2<···<il≤d

(
l∏

k=1
{niktik}

)(
l∏

k=1
∆(ik)

[nik tik ]+1

)
S[nt]. (2.14)

Proof of proposition 12

For notational convenience write

Rn,j :=
[
j − 1
n

,
j

n

)
. (2.15)

For fixed n ≥ 1 ∈ Nd, any t 6= 1 ∈ [0, 1)d belongs to a unique rectangle Rn,j ,
defined by (2.15), namely Rn,[nt]+1. Recalling definition s = {nt}, note that

t = [nt]
n

+ s

n
. (2.16)

For any non empty subset L of {1, . . . , d}, we denote by {0, 1}L the set of
binary vectors indexed by L. In particular {0, 1}d is an abriged notation for
{0, 1}{1,...,d}. Now define the non negative weights

wL(u) :=
∏
l∈L

sull (1− sl)1−ul , u ∈ {0, 1}L

and note that when L = {1, . . . , d} these weights coincide with weights w(u)
defined in (2.13), hence we will not write subscript L in this case. For fixed
L, the sum of all these weigths is one since∑

u∈{0,1}L
wL(u) =

∏
l∈L

(
sl + (1− sl)

)
= 1. (2.17)

35



The special case L = {1, . . . , d} gives the second equality in (2.12). From
(2.17) we immediately deduce that for anyK non empty and strictly included
in {1, . . . , d}, with L := {1, . . . , d} \K,∑

u∈{0,1}d,
∀k∈K,uk=1

w(u) =
∏
k∈K

sk
∑

u∈{0,1}L
sull (1− sl)1−ul =

∏
k∈K

sk. (2.18)

Formula (2.18) remains obviously valid in the case where K = {1, . . . , d}.
Now let us observe that
∑

u∈{0,1}d
w(u)V (u) =

∑
u∈{0,1}d

w(u)
( [nt]
n

+ u

n

)
= [nt]

n
+

∑
u∈{0,1}d

w(u)u
n
.

Comparing with the expression of t given by (2.16), we see that the first
equality in (2.12) will be established if we check that

s′ :=
∑

u∈{0,1}d
w(u)u = s. (2.19)

This is easily seen componentwise using (2.18) because for any fixed l ∈
{1, . . . , d},

s′l =
∑

u∈{0,1}d,
ul=1

w(u) =
∏
k∈{l}

sk = sl.

Next we check that ξn(t) = ξ∗n(t) for every t ∈ [0, 1]d. Introduce the notation

Dt,u := Nd ∩
([

0, [nt] + u
]
\
[
0, [nt]

])
.

Then we have

ξ∗n(t) =
∑

u∈{0,1}d
w(u)

(
S[nt] + (S[nt]+u − S[nt])

)
= S[nt]

∑
u∈{0,1}d

w(u)
∑
i∈Dt,u

Xi.

Now in view of (2.4) the proof of ξn(t) = ξ∗n(t) reduces clearly to that of∑
u∈{0,1}d

w(u)
∑
i∈Dt,u

Xi =
∑
i∈I
π(n)|Rn,i ∩ [0, t]|Xi, (2.20)
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where

I := {i ≤ n; ∀k ∈ {1, . . . , d}, ik ≤ [nktk] + 1 and
∃l ∈ {1, . . . , d}, il = [nltl] + 1}.

(2.21)

Clearly I is the union of all Dt,u, u ∈ {0, 1}d, so we can rewrite the left hand
side of (2.20) under the form ∑

i∈I aiXi. For i ∈ I, put

K(i) :=
{
k ∈ {1, . . . , d}; ik = [nktk] + 1

}
. (2.22)

Then observe that for i ∈ I, the u’s such that i ∈ Dt,u are exactly those
which satisfy uk = 1 for every k ∈ K(i). Using (2.18), this gives

∀i ∈ I, ai =
∑

u∈{0,1}d,
∀k∈K(i), uk=1

w(u) =
∏

k∈K(i)
sk. (2.23)

On the other hand we have for every i ∈ I,

|Rn,i ∩ [0, t]| =
∏

k∈K(i)

(
tk −

[nktk]
nk

) ∏
k/∈K(i)

1
nk

= 1
π(n)

∏
k∈K(i)

sk = ai
π(n) .

(2.24)
Thus (2.20) follows. To prove (2.14) note that

ξn(t) = S[nt] +
∑
i∈I
π(n)|Rn,i ∩ [0, t]|Xi = S[nt] +

∑
i∈I

( ∏
k∈K(i)

sk

)
Xi,

which can be recast as

ξn(t) = S[nt] +
d∑
l=1

Tl(t) (2.25)

with
Tl(t) :=

∑
i∈I

card(K(i))=l

( ∏
k∈K(i)

sk

)
Xi. (2.26)

Let K ⊂ {1, . . . , d} and IK = {i ∈ I;K(i) = K}. Then

IK = {i ≤ n; ik = [nktk] + 1, for k ∈ K and
ik ≤ [nktk], for k ∈ {1, . . . , d}\K},
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Take for example K = {1} and notice that

∑
i∈IK

Xi =
[nt2]∑
i2=1

. . .
[ntd]∑
id=1

X([nt1]+1,i2,...,id) = ∆(1)
[nt1]+1S[nt].

Then it should be clear that

∑
i∈IK

Xi =
∏
k∈K

∆(k)
[nktk]+1

S[nt].

Now observe that

Tl(t) =
∑

K⊂{1,...,d}
card(K)=l

∑
i∈IK

( ∏
k∈K

sk

)
Xi =

∑
K⊂{1,...,d}
card(K)=l

( ∏
k∈K

sk

) ∑
i∈IK

Xi.

Recalling that sk = {nktk}, this leads to

Tl(t) =
∑

K⊂{1,...,d}
card(K)=l

( ∏
k∈K
{nktk}

)( ∏
k∈K

∆(k)
[nktk]+1

)
S[nt]. (2.27)

Finally we obtain the representation (2.14) and complete the proof.

2.1.3 Estimate of sequential Hölder norm
Using the results from previous sections we give now the estimate of sequen-
tial norm of π(n)−1/2ξn in terms of m-indexed sums. We use this result later
for proving the tightness of process π(n)−1/2ξn. Recall that sequential norm
of x ∈ Ho

α([0, 1]d) is defined as

‖x‖seq
α = sup

j≥0
2αj max

v∈Vj
‖λj,v(x)‖.

Recall from 1.2.2 that a dyadic point v ∈ Vj can be expressed as v =
(k12−j, . . . , kd2−j) with at least one ki odd. Denote by K = {j1, . . . , jl}
the set of indices for which coordinates of 2jv are odd. Then

ξn(v)− ξn(v+) =
card(K)∑
i=1

ξn

(
v + 2−j

i−1∑
k=1

ejk

)
− ξn

(
v + 2−j

i∑
k=1

ejk

)
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similarly

ξn(v)− ξn(v−) =
card(K)∑
i=1

ξn

(
v − 2−j

i−1∑
k=1

ejk

)
− ξn

(
v − 2−j

i∑
k=1

ejk

)

thus we can express double difference

λj,v(ξn) = ξn(v)− 1
2(ξn(v+) + ξn(v−))

as differences of process ξn where only one coordinate is changing. Define

∆(1)
n (t, t′; s) := ‖ξn(t′, s2, . . . , sd)− ξn(t, s2, . . . , sd)‖,

for the change in the first coordinate and similarly ∆(j)
n (t, t′; s) for the change

in the j-th coordinate. Then

max
v∈Vj
‖λj,v(ξn)‖ ≤

d∑
m=1

max
0≤k<2j
0≤`≤2j

∆(m)
n (tk+1, tk; s`) (2.28)

with tk = k2−j, ` = (l2, . . . , ld), 2j = (2j, . . . , 2j) (vector of dimension d− 1)
and s` = `2−j.

Let us first examine the the case d = 1. Then

max
v∈Vj
‖λj,v(ξn)‖ ≤ max

0≤k<2j
|ξn(tk+1)− ξn(tk)|.

Denote by “log” the logarithm with basis 2 (log 2 = 1). If j > log n then
tk+1 − tk = 2−j < 1/n and from definition (2.1) we get

ξn(tk+1)− ξn(tk) = n2−jX[ntk]+1

if [ntk+1] = [ntk]. For j ≤ log n we get

ξn(tk+1)− ξn(tk) =
[ntk+1]∑
i=[ntk]+1

Xi

if n = 2l with l > j. With little additional work it is possible to refine these
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expressions to get the estimate

max
0≤k<2j

|ξn(tk+1)− ξn(tk)| ≤ 1 (j ≤ log n) max
0≤k<2j

[ntk+1]∑
i=[ntk]+1

|Xi|

+ 1 (j > log n)n2−j+1 max
1≤i≤n

|Xi|.

For the case d > 1 it is possible to get similar estimate given by the following
lemma.

Lemma 13 For m = 1, . . . , d and any t′, t ∈ [0, 1], t′ > t,

sup
s∈[0,1]d−1

∆(m)
n (t, t′; s) ≤ 3d1

(
t′ − t ≥ 1

nm

)
ψ(m)
n (t′, t)

+ 3d min
(
1, nm(t′ − t)

)
Z(m)
n ,

where

ψ(m)
n (t′, t) := max

1−m≤k−m≤n−m

∥∥∥∥ [nmt′]∑
km=[nmt]+1

∆(m)
km
Sk

∥∥∥∥, (2.29)

Z(m)
n := max

1≤k≤n
‖∆(m)

k1 Sk‖. (2.30)

Thus

max
0≤k<2j
0≤`≤2j

∆(m)
n (tk+1, tk; s`) ≤ max

0≤k<2j

[
3d1 (tk+1 − tk ≥ 1/nm)ψ(m)

n (tk+1, tk)

+ 3d min{1, nm(tk+1 − tk)}Z(m)
n

]
It is possible to further refine this expression by considering certain values of
j. For j > log nm, we have 2j > nm, whence (tk+1 − tk) = 2−j < 1/nm thus
in this case

max
0≤k<2j
0≤`≤2j

∆(m)
n (tk+1, tk; s`) ≤ 3d max

0≤k<2j
nm(tk+1 − tk)Z(m)

n .

Now since 2−j < n−1
m we have

2jαnm(tk+1 − tk) = 2−j(1−α)nm < nαm,
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giving us

2jα max
0≤k<2j
0≤`≤2j

∆(m)
n (tk+1, tk; s`) ≤ 3dnαmZ(m)

n (2.31)

for j > log nm. On the other hand, for j ≤ log nm, we have 2αj ≤ nαm, whence

2jα max
0≤k<2j
0≤`≤2j

∆(m)
n (tk+1, tk; s`) ≤ 3d

[
max

j≤lognm
max

0≤k<2j
ψ(m)
n (tk+1, tk) + nαmZ

(m)
n

]
(2.32)

for j ≤ log nm. Reporting now (2.31) and (2.32) to (2.28) we get

‖ξn‖seq
α ≤ 3d

d∑
m=1

(
max

j≤lognm
2αj max

0≤k<2j
ψ(m)
n (tk+1, tk) + nαmZ

(m)
n

)
. (2.33)

Recalling the definition of EJ from (1.3) and noting that we can restrict the
domain of j in inequality (2.32) we also get the estimate for ‖ξn − EJξn‖

‖ξn − EJξn‖seq
α ≤ 3d

d∑
m=1

(
max

J≤j≤lognm
2αj max

0≤k<2j
ψ(m)
n (tk+1, tk) + nαmZ

(m)
n

)
.

(2.34)

From these inequalities we see that the sequential norm of process ξn can be
controlled by only first differences of the process when only one coordinate
changes.

Proof of lemma 13

We prove this lemma in case of m = 1, proof for other cases is identical. Put
u := (t, s), u′ := (t′, s), so u1 = t, u′1 = t′ and u2:d = u′2:d = s. Denote

Tl(t) =
∑

1≤i1<i2<···<il≤d

(
l∏

k=1
{niktik}

)(
l∏

k=1
∆(ik)

[nik tik ]+1

)
S[nt].

Then from representation 2.14 we have

ξn(u′)− ξn(u) = S[nu′] − S[nu] +
d∑
l=1

(
Tl(u′)− Tl(u)

)
. (2.35)

To estimate this ξn’s increment we discuss according to the different possible
configurations.
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Case 1. 0 < t′ − t < 1/n1.
Case 1.a. [n1t

′] = [n1t], whence [nu′] = [nu]. Consider first the increment
T1(u′)− T1(u) and note that by (2.27) with l = 1,

T1(u) =
∑

1≤k≤d
{nkuk}∆(k)

[nkuk]+1S[nu].

Because u2:d = u′2:d and [nu′] = [nu], all the terms indexed by k ≥ 2
disappear in the difference T1(u′)− T1(u). Note also that {n1t

′} − {n1t} =
n1(t′ − t). This leads to the factorization

T1(u′)− T1(u) = n1(t′ − t)∆(1)
[n1t]+1S[nu].

For l ≥ 2, Tl(u) is expressed by (2.27) as

Tl(u) =
∑

1≤i1<···<il≤d
{ni1ui1} . . . {niluil}∆

(i1)
[ni1ui1 ]+1 . . .∆

(il)
[niluil ]+1S[nu].

As above, all the terms for which i1 ≥ 2 disappear in the difference Tl(u′)−
Tl(u) and we obtain

Tl(u′)− Tl(u) = n1(t′ − t)
∑

1<i2<···<il≤d
{ni2si2} . . . {nilsil}

∆(1)
[n1t]+1∆

(i2)
[ni2si2 ]+1 . . .∆

(il)
[nilsil ]+1S[nu].

Since {ni2si2} . . . {nilsil} < 1 and

∥∥∥∆(1)
[n1t]+1∆

(i2)
[ni2si2 ]+1 . . .∆

(il)
[nilsil ]+1S[nu]

∥∥∥ =

∥∥∥∥∥∥∆(1)
[n1t]+1

∑
i∈I

εiSi

∥∥∥∥∥∥
≤
∑
i∈I

∥∥∥∆(1)
[n1t]+1Si

∥∥∥ ,
where εi = ±1 and I is some appropriate subset of [0,n] ∩ Nd with 2l−1

elements. Hence with Zn defined by (2.30), we obtain for l ≥ 2

‖Tl(u′)− Tl(u)‖ ≤ n1(t′ − t)
(
d− 1
l − 1

)
2l−1Zn.

Clearly this estimate holds true also for l = 1, so going back to (2.35) and
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recalling that in the case under consideration [nu′] = [nu], we obtain

‖ξn(u′)− ξn(u)‖ ≤
d∑
l=1

n1(t′ − t)
(
d− 1
l − 1

)
2l−1Zn = 3d−1n1(t′ − t)Zn. (2.36)

Case 1.b. n1t < [n1t
′] ≤ n1t

′. Using chaining to exploit the result of case
1.a, we obtain

‖ξn(u′)− ξn(u)‖ ≤
∥∥∥∥∥ξn(u′)− ξn

( [n1t
′]

n1
, s
)∥∥∥∥∥+

∥∥∥∥∥ξn
( [n1t

′]
n1

, s
)
− ξn(u)

∥∥∥∥∥
≤ 3d−1(n1t

′ − [n1t
′])Zn + 3d−1([n1t

′]− n1t)Zn
= 3d−1n1(t′ − t)Zn. (2.37)

Case 2. t′ − t ≥ 1/n1. Then [n1t] ≤ n1t < [n1t] + 1 ≤ [n1t
′] ≤ n1t

′ and
putting

t1 := [n1t]
n1

, t′1 := [n1t
′]

n1
, v := (t1, s), v′ := (t′1, s),

we get the upper bound

‖ξn(u′)− ξn(u)‖ ≤ ‖ξn(u′)− ξn(v′)‖+ ‖ξn(v′)− ξn(v)‖
+ ‖ξn(v)− ξn(u)‖ ,

where the first and third terms fall within the case 1 since t′− t′1 < 1/n1 and
t− t1 < 1/n1. As n1v1 = n1t1 = [n1t], we have

[nv] = ([n1t1], [n2:ds]) = [nu] and {n1v1} = {[n1t]} = 0,

so the representation (2.14) for ξn(v) may be recast as

ξn(v) = S[nu] +
d−1∑
l=1

∑
2≤i1<i2<···<il≤d

(
l∏

k=1
{nikvik}

)(
l∏

k=1
∆(ik)

[nikvik ]+1

)
S[nu].

Clearly the same representation holds for ξn(v′), by just replacing u by u′.
Now since ∆’s are interchangable and

S[nu′] − S[nu] =
[nt′]∑

i=[nt]+1
∆(1)
i S(i,[n2:ds]),
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we get

‖ξn(v′)− ξn(v)‖ ≤ ψn(t′, t)
d−1∑
l=0

(
d− 1
l

)
2l = 3d−1ψn(t′, t),

with ψn(t′, t) defined by (2.29). Using case 1 to bound ‖ξn(u′)− ξn(v′)‖ and
‖ξn(v)− ξn(u)‖, we obtain

‖ξn(t′, s)− ξn(t, s)‖ ≤ 3d−1{n1t
′}Zn + 3d−1ψn(t′, t) + 3d−1{n1t}Zn

≤ 3d−1ψn(t′, t) + 2 · 3d−1Zn. (2.38)

Combining (2.36), (2.37) and (2.38) we complete the proof of lemma 13. �

2.2 Unequal variance
Let us examine a simple example. Take collection {Xn,k, k = 1, . . . , 2n}
of random variables i.i.d. for each n with zero mean and variance EX2

n,k =
1/(2n). Then the sum Sn,2n = Xn,1+· · ·+Xn,2n converges to standard normal
and the polygonal line process ξn(t) = Sn,[2nt]+(2nt−[2nt])X[2nt]+1 converges
to Brownian motion. Now introduce collection {Yn,k, k = 1, . . . , 2n} by tak-
ing Yn,k = 1/

√
2Xn,k for k ≤ n, and Yn,k =

√
3/2Xn,k for k = n + 1, . . . , 2n.

The sum S ′n,2n = Yn,1 + · · · + Yn,2n still converges to standard normal. But
for polygonal line process ξ′n(t) = S ′n,[2nt] + (2nt− [2nt])Y[2nt]+1 we then have
E (ξn(1/2)′)2 = 1/4 for all n. Thus if functional central limit theorem holds
the variance of limiting process at 1/2 is 1/4. Yet Brownian motion vari-
ance at 1/2 is 1/2, thus the limiting process (if it exists) in this case is not
the Brownian motion. From classical result of Prokhorov [23] we know that
for triangular arraysit is possible to use different construction of summation
process so that the functional central limit theorem holds and the limiting
process is always Brownian motion. Furthermore in the case of i.i.d. ran-
dom variables both definitions coincide. We propose similar definition for
[0, 1]d indexed summation processes, which though does not solve the prob-
lem completely as in case d = 1, is nevertheless an improvement on using the
definition (2.4).

2.2.1 Definitions and representations
Let us first review the case of [0, 1] indexed summation process, i.e. the
classical result of Prokhorov [23] for triangular arrays. Suppose we have
collection {Xn,k, 1 ≤ k ≤ kn, kn, n ∈ N} of random variables. Let EX2

n,k =
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σ2
n,k and assume that ∑kn

k=1 σ
2
n,k = 1. Define

Sn(k) = Xn,1 + · · ·+Xn,k

and
bn(k) = σ2

n,1 + · · ·+ σ2
n,k.

Then classical definition of summation process is

ξn(t) = Sn(k) + (t− bn(k))σ−2
n,k+1Xn,k+1, for bn(k) ≤ t < bn(k + 1). (2.39)

Define

un(t) = min(k : bn(k) < t),

then

E ξn(t)2 =
un(t)∑
k=1

σ2
n,k + (t− bn(k))2

σ2
n,k+1

.

If we assume

max
1≤k≤kn

σ2
n,k → 0, as n→∞

which is necessary for central limit theorem to apply, we have

E ξn(t)2 → t. (2.40)

Define triangular array with multidimensional index as

(Xn,k, 1 ≤ k ≤ kn), n ∈ Nd,

where for each n the random variables Xn,k are independent. The expression
kn is the element from Nd with multidimensional index: kn = (k1

n, . . . , k
d
n).

Assume that EXn,k = 0 and that σ2
n,k := EX2

n,k < ∞, for 1 ≤ k ≤ kn,
n ∈ Nd. Define for each 1 ≤ k ≤ kn

Sn(k) :=
∑
j≤k

Xn,j , bn(k) :=
∑
j≤k

σ2
n,j .

We require that the sum of all variances is one, i.e. bn(kn) = 1 and that
m(kn) → ∞, as m(n) → ∞. Note that these requirements are the same as
for one-dimensional triangular array.

If π(k) = 0, let Sn(k) = 0, bn(k) = 0. For i = 1, . . . , d introduce the

45



notations

bi(k) := bn(k1
n, . . . , k

i−1
n , k, ki+1

n , . . . , kdn),
∆bi(k) := bi(k)− bi(k − 1) (2.41)

and

B(k) = (b1(k1), . . . , bd(kd)), ∆B(k) := (∆b1(k1), . . . ,∆bd(kd)) (2.42)

for its vector counterparts. Note that these variables depend on n and kn.
For 1 ≤ k ≤ kn let

Qn,k :=
[
b1(k1 − 1), b1(k1)

)
× · · · ×

[
bd(kd − 1), bd(kd)

)
. (2.43)

Due to definition of bi(k) we haveQn,j∩Qn,k = ∅, if k 6= j, Also ∪k≤knQn,k =
[0, 1)d and ∑k≤kn

|Qn,k| = 1 with |Qn,k| = π(∆B(k)). Thus any t ∈ [0, 1)d
falls into unique rectangle Qn,k, for some k. In that case trivial equality

ti = bi(ki − 1) + ti − bi(ki − 1)
∆bi(ki)

∆bi(ki)

gives

t = B(k − 1) + t−B(k − 1)
∆B(k) ∆B(k)

with

0 ≤ t−B(k − 1)
∆B(k) < 1.

This corresponds to decomposition

t = [nt]
n

+ {nt}
n

.

It is natural then that summation process defined on the grid Qn,k as

Ξn(t) =
∑

1≤j≤n
|Qn,j|−1|Qn,j ∩ [0, t]|Xn,j , (2.44)

similar to (2.4) assumes the same representations as process ξn(t). For t ∈
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[0, 1] and t ∈ [0, 1]d, write

ui(t) := max{j ≥ 0 : bi(j) ≤ t}, U (t) := (u1(t1), . . . , ud(td)).

Then following proposition holds.

Proposition 14 For t ∈ [0, 1)d, denote

s = t−B(U(t))
∆B(U (t) + 1)

and write vertices of the rectangle Rn,U(t)+1 as

V (u) := B(U(t)) + u∆B(U(t) + 1). u ∈ {0, 1}d. (2.45)

It is possible to express t as a barycenter of these 2d vertices with weights
w(u) ≥ 0 depending on t, i.e.,

t =
∑

u∈{0,1}d
w(u)V (u), where

∑
u∈{0,1}d

w(u) = 1, (2.46)

where

w(u) =
d∏
l=1

sull (1− sl)1−ul .

Using this representation, define the random field Ξ∗n by

Ξ∗n(t) =
∑

u∈{0,1}d
w(u)Sn(U(t) + u), t ∈ [0, 1]d.

Then Ξ∗n coincides with the summation process defined by (2.44). Furthemore
Ξn(t) admits representation

Ξn(t) = Sn(U(t))+
d∑
l=1

∑
1≤i1<i2<···<il≤d

(
l∏

k=1

tik − bik(uik)
∆bik(uik(tik) + 1)

)(
l∏

k=1
∆(ik)
uik (tik )+1

)
Sn(U(t)).

(2.47)

Proof. The proof is the same as in proposition 12 with the change of notation:
[nt] changed to U(t) and {nt} to (t−B(U(t)))/∆B(U(t) + 1).
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2.2.2 Estimate of sequential norm
We give now the estimate of sequential norm of Ξn. The estimate is similar
to the one given in section 2.1.3 for process ξn. As in section 2.1.3 we can
write

max
v∈Vj
‖λj,v(Ξn)‖ ≤

d∑
m=1

max
0≤k<2j
0≤`≤2j

∆(m)
n (tk+1, tk; s`) (2.48)

with tk = k2−j, ` = (l2, . . . , ld), 2j = (2j, . . . , 2j) (vector of dimension d− 1),
s` = `2−j, and ∆(m)

n (t, t′; s) defined for m = 1 as

∆(1)
n (t, t′; s) := |Ξn(t′, s)− Ξn(t, s)|

and similarly for other coordinates for m > 1. Introduce set Dj = {2(l −
1)2−j; 1 ≤ l ≤ 2j−1} and notation r− = r− 2−j and r+ = r+ 2−j for r ∈ Dj.
Then

max
v∈Vj
‖λj,v(Ξn)‖ ≤

d∑
m=1

max{ max
r∈Dj

0≤`≤2j

∆(m)
n (r, r−; s`), max

r∈Dj
0≤`≤2j

∆(m)
n (r+, r; s`)}.

(2.49)

At first glance this separation seems unnecessary, especially since the treat-
ment of both ∆(m)

n (r, r−; s`) and ∆(m)
n (r, r+; s`) is identical, but this simplifies

the proofs later on. Similar lemma to 13 holds.

Lemma 15 For m = 1, . . . , d and any r ∈ Dj

sup
s∈[0,1]d−1

∆(m)
n (r, r−; s) ≤ 3d1

(
um(r) > um(r−) + 1

)
ψ(m)
n (r, r−)

+ 3d2−jαZ(m)
n ,

where

ψn(r, r−)(m) := max
k−m≤(kn)−m

∣∣∣∣∣
um(r)∑

km=um(r−)+2
∆(m)
km
Sn(k)

∣∣∣∣∣ (2.50)

Z(m)
n := max

1≤k≤kn

|∆(m)
km
Sn(k)|

(∆bm(km))α . (2.51)

Similarly
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Lemma 16 For m = 1, . . . , d and any r ∈ Dj

sup
s∈[0,1]d−1

∆(m)
n (r, r+; s) ≤ 3d1

(
um(r) > um(r−) + 1

)
ψ(m)
n (r, r+)

+ 3d2−jαZ(m)
n ,

where

ψn(r, r+)(m) := max
k−m≤(kn)−m

∣∣∣∣∣
um(r+)∑

km=um(r)+2
∆(m)
km
Sn(k)

∣∣∣∣∣. (2.52)

with Z(m)
n as in (2.51).

Note that only definitions of ψn differs and Z(m)
n does not depend on j.

We make no distinction for different j and derive immediately estimate of
sequential norm

‖Ξn‖seq
α ≤ 3d

d∑
m=1

(
max
j≥0

2jα max
r∈Dj

[ψ(m)
n (r, r−) + ψ(m)

n (r, r+)] + Z(m)
n

)
(2.53)

and the tail

‖Ξn − EJΞn‖seq
α

≤ 3d
d∑

m=1

(
max
j≥J

2jα max
r∈Dj

[ψ(m)
n (r, r−) + ψ(m)

n (r, r+)] + Z(m)
n

)
. (2.54)

Proof of lemma 15

We prove this form = 1 since the proof is the same for otherm, subsequently
we drop the superscript in definitions Zn and ψn. The proof is similar to proof
of lemma 13. Denote by v = (r, s), and v− = (r−, s). Recall representation
(2.47) and write

Tl(t) =
∑

1≤i1<i2<···<il≤d

(
l∏

k=1

tik − bik(uik)
∆bik(uik(tik) + 1)

)
(

l∏
k=1

∆(ik)
uik (tik )+1

)
Sn(U(t))
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for l = 1, . . . , d. Then

Ξn(r, s`)− Ξn(r−, s`) = Sn(U(v))− Sn(U(v−))

+
d∑
l=1

(Tl(v)− Tl(v−)).

To estimate this increment we discuss according to following configurations
Case 1. u1(r) = u1(r−). Consider first the increment T1(v) − T1(v−) and
note that by (2.27) with l = 1,

T1(v) =
∑

1≤k≤d

vk − bk(uk(vk))
∆bk(uk(vk) + 1)∆

(k)
uk(vk)+1Sn(U(v)).

Because v2:d = v−2:d andU(v) = U(v−), all terms indexed by k ≥ 2 disappear
in difference T1(v)− T1(v−). This leads to the factorisation

T1(v)− T1(v−) = r − r−

∆b1(u1(r) + 1)∆
(1)
u1(r)+1Sn(U(v)). (2.55)

For l ≥ 2, Tl(v) is expressed by (2.27) as

Tl(v) =
∑

1≤i1<···<il≤d

vi1 − bi1(ui1(vi1))
∆bi1(ui1(vi1) + 1) . . .

vil − bil(uil(vil))
∆bil(uil(vil) + 1)

∆(i1)
ui1 (vi1 )+1 . . .∆

(il)
uil (vil )+1Sn(U (v)).

In the difference T1(v)−T1(v−) all the terms for which i1 ≥ 2 again disappear
and we obtain

Tl(v)− Tl(v−) = r − r−

∆b1(u1(r) + 1)∑
1<i2<···<il≤d

vi2 − bi2(ui2(vi2))
∆bi1(ui1(vi1) + 1) . . .

vil − bil(uil(vil))
∆bil(uil(vil) + 1)

∆(1)
u1(r)+1∆

(i2)
ui2 (vi2 )+1 . . .∆

(il)
uil (vil )+1Sn(U(v)). (2.56)

Since u1(r) = u1(r−), we have b1(u1(r)) ≤ r < r− < b1(u1(r) + 1), thus

r − r−

∆b1(u1(r) + 1) ≤
(

r − r−

∆b1(u1(r) + 1)

)α
.
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Now
vi2 − bi2(ui2(vi2))
∆bi1(ui1(vi1) + 1) . . .

vil − bil(uil(vil))
∆bil(uil(vil) + 1) < 1

and

|∆(1)
u1(r)+1∆

(i2)
ui2 (vi2 )+1 . . .∆

(il)
uil (vil )+1Sn(U (v))| = |∆(1)

u1(r)+1
∑
i∈I

εiSn(i)|

≤
∑
i∈I
|∆(1)

u1(r)+1Sn(i)|, (2.57)

where εi = ±1 and I is some appropriate subset of [0,n] ∩ Nd with 2l−1

elements. Recall that Zn is defined as

Zn = max
1≤k≤kn

|∆(1)
k1 Sn(k)|

(∆b1(k1))α
.

Now noting that r − r− = 2−j and ∆b1(k1) depends only on k1, we obtain
for l ≥ 2

|Tl(u′)− Tl(u)| ≤ 2−jα
(
d− 1
l − 1

)
2l−1Zn.

Thus

|Ξn(v)− Ξn(v−)| ≤
d∑
l=1

2−jα
(
d− 1
l − 1

)
2l−1Zn = 3d−12−jαZn. (2.58)

Case 2. u1(r) = u1(r−) + 1. In this case we have b1(u1(r−)) ≤ r− <
b1(u1(r)) ≤ r. Using previous definitions we can write

|Ξn(v)− Ξn(v−)| ≤ |Ξn(v)− Ξn(b1(u1(r)), s`)|
+ |Ξn(b1(u1(r)), s`)− Ξn(v−)|.

Now

r − b1(u1(r))
∆b1(u1(r) + 1) ≤

(
r − b1(u1(r))

∆b1(u1(r) + 1)

)α
≤ 2−jα

(∆b1(u1(r) + 1))α

and similarly

b1(u1(r))− r−
∆b1(u1(r−) + 1) ≤

2−jα
(∆b1(u1(r−) + 1))α .

51



Combining these inequalities with (2.55) and (2.56) we get as in(2.36)

|Ξn(v)− Ξn(v−)| ≤ 2 · 3d−12−jαZn.

Case 3. u1(r) > u1(r−) + 1. Put

u = (b1(u1(r)), s`), u− = (b1(u1(r−)) + 1, s`).

Then

|Ξn(v)− Ξn(v−)| ≤ |Ξn(v)− Ξn(u)|+ |Ξn(u)− Ξn(u−)|
+ |Ξn(u−)− Ξn(v−)|.

Since U(u)2:d = U(u−)2:d = U (v)2:d, we have

Ξn(u) = Sn(U(u)) +
d−1∑
l=1

∑
2≤i1<i2<···<il≤d

(
l∏

k=1

vik − bik(uik(vik)
∆bikuik(vik) + 1)

)
(

l∏
k=1

∆(ik)
uik (vik )+1

)
Sn(U(u))

and similar representation holds for Ξn(u−). We have

Sn(U(u))− Sn(U(u−)) =
u1(r)∑

i=u1(r−)+2
∆(1)
i Sn((i,U(s`))).

Recalling the definition

ψn(r, r−) = max
k2:d≤kn,2:d

∣∣∣∣∣
u1(r)∑

i=u1(r−)+2
∆(1)
i Sn((i,k2:d))

∣∣∣∣∣,
similar to (2.57) and (2.58) we get

|Ξn(u)− Ξn(u−)| ≤ ψn(r, r−)
d−1∑
l=0

2l ≤ 3d−1ψn(r, r−).

We can bound |Ξn(v)− Ξn(u)| and |Ξn(u−)− Ξn(v)| as in case 2. Thus we
get

|Ξn(r, s`)− Ξn(r−, s`)| ≤ 3d−1ψn(r, r−) + 2 · 3d−12−jαZn, (2.59)

which gives us the proof of the lemma.
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Proof of the lemma 16

Proof is identical to the proof of lemma 15. Instead of analyzing configura-
tions when u1(r) ≥ u1(r−), analyze configurations when u1(r+) ≥ u1(r).
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Chapter 3

Functional central limit
theorems

Functional central limit theorems deal with weak convergence of summa-
tion processes. Classical approach is to prove first the convergence of finite-
dimensional distributions usually using central limit theorem, and then to
show that the summation process is tight. Due to Prokhorov theorem this
then gives the weak convergence and we say that functional central limit
theorem is proved. Functional central limit theorem is called the invariance
principle if necessary and sufficient conditions for the convergence are given.
In this section we prove invariance principle for i.i.d. Hilbert space valued
random variables in Hölder space. We also prove functional central limit
theorem for real valued independent but non-identically distributed random
variables. Usually proving tightness is harder task, but that is not necessarily
so as we show for the triangular array.

For better readability shorter proofs are given straight after theorems in
this chapter. The end of the proof is noted by the symbol �.

3.1 Invariance principle
3.1.1 Finite dimensional distributions
Recall the definition of summation process ξn:

ξn(t) =
∑
i≤n
π(n)

∣∣∣∣∣
[
i− 1
n

,
i

n

)
∩ [0, t]

∣∣∣∣∣Xi.
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The so called jump summation process is defined by ζn(t) = S[nt] which can
be put alternatively as

ζn(t) =
∑
j≤n

1 (j/n ∈ [0, t])Xj .

The following theorem holds.

Theorem 17 Let {Xi,1 ≤ i ≤ n} be a collection of H-valued random vari-
ables. Assume that all variables have finite second moment and uniform
variance σ2 = E ‖Xi‖2 < ∞ for all i ≤ n. Then if E 〈Xi, Xj〉 = 0 for
1 ≤ i 6= j ≤ n,

‖π(n)−1/2(ξn(t)− ζn(t))‖ Pr−−−−−−→
m(n)→∞

0, (3.1)

for each t ∈ [0, 1]d.

Proof. For each t we can write π(n)−1/2(ξn(t)− ζn(t)) = ∑
i≤n αiXi, where

αi := π(n)1/2(|[(i− 1)/n, i/n] ∩ [0, t]| − π(n)−11 (i/n ∈ [0, t])).

Then

E ‖π(n)−1/2(ξn − ζn)‖2 =
∑
i≤n

∑
j≤n

αiαjE 〈Xi, Xj〉 = σ2 ∑
i≤n

α2
i .

Now |αi| < 1, and vanishes if [(i− 1)/n, i/n) ⊂ [0, t], or [(i− 1)/n, i/n) ∩
[0, t] = ∅. Actually αi 6= 0 if and only if i ∈ I, where I is defined as

I := {i ≤ n; ∀k ∈ {1, . . . , d}, ik ≤ [nktk] + 1 and
∃l ∈ {1, . . . , d}, il = [nltl] + 1}.

For any Borel set A ⊂ [0, 1]d define for ε > 0

Aε :=
{
y ∈ Rd, ∃x ∈ A; |x− y| < ε

}
, A−ε := Rd \ (Rd \ A)ε.

Put εn := m(n)−1 and βn(t) := |[0, t]εn \ [0, t]−εn |. Then∑
i≤n

α2
i =

∑
i∈I

α2
i ≤ βn(t),

and this upper bound tends to zero since the Lebesgue measure of [0, t]εn \
[0, t]−εn is clearlyO(εn) = O(m(n)−1). Combined with the estimate P (‖Y ‖ >
r) ≤ r−2E ‖Y ‖2, for any random variable Y , the theorem follows. �
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This theorem coupled with Slutsky’s lemma, implies then that for i.i.d.
H-valued random variables the limits of finite dimensional distributions of
both processes π(n)−1/2ξn and π(n)−1/2ζn coincide. Note that for fixed t

ζn(t) =
∑

j∈J(n)
Xj ,

where

J(n) := {j ∈ Nd : j/n ∈ [0, t]}.

IfXj are zero mean i.i.d. H-valued random variables, satisfying E ‖X1‖2 <∞
and G is the Gaussian random variable with the same covariance operator
as X1, {Xj} satisfy CLT in H [21, Th. 10.5]., i.e.

π(n)−1/2 ∑
j≤n

Xj → G, as π(n)→∞.

By denoting l(n) the number of elements in the set J(n), we then get

l(n)−1/2 ∑
j∈J(n)

Xj
H−→ G, as l(n)→∞.

So it is easier to deal with the limits of finite-dimensional distributions of ζn.
Now

l(n)
π(n) = 1

π(n)
∑
j≤n

1 (j/n ∈ [0, t])

= P (Un ∈ [0, t]) −−−−−−→
m(n)→∞

|[0, t]| = t1 . . . td,

with Un - random variable uniformly distributed on the points j/n. Recalling
definition of H-valued Brownian sheet we get

π(n)−1/2ζn(t) H−−−−−−→
m(n)→∞

W (t). (3.2)

It turns out that this convergence also holds for any vector(
ζn(t1), . . . , ζn(tq)

)
under the same conditions.

Theorem 18 The convergence

π(n)−1/2
(
ζn(t1), . . . , ζn(tq)

)
D−−−−−−→

m(n)→∞

(
W (t1), . . . ,W (tq)

)
holds for each q ≥ 1 and each t1, . . . , tq ∈ [0, 1]d, if Xj are zero mean i.i.d.
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H-valued random variables, satisfying E ‖X1‖2 <∞.

This in view of theorem 17 gives the following.
Theorem 19 Let {Xi,1 ≤ i ≤ n},n ∈ N be a collection of H-valued i.i.d.
random variables. Assume that EX1 = 0, E ‖X1‖2 < ∞. Then for each
q-tuple t1, . . . , tq ∈ [0, 1]d

π(n)−1/2
(
ξn(t1), . . . , ξn(tq)

)
) D−→

(
W (t1), . . . ,W (tq)

)
.

Proof of theorem 18

For convenience write ζ̃n := π(n)−1/2ζn. Equip Hq with product topology.
Then the net (ζ̃n(t1), . . . , ζ̃n(tq)) is tight in Hq since the nets (ζ̃n(ti)) are
tight in H due to (3.2).

Denote by 〈 · , · 〉q the scalar product in Hq which is defined by

〈h, g〉q :=
q∑
i=1
〈hi, gi〉, h = (h1, . . . , hq), g = (g1, . . . , gq) ∈ Hq.

Accounting the above mentionned tightness, to prove the theorem we have
to check that for each h ∈ Hq, the following weak convergence holds

Vn :=
〈(
ζ̃n(t1), . . . , ζ̃n(tq)

)
, h
〉
q

R−−−−−−→
m(n)→∞

〈(
W (t1), . . . ,W (tq)

)
, h
〉
q
. (3.3)

This will be done through Lindeberg theorem. The first step is to establish
the convergence of the variance bn := EV 2

n using the decomposition

Vn =
q∑

k=1
〈ζ̃n(tk), hk〉 = π(n)−1/2 ∑

i≤n

q∑
k=1

1 (i/n ∈ [0, tk]) 〈Xi, hk〉.

Denoting by Γ the covariance operator of X1, we get

bn = 1
π(n)

∑
i≤n

∑
j≤n

q∑
k=1

q∑
l=1

1 (i/n ∈ [0, tk]) 1 (j/n ∈ [0, tl]) E
(
〈Xi, hk〉〈Xj , hl〉

)

=
q∑

k=1

q∑
l=1
〈Γhk, hl〉

1
π(n)

∑
i≤n

1 (i/n ∈ [0, tk] ∩ [0, tl])

=
q∑

k=1

q∑
l=1
〈Γhk, hl〉P (Un ∈ [0, tk] ∩ [0, tl]),

where the discrete random variable Un is uniformly distributed on the grid
i/n, 1 ≤ i ≤ n. Under this form it is clear that when m(n) goes to infinity,
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bn converges to b given by

b :=
q∑

k=1

q∑
l=1
〈Γhk, hl〉|[0, tk] ∩ [0, tl]| = E

( q∑
k=1
〈W (tk), hk〉

)2

.

When b = 0, the convergence (3.3) is obvious. When b > 0, let us introduce
the real random variables

Yn,i :=
q∑

k=1
π(n)−1/21 (i/n ∈ [0, tk]) 〈Xi, hk〉,

which have both zero mean and finite variance and note that Vn = ∑
i≤n Yn,i.

To obtain (3.3) we have to check, by Lindeberg theorem, that for each ε > 0,

L(n) := 1
bn

∑
i≤n

E
(
Y 2
n,i1

(
|Yn,i| > εb1/2

n

) )
−−−−−−→

m(n)→∞
0. (3.4)

Now we have

Y 2
n,i = 1

π(n)

q∑
k=1

q∑
l=1

1 (i/n ∈ [0, tk]) 1 (i/n ∈ [0, tl]) 〈Xi, hk〉〈Xi, hl〉

≤ 1
π(n)

q∑
k=1

q∑
l=1
‖Xi‖2‖hk‖‖hl‖

= 1
π(n)

( q∑
k=1
‖hk‖

)2

‖Xi‖2 = ch
π(n)‖Xi‖2.

Recalling that the number of terms in ∑i≤n is exactly π(n) and choosing
m(n) large enough to have bn > b/2, we obtain :

L(n) ≤ 2
b
E
(
‖X1‖21

(
‖X1‖2 >

bε2

2ch
π(n)

))
,

which gives (3.4) by square integrability of X1.

3.1.2 Necessity
Suppose we have weak convergence of summation process π(n)−1/2ξn to H-
valued Brownian sheet Wd. Since the function wα( · , δ) is continuous on
Ho
α([0, 1]d), by continuous mapping theorem it follows that

lim
m(n)→∞

P (wα((n1 . . . nd)1/2ξn, δ) > a) = P (wα(Wd, δ) > a) (3.5)
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for each continuity point a of distribution function of the random variable
wα(Wd, δ). Since paths of Wd lie in Ho

α([0, 1]d),

P (wα(Wd, δ) > t)→ 0 as δ → 0. (3.6)

Thus oscillations of process π(n)−1/2ξn should be small. Recall that ξn(k/n) =
Sk. For arbitrary δ > 0 and n such that |1/n| = m(n)−1 < δ, we have

P
(
wα((n1 . . . nd)−1/2ξn, δ) > t

)
≥ P

(
(n1 . . . nd)−1/2 max

|k−l
n
|=| 1

n
|

‖Sk − Sl‖
|(k − l)/n|α > t

)
.

On the other hand since

Xk = ∆(1)
k1 . . .∆

(d)
kd
Sk,

we get

‖Xk‖ =

∥∥∥∥∥∥∆(1)
k1

∑
i∈I

εiSi

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑
i∈I

∆(1)
k1 Si

∥∥∥∥∥∥
where εi = ±1 and I is some apropriate subset of [0,n] ∩ Nd with 2d−1

elements. Thus

max
1≤k≤n

‖Xk‖
n−α1

≤ 2d−1 max
|k−l

n
|=| 1

n
|

‖Sk − Sl‖
|(k − l)/n|α .

Now with p = (1/2− α)−1

P

(
(n1 . . . nd)−1/2 max

1≤k≤n

‖Xk‖
n−α1

> t

)
= P

(
n
−1/p
1 n

−1/2
2 . . . n

−1/2
d max

1≤k≤n
‖Xk‖ > t

)
and we see that (3.6) gives us

n
−1/p
1 n

−1/2
2 . . . n

−1/2
d max

1≤k≤n
‖Xk‖

Pr−−−−−−→
m(n)→∞

0. (3.7)
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If we assume that {Xk, k ≤ n} are independent and identically distributed,
we have for each t > 0

P
(
n
−1/p
1 n

−1/2
2 . . . n

−1/2
d max

1≤k≤n
‖Xk‖ > t

)
=

= 1−
(
1− P

(
‖X1‖ > tn

1/p
1 n

1/2
2 . . . n

1/2
d

))n1n2...nd

. (3.8)

Thus (3.7) is equivalent to

n1 · · ·ndP
(
‖X1‖ > n

1/p
1 n

1/2
2 · · ·n

1/2
d

)
−−−−−−→

m(n)→∞
0. (3.9)

Note that (3.7) is as well equivalent to

π(n)P
(
‖X1‖ > n1/p

m π(n−m)1/2
)
−−−−−−→

m(n)→∞
0, (3.10)

for any m ∈ {2, . . . , d}.

3.1.3 Tightness
In this subsection we prove the tightness of summation process π(n)−1/2ξn
in the space Ho

α([0, 1]d) for the mean-zero i.i.d. collection of random variables
{Xj , j ∈ Nd}. We use tightness criteria, theorem 5, so we have to check
two conditions. The first about asymptotic tightness of the net ξn at each
point t readily follows from finite-dimensional convergence, which requires
that E ‖X1‖2 <∞.

Recalling the estimate (2.34) from the section 2.1.3 and the relation (1.4)
from the section 1.2.3 it follows that

lim
J→∞

lim sup
m(n)→∞

P (sup
j≥J

2αj max
v∈Vj
|λj,v(π(n)−1/2ξn)| > ε) = 0

holds if
nαmπ(n)−1/2Z(m)

n
Pr−−−−−→

m(n)→∞
0 (3.11)

and

lim
J→∞

lim sup
m(n)→∞

P
(

max
J≤j≤logn1

2αjπ(n)−1/2 max
0≤k<2j

ψn(tk+1, tk) > ε′
)

= 0 (3.12)
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hold for each m = 1, . . . , d. It turns out that condition

π(n)P
(
‖X1‖ > n1/p

m π(n−m)1/2
)
−−−−−−→

m(n)→∞
0, m = 1, . . . , d, (3.13)

is sufficient for (3.11) and (3.12) to hold. Since (3.13) ensures that E ‖X1‖2 <
∞, then condition (3.13) alone is sufficient for tightness of summation process
π(n)1/2ξn.

Proof of (3.11)

We prove (3.11) for m = 1, since the proof is the same for other m. For this
reason we drop superscript (1) from Zn. Note first that really

Zn = max
1≤k≤n

∥∥∥∥∥∥
k2∑
i2=1

. . .
kd∑
id=1

X(k1,i2,...,id)

∥∥∥∥∥∥ .
Fix ε > 0 and associate to any δ ∈ (0, 1) the truncated random variables X̃j

and X ′j defined as

X̃j := Xj1
(
‖Xj‖ ≤ δn

1/p
1 (n2 . . . nd)1/2

)
,

X ′j := X̃j − E X̃j , 1 ≤ j ≤ n.

Substituting Xj by X̃j , respectively X ′j , in the definition of Zn we obtain Z̃n,
respectively Z ′n. Introducing the complementary events

En :=
{
∀k ≤ n, ‖Xk‖ ≤ δn

1/p
1 (n2 . . . nd)1/2

}
, Ec

n := Ω \ En,

we have

P (Zn > εn
1/p
1 (n2 . . . nd)1/2) ≤ P ({Zn > εn

1/p
1 (n2 . . . nd)1/2} ∩ En) + P (Ec

n).

Clearly Zn = Z̃n on the event En. By identical distribution of the Xk’s,

P (Ec
n) ≤ n1 . . . ndP (‖X1‖ > δn

1/p
1 (n2 . . . nd)1/2)
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and this upper bound goes to zero when m(n) goes to infinity by condition
(3.13). This leads to

lim sup
m(n)→∞

P (Zn > εn
1/p
1 (n2 . . . nd)1/2)

≤ lim sup
m(n)→∞

P (Z̃n > εn
1/p
1 (n2 . . . nd)1/2). (3.14)

Because n−1/p
1 (n2 . . . nd)1/2‖E X̃1‖ → 0 as m(n) → ∞ by lemma 23, the

right-hand side of (3.14) does not exceed

lim sup
m(n)→∞

P (n−1/p
1 (n2 . . . nd)−1/2Z ′n > ε).

Using the extension of Doob inequality (1.12), we obtain with q > p

P (n−1/p
1 (n2 . . . nd)−1/2Z ′n > ε)

≤ n1 P

 max
12:d≤k2:d≤n2:d

∥∥∥∥∥
k2:d∑

i2:d=12:d

X ′(1,i2,...,id)

∥∥∥∥∥ > εn
1/p
1 (n2 . . . nd)1/2


≤ ε−qn

1−q/p
1 (n2 . . . nd)−q/2E

∥∥∥∥∥
n2:d∑

i2:d=12:d

X ′(1,i2,...,id)

∥∥∥∥∥
q

.

Applying Rosenthal inequality (1.10) together with the estimates (3.34),
(3.35), provided in subsection 3.1.5 below, we obtain

P (n−1/p
1 (n2 . . . nd)−1/2Z ′n > ε)

≤ ε−qn
1−q/p
1 (n2 . . . nd)−q/2Cq

(
(n2 . . . nd)q/2(E ‖X ′1‖2)q/2

+ n2 . . . ndE ‖X ′1‖q
)

≤ Cqε
−q
(
n

1−q/p
1 (E ‖X1‖2)q/2 + 2q+1cp,m

q − p
δq−p

)
.

Combined with (3.14) this gives

lim sup
m(n)→∞

P (n−1/p
1 (n2 . . . nd)−1/2Zn > ε) ≤ cδq−p,

where the constant c depends on ε, p and q. Since q > p and δ may be
choosen arbitrarily small in (0, 1), the convergence (3.11) follows.
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Proof of (3.12)

Again we give the proof form = 1 and subsequently drop the superscript. For
notational simplification, let us agree to denote by ε′ the successive splittings
of ε, i.e. ε′ = cε where the constant c ∈ (0, 1) may decrease from one
formula to following one. Notations ψ̃n(tk+1, tk) and ψ′n(tk+1, tk) mean that
Xj are substituted by X̃j and X ′j respectively in the definition of ψn(tk+1, tk).
Accordingly we introduce the notations P̃ (J,n; ε′) and P ′(J,n; ε′) where

P (J,n; ε) = P
(

max
J≤j≤logn1

2αjπ(n)−1/2 max
0≤k<2j

ψn(tk+1, tk) > ε′
)

(3.15)

Splitting Ω in complementary events

En :=
{
∀k ≤ n, ‖Xk‖ ≤ δn

1/p
1 (n2 . . . nd)1/2

}
, Ec

n := Ω \ En,

like in previous subsection we obtain

P (J,n; ε′) ≤ P̃ (J,n; ε) + n1 . . . ndP (‖X1‖ ≥ δn
1/p
1 (n2 . . . nd)1/2).

Then (3.12) is reduced by condition (3.13) to

lim
J→∞

lim sup
m(n)→∞

P̃ (J,n; ε′) = 0. (3.16)

The number of variables X̃k to be centered in the sum ψ̃n(tk+1, tk) is at most
n1(tk+1 − tk)n2 . . . nd ≤ n12−Jn2 . . . nd and (3.32) yields

max
J≤j≤logn1

2αj(n1 . . . nd)−1/2‖E X̃1‖ ≤ n
α−1/2
1 (2δ1−pcp,m)n1/p−1

1 (n2 . . . nd)−1

= 2δ1−pcp,m(n1 . . . nd)−1.

Therefore

lim sup
m(n)→∞

max
J≤j≤logn1

2αj(n1 . . . nd)−1/2n12−Jn2 . . . nd‖E X̃1‖ ≤ δ1−pcp2−J+1.

This upper bound going to zero when J goes to infinity, (3.16) is reduced to

lim
J→∞

lim sup
m(n)→∞

P ′(J,n; ε′) = 0. (3.17)
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We have with q > p

P ′(J,n; ε′) ≤
logn1∑
j=J

P
(
2αj(n1 . . . nd)−1/2 max

0≤k<2j
ψ′n(tk+1, tk) > ε′

)

≤
logn1∑
j=J

2qαj(n1 . . . nd)−q/2ε′−q2jEψ′n(tk+1, tk)q. (3.18)

Denote uk = [n1tk] and observe that uk+1 − uk ≤ n12−j. By (1.12),

Eψ′n(tk+1, tk)q ≤ E
∥∥∥∥∥∥

uk+1∑
i1=1+uk

n2:d∑
i2:d=12:d

X ′i

∥∥∥∥∥∥
q

.

Estimating this last q-moment by Rosenthal inequality (1.10) with a number
of summands N ≤ (n12−j)n2 . . . nd, we obtain

Eψ′n(tk+1, tk)q ≤ Cq

(
(n12−j)q/2(n2 . . . nd)q/2E ‖X ′1‖2 + n12−jn2 . . . ndE ‖X ′1‖q

)
≤ CqE ‖X1‖22−jq/2(n1 . . . nd)q/2

+ 2q+1Cqcp,m
q − p

δq−p2−jnq/p1 (n2 . . . nd)q/2.

Reporting this estimate into (3.18) we obtain

P ′(J,n; ε′) ≤ Σ1(J,n; ε′) + Σ2(J,n; ε′)

with Σ1 and Σ2 explicited and bounded as follows. First

Σ1(J,n; ε′) := Cq
ε′q

E ‖X1‖2 ∑
J≤j≤logn1

2(1+q(α−1/2))j

≤ Cq
ε′q

E ‖X1‖2
∞∑
j=J

2−(q/p−1)j

= Cq
ε′q

E ‖X1‖2 2−(q/p−1)J

1− 2−(q/p−1) .

Hence
lim
J→∞

lim sup
m(n)→∞

Σ1(J,n; ε′) = 0.
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Next

Σ2(J,n; ε′) := 2q+1Cqcp,m
(q − p)ε′q δ

q−pn−qα1
∑

J≤j≤logn1

2jqα

≤ 2q+1Cqcp,m
(q − p)ε′q δ

q−pn−qα1
nqα1

2qα − 1 .

Noting that m = m(n) and lim supm→∞ cp,m = cp, we obtain

lim sup
m(n)→∞

Σ2(J,n; ε′) ≤ 2q+1Cqcp
(q − p)(2qα − 1)ε′q δ

q−p.

Recalling (3.15) and summing up all the successive reductions leads to

lim sup
J→∞

lim sup
m(n)→∞

P (J,n; ε) ≤ 2q+1Cqcp
(q − p)(2qα − 1)ε′q δ

q−p.

Since P (J,n; ε) does not depend on δ which may be choosen arbirarily small,
the left-hand side is null and this gives (3.12).

3.1.4 Corollaries
We state now the invariance principle in the space Ho

α([0, 1]d).

Theorem 20 For 0 < α < 1/2, set p = p(α) := 1/(1/2 − α). For d ≥ 2,
let {Xi; i ∈ Nd, i ≥ 1} be an i.i.d. collection of square integrable centered
random elements in the separable Hilbert space H and ξn be the summation
process defined by

ξn(t) =
∑
i≤n

π(n)
∣∣∣∣∣
[
i− 1
n

,
i

n

)
∩ [0, t]

∣∣∣∣∣Xi. (3.19)

Let W be a H-valued Brownian sheet with the same covariance operator as
X1. Then the convergence

π(n)−1/2ξn
Hoα([0,1]d)−−−−−−→
m(n)→∞

W (3.20)

holds if and only if

π(n)P
(
‖X1‖ > n1/p

m π(n−m)1/2
)
−−−−−−→

m(n)→∞
0, (3.21)

for m = 1, . . . , d.
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Proof. It is really nothing left to prove, since necessity is proved in subsection
3.1.2, the convergence of finite-dimensional distributions follow since (3.21)
ensures that E ‖X1‖2 <∞ and tightness is proved in subsection 3.1.3. �

Though condition (3.21) looks rather technical it turns out that it is
equivalent to the finiteness of the weak p-moment of X1, i.e.

sup
t>0

tpP (‖X1‖ > t) <∞. (3.22)

We prove this for m = 1 as the proof is the same for all m. Note that (3.21)
is equivalent to

vp1(v2 · · · vd)2P
(
‖X1‖ > v1v2 · · · vd

)
−−−−−−→

m(v)→∞
0 (3.23)

and in return (3.23) is equivalent to the convergence

F (m) −−−→
m→∞

0, (3.24)

where
F (m) := sup

m(v)≥m
vp1(v2 · · · vd)2P

(
‖X1‖ > v1v2 · · · vd

)
.

Now introducing the function g(t) := P (‖X1‖ > t) and the sets

Ht,m := {v ∈ Rd; v ≥ m, v1v2 · · · vd = t},

we have

F (m) = sup
t≥md

sup
v∈Ht,m

vp−2
1 t2g(t) = sup

t≥md
t2g(t) sup

v∈Ht,m
vp−2

1 .

When t ≥ md, Ht,m is non empty and on this set, v1 = t(v2 · · · vd)−1 is
maximal for v2 = · · · = vd = m, so

t2g(t) sup
v∈Ht,m

vp−2
1 = tpg(t)m−(d−1)(p−2).

Finally
F (m) = m−(d−1)(p−2) sup

t≥md
tpg(t).

Recalling that d > 1 and p > 2, this reduces the convergence (3.24) to the
finiteness of supt≥md0 t

pg(t) for some m0 > 0. As tpg(t) is bounded on any
interval [0, a] for a < ∞, this finiteness is equivalent to (3.22). Thus we
proved the following theorem.
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Theorem 21 The convergence

π(n)−1/2ξn
Hoα([0,1]d)−−−−−−→
m(n)→∞

W

holds if and only if

sup
t>0

tp(α)P (‖X1‖ > t) <∞, p(α) = (1/2− α)−1.

As condition (3.22) is weaker than E ‖X1‖p <∞, then theorem 20 improves
when H = R, Erickson’s [12] result for Qd:

(n1 · · ·nd)−1/2ξn
Hoα([0,1]d)−−−−−−→
m(n)→∞

W,

if 0 < α < 1/2 and E |X1|q <∞, where q > dp(α).
Considering the convergence of random fields (ξn,n ∈ Nd) along the fixed

path n = (n, . . . , n) ∈ Nd, n ∈ N we obtain the following result.

Theorem 22 The convergence

n−d/2ξ(n,...,n)
Hoα([0,1]d)−−−−−−→
n→∞

W (3.25)

holds if and only if

lim
t→∞

t
2d

d−2αP (‖X1‖ > t) = 0. (3.26)

Proof. Looking back at the proofs in previous subsections and having in
mind the extra assumption that n1 = n2 = · · · = nd = n, it should be clear
that the weak Ho

α([0, 1]d) convergence of n−d/2ξ(n,...,n) to W is equivalent to
the condition obtained by reporting this equality of the ni’s in (3.9), namely
to

ndP
(
‖X1‖ > n1/p+(d−1)/2

)
−−−−→
n→∞

0. (3.27)

It is easily checked that in (3.27) the integer n can be replaced by a positive
real number s and then puting t = s1/p+(d−1)/2, we obtain the equivalence of
(3.27) with

lim
t→∞

t
2pd

2+p(d−1)P
(
‖X1‖ > t

)
= 0. (3.28)

Finally recalling that p = p(α) = 2/(1− 2α), we get

2pd
2 + p(d− 1) = 2d

d− 2α,
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which reported in (3.28) gives (3.26) and completes the proof. �
Since 2d/(d − 2α) < 2d/(d − 1) we see that E ‖X1‖2d/(d−1) < ∞ yields

(3.26). In particular E ‖X1‖4 < ∞ gives the convergence (3.25) for any
d ≥ 2 and any 0 < α < 1/2. This contrasts with the corresponding result for
Hölder convergence of the usual Donsker-Prokhorov polygonal line processes
where necessarily E |X1|q <∞ for any q < p(α) as follows from (1).

Of course, Theorem 22 is only a striking special case and similar results
can be obtained adapting the proof of Theorem 20 for summation processes
with index going to infinity along some various paths or surfaces.

As passing from n to n+1 brings O(nd−1) new summands in the summa-
tion process of Theorem 22, one may be tempted to look for similar weakening
of the assumption in the Hölderian FCLT for d = 1, when restricting for sub-
sequences. In fact even so, the situation is quite different: it is easy to see that
for any increasing sequence of integers nk such that supk≥1 nk+1/nk <∞, the
convergence to zero of np(α)

k P (|X1| > nk) when k tends to infinity implies (1).
As np(α)

k P (|X1| > nk) = o(1) is a necessary condition for (ξnk)k≥1 to satisfy
the FCLT in Ho

α([0, 1]d) when d = 1, there is no hope to obtain this FCLT
for (ξnk)k≥1 under some condition weaker than (1).

3.1.5 Truncated variables
In this subsection we complete the technical details about the estimates of
moment of truncated variables used above. Such estimates are obtained
under the assumption:

n1 · · ·ndP
(
‖X1‖ > n

1/p
1 n

1/2
2 · · ·n

1/2
d

)
−−−−−−→

m(n)→∞
0. (3.29)

Let δ ∈ (0, 1) be an arbitrary number. Define

X̃j := Xj1
(
‖Xj‖ ≤ δn

1/p
1 (n2 . . . nd)1/2}

)
, (3.30)

X ′j := X̃j − E X̃j , 1 ≤ j ≤ n. (3.31)

Though we give the proof for (3.30) definition of truncated variable, the
estimates hold for any permutation of indexes 1, . . . , d in (3.30) combined
with the same permutation in (3.29).

Denote for m ≥ 0

c(m) := sup
u≥m

sup
v2:d≥m

uv2 . . . vdP (‖X1‖ > u1/p(v2 . . . vd)1/2)

cp := sup
t≥0

td/(d/2−α)P (‖X1‖ > t).
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Evidently condition (3.29) yields c(m)→ 0 as m→∞ and cp <∞. Set

cp,m := max{cp; c(m)}.

Lemma 23 With m = m(n) and any q > p

‖E X̃1‖ ≤ 2δ1−pcp,mn
1/p−1
1 (n2 . . . nd)−1/2; (3.32)

E ‖X̃1‖q ≤
2cp,m
q − p

δq−pn
q/p−1
1 (n2 . . . nd)q/2−1; (3.33)

E ‖X ′1‖2 ≤ E ‖X1‖2; (3.34)

E ‖X ′1‖q ≤
2q+1cp,m
q − p

δq−pn
q/p−1
1 (n2 . . . nd)q/2−1. (3.35)

Proof. To check (3.32), we observe first that since EX1 = 0,

‖E X̃1‖ = ‖EX1 − EX11
(
‖X1‖ > δn

1/p
1 (n2 . . . nd)1/2

) ∥∥∥
≤
∫ ∞
δn

1/p
1 (n2...nd)1/2

P (‖X1‖ > t) dt

+ δn
1/p
1 (n2 . . . nd)1/2P

(
‖X1‖ > δn

1/p
1 (n2 . . . nd

)1/2
).

Next we have ∫ ∞
δn

1/p
1 (n2...nd)1/2

P (‖X1‖ > t) dt

= δn
1/p−1
1 (n3 . . . nd)−1/2

∫ ∞
n

1/2
2

v2n1n3 . . . nd

P (‖X1‖ > δvn
1/p
1 (n3 . . . nd)1/2) dv

v2

≤ δn
1/p−1
1 (n3 . . . nd)−1/2b(m, δ)

∫ ∞
n

1/2
2

v−2 dv

≤ δb(m, δ)n1/p−1
1 (n2 . . . nd)−1/2,

where

b(m, δ) := sup
u≥m

sup
v2:d≥m

uv2 . . . vdP (‖X1‖ > δu1/p(v2 . . . vd)1/2).
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We complete the proof of (3.32) noting that

b(m; δ) = δ−p sup
u≥δpm

sup
v2:d≥m

uv2 . . . vdP (‖X1‖ > u1/p(v2 . . . vd)1/2)

= δ−p max
{

sup
m≥u≥δpm

sup
v2:d≥m

uv2 . . . vdP (‖X1‖ > u1/p(v2 . . . vd)1/2);

sup
u≥m

sup
v2:d≥m

uv2 . . . vdP (‖X1‖ > u1/p(v2 . . . vd)1/2)
}

≤ δ−pcp,m, (3.36)

since

sup
u≤m

sup
v2:d≥m

uv2 . . . vdP (‖X1‖ > u1/p(v2 . . . vd)1/2)

≤ sup
u≤m

sup
v2:d≥m

uv2 . . . vdcp(u1/p(v2 . . . vd)1/2)−d/(d/2−α)

= cp sup
u≤m

u2α(d−1)/(d−2α) sup
v2:d≥m

(v2 . . . vd)−2α/(d−2α) = cp.

Next we have

E ‖X̃1‖q ≤
∫ δn

1/p
1 (n2...nd)1/2

0
tq−1P (‖X1‖ > t) dt

=
∫ δ(n2...nd)1/2

0
tq−1P (‖X1‖ > t) dt

+
∫ δn

1/p
1 (n2...nd)1/2

δ(n2...nd)1/2
tq−1P (‖X1‖ > t) dt.

By Chebyshev inequality P (‖X1‖ > t) ≤ t−2, hence the first integral does not
exceed (q − 2)−1δq−2(n2 . . . nd)q/2−1. As

∫ n1/p
1

1 ≤ n
q/p−1
1 , the second integral

does not exceed

δq(n2 . . . nd)q/2−1
∫ n

1/p
1

1
n2 . . . ndu

pP (‖X1‖ > δu(n2 . . . nd)1/2)uq−p−1 du

≤ δq(n2 . . . nd)q/2−1 sup
v2:d≥m

sup
1≤u≤n1

uv2 . . . vdP (‖X1‖ > δu1/p(v2 . . . vd)1/2)nq/p−1
1

≤ 1
q − p

max{b′(m, δ); b(m; δ)}δqnq/p−1
1 (n2 . . . nd)q/2−1,
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where

b′(m, δ) := sup
v2:d≥m

sup
1≤u≤m

uv2 . . . vdP (‖X1‖ > δu1/p(v2 . . . vd)1/2)

≤ δ−2d/(d/2−α)cp ≤ δ−pcp,

recalling that 0 < δ < 1 and p = (1/2 − α)−1. Accounting (3.36) inequality
(3.33) now follows.

To check (3.34), let us denote by (ek, k ∈ N) some orthonormal basis of
the separable Hilbert space H. Then we have

‖X ′1‖2 =
∞∑
k=0

∣∣∣〈X̃1 − E X̃1, ek〉
∣∣∣2 =

∞∑
k=0

∣∣∣〈X̃1, ek〉 − E 〈X̃1, ek〉
∣∣∣2 ,

whence

E ‖X ′1‖2 =
∞∑
k=0

Var(〈X̃1, ek〉) ≤
∞∑
k=0

E
∣∣∣〈X̃1, ek〉

∣∣∣2
= E

∞∑
k=0

∣∣∣〈X̃1, ek〉
∣∣∣2 = E ‖X̃1‖2 ≤ E ‖X1‖2,

which gives (3.34).
Finally we note that (3.35) is obviously obtained from (3.33) since the con-

vexity inequality ‖X ′1‖q ≤ 2q−1‖X̃1‖q+2q−1‖E X̃1‖q together with E ‖X̃1‖ ≤
(E ‖X̃1‖q)1/q gives E ‖X ′1‖q ≤ 2qE ‖X̃1‖q. �

3.2 Triangular array
3.2.1 Finite dimensional distributions
In this subsection we find the limits of finite-dimensional distributions of
process Ξn. We show that the convergence to Brownian sheet is only a
special case. In general case the limiting process is Gaussian, if the limit
exists, but that is not always the case. As in the i.i.d. case we show that it is
more convenient to analyze the jump version Zn of process Ξn. Then we give
some examples for which convergence to the Brownian sheet fails. Finally
we give the conditions and assumptions, under which the finite-dimensional
distributions converge to some Gaussian process.

Recall definitions B(k) and bl(kl) from equations (2.41) and (2.42) in the
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section 2.2.1. Define then the jump process as

Zn(t) =
∑

1≤k≤kn

1 (B(k) ∈ [0, t])Xn,k.

The following result holds.

Lemma 24 Assume

max
1≤l≤d

max
1≤kl≤kln

∆bl(kl)→ 0, as m(n)→∞. (3.37)

Then

E |Ξn(t)− Zn(t)|2 → 0, as m(n)→∞ (3.38)

and subsequently

|Ξn(t)− Zn(t)| P−→ 0, as m(n)→∞.

Proof. For each t we have

|Ξn(t)− Zn(t)| =
∑

1≤k≤kn

αn,kXn,k,

where

αn,k = |Qn,k|−1|Qn,k| − 1{B(k) ∈ [0, t]}.

Now |αn,k| < 1, and vanishes if Qn,k ⊂ [0, t], or Qn,k ∩ [0, t] = ∅. Actually
αn,k 6= 0 if and only if k ∈ I, where I is defined as

I := {i ≤ n; ∀k ∈ {1, . . . , d}, ik ≤ bk(uk(tk) + 1) and
∃l ∈ {1, . . . , d}, il = bl(ul(tl) + 1)}.

Thus

E |Ξn(t)− ζn(t)|2 =
∑
k∈I

αn,kσ
2
n,k ≤

∑
k∈I

σ2
n,k ≤

d∑
l=1

∆bl(ul(tl) + 1).

Now due to (3.37) we have

E |Ξn(t)− Zn(t)|2 → 0, as m(n)→∞,

which coupled with the estimate P (|Y | > r) ≤ r−2E |Y |2, for any random
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variable Y gives us

|Ξn(t)− Zn(t)| P−→ 0, as m(n)→∞. �

The condition (3.37) ensures that the grid gets thinner and thinner as m(n)
approach the infinity. It is more restrictive than the condition of asymptotic
negligibility. Define now

µn(t) =
∑

1≤k≤kn

1{B(k) ∈ [0, t]}σ2
n,k. (3.39)

It is clear that µn(t) = EZn(t)2. If the limiting finite-dimensional distribu-
tions of Zn were those of Brownian sheet, then µn(t) would converge to π(t)
for each t. Consider the following example of triangular array.

Example 1 For n = (n, n) and kn = (2n, 2n) take Xn,k = an,kYk, with
{Yk,k ≤ kn} i.i.d. random variables with standard normal distribution, and

a2
n,k =


1

10n2 , for k ≤ (n, n)
3

10n2 , otherwise.
(3.40)

Thus defined triangular array satisfies the condition (3.37), but simple alge-
bra shows that for such an array

µn(t)→ ν(t) := 1
10

(
5
2t1 ∧ 1

)(
5
2t2 ∧ 1

)
+ (5t1 − 2) ∨ 0

10

(
5
2t2 ∨ 1

)

+(5t2 − 2) ∨ 0
10

(
5
2t1 ∨ 1

)
+

(
(5t1 − 2) ∨ 0

)(
(5t2 − 2) ∨ 0

)
30 .

Furthermore for the following example µn(t) does not converge for any t.

Example 2 For n = (n, n) and kn = (n, n) take Xn,k = bn,kYk with
{Yk,k ≤ kn} i.i.d. random variables with standard normal distribution, and

b2
n,k =

π(kn)−1, for n = (2l − 1, 2l − 1), l ∈ N
a2
n,k, for n = (2l, 2l), l ∈ N

where an,k are defined as in (3.40).

Nevertheless we can get some fruitful results by making following assumption.
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Assumption 1 There exists a function µ : [0, 1]d → R such that

∀t ∈ [0, 1]d, lim
m(n)→∞

µn(t) = µ(t). (3.41)

With this assumption we can state the following result whose proof is post-
poned for a while.

Theorem 25 Given assumption 1 there exists a Gaussian process {G(t), t ∈
[0, 1]d} with covariance function EG(t)G(s) = µ(t ∧ s). Furthermore if

max
1≤l≤d

max
1≤kl≤kln

∆bl(kl)→ 0, as m(n)→∞ (3.42)

and for every ε > 0

lim
m(n)→∞

∑
1≤k≤kn

EX2
n,k1{|Xn,k| ≥ ε} = 0, (3.43)

then for any collection of m points t1, . . . , tm ∈ [0, 1]d

(Zn(t1), . . . , Zn(tm)) D−→ (G(t1), . . . , G(tm)).

For the process Ξn, the following theorem holds.

Theorem 26 If there exists a function µ : [0, 1]d → R such that

∀t ∈ [0, 1]d, lim
m(n)→∞

E Ξ2
n(t) = µ(t) (3.44)

and

max
1≤l≤d

max
1≤kl≤kln

∆bl(kl)→ 0, as m(n)→∞ (3.45)

and for every ε > 0

lim
m(n)→∞

∑
1≤k≤kn

EX2
n,k1{|Xn,k| ≥ ε} = 0, (3.46)

then given any collection of m points t1, . . . , tm ∈ [0, 1]d

(Ξn(t1), . . . ,Ξn(tm)) D−→ (G(t1), . . . , G(tm)),

where G is a Gaussian process satisfying EG(t)G(s) = µ(t ∧ s) for t, s ∈
[0, 1]d.
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Proof. Since (3.45) is satisfied lemma 24 gives us

|E Ξ2
n(t)− EZ2

n(t)|
P−→ 0, as m(n)→∞,

thus the limits µ(t) in (3.41) and (3.44) coincide. The theorem 25 then gives
us the existence of the process G and the same theorem combined again with
lemma 24 gives us the proof. �

For triangular arrays with certain variance structure, the limiting process
is always a Brownian sheet. Take double indexed triangular array {Xn,ij, 1 ≤
i ≤ In, 1 ≤ j ≤ Jn} with EX2

n,ij = aibj, where ai, bj > 0 and∑ ai = 1 = ∑
bj.

Recalling notations (2.41) we get

b1(k) =
k∑
i=1

ai, b2(l) =
l∑

j=1
bj

so our grid rectangle is now

Qn,kl =
[ k−1∑
i=1

ai,
k∑
i=1

ai,
)
×
[ l−1∑
j=1

bj,
l∑

j=1
bj,
)
.

We see that grid points on x-axis are defined only by ai and on y-axis by bj.
Now the variance of jump process in this case will be

µn(t) =
In∑
i=1

Jn∑
j=1

1
( i∑

k=1
ak,

j∑
l=1

bl

)
∈ [0, t1]× [0, t1]

 aibj
=

In∑
i=1

1
(

i∑
k=1

ak ∈ [0, t1]
)
ai

Jn∑
j=1

1
 j∑
l=1

bl ∈ [0, t2]
 bj

and if we assume the condition (3.45) which in this case translates to

max
1≤i≤In

ai → 0, max
1≤j≤Jn

bj → 0,

we see that

µn(t)→ t1t2,

which is the variance of Brownian sheet. Thus assuming the Lindeberg condi-
tion (3.46), theorem 25 implies that limiting finite-dimensional distributions
in this case are those of Brownian sheet.
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Proof of theorem 25

Define

g(t, s) = lim
m(n)→∞

µn(t ∧ s).

If we prove that g(t, s) is positive definite, then the existence of zero mean
Gaussian process {G(t), t ∈ [0, 1]d} with covariance function EG(t)G(s) =
g(t, s) is ensured by theorem 7. Take p ∈ N, v1, . . . , vp ∈ R and t1, . . . , tp ∈
[0, 1]d. Note that for any t, s, r ∈ [0, 1]d we have

1{r ∈ [0, t ∧ s]} = 1{r ∈ [0, t] ∩ [0, s]} = 1{r ∈ [0, t]}1{r ∈ [0, s]}. (3.47)

Then
p∑
i=1

p∑
j=1

viµn(ti ∧ tj)vj =
p∑
i=1

p∑
j=1

vivj
∑
k≤kn

1{Bn(k) ∈ [0, ti ∧ tj]}σ2
n,k

=
∑
k≤kn

σ2
n,k

( p∑
i=1

vi1{Bn(k) ∈ [0, ti]}
)2

≥ 0.

Since this holds for each n, taking the limit as m(n)→∞ gives the positive
definiteness of g(t, s). So the first part of the theorem is proved.

Now fix t1, . . . , tr ∈ [0, 1]d and v1, . . . , vr real, and set

Vn =
r∑
p=1

vjZn(tp) =
∑

1≤k≤kn

αn,kXn,k,

where

αn,k =
r∑
p=1

vp1 (B(k) ∈ [0, tp]) .

Now using (3.47) we get

bn := EV 2
n =

∑
k≤kn

α2
n,kσ

2
n,k

=
∑
k≤kn

∑
p

∑
q

vpvq1 (B(k) ∈ [0, tp]) 1 (B(k) ∈ [0, tq])σ2
n,k

=
∑
p

∑
q

vpvqµn(tp ∧ tq).
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Letting m(n) tend to infinity and using assumption 1, we obtain

bn −−−−−→
m(n)→∞

∑
p

∑
q

vpvqµ(tp ∧ tq) = E
(∑

vpG(tp)
)2

=: b.

If b = 0, then Vn converges to zero in distribution since EV 2
n tends to

zero. In this special case we also have ∑p vpG(tp) = 0 almost surely, thus the
convergence of finite dimensional distributions holds.

Assume now, that b > 0. For convenience put Yn,k = αn,kXn,k and v =∑
p

∑
q vpvq. Conditions (3.42) and (3.43) ensures that triangular array Xn,j

satisfies the conditions for central limit theorem: infinitesimal negligibility
and Lindeberg condition. The same is true for triangular array {Yn,k}. We
have

Y 2
n,k ≤ vX2

n,k,

thus Yn,k satisfies the condition of infinitesimal negligibility. For m(n) large
enough to have bn > b/2, we get

1
EV 2

n

∑
1≤k≤kn

E
(
Y 2
n,k1{|Yn,k|2 > ε2EV 2

n}
)

≤ 2v
b

∑
1≤k≤kn

E
(
X2
n,k1

{
|Xn,k|2 >

bε2

2v
})
.

Thus Lindeberg condition for Vn is also satisfied and that gives us the con-
vergence of finite dimensional distributions and the proof of the theorem.

3.2.2 Tightness
To prove tightness of process Ξn only certain moment conditions are required.
There is no need for additional variance structure assumptions as proving the
convergence of finite-dimensional distributions. This is quite clear, since due
to results from section 2.2.2 and corollary 6, the process Ξn is tight if

lim
a→∞

P

(
sup
t∈[0,1]d

|Ξn(t)| > a

)
= 0 (3.48)
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and for every ε > 0 and m = 1, . . . , d,

lim
m(n)→∞

P

(
Z(m)
n > ε

)
= 0; (3.49)

lim
J→∞

lim
m(n)→∞

P

(
sup
j≥J

2−jα max
r∈Dj

ψn(r, r−)(m) > ε

)
= 0; (3.50)

lim
J→∞

lim
m(n)→∞

P

(
sup
j≥J

2−jα max
r∈Dj

ψn(r, r+)(m) > ε

)
= 0, (3.51)

recalling respectively the definitions (2.51),(2.50) and(2.52).
Using Doob inequality (1.12) we have

P ( sup
t∈[0,1]d

|Ξn(t)| > a) = P (max
k≤kn

|Sn(k)| > a)

≤ a−2ESn(kn)2 = a−2 → 0, as a→∞,

thus (3.48) is satisfied leaving us with checking (3.49) to (3.51). As the
expressions in the probability involve only sums we can use similar techniques
as in proving tightness of process ξn. We give now two sets of conditions.

Theorem 27 For 0 < α < 1/2, set p(α) := 1/(1/2− α). If

max
1≤l≤d

max
1≤kl≤kln

∆bl(kl)→ 0, as m(n)→∞. (3.52)

and for some q > p(α)

lim
m(n)→∞

∑
1≤k≤kn

σ−2qα
n,k E |Xn,k|q = 0, (3.53)

then the net {Ξn,n ∈ N} is asymptotically tight in the space Ho
α([0, 1]d).

Introduce for every τ > 0, the truncated random variables:

Xn,k,τ := Xn,k1{|Xn,k| ≤ τσ2α
n,k}.

Theorem 28 Assume that

max
1≤l≤d

max
1≤kl≤kln

∆bl(kl)→ 0, as m(n)→∞. (3.54)

and that the following conditions hold.
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(a). For every ε > 0,

lim
m(n)→∞

∑
1≤k≤kn

P (|Xn,k| ≥ εσ2α
n,k) = 0. (3.55)

(b). For every ε > 0,

lim
m(n)→∞

∑
1≤k≤kn

EX2
n,k1{|Xn,k| ≥ ε} = 0. (3.56)

(c). For some q > 1/(1/2− α),

lim
τ→0

lim
m(n)→∞

∑
1≤k≤kn

σ−2qα
n,k E |Xn,k,τ |q = 0. (3.57)

Then the net {Ξn,n ∈ N} is asymptoticaly tight in the space Ho
α([0, 1]d).

Proof of the theorem 27

We only need to check that (3.52) and (3.53) ensure (3.49), (3.50), (3.51).
We check only the case m = 1, since the proof is the same for other m, thus
in following proofs we drop the superscript m.

Proof of (3.49). Using Markov and Doob (1.12) inequalities for q >
1/(1/2− α) we get

P

(
Zn > ε

)
≤

k1
n∑

k=1
P

(
max

k2:d≤kn,2:d
|∆(1)

k Sn(k)| > ε(∆b1(k))α
)

≤
k1

n∑
k=1

ε−q(∆b1(k))−qαE
(

max
k2:d≤kn,2:d

|∆(1)
k Sn(k)|

)q

≤
k1

n∑
k=1

ε−q(∆b1(k))−qαE |∆(1)
k Sn(kn)|q.

Rosenthal inequality (1.10) gives

P

(
Zn > ε

)
≤ c

k1
n∑

k=1
ε−q(∆b1(k))−qα

(
(∆b1(k))q/2 +

k2
n∑

k2=1
· · ·

kdn∑
kd=1

E |Xn,k|q
)
.

(3.58)
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We have
k1

n∑
k=1

(∆b1(k))q(1/2−α) ≤
(

max
1≤k≤k1

n

∆b1(k)
)q(1/2−α)−1 k1

n∑
k=1

∆b1(k) (3.59)

=
(

max
1≤k≤k1

n

∆b1(k)
)q(1/2−α)−1

→ 0, as m(n)→∞,

due to (3.52) and the fact that q > (1/2− α)−1. Also

k1
n∑

k=1
(∆b1(k))−qα

k2
n∑

k2=1
· · ·

kdn∑
kd=1

E |Xn,k|q =
∑
k≤kn

(∆b1(k1))−qαE |Xn,k|q

≤
∑
k≤kn

σ−2qα
n,k E |Xn,k|q → 0,

as m(n)→∞, due to (3.53), since (∆b1(k1))−qα ≤ σ−2qα
n,k for all 1 ≤ k ≤ kn.

Reporting these estimates to (3.58) we see that (3.52) and (3.53) imply (3.49).
Proof of (3.50) and (3.51). We check only (3.50) since (3.51) is treated

similarly. Define

Π(J,n, ε) = P

(
sup
j≥J

2−jα max
r∈Dj

ψn(r, r−)(m) > ε

)

then

Π(J,n, ε) ≤
∑
j≥J

P (2αj max
r∈Dj

ψn(r, r−) > ε) ≤
∑
j≥J

∑
r∈Dj

ε−q2αjqE |ψn(r, r−)|q.

Doob (1.12) and then Rosenthal (1.9) inequalities give us

Eψn(r, r−)q ≤ E
∣∣∣∣∣ ∑
k2:d≤kn,2:d

( u1(r)∑
k1=u1(r−)+2

Xn,k

)∣∣∣∣∣
q

≤ c

(( u1(r)∑
k1=u1(r−)+2

∑
k2:d≤kn,2:d

σ2
n,k

)q/2

+
u1(r)∑

k1=u1(r−)+2

∑
k2:d≤kn,2:d

E |Xn,k|q
)
.
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Due to definition of u1(r)

u1(r)∑
k1=u1(r−)+2

∑
1≤k2:d≤kn,2:d

σ2
n,k =

u1(r)∑
k1=u1(r−)+2

∆b1(k1) ≤ r − r− = 2−j,

thus

Π(J,n, ε) ≤ c

εq
∑
j≥J

2(qα+1−q/2)j

+ c

εq
∑
j≥J

∑
r∈Dj

2qαj
u1(r)∑

k1=u1(r−)+2

∑
k2:d≤(kn)2:d

E |Xn,k|q. (3.60)

Denote by I(J,n, q) the second sum without the constant cε−q. By changing
the order of summation we get

I(J,n, q) =
∑

1≤k≤kn

E |Xn,k|q
∑
j≥J

2αqj
∑
r∈Dj

1{u1(r−) + 1 < k1 ≤ u1(r)}.

(3.61)

The proof further proceeds as in [28]. Consider for fixed k1 the condition

u1(r−) + 1 < k1 < u1(r). (3.62)

Suppose that there exists r ∈ Dj satisfying (3.62) and take another r′ ∈ Dj.
Since u1 is non decreasing, if r′ < r− we have u1(r′) < u1(r−) + 1 < k, and
thus r′ cannot satisfy (3.62). If r′ > r, then r′− > r, whence k ≤ u1(r) ≤
u1(r′−) < u1(r′−) + 1 and again if follows that r′ cannot satisfy (3.62). Thus
there will exists at most only one r satisfying (3.62). If such r exists we have

r− ≤
u1(r−)+1∑

i=1
∆b1(i) <

k1∑
i=1

∆b1(i) ≤
u1(r)∑
i=1

∆b1(i) ≤ r.

Thus ∆b1(k1) ≤ 2−j. So

∀k1 = 1, . . . , k1
n,
∑
r∈Dj

1{u1(r−) + 1 < k1 ≤ u1(r)} ≤ 1{∆b1(k1) ≤ 2−j}

so
∑
j≥J

2αqj
∑
r∈Dj

1{u1(r−) + 1 < k1 ≤ u1(r)} ≤
2qα

2qα − 1(∆b1(k1))−αq (3.63)
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(we can sum only those j, for which ∆b1(k1) ≤ 2−j, because for larger j, r
and r− will be closer together and will fall in the same Rn,k).

Reporting estimate (3.63) to (3.61) we get

I(J,n, q) ≤ C
∑
k≤kn

(∆b1(k1))−qαE |Xn,k|q ≤
∑
k≤kn

σ−2qα
n,k E |Xn,k|q

and substituting this into inequality (3.60) we get

Π(J,n; ε) ≤ C1ε
−q2−Jqα+1−q/2 + C2

∑
k≤kn

σ−2qα
n,k E |Xn,k|q.

Thus

lim
m(n)→∞

Π(J,n; ε) = 0

follows from (3.53), which gives us the proof of the theorem.

Proof of theorem 28

As in proof of the theorem 27 we check (3.49), (3.50), (3.51) and give a proof
only for case m = 1.

Proof of (3.49) Define:

Sn,τ (k) =
∑

1≤j≤k
Xn,j,τ , Sn,τ (k)′ =

∑
1≤j≤k

(Xn,j,τ − EXn,j,τ )

and

An =
{

max
1≤k≤kn

|Xk| ≤ τσ2α
n,k

}
.

Then we can estimate the probability in (3.49) by

P (Zn > ε) =: P (n, ε) ≤ P1(n, ε, τ) + P (Acn)

where

P1(n, ε, τ) = P

(
max

1≤k≤kn

|∆(1)
k1 Sn,τ (k)|

(∆b1(k1))α
> ε

)
. (3.64)

Due to (3.55) the probability P (Acn) tends to zero so we need only to study
the asymptotics of P1(n, ε, τ).
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Using the splitting

∆(1)
k1 Sn,τ (k) = ∆(1)

k1 S
′
n,τ (k) + E ∆(1)

k1 Sn,τ (k),

let us begin with some estimate of the expectation term, since Xn,k,τ are not
centered.

We have

E |Xn,k,τ | ≤ E 1/2X2
n,kP

1/2(|Xn,k| > τσ2α
n,k).

By applying Cauchy inequality we get

max
1≤k≤kn

|E ∆(1)
k1 Sn,τ (k)|

(∆b1(k1))α
≤ max

1≤k1≤k1
n

∑kn,2:d
k2:d=1 E |Xn,j,τ |
(∆b1(k1))α

≤ max
1≤k1≤k1

n

(∆b1(k1))1/2
(∑kn,2:d

k2:d=1 P (|Xn,k| > τσ2α
n,k)

)1/2

(∆b1(k1))α

≤ max
1≤k1≤k1

n

(∆b1(k1))1/2−α
( ∑

1≤k≤kn

P (|Xn,k| > τσ2α
n,k)

)1/2

.

Due to (3.54) and (3.55) the last expression is bounded by ε/2 for n ≥ n0,
where n0 depends on ε and τ . Thus for n ≥ n0 we have P1(n, ε, τ) ≤
P ′1(n, ε, τ), where

P ′1(n, ε, τ) = P

(
max

1≤k≤kn

|∆(1)
k1 S

′
n,τ (k)|

(∆b1(k1))α
> ε/2

)
. (3.65)

Since

VarXn,k,τ ≤ EX2
n,k,τ ≤ EX2

n,k = σ2
n,k,
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using Markov, Doob and Rosenthal inequalities for q > 1/(1/2− α) we get

P ′1(n, ε, τ) ≤
k1

n∑
k=1

(ε/2)−q(∆b1(k))−qαE |∆(1)
k S ′n,τ (kn)|q

≤ c
k1

n∑
k=1

(ε/2)−q(∆b1(k))−qα
(

(∆b1(k))q/2 +
kn,2:d∑
k2:d=1

E |Xn,k,τ |q
)

≤ c(ε/2)−q
( k1

n∑
k=1

(∆b1(k))q(1/2−α) +
∑

1≤k≤kn

σ−2qα
n,k E |Xn,k,τ |q

)
.

Note that this estimate holds for each τ > 0. Combining all the estimates
we get

∀τ > 0, lim sup
m(n)→∞

P (n, ε) ≤ c lim sup
m(n)→∞

∑
1≤k≤kn

σ−2qα
n,k E |Xn,k,τ |q.

with the constant c depending only on q. By letting τ → 0 due to (3.57),
(3.49) follows.

Proof of (3.50) and (3.51) We again prove only (3.50) since (3.51) is
treated similarly. Introduce definitions ψn,τ (r, r−) and ψ′n,τ (r, r−) by ex-
changing variables Xn,k with variables Xn,k,τ and X ′n,k,τ := Xn,k,τ −EXn,k,τ

respectively. Define

P (J,n, ε) = P

(
sup
j≥J

2αj max
r∈Dj

ψn(r, r−) > ε

)
.

Similar to the proof of (3.49) we need only to deal with asymptotics of
P1(J,n, ε, τ), where

P1(J,n, ε, τ) = P

(
sup
j≥J

2αj max
r∈Dj

ψn,τ (r, r−) > ε

)
.
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Again we need to estimate the expectation term. We have

sup
j≥J

2αj max
r∈Dj

max
12:d≤k2:d≤kn,2:d

∣∣∣∣∣
u1(r)∑

i=u1(r−)+2
∆(1)
i ESn,τ ((i,k2:d))

∣∣∣∣∣
≤ sup

j≥J
2αj max

r∈Dj

( u1(r)∑
i=u1(r−)+2

∆b1(i)
)1/2( u1(r)∑

i=u1(r−)+2

kn,2:d∑
k2:d=1

P (|Xn,k| > σ2α
n,k)

)1/2

≤ 2J(α−1/2)
( ∑

1≤k≤kn

P (|Xn,k| > σ2α
n,k)

)1/2

.

The last expression is bounded by ε/2 for n ≥ n0, due to (3.55) where n0
depends on ε and τ , but not on J . Thus P1(J,n, ε, τ) ≤ P ′1(J,n, ε, τ), where

P ′1(J,n, ε, τ) := P

(
sup
j≥J

2αj max
r∈Dj

ψ′n,τ (r, r−) > ε/2
)
. (3.66)

Applying the same arguments as in proving (3.60) we get

P ′1(J,n, ε, τ) ≤
c

εq
∑
j≥J

2(qα+1−q/2)j

+ c

εq
∑
j≥J

∑
r∈Dj

2qαj
u1(r)∑

k1=u1(r−)+2

∑
1≤k2:d≤kn,2:d

E |Xn,k,τ |q.

Now using estimate (3.63) we get

P ′1(J,n, ε, τ) ≤ C12(qα+1−q/2)J + C2
∑

1≤k≤kn

σ−2qα
n,k E |Xn,k,τ |q,

where constants C1 and C2 depend on q, α and ε. Note that this inequality
holds for each τ > 0. Combining all the estimates we get

∀τ > 0, lim
J→∞

lim sup
m(n)→∞

P (J,n, ε) ≤ C2 lim sup
m(n)→∞

∑
1≤k≤kn

σ−2qα
n,k E |Xn,k,τ |q.

By letting τ → 0 due to (3.57), (3.50) follows.

3.2.3 Corollaries
Recalling the results from previous subsections we have the following func-
tional central limit theorem for the summation process Ξn.
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Theorem 29 Suppose there exists a function µ : [0, 1]d → R such that

∀t ∈ [0, 1]d, lim
m(n)→∞

E Ξ2
n(t) = µ(t). (3.67)

For 0 < α < 1/2, set p(α) := 1/(1/2− α). If

max
1≤l≤d

max
1≤kl≤kln

∆bl(kl)→ 0, as m(n)→∞ (3.68)

and for some q > p(α)

lim
m(n)→∞

∑
1≤k≤kn

σ−2qα
n,k E |Xn,k|q = 0, (3.69)

then

Ξn
Hoα([0,1]d)−−−−−−→
m(n)→∞

G, (3.70)

where G is a centered Gaussian process satisfying EG(t)G(s) = µ(t∧ s) for
t, s ∈ [0, 1]d.

Proof. We have

∑
1≤k≤kn

EX2
n,k1{|Xn,k| ≥ ε} ≤ 1

εq−2

∑
1≤k≤kn

E |Xn,k|q.

Since σ2
n,k ≤ 1, condition (3.69) ensures that ∑1≤k≤kn

E |Xn,k|q converges to
zero, thus conditions of theorem 26 are satisfied and we have convergence
of finite-dimensional distributions. Furthermore the conditions for theorem
27 are satisfied also, so the process Ξn is asymptotically tight in the space
Ho
α([0, 1]d). The theorem then follows. �
Our motivation for introducing special construction for the collections

of random variables with non-uniform variance was to get one limiting pro-
cess in functional central limit theorem for all possible variance structures of
the collection. It is clear from theorem 29 that this goal was not achieved.
Nevertheless we think that this is an improvement compared to using non-
modified construction. The convergence of process ξn in case of non-uniform
variance was investigated by Goldie and Greenwood [13], [14]. Their focus
was on non-independent variables and although the domain of summation
process was wider, for [0, 1]d their process coincides with ξn. They proved
the convergence to Brownian sheet in case n = (n, . . . , n) in the space of
continuous functions, but naturally their result requires that E ξn(t)→ π(t)
for all t ∈ [0, 1]d, which is the special case of our requirement (3.67). Fur-
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thermore to achieve the convergence they place quite strict conditions on
variances of random variables by requiring that

lim
c→∞

sup
1≤k≤kn

EndX2
n,k1

(
|nd/2Xn,k| > c

)
= 0.

This limit follows from Lindeberg condition if we take EX2
n,k = n−d. Thus

the variances in Goldie-Greenwood case have the additional restriction, which
is unnecessary when using our proposed construction. Furthermore for the
special structure of variances the convergence E Ξn(t) → π(t) is always
satisfied.
Corollary 30 Let σ2

n,k = π(an,k), where {an,k = (a1
n,k1 , . . . , a

d
n,kd

)} is a
triangular array of real vectors satisfying the following conditions for each
i = 1, . . . , d and for all k ≤ kn.

i) ∑kin
k=1 a

i
n,k = 1 with ain,ki > 0.

ii)

max
1≤k≤kin

ain,k → 0, as m(n)→∞.

Then condition (3.69) is sufficient for weak convergence of summation process
Ξn in the space Ho

α([0, 1]d) and the limiting process is then Brownian sheet
W .
Proof. The result follows from theorem 29 if we check that

E Ξ2
n(t)→ π(t), (3.71)

since evidently the condition (3.37) is satisfied. We have

bi(ki) =
ki∑
k=1

ain,k,

thus

1{B(k) ∈ [0, t]} =
d∏
i=1

1{bi(ki) ∈ [0, ti]},

so for jump process Zn we have

EZ2
n(t) =

∑
k≤kn

1{B(t) ∈ [0, t]}σ2
n,k =

d∏
i=1

kin∑
ki=1

1{bi(ki) ∈ [0, ti]}ain,ki .
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But
kin∑
ki=1

1{bi(ki) ∈ [0, ti]}ain,ki =
ui(ti)∑
ki=1

ain,ki → ti,

thus (3.71) holds due to lemma 24 and the result follows. �
The weak convergence of summation process for random variables with

such variance structure was investigated by Bickel and Wichura [5] for case
d = 2. They investigated weak convergence in the space of càdlàg functions.
Naturally the convergence to Brownian sheet was proved.

Since in i.i.d. case we have EX2
n,k = π(kn) this corollary then shows that

theorem 29 is a generalization of invariance principle 20 in case of real valued
random variables. The moment condition (3.69) in i.i.d. case then becomes

lim
m(n)→∞

∑
i≤n
π(n)qαE |Xi/π(n)1/2|q = lim

m(n)→∞
π(n)q(α−1/2)E |X1|q = 0

for some q > 1/2− α and 0 < α < 1/2 which holds whenever E |X1|q < ∞.
Compared to requirement supt>0 t

1/2−αP (|X1| > t) we see that our moment
condition is not optimal, but not very far from optimality. We can further
weaken it by introducing truncated variables

Xn,k,τ := Xn,k1{|Xn,k| ≤ τσ2α
n,k}.

Then following theorem holds.

Theorem 31 Suppose there exists a function µ : [0, 1]d → R such that

∀t ∈ [0, 1]d, lim
m(n)→∞

E Ξ2
n(t) = µ(t). (3.72)

If

max
1≤l≤d

max
1≤kl≤kln

∆bl(kl)→ 0, as m(n)→∞ (3.73)

and following conditions hold:

(a). For every ε > 0,

lim
m(n)→∞

∑
1≤k≤kn

P (|Xn,k| ≥ εσ2α
n,k) = 0; (3.74)

88



(b). For every ε > 0,

lim
m(n)→∞

∑
1≤k≤kn

EX2
n,k1{|Xn,k| ≥ ε} = 0; (3.75)

(c). For some q > 1/(1/2− α),

lim
τ→0

lim
m(n)→∞

∑
1≤k≤kn

σ−2qα
n,k E |Xn,k,τ |q = 0; (3.76)

then

Ξn
Hoα([0,1]d)−−−−−→
m(n)→∞

G,

where G is a centered Gaussian process satisfying EG(t)G(s) = µ(t∧ s) for
t, s ∈ [0, 1]d.

Proof. The proof is identical to that of theorem 29. Just notice that the
theorem conditions ensure the conditions of the theorems 28 and 19. �
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Chapter 4

Applications

To apply our theoretical results we have to look at the examples where we
can naturally assign multi-dimensional index to random observations. One
of such examples is so called panel or longitudinal data, where a sample of
individuals is observed over some period of time. In this case each observation
has two indexes, one denoting the number of individual and another the
time period at which the individual was observed. For such type of data
all classical statistical problems can be discussed in a view of adjustments
necessary for accomodation of the additional index. We restrict ourselves to
regression and change point problems with the goal of developing the test for
detecting the occurence of the change of the regression coefficient in a given
sample.

We briefly recount the general setting. The classical panel data regression
model which we investigate can be presented as

yit = αi + x′itβ + uit, (4.1)

where i = 1, . . . , N , t = 1, . . . , T , yit is an observation of dependent variable
for individual i at time period t, x′it = [x1it, . . . , xKit] is the K × 1 vector
of observations on the independent variables and uit are zero mean distur-
bances. The classical panel regression problem is to estimate β in a view of
various assumptions on intercepts αi, xit and uit, see for example Baltagi [2],
Hsiao [15]. After estimating β the usual statistical procedure is to test the
goodness-of-fit and the validity of the model assumptions. One of the possi-
ble violations of the validity is that relationship (4.1) holds only for certain
subsample of data, i.e. the true model is

yit =

αi + x′itβ0 + uit, for (i, t) ∈ I,
αi + x′itβ1 + uit, for (i, t) ∈ Ic,

(4.2)

90



with I ⊂ {1, . . . , N} × {1, . . . , T}. Such violation is called change point
problem. It can also appear for larger class of models, usually in parametric
problems, for more general treatment see Csörgo and Horvath [7]. First test
for detecting the change point in the regression setting was developed by
Brown, Durbin and Evans [6], for testing the model

yt = x′tβ + ut, (4.3)

against the alternative

yt =

x′tβ0 + ut, t = 1, . . . , t0,
x′tβ1 + ut, t = t0 + 1, . . . , T,

(4.4)

where ut are independent standard normal variables. They examined the
cumulative sums of so called recursive regression residuals:

wr = yr − x′rβr−1√
1 + x′r(

∑r−1
k=1 xkx′k)−1xr

,

where βr is the least squares estimate of the model (4.3) calculated using
first r observations. Suitably normalized jump sum process based on these
residuals converges to Brownian motion. For the alternative model (4.4) they
show the wr no longer have zero mean, thus cumulative sum converges to
infinity. The normality restriction was lifted by Sen [36], who proved similar
result for the case of i.i.d. regression errors with finite variance. Ploberger
and Kraämer[22] proved similar result for usual regression residuals. The
limiting process in this case is the Brownian bridge.

All these three results use the same test statistic, the maximum of the
cumulative sum. Since this is also a maximum norm of the jump sum process,
and maximum norm is the continous functional, due to FCLT and continuous
mapping theorem, the statistic converges to maximum of limiting process
(Brownian motion or Brownian bridge) under null hypothesis of no change.

Other types of alternative models are also considered. For epidemic al-
ternative:

yt =

x′tβ0 + ut, t = 1, . . . , t0, t1 + 1, . . . , T
x′tβ1 + ut, t = t0 + 1, . . . , t1,

(4.5)
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Račkauskas [25] proves that it is better to use the statistic

max
1<l<n

1
lα

max
0<k<n−l

|S(k + l)− S(k)− l

n
Sn|,

where S(k) is the cumulative sum of the regression residuals. This statistic
allows testing against shorter epidemics, than the usual maximum test.

In their paper Kao, Trapani and Urga [16] write “Despite the potential
usefulness in economics, the econometric theory of the testing and estimation
of structural changes in panels is still underdeveloped”. Current results focus
on testing the change point in presence of unit roots.

In light of these results we first develop the test against epidemic rect-
angles using techniques from Csörgő and Horvàth [7] and then apply these
tests for panel regression to generalize the results of Ploberger and Krämer.

4.1 Tests for epidemic alternatives
4.1.1 Epidemic rectangles
The question arises of how to generalize epidemic alternatives for multi-
indexed case. In case of panel data where we have interpretation of indexes
as individuals and times several simple scenarios are immediately apparent.

• In some time interval the change occurs for all individuals.

• At the start of observation, the change occurs for certain individuals.

• At the end of observation, the change occurs for certain individuals.

For the moment assume that we are only testing the change of mean. Let
{Xij, 1 ≤ i ≤ n, 1 ≤ j ≤ m} be a sample of panel data. The null hypothesis
of no change then is

(H0) : Xij have all the same mean µ0.
The scenarios we want to test against fall into general setting:

(HA) : There are integers 1 < a∗ ≤ b∗ < n, 1 < c∗ ≤ d∗ < m and a
constant µ1 6= µ0 such that

EXij = µ0 + µ11
(
(i, j) ∈ [a∗, b∗]× [c∗, d∗] ∩ N2

)
.
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Classical log-likelihood statistic from Csörgő and Horvàth [7] for testing
change of a mean in a certain set I (if it is known in advance) is

R = 1√
n

(∑
i∈I

Xi −
|I|
n

n∑
i=1

Xn

)
, (4.6)

where |I| is the cardinality of set I ⊂ {1, . . . , n}. This statistic is suitable
for testing epidemics of size nγ, where γ > 1/2. In order to test shorter
epidemics you have to weight this statistic with some function of |I|.

For two-dimensional setting assume now, that integers a∗, b∗, c∗, d∗ are
known. Define the set

D∗ =
[
a∗

n
,
b∗

n

]
×
[
c∗

m
,
d∗

m

]

and introduce the analog of statistic (4.6)

R =
n∑
i=1

m∑
j=1

Xij1
((

i

n
,
j

m

)
∈ D∗

)
− k∗l∗

nm

n∑
i=1

m∑
j=1

Xij

where k∗ = b∗ − a∗, l∗ = d∗ − c∗. Under hypothesis H0, if Xij are i.i.d. with
finite variance σ2

(nm)−1/2R→ N(0, σ2|D∗|(1− |D∗|))

when n ∧m → ∞. Under alternative hypothesis if {Xij, (i/n, j/m) ∈ D∗}
and {Xij, (i/n, j/m) ∈ [0, 1]2\D∗} are separately i.i.d. but with different
means, we have

(nm)−1/2R = (nm)1/2k
∗l∗

nm

(
1− k∗l∗

nm

)
(µ1 − µ0) +OP (1).

and we see that the statistic will converge to infinity as long as k∗ ≥ C1n
γ

and l∗ ≥ C2m
δ with γ, δ > 1/2 and some positive constants C1, C2.

In order to test shorter epidemics we have to weight the statistic R. One
of the possible weights is diam(D)α, since clearly diam(D)→ 0, as k∗/n→ 0
and l∗/m→ 0 and vice versa.

Let us rewrite the Q = R/ diam(D)α in terms of the summation process.
Denote si = i/n, tj = j/m. Then
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Q = diam(D)−α
 b∗∑
i=a∗+1

d∗∑
j=c∗+1

Xij −
k∗l∗

nm

n∑
i=1

m∑
j=1

Xij


= ∆1

k∗∆2
l∗Sb∗,d∗ − (sb∗ − sa∗)(td∗ − tc∗)Sn,m
max{sb∗ − sa∗ , td∗ − tc∗}α

When a∗, b∗, c∗, d∗ are unknown it is reasonable to replace Q with maximum
over all possible their combinations:

DUI(n,m, α) = max
1≤a<b≤n
1≤c<d≤m

|∆1
b−a∆2

d−cSb,d − (sb − sa)(td − tc)Sn,m|
max{sb − sa, td − tc}α

(4.7)

For n = (n,m) ∈ N2, consider the functionals gn,m defined on Ho
α([0, 1]2) by

gn,m(x) := max
1≤i<j≤n

I(x, i/n, j/n), (4.8)

where

I(x, s, t) =
|∆1

t1−s1∆
2
t2−s2x(t)− (t1 − s1)(t2 − s2)x(1)|

|t− s|α
.

It is clear that

DUI(n,m, α) = gn,m(ξn,m).

The following theorem holds.

Theorem 32 Functionals {gn,m, (n,m) ∈ N2} and g are continuous in the
Hölder space Ho

α([0, 1]2). Furthermore {gn,m, (n,m) ∈ N2} are equicontinuous
and for each x ∈ Ho

α([0, 1]2)

lim
n∧m→∞

gn,m(x) = g(x) (4.9)

where

g(x) := sup
0<s<t<1

I(x, s, t). (4.10)

Proof. To show continuity of functionals gn,m and g and equicontinuity of
family {gn,m, (n,m) ∈ N2} we use lemma 9. Clearly the functional q =
I(·, s, t) satisfies conditions (a) and (b) of lemma 9. Let us check condi-
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tion (c). For all t, s ∈ [0, 1]2

(t1 − s1)(t2 − s2)
|t− s|α

≤ 1.

Thus if t1 − s1 ≤ t2 − s2, then

I(x, s, t) ≤ |x(t1, t2)− x(t1, s2)|
|t2 − s2|α

+ |x(s1, t2)− x(s1, s2)|
|t2 − s2|α

+ x(1, 1)

≤ 2‖x‖α. (4.11)

Similarly if t1 − s1 > t2 − s2

I(x, s, t) ≤ |x(t1, t2)− x(s1, t2)|
|t1 − s1|α

+ |x(t1, s2)− x(s1, s2)|
|t1 − s1|α

+ x(1, 1)

≤ 2‖x‖α. (4.12)

So functional I(·, s, t) satisfies condition (c) with C = 2. Thus the continuity
and equicontinuity follows immediately from (1.7).

For (4.9) it is sufficient to show that the function (s, t) → I(x, s, t) can
be extended by continuity to the compact set T = {(s, t) ∈ [0, 1]4; 0 ≤
s ≤ t ≤ 1}. From (4.11) and (4.12) we get 0 ≤ I(x, s, t) ≤ 2wα(x, |t −
s|)+ |t−s|1−αx(1, 1), which allows continuous extension when t = s putting
I(x, s, s) = 0. �

Functionals gn,m and g satisfy the conditions of lemma 8 thus FCLT for
Xij gives the limiting distribution of statisticDUI(n,m, α). Due to results in
previous sections, the FCLT in the space Ho

α([0, 1]2) holds for the summation
processes based on i.i.d. random variables. Thus we have to strengthen the
null hypothesis:

(H ′0) :Xij are independent identically distributed with mean denoted
by µ0.

For better clarity for any real function x with two dimensional argument
introduce definition

∆[s,t]x := x(t)− x(s1, t2)− x(t1, s2) + x(s).

This sometimes is called the increment of x around the rectangle [s, t]. Con-
sider the following random variable

DUI(α) = sup
0≤s<t≤1

|∆[s,t]W − (t1 − s1)(t2 − s2)W (1)|
|t− s|α

. (4.13)
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Then following theorem holds.

Theorem 33 Under H ′0 assume that 0 < α < 1/2 and

sup
t>0

tpP (|X1| > t) >∞

for p = 1/(1/2− α). Then

σ−1(nm)−1/2DUI(n,m, α) D−→ DUI(α), as n ∧m→∞,

where σ2 = EX2
1.

Proof. Note first, that under H ′0 the value of statistic DUI(n,m, α) does
not change if Xi are exchanged with Xi − µ0. Assume then that µ0 = 0.
Theorem 21 together with theorem 32 and lemma 8 gives us the result. �

The consistency of the test is given by following theorem.

Theorem 34 Assume under (HA) that the Xij are independent and σ2
0 =

supn var(Xn) is finite. If

lim
m(n)→∞

(nm)1/2hn,m
dαn,m
|µ1 − µ0| → ∞, (4.14)

where

hn,m = k∗l∗

nm

(
1− k∗l∗

nm

)
and dn,m = max

{
k∗

n
,
l∗

m

}
, (4.15)

then

(nm)−1/2DUI(n,m, α)→∞. (4.16)

For the case d = 1 our result replicates the result of Račkauskas and Su-
quet [30]. In this case the test will be able to detect epidemics of order
n

1−2α
2−2α . Now for two dimensional case assume that k∗ = nγ, l∗ = mδ and that

µ1 − µ0 does not depend on (n,m). Then the condition (4.14) becomes

nγ−1/2mδ−1/2

[nγ−1 ∨mδ−1]α →∞.

If nγ−1 > mδ−1 (4.14) reduces to

nγ(1−α)+α−1/2mδ−1/2 →∞,
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thus we can detect very short epidemics of k∗, but we can never get better
rate for epidemic length of l∗. Notice that for δ > 1/2 condition nγ−1 > mδ−1

will be satisfied if m > n2. So we see that to detect very short epidemics for
one index we must have more data for the other index. In case n = m, γ = δ
we have

nγ(1−α)+α−1/2+γ−1/2 = nγ(2−α)+α−1 →∞,

and the best rate is γ > 1/3. We get that in two-dimensional case the rates of
epidemic are influenced not only by α, but also by the relationship between
n and m.

The choice of α is important in the convergence of null hypothesis. In one
dimensional case for the convergence we have the condition limt→∞ t

pP (|X1| >
t) = 0, where p = 1/(1/2−α). Since 1−2α

2−2α → 0, when α→ 1/2, we get better
rates with higher moment conditions.

For case m = n2 the moment condition for convergence is
limt→∞ t

3
3/2−2αP (|X1| > t) = 0. Thus EX6

1 is sufficient.
For case m = n from theorem 22 it follows that 4th moment is sufficient

for convergence for any α, but the rate cannot be lower than 1/3. In one
dimensional case detecting an epidemic of length n1/3 comes with the choice
α = 1/4, which means that we need 4th moment.

Proof of the theorem 34

Define set In,m = [a∗, b∗]× [c∗, d∗] ∩ N2 and random variables

Xij :=

Xij − µ0, (i, j) ∈ Icn,m
Xij − µ1, (i, j) ∈ In,m

We have

∆1
k∗∆2

l∗Sb∗,d∗ − (sb∗ − sa∗)(td∗ − tc∗)Sn,m = S(In,m)− k∗l∗

nm
(S(In,m) + S(Icn,m))

= k∗l∗
(

1− k∗l∗

nm

)
(µ1 − µ0) +Rn,m,

(4.17)

where

Rn,m := −k
∗l∗

nm

∑
i∈Icn,m

X ′i +
(

1− k∗l∗

nm

) ∑
i∈In,m

X ′i.
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Now

var((nm)−1/2Rn,m) ≤ 1
nm

(
k∗l∗

nm

)2

(nm− k∗l∗)σ2
0

+ 1
nm

(
1− k∗l∗

nm

)2

k∗l∗σ2
0 = σ2

0hn,m.

This estimate together with (4.17) leads to the lower bound

(nm)−1/2DUI(n,m, α) ≥ (nm)1/2hn,m
dαn,m
|µ1 − µ0|+OP

(
h1/2
n,m

dαn,m

)
.

Now hn,m ≤ d2
n,m, thus limdn,m→0 h

1/2
n,m/d

α
n,m = 0, so the theorem follows due

to condition (4.14).

4.1.2 Some special cases
In previous section we constructed statistic for detetecting the change in
subrectangle of unit square. Our motivation for such statistic came from
three simple scenarios:

S1. At the start of observation, the change occurs for certain individuals

S2. At the end of observation, the change occurs for certain individuals.

S3. In some time interval the change occurs for all individuals

Using results from the previous section we can adapt the general statistic
DUI(n,m, α) for each of these scenarios. Recall that the alternative hypoth-
esis was of the change in an epidemic rectangle

D∗ =
[
a∗

n
,
b∗

n

]
×
[
c∗

m
,
d∗

m

]
.

Then the respective epidemic rectangles for the scenarios are

D∗1 =
[
0, b

∗

n

]
×
[
0, d

∗

m

]
,

D∗2 =
[
a∗

n
, 1
]
×
[
c∗

m
, 1
]
,

D∗3 = [0, 1]×
[
c∗

m
,
d∗

m

]
.
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Denote si = i/n, tj = j/m. Then the statistic adapted for specific first
scenario is

DUI1(n,m, α) = max
1≤b≤n
1≤d≤m

|Sb,d − sbtdSn,m|
max{sb, td}α

,

since S0,d = S0,0 = Sb,0 = 0, and sa = tc = 0. For the second scenario we
have

DUI2(n,m, α) = max
1≤b≤n
1≤d≤m

|∆1
n−a∆2

m−cSn,m − (1− sa)(1− tc)Sn,m|
max{(1− sa), (1− tc)}α

.

For the third scenario the statistic is defined as

DUI3(n,m, α) = max
1≤c<d≤m

|Sn,d − Sn,c − (td − tc)Sn,m|
(td − tc)α

,

where we changed the denominator, since S0,c = S0,d = 0 and in the nom-
inator only the difference of the second argument matters. All the three
statistics are the functionals of summation process ξn,m similar to functional
gn defined by (4.10). With minimal adaptation similar proposition to the
theorem 32 holds. Define following functionals of Brownian sheet

DUI1(α) = sup
0<t<1

|W (t)− t1t2W (1, 1)|
|t|α

DUI2(α) = sup
0<t<1

|∆[t,1]W − (1− t1)(1− t2)W (1)|
|1− t|α ,

DUI3(α) = sup
0<s<t<1

|W (1, t)−W (1, s)− (t− s)W (1, 1)|
|t− s|α

.

Then following theorem holds.

Theorem 35 For i.i.d. sample of double-indexed data and under null hy-
pothesis of no change for scenarios S1, S2 and S3 assume that 0 < α < 1/2
and

sup
t>0

tpP (|X1| > t) >∞,

for p = 1/(1/2− α). Then for i = 1, 2, 3.

σ−1(nm)−1/2DUIi(n,m, α) D−→ DUIi(α), as n ∧m→∞,
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where σ2 = EX2
1.

Under the alternative hypothesis of the change of the mean in the rectangles
D∗i , i = 1, 2, 3, the lengths of epidemics are

k∗ = b∗, l∗ = d∗, for the rectangle D∗1,
k∗ = 1− a∗, l∗ = 1− c∗, for the rectangle D∗2,
k∗ = n, l∗ = d∗ − c∗, for the rectangle D∗3.

For the rectangles D∗1 and D∗2 the consistency is then the direct corollary of
the theorem (34).

Corollary 36 Given the independent family Xij with σ2
0 = supn var(Xn)

finite under alternative hypothesis of the change of the mean in rectangles
D∗1 and D∗2 we have

(nm)−1/2DUIi(n,m, α)→∞ (4.18)

for i = 1, 2 if

lim
m(n)→∞

(nm)1/2hn,m
dαn,m
|µ1 − µ0| → ∞, (4.19)

where

hn,m = k∗l∗

nm

(
1− k∗l∗

nm

)
and dn,m = max

{
k∗

n
,
l∗

m

}
. (4.20)

For the rectangle D∗3 the conditions for the consistency are slightly different,
since the denominator in the test statistic is different.

Corollary 37 Given the independent family Xij with σ2
0 = supn var(Xn)

finite under alternative hypothesis of the change of the mean in rectangle D∗3
we have

(nm)−1/2DUI3(n,m, α)→∞, (4.21)

if

lim
m(n)→∞

(nm)1/2
(
l∗

m

)1−α (
1− l∗

m

)
|µ1 − µ0| → ∞. (4.22)
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This corollary enables us to improve the detection of short epidemics for the
scenario S3 . If we let l∗ = mδ for some δ > 0, condition (4.22) becomes

n1/2mδ(1−α)+α−1/2(1−mδ−1)→∞,

for δ > 1/2−α
1−α . Since 0 < α < 1/2 we can make δ arbitrarily small. Thus for

certain rectangles it is possible to get similar results as in one dimensional
case.

4.2 Functional central limit theorems for panel
data regressions

4.2.1 Models and the assumptions
Suppose we have a sample of panel data {(yij,x′ij), i = 1, . . . , n; j = 1, . . . ,m}
where x′ij = (xij1, . . . , xijK). We investigate FCLT for following panel regres-
sion models

yij = x′ijβ + uij, (4.23)
yij = x′ijβ + µi + uij, (4.24)

where uij are the disturbances, mean-zero random variables with finite vari-
ance independent of yij and xij.

The goal of panel regression is to estimate coefficient vector β. The
model (4.23) is the classical linear regression model for observations with
two dimensional indexes. The coefficients β are then usually estimated using
least squares:

β̂ =
 n∑
i=1

m∑
j=1

xijx′ij

−1
n∑
i=1

m∑
j=1

xijyij. (4.25)

In classical panel data literature (Baltagi [2], Hsiao [15]) this estimate is called
pooled or ordinary least squares estimate, and it is assumed that xij1 = 1
for all i, j, i.e. there is only one constant term. For the model (4.24) the
constant term is allowed to vary through i and is considered as a nuisance
parameter. The coefficient vector β in this case is estimated by solving least
squares problem for the model

yij − yi. = (xij − xi.)β + uij − ui., (4.26)
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where

yi· =
1
m

m∑
j=1

yij, xi· =
1
m

m∑
j=1

xij, ui· =
1
m

m∑
j=1

uij.

The estimate of β is then

β̂FE =
 n∑
i=1

m∑
j=1

(xij − xi.)(xij − xi.)′
−1

n∑
i=1

m∑
j=1

(xij − xi·)(yij − yi·). (4.27)

We are interested in proving FCLT for regression residuals. For model (4.23)
they are defined as

ûij = yij − x′ijβ̂. = uij − x′ij(β̂ − β).

By substituting the expression for yij we immediately get

ûij = uij − x′ij(β̂ − β). (4.28)

Now

β̂ − β =
 n∑
i=1

m∑
j=1

xijx′ij

−1
n∑
i=1

m∑
j=1

xijuij,

and we see that FCLT for regression residuals depends on distributional prop-
erties of regression disturbances. For this section let us make the following
assumption.
Assumption F Let random variables uij have zero mean, variance σ2 and
be independent of xij. Assume that the summation process based on these
random variables defined as

ξn,m(t, s) = nm
n∑
i=1

m∑
j=1

∣∣∣∣[i− 1
n

,
i

n

)
×
[
j − 1
m

,
j

m

)
∩ [0, t]× [0, s]

∣∣∣∣uij, (4.29)

satisfies the functional central limit theorem:

1
σ
√
nm

ξn,m(t, s) D−→ W (t, s), as n ∧m→∞,

in the space Ho
α([0, 1]2) with 0 < α < 1/2.

From (4.28) it is also evident that we have to make assumptions on xij in
the panel regression model (4.23).
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Assumption A Let xij1 = 1 for all 1 ≤ (i, j) ≤ (n,m). Assume that

lim
n∧m→∞

1
nm

n∑
i=1

m∑
j=1

xijx′ij = R, (4.30)

for some nonsingular (K×K) matrix R. Furthermore assume that the model
is reparameterized such that

R =
[
1 0
0 R∗

]
, (4.31)

which in turn implies that

c ≡ lim
n∧m→∞

1
nm

n∑
i=1

m∑
j=1

xij = [1, 0, . . . , 0]′. (4.32)

Assumption F implies that uij satisfy central limit theorem, which together
with assumption A implies that

1√
nm

 n∑
i=1

m∑
j=1

xijx′ij

−1
n∑
i=1

m∑
j=1

xijuij D−→ N(0, σ2R), as n ∧m→∞. (4.33)

Assumption A also implies that

1
nm

[nt]∑
i=1

[ms]∑
j=1

xij → tsc, as n ∧m→∞,

for each fixed t and s. Using results from section 2.1 we get that summation
process based on xij also has the same limit

Xn,m(t, s) = 1
nm

m∑
j=1

nm

∣∣∣∣[i− 1
n

,
i

n

)
×
[
j − 1
m

,
j

m

)
∩ [0, t]× [0, s]

∣∣∣∣xij
→ tsc (4.34)

for each fixed t and s. But assumption A also ensures that {Xn,m, (n,m) ∈
N2} is equicontinuous in Hölder space Ho

α([0, 1]2,RK). Thus we get that

Xn,m(t, s)→ tsc, as n ∧m→∞. (4.35)
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in Ho
α([0, 1]2,RK). We can write

√
nm(β̂ − β) =

[
1 0
0 R∗

] 
1√
nm

n∑
i=1

m∑
j=1
uij

1√
nm

n∑
i=1

m∑
j=1

x∗ijuij,

+ oP (1)

where x∗ij = [xij2, . . . , xijK ]′. This representation together with (4.34) gives
us the convergence

1√
nm

m∑
j=1

nm
∣∣∣∣[i− 1

n
,
i

n

)
×
[
j − 1
m

,
j

m

)
∩ [0, t]× [0, s]

∣∣∣∣x′ij(β̂ − β)

D−→ tsW (1, 1),

as n∧m→∞ in the space Ho
α([0, 1]2). We have proved the following theorem.

Theorem 38 For the panel regression model

yij = x′ijβ + uij, (4.36)

define the summation process

Ŵ (n,m)(t, s) = nm
n∑
i=1

m∑
j=1

∣∣∣∣[i− 1
n

,
i

n

)
×
[
j − 1
m

,
j

m

)
∩ [0, t]× [0, s]

∣∣∣∣ ûij.
Given the assumptions F and A we have

1
σ
√
nm

Ŵ (n,m)(t, s) D−→ W (t, s)− tsW (1, 1), as n ∧m→∞,

in the space Ho
α([0, 1]2), with 0 < α < 1/2.

Let us turn now to the model (4.24). Since the fixed effect estimate β̂FE
comes from the adjusted regression (4.26) it is natural to define residuals as

ûFE = ỹij − x̃ijβ̂FE,

where ỹij = yij − yi., and x̃ij is defined analogously. Substituting the model
(4.24) we get that

ûFEij = uij − ui· − x̃′ij(β̂FE − β).

For model (4.24) we make slightly different assumptions about xij.
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Assumption B Assume that

lim
n∧m→∞

1
nm

n∑
i=1

m∑
j=1

x̃ijx̃′ij = R̃ (4.37)

for some nonsingular (K ×K) matrix R̃, and that

lim
n∧m→∞

1
nm

n∑
i=1

m∑
j=1

xij = c (4.38)

for some c ∈ RK.

Now

β̂FE − β =
 n∑
i=1

m∑
j=1

x̃ijx̃′ij

−1
n∑
i=1

m∑
j=1

x̃ij(uij − ui·)

=
 n∑
i=1

m∑
j=1

x̃ijx̃′ij

−1
n∑
i=1

m∑
j=1

x̃ijuij,

since
m∑
j=1

x̃ij = 0.

Thus assumption (F) gives us
√
nm(β̂FE − β) D−→ N(0, σ2R̃).

From condition (4.38) we get

1
nm

[nt]∑
i=1

[ms]∑
j=1

x̃ij → 0,

for each fixed t and s. Then similar to (4.35) for summation process X̃n,m(t, s)
based on x̃ij we get that

X̃n,m(t, s)→ 0, as n ∧m→∞, (4.39)
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in Ho
α([0, 1]2,RK). Now relationships

n∑
i=1

m∑
j=1

nm
∣∣∣∣[i− 1

n
,
i

n

)
×
[
j − 1
m

,
j

m

)
∩ [0, t]× [0, s]

∣∣∣∣ui·
=

n∑
i=1

m∑
l=1

n

∣∣∣∣[i− 1
n

,
i

n

)
∩ [0, t]

∣∣∣∣uil m∑
j=1

∣∣∣∣[j − 1
m

,
j

m

)
∩ [0, s]

∣∣∣∣
= s

n∑
i=1

m∑
j=1

nm
∣∣∣∣[i− 1

n
,
i

n

)
×
[
j − 1
m

,
j

m

)
∩ [0, t]× [0, 1]

∣∣∣∣uij
complete the proof of the following theorem.

Theorem 39 For the panel regression model

yij = x′ijβ + µi + uij, (4.40)

define the summation process

Ŵ FE
nm (t, s) = nm

n∑
i=1

m∑
j=1

∣∣∣∣[i− 1
n

,
i

n

)
×
[
j − 1
m

,
j

m

)
∩ [0, t]× [0, s]

∣∣∣∣ ûFEij .
Given the assumptions F and B, we have

Ŵ FE
nm (t, s) D−→ W (t, s)− sW (t, 1), as n ∧m→∞,

in the space Ho
α([0, 1]2), with 0 < α < 1/2.

4.2.2 Local alternatives
It is possible to get meaningful results if we alter the original regression
models. Assume that coefficient β in the pooled regression actually varies
accross i and j:

βij = β + 1√
nm

g
(
i

n
,
j

m

)
(4.41)

where g is K-vector valued function continuous on [0, 1]2.
As n ∧m→∞ this alternative to the regresion model

ylocij = x′ijβij + uij,

converges to model (4.23). Define least squares estimate for this regression
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as

β̂loc =
 n∑
i=1

m∑
j=1

xijx′ij

−1
n∑
i=1

m∑
j=1

xijylocij .

The following theorem then holds

Theorem 40 Define summation process Ŵ (n,m) based on residuals

ulocij = ylocij − x′ijβ̂loc.

Given the assumptions F and A we have

Ŵ (n,m)(t, s) D−→ W (t, s)− tsW (1, 1)

+
∫ t

0

∫ s

0
c′g(u, v) du dv − tsc′

∫ 1

0

∫ 1

0
g(u, v) du dv.

Proof. Note that

β̂loc = β̂ + 1√
nm

dn,m,

where

dn,m =
 n∑
i=1

m∑
j=1

xijx′ij

−1
n∑
i=1

m∑
j=1

xijx′ijg
(
i

n
,
j

m

)
.

Thus we can decompose the residuals ulocij into following sums:

ulocij = uij + x′ijβij − x′ijβ̂loc

= uij − x′ij(β̂ − β) + 1√
nm

x′ijg
(
i

n
,
j

m

)
− 1√

nm
x′ijdn,m

= ûij + 1√
nm

x′ijg
(
i

n
,
j

m

)
− 1√

nm
x′ijdn,m.

Using assumption A and properties of g for each fixed t and s we get

1
nm

[nt]∑
i=1

[ms]∑
j=1

x′ijg
(
i

n
,
j

m

)
→
∫ t

0

∫ s

0
c′g(u, v) du dv, (4.42)

as n∧m→∞. Using the same arguments as in (4.34) we get that summation
process based on x′ijg

(
i
n
, j
m

)
has the same limit in Hölder space Ho

α([0, 1]2).
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Similarly we get

dn,m →
∫ 1

0

∫ 1

0
g(u, v) du dv, as n ∧m→∞. (4.43)

Since dn,m does not depend on i and j, the convergence (4.34) and theorem
38 complete the proof. �

Consider the same local alternatives (4.41) for the fixed-effects panel re-
gression. Then the alternative model is

ylocij = µi + x′ijβij + uij. (4.44)

Define analogously fixed effect estimate

βFEloc =
 n∑
i=1

m∑
j=1

x̃ijx̃′ij

−1
n∑
i=1

m∑
j=1

x̃ij ỹlocij . (4.45)

Then the following theorem holds.

Theorem 41 Define summation process Ŵ (n,m) based on residuals

ũlocij = ỹlocij − x̃′ijβFEloc .

Given the assumptions F and B we have

Ŵ (n,m)(t, s) D−→ W (t, s)− sW (t, 1)

+
∫ t

0

∫ s

0
c′g(u, v) du dv − s

∫ t

0

∫ 1

0
c′g(u, v) du dv,

as n ∧m→∞, in the space Ho
α([0, 1]2), with 0 < α < 1/2.

Proof. Introduce definitions

gij = g
(
i

n
,
j

m

)
, f̄i· =

1
m

m∑
i=1

x′ijgij.

Then for our alternative model (4.44) we get

ỹlocij = x̃′ijβ + ũij + 1√
nm

x′ijgij −
1√
nm

f̄i·.
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Then from the definition (4.45) it follows that

βFEloc = β̂FE + 1√
nm

dn,m,

where

dn,m =
 n∑
i=1

m∑
j=1

x̃ijx̃′ij

−1
n∑
i=1

m∑
j=1

x̃ij(x′ijgij − f̄i·).

Substituting these expressions to the definition of the residuals we obtain

ûlocij = x̃′ijβ + ũij + 1√
nm

(x′ijgij − f̄i·)− x̃′ijβFEloc

= ũij − x̃′ij(β̂FE − β) + 1√
nm

(x′ijgij − f̄i·)−
1√
nm

x̃′ijdn,m

= ûFEij + 1√
nm

(x′ijgij − f̄i·)−
1√
nm

x̃′ijdn,m.

Now given assumption B, similar to (4.42) we get that

1
nm

[nt]∑
i=1

[ms]∑
j=1

x′ijg
(
i

n
,
j

m

)
→
∫ t

0

∫ s

0
c′g(u, v) du dv,

as n ∧m→∞ for each fixed t and s. Similarly

1
nm

[nt]∑
i=1

[ms]∑
j=1
f̄i· =

1
nm

[nt]∑
i=1

m∑
j=1

x′ijg
(
i

n
,
j

m

)
→ s

∫ t

0

∫ 1

0
c′g(u, v) du dv,

as n ∧m→∞ for each fixed t and s. From
m∑
j=1

x̃ij = 0

it follows that

1
nm

m∑
i=1

m∑
j=1

x̃ijf̄i· = 0 and 1
nm

n∑
i=1

m∑
j=1

x̃ijx̄′i· = 0.
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Since g is continuous on [0, 1]2, it is bounded:

sup
t,s∈[0,1]2

|g(t, s)| ≤ C.

Then

dn,m =
 1
nm

n∑
i=1

m∑
j=1

x̃ijx̃′ij

−1
1
nm

n∑
i=1

m∑
j=1

x̃ij(xijgij − f̄i·)

=
 1
nm

n∑
i=1

m∑
j=1

x̃ijx̃′ij

−1
1
nm

n∑
i=1

m∑
j=1

x̃ij(x̃′ijgij + x̄′i·gij) ≤ C

and similar to the proof of the theorem 40 the convergence (4.39) and theorem
38 complete the proof. �

4.3 Change point statistics for panel regres-
sions

4.3.1 Tests and their behaviour under null hypothesis
Combining results from previous sections we can now suggest statistics for
detecting the change point in panel regression models and give their limiting
distributions. Under assumption F and respective assumptions A and B the
residuals for our regression models

yij = x′ijβ + uij, (4.46)
yij = x′ijβ + µi + uij, (4.47)

satisfy functional central limit theorem. Then it is natural to “plug” respec-
tive partial sums of these regression residuals to statistic DUI(n,m, α) and
its special variants DUIi(n,m, α), i = 1, 2, 3. For the model (4.46) define the
partial sums

Ŝkl =
k∑
i=1

l∑
j=1

ûij
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and the statistic

D̂UI(n,m, α) = max
1≤a<b≤n
1≤c<d≤m

|∆1
b−a∆2

d−cŜb,d − (sb − sa)(td − tc)Ŝn,m|
max{sb − sa, td − tc}α

(4.48)

with sk = k/n and tl = l/m. We have then the following corollary

Corollary 42 Under null hypothesis of no change in the regression coeffi-
cient β of the model 4.46 given the assumptions F and A

σ−1(nm)−1/2D̂UI(n,m, α) D−→ DUI(α), as n ∧m→∞,

for the local alternatives model

βij = β + 1√
nm

g
(
i

n
,
j

m

)

with g continuous on [0, 1]2, we have similar result with the limiting statistic

DUI loc(α) =

sup
0≤s<t≤1

|∆[s,t]W − π(t− s)W (1) +
∫

[s,t] c
′g − π(t− s)

∫
[0,1]2 c

′g|
|t− s|α

. (4.49)

Note that the limiting statistic remains the same as in the theorem 33. This
corollary can be considered as the generalization of the results of Ploberger
and Krämer [22] for the regression of double-indexed random variables.

For the regression model (4.47) define partial sums

ŜFEkl =
k∑
i=1

l∑
j=1

ûFEij

and the statistic

D̂UI
FE

(n,m, α) = max
1≤a<b≤n
1≤c<d≤m

|∆1
b−a∆2

d−cŜb,d − (sb − sa)(td − tc)Ŝn,m|
max{sb − sa, td − tc}α

. (4.50)

The limiting distribution then is

DUIFE(α) = sup
0≤s<t≤1

|∆[s,t]W − (t2 − s2)[W (t1, 1)−W (s1, 1)]|
|t− s|α

.

and the corollary
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Corollary 43 Under null hypothesis of no change in the regression coeffi-
cient β of the model (4.24) given the assumptions F and B

σ−1(nm)−1/2D̂UI
FE

(n,m, α) D−→ DUIFE(α), as n ∧m→∞,

for the local alternatives model

βij = β + 1√
nm

g
(
i

n
,
j

m

)

with g continuous on [0, 1]2, we have similar result with the limiting statistic

DUIFEloc (α) = (4.51)

sup
0≤s<t≤1

|∆[s,t]W − (t2 − s2)∆1
t1−s1W (t1, 1) +

∫
[s,t] c

′g − (t2 − s2)
∫ t1
s1

∫ 1
0 c
′g|

|t− s|α
.

(4.52)

4.3.2 Consistency of the epidemic alternatives
Consider that there is a change of the regression coefficient β in rectangle

D∗ =
[
a∗

n
,
b∗

n

]
×
[
c∗

m
,
d∗

m

]
,

or that the true panel regression models are

yij = x′ijβ0 + x′ijdij + uij (4.53)
yij = x′ijβ0 + x′ijdij + µi + uij, (4.54)

where

dij = (β1 − β0)1
([

i

n
,
j

m

]
∩D∗

)
.

Denote by

en,m =
 n∑
i=1

m∑
j=1

xijx′ij

−1
n∑
i=1

m∑
j=1

xijx′ijdij
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and introduce quantity

∆(n,m,D∗) =
(

1− k∗l∗

nm

)
n∑
i=1

m∑
j=1

x′ijdij

−
n∑
i=1

m∑
j=1

x′ijen,m1
([

i

n
,
j

m

]
∩D∗

)
+ k∗l∗

nm

n∑
i=1

m∑
j=1

x′ijen,m,

where k∗ = b∗ − a∗, l∗ = d∗ − c∗ are the lengths of epidemics.

Theorem 44 Under alternative hypothesis of the change of the regression
coefficient β of the model (4.46)

(nm)−1/2D̂UI(n,m, α)→∞, as n ∧m→∞,

provided

(nm)−1/2 max
{
k∗

n
,
l∗

m

}−α
|∆(nm,D∗)| → ∞, as n ∧m→∞.

Proof. The least squares estimate for the model (4.53) satisfies

β̂ =
 n∑
i=1

m∑
j=1

xijx′ij

−1
n∑
i=1

m∑
j=1

x′ijyij

= β0 +
 n∑
i=1

m∑
j=1

xijx′ij

−1
n∑
i=1

m∑
j=1

xijuij + en,m.

The regression residuals then satisfy

ûaltij = ûij + x′ijdij − x′ijen,m,

where ûij are the regression residuals of the model (4.46). Under alternative
hypothesis then

D̂UI(n,m, α) ≥ max
{
k∗

n
,
l∗

m

}−α ∣∣∣∣∣∆1
k∗∆2

l∗Ŝ
alt
b∗d −

k∗l∗

nm
Ŝaltn,m

∣∣∣∣∣
≥ max

{
k∗

n
,
l∗

m

}−α
(|∆(nm,D∗)| − |T (n,m,D∗)|),
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where

T (n,m,D∗) = ∆1
k∗∆2

l∗Ŝb∗d −
k∗l∗

nm
Ŝn,m

since

(nm)−1/2 max
{
k∗

n
,
l∗

m

}−α
T (n,m,D∗) = OP (1),

due to corollary 42, the proof is complete. �
Denote by

x∗ij = xij −
1
m

d∗∑
j=c∗

xij,

and define

∆FE(n,m,D∗) =
(

1− k∗l∗

nm

)
n∑
i=1

m∑
j=1

x′∗ijdij −
n∑
i=1

m∑
j=1

x′∗ijeFEn,m1
([

i

n
,
j

m

]
∩D∗

)

+ k∗l∗

nm

n∑
i=1

m∑
j=1

x′∗ijeFEn,m,

where

eFEn,m =
 n∑
i=1

m∑
j=1

x̃ijx̃′ij

−1
n∑
i=1

m∑
j=1

x̃ijx′∗ijdij.

Theorem 45 Under alternative hypothesis of the change of the regression
coefficient β of the model (4.47)

(nm)−1/2D̂UI
FE

(n,m, α)→∞, as n ∧m→∞,

provided

(nm)−1/2 max
{
k∗

n
,
l∗

m

}−α
|∆FE(n,m,D∗)| → ∞, as n ∧m→∞.

Proof. Due to definition of dij we have

ỹij = x̃′ijβ0 + x′∗ijdij + ũij,
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since β̂FE is the least squares estimate of

ỹij = x̃′ijβ + ũij.

The proof is identical to the proof of the theorem 44 with notation changed. �

4.3.3 Practical considerations and discussion
Note that all of the results in this section relied on the assumption, that
regression disturbances satisfy FCLT in Hölder space Ho

α([0, 1]2). From the
chapter 3 we know that FCLT holds if disturbances are i.i.d. and satisfy the
moment condition

sup
t>0

t1/(1/2−α)P (|u11| > t) <∞.

For the practical applications the i.i.d. condition sometimes can be too re-
strictive. On the other hand to lift this restriction we just need to prove
the FCLT for wider class of double-indexed random variables. Statistics for
testing the change of the regression coefficients remain the same.

Throughout this chapter we focused on constructing statistics for testing
against epidemic alternatives. Then the FCLT in Hölder space is needed,
since the statistics are the functionals which are continuous only in Hölder
space. If in the statistic DUI(n,m, α) we drop the denominator, then the
statistics are continuous functionals in the spaces C([0, 1]2) and D([0, 1]2).
Then all the results from previous section apply for such statistics given the
assumption of the FCLT in C([0, 1]d) or D([0, 1]2). The FCLT in D([0, 1]2)
is proved for wider class of random variables, for strictly stationary multi-
indexed random variables satisfying mixing condition by Deo [9] and for
strictly stationary multi-indexed martingale differences by Basu and Dorea
[4] to name a few. Thus we can apply these types of statistics for wider class
of disturbances. In particular if we drop the denominator in the statistic
DUI1(n,m, α), our results are then a generalization of Ploberger and Krämer
[22].
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