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Notations

t denotes a real vector (ti,...,tq).

R? denotes the set of real vectors ¢.

N denotes the set of natural numbers, N = {1,2,...}.

Z denotes the set of integers, Z = {...,—2,—1,0,1,2,...}.
H denotes Hilbert space.

0 denotes element (0, ...,0) from the space R%.

1 denotes element (1,...,1) from the space R?.
ti.; denotes the “subvector” (ty,tgi1,...,t).
t_j. denotes the “subvector” (t1,...,tx—1,tkt1,---,ta)-

tx denotes the subvector (t,,...,tr) with K = {ki,...,k} and 1 < k; <
ko <o <k <d.

s <tmeans s, <tpforallk=1,...,d.

|t| denotes max([t1],...,|tq|) for t € RY.

|A| denotes Lebesgue measure for the set A C RY.

card A denotes the cardinality of the set A C R

st denotes (sit1, ..., Sqtq), s/t denotes (s1/t1,...,Sa/ta)-

m(n) denotes n; - - - ng for n € N%.

m(t) denotes min(ty, ..., tq).

[x] denotes integer part of real number z.



{z} denotes the fractional part of real number z, ({z} =z — [z]).

[t] denotes ([t1],...,[td]), respectively {t} denotes ({t1},...,{ta})-

x Ay denotes min(z,y) for real numbers z and y.

x V y denotes max(x,y) for real numbers x and y.

tAs denotes (t1AS1,...,ta/ASq), respectively £V s denotes (t1Vsy, ..., 15V Sq).
|| - || denotes the norm of Hilbert space H.

(-,-) denotes the scalar product of Hilbert space H.

C([0, 1]¢) denotes the set of continuous functions = : [0, 1]¢ — R.

H? ([0, 1]?) denotes the set of continuous functions z : [0, 1] — R satisfying
limy o supy_ys [2(8) — 2(5)|/It — 5| = 0.

H? (H) denotes the set of continuous functions x : [0, 1] — H satisfying
s 050D,y l2(8) — a(8)]/[¢ = sf* = 0.

Xo =Y, +o0p(1) iff | X, — Ya|| — 0 in probability.

L, denotes weak convergence in the space specified afterwards. If no space
is specified it is assumed that weak convergence takes place in R.

For the net {X,} of Banach space valued random variables

1 (-) denotes the indicator function.

A denotes the difference operator acting on m-th coordinate, ANz (t) =
x(t) —z((t1 — s, ta, ..., 1q)).

&, denotes polygonal summation process.

&, denotes continuous multi-parameter summation process.



Introduction

Convergence of stochastic processes to some Brownian motion or related pro-
cess is an important topic in probability theory and mathematical statistics.
The first functional central limit theorem by Donsker and Prokhorov states
the C[0, 1]-weak convergence of n~/2¢, to the standard Brownian motion
W. Here &, denotes the random polygonal line process indexed by [0, 1]:

En(t) = Sy + (0t — [nt]) Xppg 4, t € [0,1],

where Sy, Sp := X1 + -+ + Xi, kK > 1, are the partial sums of a sequence
(X:)i>1 of i.i.d. random variables such that E X; = 0 and E X7 = 1. (We say
that sequence of random elements Y,, with values in separable metric space
B converges weakly to random element Y, if E f(Y,,) — E f(Y), for every
continuous bounded functional f).

This theorem implies via continuous maping the convergence in distribu-
tion of f(n=1/2¢,) to f(W) for any continuous functional f : C[0,1] — R.
Clearly this provides many statistical applications. On the other hand, con-
sidering that the paths of &, are piecewise linear and that W has roughly
speaking, an a-Hoélder regularity for any exponent v < 1/2, it is tempting to
look for a stronger topological framework for the weak convergence of n=1/2¢,
to W. In addition to the satisfaction of mathematical curiosity, the practical
interest of such an investigation is to obtain a richer set of continuous func-
tionals of the paths. For instance, Holder norms of £, are closely related to
some test statistics to detect short “epidemic” changes in the distribution of
the X;’s, see [30, 32].

In 1962, Lamperti [19] obtained the first functional central limit theorem
in the separable Banach spaces H?, 0 < a < 1/2, of functions x : [0,1] — R
such that

[£]le = [2(0)] + wa(z, 1) < oo,

with

We(x,0) := sup [2(8) = 2(s) 0.

o<fi-sj<s |t —s|® -0



More precise definitions are given in the section 1.2.

Assuming that E |X;]|? < oo for some g > 2, he proved the weak con-
vergence of n~'/2¢, to W in the Hélder space H? for any a < 1/2 — 1/q.
Rackauskas and Suquet in [29] (see also [27]) obtained a necessary and suffi-
cient condition for the Lamperti’s functional central limit theorem. Namely
for 0 < a < 1/2, n=/2¢, converges weakly in H° to W if and only if

lim PO P(|X,| > t) =0, (1)

where

(2)

Further extensions of Donsker-Prokhorov’s functional central limit the-
orem concern summation processes. Let |A| denote the Lebesgue measure
of the Borel subset A of RY. For a collection A of Borel subsets of [0,1]¢,
summation process {{,(A); A € A} based on a random field {X;, j € N7}
of independent identically distributed real random variables with zero mean
is defined by

pla) = T

&n(A) = > |Rnj| ' [Rnj NAIX;,

1<j<n

where J = (j1,...,J4), m = (n1,...,nq), Ry  is the “rectangle”

L L
Ran = |“71 7‘71> X oo X |“7d , ']d>
ni ni ng Nq
and the indexation condition “1 < 7 < mn” is understood componentwise :

1 <1 < ngyeo 1 < gg < ng. Of special interest are the partial sum
processes based on the collection of sets A = Q4 where

Qu = {[0.t] x -+ x [0,ta); t = (tr,... . ta) €[0,1)"}, (3)

Note that when d = 1 the partial sum process &, based on Q, is the random
polygonal line of Donsker-Prokhorov’s theorem.

By equipping the collection A with some pseudo-metric d, one define the
space C'(A) of real continuous functions on A, endowed with the norm

[ £]l.4 = sup [ f(A)].
AcA

The usual semimetrics are 6(A, B) = /|AAB|, or §(A,B) = \/m(AAB),

for A, B € A, where m is a probability measure on the o-algebra of Borel
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subsets of [0,1]%. When A is totally bounded with respect to &, C(A) is a
separable Banach space.
A Brownian sheet process indexed by A is a mean zero Gaussian process

W with sample paths in C'(A) and
EWAW(B)=|ANnB|, ABeA (4)

Existence of such process is proved by placing restrictions on collection A
which are usually expressed by some condition on its metric entropy. Dud-
ley [10] and Erickson [12] give conditions for W to exist in a general Holder
space H,(A). It is defined as the subspace of the space C'(A) of the functions
satisfying

|z(A) — =(B)]

sup — Y < 00,
0<6(A,B)<1 0(5(1473))

with the weight function p. For p(h) = h®, Erickson [12] proves that for
process W, the Holder exponent o cannot exceed 1/2 and it decreases as
the entropy of A increases. The functional central limit theorem (FCLT) in
C(A) or in H,(A) means the weak convergence of the summation process
{&.(A); A € A}, suitably normalized, to a Brownian sheet process indexed
by A.

The first FCLT for {¢,(A); A € Q4} in C(Q,) was established by Kuelbs [18]
under some moment restrictions and by Wichura [40] under finite variance
condition. In 1983, Pyke [24] derived a FCLT for summation process in
C(A), provided that the collection A satisfies the bracketing entropy condi-
tion. However, his result required moment conditions which depend on the
size of the collection A. Bass [3] and simultaneously Alexander and Pyke [1]
extended Pyke’s result to i.i.d. random fields with finite variance. Further
developments were concerned with relaxing entropy conditions on the collec-
tion A, Ziegler [41], and with relaxing i.i.d. condition on the random field
{Xy, n € N4}, Dedecker [8], El Machkouri and Ouchti [11] to name a few.

The FCLT for summation process in H,(.A) is not so extensively stud-
ied. Most general results are provided by Erickson [12] who shows that if
E | X;|? < oo for some ¢ > 2 then the FCLT holds in H,(A) for some p which
depends on ¢ and properties of A. For d = 1 and the class A of intervals [0, ¢],
0 <t <1, Erickson’s results coincide with Lamperti’s ones [19], whereas his
case d > 1 requires moments of order g > dp(«) with the same p(«) as in (2).
In Rackauskas and Zemlys [34], the result by Erickson was improved in the
case d = 2. In thesis this result was extended for d > 2 and Hilbert space
valued random variables. Before stating it in full we need some definitions.
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With H as the real separable Hilbert space, define the Holder space
He ([0, 1]%) of Hilbert-valued multi-parameter functions as the vector space
of functions z : [0, 1]¢ — H such that

2]l = l2(0)[] + wa(x, 1) < oo,

with ;
we(z,0) ;= sup [=(2) = 2(s)] 0.
o<lt-si<s  [E—s|® 60
Note that for H = R, the space H2 ([0, 1]¢) is a subset of H,(Q,) with p(h) =
h* and Qg defined by (3).
Define H-valued Brownian sheet W with the covariance operator I', as a
H-valued zero mean Gaussian process indexed by [0, 1]¢ and satisfying

E(W(t),z)(W(s),y) = (1 As1) -+ (ta A sa) Tz, y) ()

for t,s € [0,1]¢ and z,y € H. For H = R, the space of covariance operators
is isomorphic to R, and (5) collapses to

EW @)W (s) = o2(ty A1) (ta A 5q).

which is the same as (4) for A,B € Q4 and ¢% = 1.
The following theorem holds.

Theorem 1 For 0 < a < 1/2, set p = p(a) := 1/(1/2 — ). For d > 2,
let {X;; j € N%, j > 1} be an i.i.d. collection of square integrable centered
random elements in the separable Hilbert space H and &, be the summation
process defined by

En(t) = D Rl [Rng N[0, ]|X;.

1<j<n

Let W be a H-valued Brownian sheet with the same covariance operator as
X1. Then the convergence

o d
(nl L. nd)il/zén Ha([ovl} ) W

m(n)—oo
holds if and only if

sup P4 P(|| X1|| > t) < oo. (6)
>0
As we see, condition (6) does not depend on the dimension d provided d > 1

12



and is weaker than necessary and sufficient condition (1) in the extension
by Rackauskas and Suquet of Lamperti’s functional central limit theorem.
Moreover, we show that summation process considered along the diagonal,
namely the sequence n~%2¢, = n~%2¢, ,.n € N, converges in H ([0, 1]¢) if
and only if

lim /{29 P(|| X, > t) = 0. (7)

t—o0

As dimension d increases, this condition weakens. For example, (7) is satisfied
for any d > 1 provided E | X;||* < oo. This again shows up a difference
between the cases d = 1 and d > 1 for functional central limit theorems in
Holder spaces.

The result in theorem 1 was obtained together with Rackauskas and Su-
quet [33]. Its proof and the prerequisites take up a sizeable part of the thesis.
Necessary results from Holder spaces and probability theory are given in the
chapter 1. The properties of the summation process &, are given in the
section 2.1 and the result is proved in the section 3.1.

After i.i.d. case we considered the case of triangular array, when ran-
dom variables are independent but not identically distributed. For general
summation processes, the case of non-identically distributed variables was
investigated by Goldie and Greenwood [13], [14]. They used classical con-
struction of summation process, so their result does not coincide with classical
Prokhorov [23] result for adaptive polygonal line process =, indexed by [0, 1]
with vertices (bn(k), Sn(k)), where by(k) = EX2, +--- + EX},, with as-
sumption that b, (k,) = 1, and X,, , — independent non-identicaly distributed
random variables.

The attempt to introduce adaptive construction for general summation
processes was made by Bickel and Wichura [5]. However they put some re-
strictions on variance of random variables in triangular array. For zero mean
independent random variables {X,,;;,1 <14 < I,,1 <j < J,} with variances

EXfm-j = Qy,ib, ; satisfying > a,; = 1 = > b, ;, they defined summation
process as
Ca(tr,t2) = Z Z Xnij,
1§An(t1)]§Bn(tl)
where
An(tl) = max{k . Zam < tl}, Bn(tg) = max{l . an,j < tg}

i<k j<i

It is easy to see that this construction is two-dimensional time generalization
of jump version of Prokhorov construction. Bickel and Wichura proved that

13



the process ¢, converges in the space D([0,1]?) to a Brownian sheet, if a,;
and b, ; are infinitesimally small and the random variables {X,, ;;} satisfy
Lindeberg condition.

In this contribution we introduced new adaptive construction of sum-
mation process which reduces to classical construction for triangular arrays
in one dimensional case. Sufficient conditions for the weak convergence in
Holder spaces are given. For the case d = 1 they coincide with conditions
given by Rackauskas and Suquet. The limiting process in general case is
not a standard Brownian sheet. It is a mean zero Gaussian process with
covariance depending on the limit of E Z,,(¢)?. Examples of possible limiting
processes are given. In case of special variance structure of triangular array
as in Bickel and Wichura it is shown that the limiting process is a standard
Brownian sheet.

Finally we provide the application of the theoretical results by construct-
ing statistics for detecting the epidemic change in a given data with multi-
dimensional indexes. Such data naturally arise if for example we measure
some property of sample of individuals through time. It is natural then to
assign two indexes to observation, the number of the individual and the time
period when it was observed. This is so called longitudinal or panel data.
First we consider the detection of the change of the mean in the double in-
dexed sample {X;;,1 < i < n,1 < j < m}. We test the null hypothesis
of no change in mean against the alternative hypothesis of the change in
a epidemic rectangle, i.e. the mean is different for indexes in the rectangle
D* = [a*,b*] x [¢*,d*] N N?. Our proposed statistic for detecting such change
is the classical likelihood ratio statistic of Csorgé and Horvath [7], weighted
with the power of diameter of the epidemic rectangle. We show that this
statistic is the functional of summation process &,, with the functional con-
tinuous in the Holder space. Thus using continuous mapping theorem and
our theoretical result we find the asymptotic distribution of our statistic.
We give the conditions for the consistency of the test and show that division
by diameter, improves the ability to detect shorter epidemics, but that the
result is not optimal compared to the one-dimensional case considered by
Rackauskas and Suquet [31].

Next we turn our attention to panel regression models. We consider clas-
sical pooled or ordinary least squares and fixed effects regressions described
by Baltagi [2]. We prove functional central limit theorem (FCLT) for the re-
gression residuals under condition that regression disturbances satisfy FCLT
and classical conditions on the regressors. This result generalizes the result
of Ploberger and Kramer [22] for the time-series regression. Using the FCLT
for regression residuals we adapt our statistic for detecting the change of the
mean, to detect the change of the regression coefficient in both regression

14



models. We find asymptotic distributions and give conditions for consis-
tency of the statistics. We also investigate the behaviour of these statistics
under local alternatives and derive results similar to those of Ploberger and
Kramer.

15



Chapter 1

Weak convergence in Holder
spaces

1.1 General results

1.1.1 Basic definitions

Let us introduce some notation. Vectors t = (t1,...,t4) of RY, d > 2, are
typeset in italic bold. In particular,

For 1 < k <1 <d, t,; denotes the “subvector”
tr, = (tk,tk—o—l, e ,tl),
t_;. denotes the “subvector”
top=(t1, bt tigs - ta).
and tx denotes the “subvector”
tr = (trys- - th,, ),

with K = {ky,...,kn} C{l,....;d} and 1 < k; < ky < -+ < k, < d. The
set R? is equipped with the partial order

s<t ifandonlyif s, <t forallk=1,...,d. (1.1)

16



As a vector space, R? is endowed with the norm
8] = max(ftal, .. [tal)y £= (1, ta) € R,

Together with the usual addition of vectors and multiplication by a scalar,
we use also the componentwise multiplication and division of vectors s =
(51,...,5q), t = (t1,...,tq) in R? defined whenever it makes sense, by

st .= (81t17 .. .,Sdtd), S/t = (Sl/th . -asd/td>‘

Partial order as well as all these operations are also intended componentwise
when one of the two involved vectors is replaced by a scalar. So for ¢ € R
andt € RY c<tmeansc<tpfork=1,...,d,t+c:=(t; +c¢,...,tq+c),

C/t = (C/tl, . ,C/td).
For n = (ny,...,nq) € N%, we write

m(n):=ny - ng,
and for t = (t1,...,t;) € RY
m(t) := min(ty,...,t5).

For any real number z, denote by [z] and {x} its integer part and fractional
part defined respectively by

2] <z <[z]+1, [2]€Z and {z}:=z—[z]
When applied to vectors t of R?, these operations are defined componentwise:

[t] = ([tl]v"'v[td])v {t} = ({t1}7"'7{td})'

The context should dispel any notational confusion between the fractional
part of x (or t) and the set having = (or t) as unique element.

We denote by H a separable real Hilbert space with norm ||-|| and inner
product (-, -).

1.1.2 Nets and asymptotic tightness

Let A be a set with a partial order and let A be a directed set. For a general
topological space X, a map from A to X is called a net and denoted by
{24, € A} C X. We say that this net has a limit z if and only if for every
neighborhood U of x there exists ag € A such that z, € U for each oy < a.
When the space X is Hausdorff, any net in X has at most one limit. All the

17



spaces we are dealing with are Banach, therefore Hausdorff, soit is always
implicit that if the limit of the net exists, it is unique.

We are mainly interested in the nets {x,,n € N?} where N? is a directed
set with partial order s < t defined in (1.1). Note that if we have ny < n,
then m(n) > m(ng) and if m(n) > N, then (N,..., N) < n. Thus if the net
{2,,n € N?} has the limit x it makes sense to write

lim =z, ==x.
m(n)—oo
We will use this notation throughout the thesis.
Let B be some separable Banach space and (Y,)aca be a net of random

elements in B. We write
Y, 2y,

for weak convergence in the space B to the random element Y, i.e. E f(Y,) —
E f(Y) for any continuous and bounded f : B — R.

For proving weak convergence of the nets we use some variant of Prokhorov’s
theorem (see e.g. van der Vaart and Wellner [39] p.21 theorem 1.3.9) which
asserts that the net {Y,} has a weakly convergent subnet if it is asymptot-
icaly tight, i. e. for each ¢ > 0 there exists a compact set K. € B such
that

lim inf PY,e K.)>1—¢. (1.2)

Thus weak convergence of the net Y, can be proved by classical approach, by
checking the property of asymptotical tightness and proving the convergence
of the finite-dimensional distributions.

1.1.3 Schauder decomposition

To check the property of asymptotical tightness we need some way of char-
acterizing compact subsets of the paths space. Suquet [37] gives us a criteria
exploiting the notion of Schauder decomposition.

Definition 1 An infinite sequence (B;,j € N) of closed linear subspaces of a
Banach space B such that B; # 0 (j € N) is called a Schauder decomposition
of B if for every x € B there exists an unique sequence (yn,n € N) with
y; € Bj (j € N) such that:

T = Z?Jj
j=0

18



and if the coordinate projections defined by v,(z) = yn, are continuous on B.

Let us denote Z; = @,<; B; and E; = 3°,<; v; the continuous projections of
B onto Z;. Operation @ here means the direct sum of vector subspaces, i.e.
if U =V @W then for each u € U there exists an unique decomposition
u=v+w,withveV and weW.

Relatively compact subsets (whose closure are compacts) of separable
Banach spaces with Schauder decomposition are then characterized by the
following theorem.

Theorem 2 (Suquet, [37]) Let B be a separable Banach space having a
Schauder decomposition (B;,j € N). A subset K is relatively compact in B
if and only if:

i) for each j € N, E;K is relatively compact in Z; := @,<; Bi;

i) sup,e ||z — Ejzl| — 0 as j — oc.

1.2 Holder space and its properties

The functional framework for our study of convergence of random fields is
a certain class of Holder spaces whose definition and some useful properties
are gathered in this section.

1.2.1 Definition

For 0 < a < 1, define the Hélder space H2([0,1]?) as the vector space of
functions z : [0, 1] — H such that

2]l = l2(O)] + wa(, 1) < o0,

with

t _
Wo(x,0) ;== sup |z(t) — 2(s)] 0.
o<lt-si<s [t —s|® 6—0

Endowed with the norm ||.||,, HS([0,1]%) is a separable Banach space. In
the special case H = R, we write H9 ([0, 1]¢) instead of HC ([0, 1]¢). For other
Hilbert spaces H we write H ([0, 1]¢, H).

1.2.2 Pyramidal functions

From works of Rackauskas and Suquet [26, 31] we know that the space
HC ([0, 1]4) has a Schauder decomposition. The linear subspaces featuring
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in the decomposition contain linear combinations of certain pyramidal func-
tions. We give now the precise definitions.

For convenience we write T = [0,1]? in this section. If A is a convex
subset of T, the function f : T — H is said to be affine on A if it preserves
the barycenter, i.e. for any finite sequence uy, ..., u,, in A and non negative
scalars r1,...,7, such that 7, r; =1, f(OC0, riw;) = S0 rof (w;).

Let us define the standard triangulation of the unit cube T' = [0, 1]<.
Write I1; for the set of permutations of the indexes 1,...,d. For any © =
(i1,...,1q) € I1g, let A (T) be the convex hull of the d + 1 points

d
07 ei17 (ei1 + ei2)7 ceey Z eik7
k=1

where the e;’s are the vectors of the canonical basis of R?. So, each simplex
A, (T) corresponds to one path from 0 to (1,..., 1) via vertices of T" and such
that along each segment of the path, only one coordinate increases while the
others remain constants. Thus T is divided into d! simplexes with disjoint
interiors. The standard triangulation of 7' is the family 7 of simplexes
{AL(T), e I}.

Next, we divide T into 27¢ dyadic cubes with edge 277. By dyadic trans-
lations and change of scale, each of them is equipped with a triangulation
similar to Tp. And Tj is the set of the 2/9d! simplexes so constructed. For
j > 1 the set W; := vert(7}) of vertices of the simplexes in Tj is

W; = {k277; 0 < k < 27}4.

In what follows we put Vy := Wy and V; := W, \ W,_;. So V; is the set of
new vertices born with the triangulation Tj. More explicitly, V; is the set of
dyadic points v = (k1277,...,ks277) in W; with at least one k; odd.

The T;-pyramidal function A;, with peak vertex v € V; is the real valued
function defined on T by three conditions

i Ajﬂ,(’U) = ].,
ii. Aj,(w) =0 if w € vert(7;) and w # v;
iii. A;, is affine on each simplex A in Tj.

It follows clearly due to affinity from above definition that the support of
Aj, is the union of all simplexes in 7} containing the peak vertex v. By
[35](Prop. 3.4.5) the functions A;, are obtained by dyadic translations and
changes of scale:

Ajo(t) = A2 (t —v)), teT,
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from the same function A:
o— — — . — J— d
A(t) = maX(O, 1 max | Ig%(t,), t=(t1,...,tq) € [—1,1]%

Since Aj, are affine on each simplex A in 7}, it is clear that A;, €
HY,([0,1]%) for 0 < a < 1.Thus linear combinations 3y, hyAjop With h, €
H are elements from H2([0,1]¢). For each j such sums are continuous on
T, affine on each simplex A of T; and vanishing at the vertices of W;_;.
Rackauskas and Suquet[31] prove that subspaces containning such functions
form Shauder decomposition of HC ([0, 1]¢).

Theorem 3 (Rackauskas and Suquet [31]) The space H2([0,1]?) has the
Schauder decomposition

H2.(0.11) = DV

7

where Vy is the space of H-valued functions continuous on T and affine on
each simplex A of Ty and for i > 1, V; is the space of H-valued functions
continuous on T', affine on each simplex A of T; and vanishing at the vertices
Of W'_1 .

Each element x € H?([0,1]%) then has unique representation

xr = Z Z )\i,v(x)Ai,m

=0 veV;
with the H-valued coefficients A;,(x) defined as

Mow(r) = z(v), veW;
1 _ .
Nio(#) = a(v) = 5 (2(7) +2(v?)), veV, j=1,
where v~ and v™ are defined as follows. Each v € V; admits a unique
representation v = (vy,...,vg) with v; = k;/2/, (1 < i < d). The points
v™ = (vy,...,v;) and vT = (v{,...,v]) are defined by

B {vi—Q_j, if k; is odd: . {uﬁz—j, if k; is odd;
v = v, =

v;, if k; is even v;, if k; is even.

Having specified Schauder decomposition of the space HZ,([0, 1]%) we adapt
theorem 2 specifically for space H2 ([0, 1]%). Define W; = @]_, V;. Note that
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W, corresponds to Z; in theorem 2. Define the projection operators £}
(j > 0) onto subspaces W; by

Ex = zjj Nio(2)Ni, 2 € H2([0,1]%). (1.3)

=0 veV;

Note that £} is actually the operator of affine interpolation at the vertices of
W;, i.e. value of E;x depends only on values of z(w) for w € W;. Since W;
is a finite set, W is clearly isomorphic to the Cartesian product of card (W)
copies of H, where card(w;) is the number of elements in W;. We exploit
this fact later in proving tightness.

Having defined operators E;, we give now some alternative representation
of ||z — E;z||o. For any function x € H,(H), define its sequential seminorm
by
ot = sup 2% max X (2)]]

]

Rackauskas and Suquet [31] show that this seminorm is actually a norm and
that it is equivalent to the norm ||z||, on H([0,1]%). Furthermore

o = Esalla = o — Ejelf = sup2® max|No(o)l,  (14)
i>J VeV

is non increasing in J. Now we can state the adaptation of theorem 2 for the
space H ([0, 1]%).

Theorem 4 A subset K is relatively compact in HC ([0, 1]9) if and only if:
i. for each j € N, E;K is relatively compact in W;

i, SUPgeg SUDj 2% maxyev; || Ajo (2) ]| = 0, as J — oo.

1.2.3 Tightness criteria

Now we prove the tightness criteria. Note that this is an adaptation of the
theorem 2 in [31] for nets {(,, n € N%}.

Theorem 5 Let {(,,n € N?} and ¢ be random elements with values in the
space H2,([0,1]%). Assume that the following conditions are satisfied.

i) For each dyadic t € [0,1]%, the net of H-valued random elements ,(t)
is asymptoticaly tight on H.
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ii) For each e >0

lim lim sup P(sup 2% max 1Xj0(Ga)] >€) =0.
J—o00 m(n)—oo i>J
Then the net ¢, is asymptoticaly tight in the space HC ([0, 1]%).

Proof.

For fixed positive n, put 7, = 27!, [ = 1,2, .. and choose a sequence (g;)
decreasing to zero. By (ii) there is and integer J; and index ny € N? such
that for set

Avi= {a s sup 2% max o (@)] < 1}

JjzJd

P((, € A)) > 1 —m, for all n, ng < n.

Recall now from subsection 1.2.2 that W is isomorphic to the Cartesian
product of card(W;) copies of H. Thus from (¢) there exists for all m, ng < n
a compact K; C H9([0, 1]¢), such that for set B;

By = {x ¢ H([0,1]%) : Ejz € K;}

P(¢, € B)) > 1 —m. Take K the closure of N2, (A; N B;). Then P(K) >
1 —2n, and K is compact due to theorem 4.

Since in R closed bounded sets are compact and vice versa we have fol-
lowing corollary for space H9([0, 1])

Corollary 6 Let {(,,n € N} and ¢ be random elements with values in the
space HC ([0, 1]¢). Assume that the following conditions are satisfied.

i) 1imy oo P(SUpseip 1ja |Gl > a) =0

ii) For each ¢ >0

lim lim sup P(sup 2% max |)\J +(Gn)] >¢€) =0.
vev,

J =00 m(n)—oo j=>J

Then the net ¢, is asymptoticaly tight in the space H2([0,1]%).

1.3 Results in probability

1.3.1 Gaussian processes

Limiting random fields considered in this work are mainly Gaussian ones.
Recall that a real valued random field {G(¢),t € [0, 1]¢} is called Gaussian
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if its finite-dimensional distributions are multivariate normal. Mean zero
real valued Gaussian processes can be uniquely defined by their covariance
function EG(t)G(s). The reverse problem is also of interest: when is a
given function g : [0,1]¢ x [0,1]¢ — R the covariance function of a certain
Gaussian random field ? The answer is a classical result which can be found
in Khoshnevisan [17] for example. For convenience we state it here.

Theorem 7 If the function g : [0,1]¢x [0,1]? — R is symmetric and positive
definite, i.e. for n-tuple of reals x1,...,x, and n-tuple of vectors ty,...,t,
Jrom [0,1]%, expression 7 ;_, xig(t;, t;)x; > 0, then there exists a zero mean
Gaussian random field {G(t),t € [0,1]?} with covariance function E G(t)G(s)
q(t, s).

For d = 1 and g(s,t) = sAt, we get a Brownian motion. Its generalization
for d > 1 is called Brownian sheet, a zero mean Gaussian process with
covariance function g(s,t) = (sy At1)...(sq Atq). As Brownian motion is
usual limiting process in invariance principles for one parameter summation
processes, Brownian sheet is limiting process for multiparameter summation
processes.

We now define Hilbert space valued Brownian sheet. Recall that zero
mean Gaussian random variables in Hilbert space are uniquely defined through
their covariance operator. Covariance operator of H-valued random variable
X is linear operator I' : H — H satisfying

(Tz,y) = E(X,2)(X,y), z,yecH.

Linear operator I' is the covariance operator of some H-valued random vari-
able if it is

1. Symmetric: (I'z,y) = (T'y, x) for all z,y € H.
2. Positive: (I'z,z) > 0, for all z € H.

3. Nuclear: operator I' is compact and for every orthonormal base {e,} C
H

> (Ten, e,) < 0.

Note that if E || X||> < oo we have

> (Pep,en) => E(X,e,)> =E|X[? <00 (1.5)

n
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It is well known that in the Hilbert space H, every random element X such
that E || X||? < oo is pregaussian, i.e. there is a Gaussian random element G
in H with the same covariance operator as X, see [21, Prop. 9.24]. Let the
X;’s be i.i.d. copies of X. If moreover E X = 0, then n~*/2 3" | X; converges
weakly to G in H, in other words X satisfies the CLT in H [21, Th. 10.5].
Existence of real valued Gaussian processes is given by Kolmogorov theo-
rem. Since it applies also for Cartesian products of Polish spaces it is natural
to call H-valued random field {G(t), t € [0, 1]} Gaussian if for every m-tuple
t,...,t, vector (G(t1),...,G(t,,)) is H™ valued Gaussian random variable.
Define then H-valued Brownian sheet with covariance operator I' as a
H-valued zero mean Gausian process indexed by [0, 1]¢ and satisfying

E(W(t),z)(W(s),y) = (t1 As1)...(ta A sa)(Tz,y) (1.6)

for t,s € [0,1]¢ and x,y € H. To check that this definition is valid note at
first that for each t € [0, 1]¢, W(t) is H-valued zero mean Gaussian random

variable with covariance operor 7(¢)I". Denote by (-, - ),, the scalar product
in H™ which is defined by

<h7 g>m = Z<hzvg7,>7 h = (hh ) hm)7 g= (gh s agm) € H™.
i=1
Denote by I'y, 4, the covariance operator of (W (ty),...,W(t,,)). For z =
(x1,...,xp) EHand y = (y1,...,Yn) € H from (1.6) w eget

<Ft1 ,,,,, tr Ly y =E Z Z
- Zzg tzat FIZan])

with g(t;,t;) = [T, ta A tjk. Since I' is symmetric we get that I'y, . is
symmetric also. Denote by X, a H-valued random variable with covariance
operator I'. Then for x = (zy,...,z,,) € H

(Lot )y = Zzg(ti7tj><rxi=xj>
= Zzg(thtj)E <X>$i><X>xj>

=E (Z Z(X, z3)g(ti, t)(X, ag)) > 0.
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Thus I'y, .+, is positive. Now since

7tm
E|W(t),...,W(ta)|* = ZEIIW )|* <

(1.5) implies that I'y, ;. is nuclear. Thus there exists H™-valued Gaussian
random variable with covariance function I'y,  ;, and our definition of H-
valued Brownian sheet is valid.

It is well known that trajectories of the real valued Brownian sheet are in

H2([0,1]%) for 0 < o < 1/2. As the following estimate

’tm

E||W(t+h)+W(t—h)—2W ()| < c|h|teT,

is valid for all t — h, t, t + h € [0,1]¢, it follows from Rackauskas and
Suquet [26] that W (t) has a version in H ([0, 1]?) for any 0 < o < 1/2.

1.3.2 A variant of continuous mapping theorem

Classical continuous mapping theorem states that if the sequence (or net) of
random elements X, converges weakly to X, then for any continuous func-
tional g, real random variable g(X,) converges weakly to g(X). This result
is widely applied in statistics to obtain limiting distributions. Sometimes
though it is too restrictive, since sometimes it is more convenient to use the
converging sequence (or net) of continuous functionals. Recall that the net
of continuous functionals g, : B — R where (B, || - ||) is a normed Banach
space is called equicontinuous if for every ¢ > 0 and any x,y € B such that
|z —y|| <& we have

sUp 9a(®) — galy)| < e.

Then following theorem holds (it is stated as lemma in [30], we restate it for
the case of nets).

Lemma 8 Let {n,} be a asymptotically tight net of random elements in
the separable Banach space B, and g, g be a continuous functionals B — R.
Assume that g, converges pointwise to g on B, and that g, is equicontinuous.
Then

ga(na) = 9(%) + 0P<1)'

Proof. By the asymptotic tightness assumption there is for every ¢ > 0 a
compact subset K in B and «ag such that for every oy < o, P(n, ¢ K) < €.
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Now by a Arzela-Ascoli theorem the net g, is totaly bounded on the compact
K with respect to norm of uniform convergence. Since g, converges pointwise
to g, this gives us uniform convergence of g, to g on K. Then for every § > 0
there is some oy depending on 6 and K, such that

sup [ga(7) — g(7)] <90, o <a.
reK

Take now a9 such that a; < oy and oy < ag. Then for ay < o we have

P(l9a(na) — g(na)] > 6) < P(ny ¢ K) <e,

which gives us the proof.
The following lemma from [30] provides some practical sufficient condi-
tions to check the equicontinuity of some families of functionals.

Lemma 9 Let (B,| - ||) be a vector normed space and q : B — R such that
(a). q is subadditive: q(z +vy) < q(z) +q(y)), =,y € B.
(b). q is symmetric: q(x) = q(—x), x € B.
(c). For some constant C, q(x) < C||z||, x € B.

Then q satisfies the Lipschitz condition
l9(z +y) — q(2)| < Cllyll, =,y € B (1.7)

If F is any set of functionals q fulfilling (a), (b), (c¢) with the same con-
stant C, then (a), (b), (c) are inherited by g(x) := sup{q(z),q € F} which
therefore satisfies (1.7).

1.3.3 Rosenthal inequality

Since the Hilbert space H has cotype 2, it satisfies the following vector valued
version of Rosenthal’s inequality for every ¢ > 2, see [20, Th. 2.6]. For any
finite set (Y;);es of independent random elements in H with zero mean and
such that E ||Y;||? < oo for every i € I,

E

Y

i€l

> G(Y)

i€l

q
<o e

LY E ||z-||q) , (1.8)

i€l

where the constant Cj depends only on ¢ and the G(Y;) are centered Gaussian
independant random elements in H such that for every i € I, G(Y;) has
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the same covariance structure as Y;. For real random variables Rosenthal
inequality simply reads

E

Y

i€l

qu<(zaf)q/2+zE|Y;|q), (19)

i€l el

where 07 = EY2.

In the ii.d. case with N = card(I), we note that Y ,c; G(Y;) is Gaus-
sian with the same distribution as N'/2G(Y;) and using the equivalence of
moments for Gaussian random elements, see [21, Cor. 3.2], we obtain

q
a/2
E < ¢y (NR(B G + NEMIY).

S,

i€l

where C’;’ depends on ¢ and does not depend on the distribution of Y;. Since
H has also the type 2, there is a constant a depending only on H such that
E |G(Y1)||* < aE ||Y1]?, see [21, Prop. 9.24]. Finally there is a constant C,
depending on H, ¢, but not on the distribution of the Y;’s, such that

S,

i€l

q
E < ¢, (N‘W(E IvilP)"” + NE ||Y1||q> (N = card(I)).

(1.10)

1.3.4 Doob inequality

We shall need a generalization of maximal Doob inequality for multiparam-
eter martingales. We use definitions and results from Khoshnevisan [17].

Definition 2 Letd € N and consider d (one parameter) filtrations F*, ..., F4,
where F' = {Fi k> 1} (1 <i < d). A stochastic process M = (M,,,n € N%)
is an orthosubmartingale if for each 1 <1i < d (M,,n; > 1) is a one param-
eter submartingale with respect to the one parameter filtration F' with other
coordinates nj # n; fized.

The classical example of orthosubmartingale is the multiparameter random
walk {S,,n € N} defined as

Sn= > Xj,

1<j<n
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where {X;,j € N?} is the collection of mean-zero random variables. The
process {S,,n € N?} is an orthosubmartingale with respect to filtrations

where o(...) denotes the o-field generated by the random variables in paren-
thesis.

For nonnegative orthosubmartingales the following so called Cairoli’s strong
(p, p) inequality holds.

Theorem 10 (Th. 2.3.1 in Khoshnevisan [17]) Suppose that M = (M,,,n €
N%) is a nonnegative orthosubmartingale with respect to one-parameter filtra-
tions F', ..., F% Then for allm € N and p > 1

0<k<n

E {max M,’;} < <p1>dpE [MP] .

Following lemma is useful

Theorem 11 (Lemma 2.1.1 in Khoshnevisan [17]) Suppose that M =
(M,,,n € N9) is a nonnegative orthosubmartingale with respect to one-parameter
filtrations F*, ..., F4, that ¥ : [0,00) — [0,00) is convex nondecreasing, and
that for allm € N¢, EV(M,,) < oo. Then (¥(M,),n € N%) is an orthosub-
martingale.

For independent zero mean real random variables { X, j € N¢} introduce
one parameter filtrations ' = F{ = o(Xj,j; < k). Then process S, =
> j<n Xj 1s orthosubmartingale with respect to filtrations F* and process
|Sp| is nonnegative orthosubmartingale with respect to the same filtrations.
Thus we have

dp
E max |S;] < <pl> E|[S,". (1.11)
p_

1<j<n

For i.i.d. Hilbert space valued random field {X;,7 € N?} introduce d
one parameter filtrations, ' = (Fi,k = 0,1,...), i = 1,...,d, where
i = 0(X;,5 € N j; < k). Since Cairoli’s inequality applies for real val-
ued orthosubmartingales we cannot use it directly for S, = >°;-,, X}, since
Sy, is H valued stochastic process. On the other hand stochastic process
(|[Snll,m € N?) is real valued so to apply theorem 10 we must show that
|Sn|| is orthosubmartingale with respect to filtrations F',... F¢. Since
norm is a continuous functional, the map n; — ||Sy|| is F,, -measurable for
eachi=1,... d.

29



Assume that E || X;|| < oo. Then the X;’s are Bochner integrable and
according to [38] we can introduce conditional expectations with respect to
F'yi=1,...,d. Let EX; = 0. From properties of conditional expectation
we have fori =1,...,d, n € NMand k=0,1,...

E (ISalllF2) = 1B (SulF)ll = || X2 B (XG1F)| = S0 ,mios konssrna |l
Jj<n
Hence for each i = 1,...,d, n; — S, is a one parameter submartingale with

respect to the filtration F?. Applying then theorem 10 we have
dp
B s Ui < (1) RIS, (112
p—

1<j<n

for all n € N? and p > 1.

30



Chapter 2

Summation processes

We call random process a summation process if its values are defined only
by the values of partial sums Sy = X +---+ X, where X}, k=1,... n are
random variables. Usualy summation process is defined using interpolation
arguments. Classical example is polygonal line process indexed by [0, 1] with
vertices (k/n,Sk), k = 0,1...,n and Sy = 0. This process has continuous
and Holderian trajectories. Sometimes it is convenient to drop the require-
ment of continuity and to analyze jump process defined as ZEZ]I Xk. In this
section we define summation processes indexed by [0, 1]¢ and give some useful
representations. For reasons explained in section 2.2 we analyze separately
summation processes based on random variables with the same variance and
summation processes based on random variables with different variances.
Though the results in this chapter are presented in a context of probability
theory, they are derived without using any results from it. This chapter can
be viewed as investigation of properties of certain interpolation schema of
functions with domain [0, 1]¢. To improve readability, more technical and
longer proofs are given at the end of each subsection.

2.1 Uniform variance case

2.1.1 Differences of partial sums

In this and following chapters we deal a lot with differences of partial sums
Sj = Y1<i<j Xi- Let us introduce the notation

(o _
Ak SJ - S(jla"'7ji—l7k7ji+17“'7jd) - S(jl’“'ﬁji—l7k_17ji+17"'7jd)
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Since Sy is really a function with domain N we can say that A,gi) is a
difference operator acting on i-th coordinate of the argument of function Sy.
Note that superposition of operators Ag’) commute

>
>
n
I

APAY ;.

Ji a1 P Ji
In particular for any 7 € N¢ we have

X; =AW A%g;

Jd

2.1.2 Definitions and representations

For d = 1 polygonal line and jump processes are given as

It is natural then to define [0, 1]? indexed jump summation process as
(n(t) = Spny

It is not possible to do this for continuous version of [0, 1]¢ indexed summation
process, since the relation

Sk+1 — Sk = X1

holds only for kK = 0. The continuous version of summation process for d > 1
still can be defined using analogy. Note that for d = 1 we can write

GQ)= Y n [2_1;) ﬁ[O,t]’Xi, (2.3)

1<i<n

where |A| denotes Lebesgue measure of the set A. Define then continuous
[0,1]¢ indexed summation process as

&alt) = Y () [’ = ) ;) " [O,t]' X;. (2.4)
where we write
[a,,b) = [al,bl) X X [ad,bd) (25)
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for a,b € [0,1]¢. As in one dimensional case we can see that &,(k/n) = S,
i. e. the process is a continuous interpolation of the grid (k/n, Sg).

To prove tightness of summation process we must control the difference
of the process when the distance between points is small. For case d = 1 if s
and ¢ are close together, they fall into interval [i/n, (i + 1)/n] for some i. In
this interval we have

Ea(t) = i+ (nt — i) Xi4
£.(8) = S+ (ns — i) X1

thus

Ealt) = Eals) = 0t — 8)Xinr. (2.6)

Thus it is of interest to investigate properties of the summation process in
rectangles [(¢ — 1)/n,%/n|. For the case d = 1 the summation process has
the property that in interval [i/n, (i + 1)/n] it is the affine interpolation of
its values at interval endpoints:

En(t) =5+ (nt — i) X1 =S+ (nt —9)(Sip1 — Si)
= (1= (nt—1))S; + (nt —1)S;1 = (1 — {nt})Spmy + {nt}Spmy+1
= (L —{nt})&.(i/n) + {nt}&((i + 1)/n),

with the weights coming from
nt = (1 — {nt})[nt] + {nt}([nt] + 1) = [nt] + {nt}. (2.7)

The summation process &, (t) retains this property. We show this directly for
the case d = 2 and then prove it for general case. Fix t € [0,1]* and choose
i so that t € [(¢ —1)/n,i/n). Necessarily then [nt] = ¢ — 1. In this case
the expression mw(n)|[(j — 1)/n, j/n] N0, t]| assumes only following possible
values:

1, forg <e—1
1 0, for 7, such that either j; > i1, or jo > iy
71'(7'1,) ‘ |\J’n], i) N [0, t]‘ = {nltl}, for j, such that jl =1, and jg < 19
{nota}, for 7, such that j, =iy and j; < 4,
w({nt}), forj=1.
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Thus

ig—1 i1—1
$nlt) = Six +{mtr} 3 Xipj + {nate} D Xii, + w({nt}) Xs. (2.8)

We can rewrite this expression using difference operators as

En(t) = Sia + {mt JAYSi 1 + {nat )AL S 4 + w({nt}) AV AL, 4,
(2 9)

or alternatively

n(t) = (1 — {nt})S;—1 + w({nt})s;
+{mt (1 = {nata})Siy i1 + (1 = {mati }){nata} Sis -1 (2.10)

Note that by doing so we expressed &, (t) as linear combination of its values
at vertices of rectangle [(¢ — 1)/n,%/n|. Furthermore the weights in this
combination sum to one and

nt = w(1 — {nt})[nt] + m({nt})(nt] + 1)
+ {nit1 }(1 — {nat2})([n1t1] + 1, [nata])
+ (1 = {nit }){nata}([nita], [nato] + 1)
= [nt] + {nt}.

Thus in the point in the grid rectangle our summation process is weighted
sum of its values on rectangle vertexes with the weights comming from
barycentric decomposition of the point as it is in the case d = 1. Note
that though we derived this decomposition for real valued random variables
it holds for Banach space valued random variables also. We extend now (2.9)
and (2.10) for general d.

Proposition 12 For t € [0,1)?, denote s = {nt} and represent vertices of
the rectangle Ry, jny)+1 as

V(w) = ["nt] + % u e {0,1}7 (2.11)

It is possible to express t as a barycenter of these 2% wertices with weights
w(w) > 0 depending on t, i.e.,

t= > wwV(u), with > w(u) =1, (2.12)

ue{0,1}4 ue{0,1}4
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where
d
=[] s (1 —s) (2.13)
=1

Using this representation, define the random field & by

)= > ww)Smye, te0,1]"

ue{0,1}¢

Then &, coincides with the summation process defined by (2.4), where {X;,1 <
i < m} is a collection of Banach space valued random variables. Furthermore
&n admits representation

&n(t) = Spry + i > ( [[{nat zk}> ( ITA0, %]H) St (2:14)

=1 1<y <o <<y <d k=1
Proof of proposition 12
For notational convenience write
J—17
Ry;:=|—=]. 2.15
=1 .15

For fixed n > 1 € N any ¢t # 1 € [0,1)? belongs to a unique rectangle R, ;,
defined by (2.15), namely Ry, ny+1. Recalling definition s = {nt}, note that

t=-—>+ = (2.16)

For any non empty subset L of {1,...,d}, we denote by {0,1}% the set of
binary vectors indexed by L. In particular {0 1}? is an abriged notation for

=[]s"(1—s)"™, we{0,1}"
leL

and note that when L = {1,...,d} these weights coincide with weights w(u)
defined in (2.13), hence we will not write subscript L in this case. For fixed
L, the sum of all these weigths is one since

> wpw) =] (si+1—s)) =1 (2.17)

ue{0,1}L leL
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The special case L = {1,...,d} gives the second equality in (2.12). From
(2.17) we immediately deduce that for any K non empty and strictly included
in {1,...,d}, with L:={1,...,d} \ K,

>ooww)=[Ise Y. s'Q—s)" =] s (2.18)

ue{0,1}4, keK  wue{0,1}L keK
VkEK, up=1
Formula (2.18) remains obviously valid in the case where K = {1,...,d}.

Now let us observe that

Zw@mmzzww@ﬂﬂ%ﬁﬂ%zww

u
ue{0,1}4 ue{0,1}d n ue{0,1}4 n

Comparing with the expression of ¢ given by (2.16), we see that the first
equality in (2.12) will be established if we check that

=Y wuu=s. (2.19)

ue{0,1}¢
This is easily seen componentwise using (2.18) because for any fixed | €
{1,...,d},
ss= > wu) = ] sk=s.

ue{0,13, ke{l}
”LLZZI

Next we check that &, (t) = & (t) for every ¢ € [0, 1]¢. Introduce the notation

Dy = N0 ([0, [nt] + u| \ [0, [nt]) .

Then we have

G = > ww) (S + (Sptru — Sinay))

ue{0,1}4

:S[nt} Z w(u) Z X,;.

ue{0,1}¢ 1€D¢ u

Now in view of (2.4) the proof of &,(t) = £ (¢) reduces clearly to that of

n

Yo wlu) Y Xi=> w(n)|R,;N[0,t]|X;, (2.20)

ue{0,1}4 1€D¢,u iel
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where

I'={i<n;Vke{l,...,d}, ix <[ngty] +1 and

dl e {1, ce ,d}, Zl = [nﬂfl} + 1}. (2.21)

Clearly [ is the union of all Dy,,, u € {0,1}%, so we can rewrite the left hand
side of (2.20) under the form Y~;c; a; X;. For ¢ € I, put

K() = {ke{1,...,d}; ix = [mts] + 1}. (2.22)

Then observe that for ¢ € I, the u’s such that ¢ € D;, are exactly those
which satisfy u, = 1 for every k € K(¢). Using (2.18), this gives

viel, a= Y,  wu= ][] s (2.23)
ue{0,1}4, ke K (i)
VkEK(i),uk=1

On the other hand we have for every ¢ € I,

[t 1 1 i
RoiN [0, 8] = p, — L] SN SR & SR
11 | ( ) II 11 ()

kEK (i ) g "k

Thus (2.20) follows. To prove (2.14) note that
&n(t) = Sy + D 7(1) | R N[0, 8]| X = Spugy + > ( 11 sk>Xi,
i€l icl \keK(i)

which can be recast as
d
En(t) = Sy + > _Ti(¢) (2.25)
=1

with

W= Y ( 0 5k>X,~. (2.26)
icl kEK (i)
card(K (2))=l

Let K C {1,...,d} and Ix = {¢ € [; K(i) = K}. Then

= {¢ < n;ip = [ngty] + 1, for k € K and
1 < [nktk],for ke {1, .. ,d}\K},
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Take for example K = {1} and notice that

[nt2]  [nt4]

Z X; = Z Z X(nt1]+1yizyeia) = AE;21]+1S["75]'

’iEIK io=1 idzl

Then it should be clear that

_ (k)
Z Xi = (H A[nktk]+1) S[nt]'
keK

Now observe that -
- Y ¥ (Ia)x- zd}(nsk)zxx.

Kc{l ,,,,, d} 1€lk keK keK 1€l
card(K)=I card(K)=I

Recalling that s; = {nstx}, this leads to

k
nt) = > < 11 {”ktk}> ( 11 A[(nitk]+1>5[nt]- (2.27)
Kc{l,..d} \keK keK
card(K)=l

Finally we obtain the representation (2.14) and complete the proof.

2.1.3 Estimate of sequential Holder norm

Using the results from previous sections we give now the estimate of sequen-
tial norm of 7r(n)~'/2¢, in terms of m-indexed sums. We use this result later
for proving the tightness of process 7r(n)_1/ 2¢,,. Recall that sequential norm
of z € H°([0, 1]¢) is defined as

seq __ aj )
2]l = sup 2% max Ao ()]

Recall from 1.2.2 that a dyadic point v € V; can be expressed as v =
(k1277, ... kq277) with at least one k; odd. Denote by K = {ji,...,5}
the set of indices for which coordinates of 2/v are odd. Then

card(K

) i—1 i
&a(v) = &) = Y & <v+2_j26jk> — &, <v+2_j26jk>
=1 k=1 =1
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similarly

card(K i
fn(v) Z én (’U — 27 Z e]k) - (v —277 Z ejk>
k=1
thus we can express double difference

1 .
Ajiw(€n) = €n(v) = 5 (&n(v") + &alv7))
as differences of process &, where only one coordinate is changing. Define
AW (1 8) = |n(t', 52, ..., 5q) — Enlt, 52, .., 53],

for the change in the first coordinate and similarly AY)(¢,¢; s) for the change
in the j-th coordinate. Then

Niw(&n)l < A (ot 2.98
maXH iw(&n)ll 21 og}i);a (k+1 k; Se) ( )
0<é<2ﬂ

with ¢y = k277, £ = (lo,...,1g), 27 = (27,...,27) (vector of dimension d — 1)
and s, = £277.
Let us first examine the the case d = 1. Then

max Ao (n)| < max | (teer) = &n(t)]

Denote by “log” the logarithm with basis 2 (log2 = 1). If j > logn then
tir1 —ty =279 < 1/n and from definition (2.1) we get

gn(tk-l—l) - gn@k) = n2_jX[ntk}+1
if [ntyy1] = [ntx]. For j <logn we get
[ntgi1]
Enltes1) = &lte) = > X,

i=[ntg]+1

if n = 2! with [ > j. With little additional work it is possible to refine these
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expressions to get the estimate

[ntg41]
< < i
Dg}iaﬁj n(thi1) — En(tr)] < 1(j <logn) Og}f}é Z | Xl
[ tk}-i-l
—j+1
+1(j > logn)n27"" max |X].

For the case d > 1 it is possible to get similar estimate given by the following
lemma.

Lemma 13 Form =1,...,d and any t';t € [0,1],t > t,

1
sup A'Ezm)(tu t/a S) S 3d1 (t, —1 Z ) ¢£Lm)(t/’t)

s€[0,1]d-1 Nm
+ 3% min (1, N (1 — t))Z,([”),
where
[nmt']
P t) =  max S AMS, (2.29)
lfmgkfmfnfm Em _[TL t} +1
(m) . m)
AR = max HA Sk||- (2.30)
Thus
A (ot < 391 (trq — 1 > 1/n,,) 0™ (14, ¢
0‘32; (ths1, L Se) oﬁaféj (tht1 k J1m) Y™ (tres1, te)
0<£<23

+ 3¢ min{1, n, (tppr — t) } 2™

It is possible to further refine this expression by considering certain values of
j. For j > logn,,, we have 2/ > n,,, whence (t;,1 — t3) = 277 < 1/n,, thus
in this case

maXA t te: Se) < 3% max ny,(tger —t Z( ).
A Mttt trs Se) Jnax m (o1 — t)
0<¢<2i

Now since 277 < n, ! we have

290 (b1 — ) = o-i-a)y < Ner s

40



giving us

2ja max Aglm) (tk-+1, tk; S[) < Bdn%Z,(lm) (231)
0<k<2?
0<£<2)

for j > logn,,. On the other hand, for j < logn,,, we have 2 < n% whence

2ja a A(m) t tsy) < 3d[ a a (m) " ; O‘Z(m):|
omax Aty by se) < 37| max | max gy (b, be) + 1 2
0<e<27

(2.32)

for j <logn,,. Reporting now (2.31) and (2.32) to (2.28) we get

d
lEalles < 3¢5 ( max 2% max 0 (tpe1, ) +ngzgm>>. (2.33)
m=1

j<lognm 0<k<27

Recalling the definition of E; from (1.3) and noting that we can restrict the
domain of j in inequality (2.32) we also get the estimate for ||&, — E&,||

d
. seq  ad aj (m) @ (m))
1€n — Esénlld <3 mgl (Jg;gg)gnm? omax ¢ (b, te) + 15, 20" )
(2.34)

From these inequalities we see that the sequential norm of process &, can be
controlled by only first differences of the process when only one coordinate
changes.

Proof of lemma 13

We prove this lemma in case of m = 1, proof for other cases is identical. Put
u:=(t,s),u = (' s),s0ou =t, u) =t and ug,q = uh,, = s. Denote

Ti(t) = > ( ﬁ{”z’ktik}> ( ﬁ AE::in,ng) Sint)-

1<i1<ig <<y <d \ k=1 k=1

Then from representation 2.14 we have

&alw) = Enluw) = Sty = S + 32 (1) = Tiw). (2.35)

To estimate this &,’s increment we discuss according to the different possible
configurations.
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Case 1. 0 <t/ —t < 1/ny.

Case 1.a. [nt'] = [nit], whence [nu’] = [nu]. Consider first the increment
Ti(w') — T1(u) and note that by (2.27) with [ = 1,

k
Ti(uw) = 3 {ngu} AL S

1<k<d

Because usy = u), and [nu/| = [nul, all the terms indexed by k& > 2
disappear in the difference T} (u’) — T7(w). Note also that {nit'} — {nit} =
ni(t' —t). This leads to the factorization

Ti(u) = Ty(w) = ni(t' — AL 41 S

For | > 2, T)(u) is expressed by (2.27) as

Tiw)= > {ngund e Angw JARY o AR S

1<ii<---<i;<d

As above, all the terms for which i; > 2 disappear in the difference T;(u') —
T)(u) and we obtain

Ti(w) = Ti(w) =m(t' =) > {nasi}.. {nisi}

1<io<<;<d

(1) (i2) (i)
A[nlth[ni?siQ]H s A[Jilsilms[nu}-
Since {ni,si,} ... {n;s;,} <1 and

[nlt]-i—l Z €9

el

< 2; | A gaS:
S

HAthl EZLSZ-Q]H A[mls”HlS[nU]H

Y

where g; = +1 and I is some appropriate subset of [0,7n] N N with 2/-1
elements. Hence with Z,, defined by (2.30), we obtain for [ > 2

Imi) - il < e - 01~ )22,

Clearly this estimate holds true also for [ = 1, so going back to (2.35) and
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recalling that in the case under consideration [nu’] = [nu], we obtain

d d—1 -1 d—1 /
[€n(u’) — Z (t' —t) )2 =3 (= D) 2 (2.36)

Case 1.b. nit < [n1t'] < nyt’. Using chaining to exploit the result of case
1.a, we obtain

o) - (w0l < () - & (2, ) |+ e (25 - ot
< 3 gt — [yt ])Zn + 34 1([n1t] — nqt) Zp
=3, (' — 1) Z,. (2.37)

Case 2. t' —t > 1/ny. Then [nit] < nit < [nyt] + 1 < [ngt'] < nyt’ and
putting

t/ = s = t, ,’U,Z: t/7 5
n 1 " v (13) (13)

we get the upper bound

16n () = En(w)]] < [[En(u)) = & ()] + [I€n(v") — & (V)]
+[[6n(v) = En(u)]l,

where the first and third terms fall within the case 1 since t' —#] < 1/n; and
t—t; <1/ny. As njvy = nity = [nyt], we have

[nv] = (Imta]; [noas]) = [nu] and - {no} = {[mt]} = 0,

so the representation (2.14) for &, (v) may be recast as

d—1 ! ! .

RIS D VRN 1 (U416 PR W
=1 2<i1 << <y <d k=1 k=1

14

Clearly the same representation holds for &, (v’), by just replacing u by u’.
Now since A’s are interchangable and

[nt']

1
S'n,u’ S[nu = Z AE )S(i,[nzds})’
i=[nt]+1
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we get

d—1 d—1
Jout) = a0l < it X2 (1 )2 =3
1=0
with ¢, (', t) defined by (2.29). Using case 1 to bound ||&,(u') — &, (v")]] and
||§n(v) - fn(u)Ha we obtain

1€, 8) — En(t, 8)|| < 3 Hmt' Y 2, + 32 (¢, 1) + 3 H it} 2,
< 3N (t ) + 239717, (2.38)

Combining (2.36), (2.37) and (2.38) we complete the proof of lemma 13. O

2.2 Unequal variance

Let us examine a simple example. Take collection {X, 4,k = 1,...,2n}
of random variables i.i.d. for each n with zero mean and variance E X, =
1/(2n). Then the sum S, 2, = X1+ - -+ X, 2, converges to standard normal
and the polygonal line process &, (t) = Sy, j2n 4 (2nt —[2n]) X[2ng 11 converges
to Brownian motion. Now introduce collection {Y, x, k = 1,...,2n} by tak-
ing Y, = 1/\/§Xn,;,C for k <n,and Y, = \/%Xn,k fork=n+1,...,2n.
The sum SZ,zn =Y,1+ -+ Y, 9, still converges to standard normal. But
for polygonal line process &, (t) = S}, 15,y + (2nt — [2nt])Y[2ny41 We then have
E (£.(1/2))> = 1/4 for all n. Thus if functional central limit theorem holds
the variance of limiting process at 1/2 is 1/4. Yet Brownian motion vari-
ance at 1/2 is 1/2, thus the limiting process (if it exists) in this case is not
the Brownian motion. From classical result of Prokhorov [23] we know that
for triangular arraysit is possible to use different construction of summation
process so that the functional central limit theorem holds and the limiting
process is always Brownian motion. Furthermore in the case of i.i.d. ran-
dom variables both definitions coincide. We propose similar definition for
[0,1]¢ indexed summation processes, which though does not solve the prob-
lem completely as in case d = 1, is nevertheless an improvement on using the

definition (2.4).

2.2.1 Definitions and representations

Let us first review the case of [0,1] indexed summation process, i.e. the
classical result of Prokhorov [23] for triangular arrays. Suppose we have
collection {X,, 4,1 < k < k,, k,,n € N} of random variables. Let EXELJC =
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o2, and assume that >;", 02, = 1. Define
Sn<k) = Xn,l +-+ Xn,k

and
b, (k) = 03’1 + - 4 O'Z’k.

Then classical definition of summation process is
En(t) = Sp(k) + (t — bn(k:))ayziHXn’kH, for b, (k) <t <b,(k+1). (2.39)
Define
un(t) = min(k : b, (k) < t),
then

Un (t) N
B, (= 3 o2, 4 L=tk

k=1 Onk+1

If we assume

max o2, — 0, as n — o0
1<k<k, ™

which is necessary for central limit theorem to apply, we have
E&,(t)? —t. (2.40)
Define triangular array with multidimensional index as
(Xnp, 1<k <k,), ncN,

where for each n the random variables X, ; are independent. The expression
k., is the element from N? with multidimensional index: k,, = (k! ... k2).
Assume that E X, = 0 and that o}, = EX, < oo, for 1 < k < k,,
n € N%. Define for each 1 < k < k,,

Sn(k) =Y Xnj, bu(k):=> on,.

Jj<k j<k

We require that the sum of all variances is one, i.e. b,(k,) = 1 and that
m(k,) — oo, as m(n) — oco. Note that these requirements are the same as
for one-dimensional triangular array.

If w(k) =0, let S,(k) =0, b,(k) = 0. Fori=1,...,d introduce the
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notations

bi(k)

NS S T AR o )

(k) — bi(k — 1) (2.41)
and

B(k) = (bi(k1), ..., ba(ka)), AB(k):= (Aby(k1), ..., Abg(ky)  (2.42)

for its vector counterparts. Note that these variables depend on n and k,,.
For 1 <k <k, let

Qnik = lbl(/ﬁ - 1), bl(k:l)> X - X lbd(k:d —1), bd(kd)>. (2.43)

Due to definition of b;(k) we have @y, jNQnr = @, if k # 7, Also Ug<g,, Qni =
0,1)% and Y p<p,, |Qni| =1 with |Qn x| = 7(AB(k)). Thus any ¢t € [0,1)?
falls into unique rectangle @y, x, for some k. In that case trivial equality

ti— bi(ki — 1)

ti =bi(k; — 1) + = Abi(k) Ab; (k;)
gives
PTSRIIRES [V
with
0< t_ABBEI;kgl) <1

This corresponds to decomposition

- nil, (ot}

It is natural then that summation process defined on the grid @y as

En(t) = Z ‘Qn,j’_l’QnJ N [Oat”Xn,j> (2'44)

1<j<n

similar to (2.4) assumes the same representations as process &,(t). For t €
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[0,1] and ¢ € [0,1]%, write

wi(t) :=max{j > 0:b;(j) <t}, Ut):= (ui(t1),...,uqtq)).
Then following proposition holds.

Proposition 14 Fort € [0,1)?, denote

t—B(U(t))
AB(U(t)+ 1)

and write vertices of the rectangle Ry y)+1 as

S =

Vuw) :

BU(t)) +uABU(t)+1). we {01} (2.45)

It is possible to express t as a barycenter of these 2% wertices with weights
w(w) > 0 depending on t, i.e.,

t= > w)V(u), where > w(u)

1, (2.46)
ue{0,1}¢

ue{0,1}4
where

d
w(u) = H s (1 — sl)lﬂ”.
=1

Using this representation, define the random field =} by

=)= > ww)S,(U(t)+u), telo,1]"

ue{0,1}¢

Then =5 coincides with the summation process defined by (2.44). Furthemore
En(t) admits representation

: (
=1 1<i1<ia << <d k=1

Lty — by (uy) L
Ifl;ll Aby, (ug, (ts,) + 1)) ( H A“ik (tz‘k)+1) Sp(U(2)).
(2.47)

Proof. The proof is the same as in proposition 12 with the change of notation:
[nt] changed to U(t) and {nt} to (t — B(U(t)))/AB(U(t) +1).
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2.2.2 Estimate of sequential norm

We give now the estimate of sequential norm of =,,. The estimate is similar
to the one given in section 2.1.3 for process &,. As in section 2.1.3 we can
write

d
Xio(Zn)| < AU (g, t; 2.48
gle&%/)](“ io(Zn)] < 2::10285;]: ' (try1s s Se) (2.48)
0<t<2i

with t, = k277, £ = (lo,...,1q), 29 = (27,...,27) (vector of dimension d — 1),
s; = €277 and A (t,¢; s) defined for m = 1 as

AP (T 8) = [En(t', 8) — Enlt, 8)]
and similarly for other coordinates for m > 1. Introduce set D; = {2(I —
1)279;1 <1 < 277!} and notation r~ =r—2"9 and r* =r 4277 for r € D;.
Then

d
(= < (m) —. (m) (4 .. )
max [|A;.0(Zn) | _n;max{ maxe A(r, 75 8e), max AV (1 s0)}
0<£<27 0<e<27

(2.49)

At first glance this separation seems unnecessary, especially since the treat-
ment of both A™ (r,77; s4) and AU™ (r, r+; s4) is identical, but this simplifies
the proofs later on. Similar lemma to 13 holds.

Lemma 15 Form =1,...,d and any r € D,

sup A (r 7 s) < 3% (um(r) > Uy, (17) + 1) Y (1)
s€[0,1]d-1

+ 3dg—iezim),

where
Um (1)
Un(r, 7)™ = max S AP, (k) (2.50)
k—mg(kn)—m km:um(r*)+2 m
(m)
(m) . |85, (k)|
Zn" = N A (o)) (2:51)
Similarly
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Lemma 16 Form =1,...,d and any r € D;

sup A (r rts) <34 (um(r) > Uy (r7) + 1) P (r, )

s€[0,1]4—1
+ 3dgde zm),
where
U, (1)
Un(r, )™ = max S AT, (k). (2.52)
k_m<(kn)—m o =1t (1) 2 m

with Z0™ as in (2.51).

Note that only definitions of 1, differs and Z{™ does not depend on j.
We make no distinction for different j and derive immediately estimate of
sequential norm

d
|25 < 3¢ Z (max e max[w( (ryr™) + wflm)(r, )] + Z,(Lm)> (2.53)

=\ i=0 reD;
and the tail
||En - EJEn”Zeq

< 34 zd: (max oJe max[w( )(r, )+ 1/1,({”) (r,rH)] + Z,(lm)> ) (2.54)

m—1 73>J rebD;

Proof of lemma 15

We prove this for m = 1 since the proof is the same for other m, subsequently
we drop the superscript in definitions Z,, and v,,. The proof is similar to proof
of lemma 13. Denote by v = (r,s), and v- = (r7, s). Recall representation
(2.47) and write

B ti, — bi, (i)
nt) = > (knlAb (i (1 )+1)>

1<) <ig <<y <d

(H A ) L(U(2))

k=1
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forl=1,...,d. Then
En(r,se) = En(r™,80) = Sn(U(v)) = Sn(U(v7))

S
+ ;(TI(V) —Ti(v7)).

To estimate this increment we discuss according to following configurations
Case 1. uy(r) = uy(r~). Consider first the increment T (v) — Ti(v~) and
note that by (2.27) with | = 1,

Vi — b v k
Do) Aw 5 ().

BV = 2 a0

Because vo.q = v, and U(v) = U(v™), all terms indexed by k > 2 disappear
in difference T7(v) — T1(v™). This leads to the factorisation

r—r (1)

A
Abl (UI(T) + 1) ua (r)+1

Ti(v) —Ti(v™) = Sn(U(V))- (2.55)

For [ > 2, T)(v) is expressed by (2.27) as

- Vll - bll (uu( )) Vi, — biz (uiz (Viz))
vy = 2 )+ 1) Bby(un(va) + 1

(i1) (@)
Uiq (Vig )+1° " Auil (vi)+1

1<ig << <d Ab;, (ui,

Sn(U(v))-

In the difference T’ (v)—T1(v™) all the terms for which 4; > 2 again disappear
and we obtain
r=1r
Abl (ur(r) + 1)
Z VZQ - 22 (um (V12)) Vi, — biz(“l'z (Viz))
1<i2<-~<il<d (ull (V“) + 1) Ab%l (uil (Vil) + 1)
AL Al2) A(Zl)(wl)HS"(U(V))‘ (2.56)

ur (1) +1 " i, (vig ) +1 77" Ty,

L(v) =Ti(v7) =

Since uy(r) = uy(r™), we have by (ui(r)) < r <r~ <by(uy(r)+ 1), thus

Abl(rul_(::) +1) = (Abl(rul_(r) + 1)>a'
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Now
Vip — biz (uiz (Viz)) Vi — bil (uiz (Viz)) <1

Abh (uh (Vi1) + 1) o Abiz(uiz (Vil) + 1)

and
(1) (i2) (1) (1)
Ay 18 (i1 B i) 115 (U (V)] = 1A 11 ;52
1 .
<Y AU LSa@)], (257)

el

where &; = £1 and [ is some appropriate subset of [0, ] N N? with 2!~!
elements. Recall that Z,, is defined as
AL Su (k)|
a— —a -
155 (Aby (k1))@
~ = 277 and Ab;(k;) depends only on k;, we obtain

i) = T <27} )2z,

Now noting that r — r
for [ > 2

Thus
1 -1 d—1o—ja
2, =327, (2.58)

Zn(v) — zj: <1_1

Case 2. uy(r) = ui(r~) + 1. In this case we have bi(us(r7)) < r= <
bi(ui(r)) < r. Using previous definitions we can write

Now

CNG), <<r—bl< (1) >a< 2-ie
Ay () +1) =\ B () + 1)) = @b () + 1)

and similarly

bi(uy(r)) —r~ < 2@
Aby(ui(r=) +1) = (Aby(us(r=) + 1))
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Combining these inequalities with (2.55) and (2.56) we get as in(2.36)
2. (v) = E,(v7)] < 237127007,
Case 3. uy(r) > uy(r~) + 1. Put
u= (bi(ur(r)), 80),  u” = (ba(ua(r7)) +1,80).
Then

Zn(V) = En(v7)] < [Ea(v) = En(w)] + [En(u) = En(u”)]

F|Z(u) = Ea(vO)l.

Since U(u)a.,q = U(u™)o.g = U(V)a,4, we have

d—1 ! Vi, — bzk Wiy, \Viy,
En(u) =S, (U) + > > ( I1 Ab;, u;, (\(/ik)(‘F 1))>

1=1 2<i1 <ig<--<iy<d \ k=1

Recalling the definition

u1(r)
Un(r,r) = max S ANS((6,k2a))l,

ko.q<Kn o.
2:d<Fkn 2:d i—uy (r )42

similar to (2.57) and (2.58) we get

d—
W) < () 02 < 30, (1),

=0

m

2

£
|
[1]

We can bound |Z,,(v) — Z,(u)| and |Z,(u”) — Z,(v)| as in case 2. Thus we
get

|20 (1, 80) — Zn(r™, s0)] < 3d’1wn(r, rT)+2- 3d-lg-iag (2.59)

which gives us the proof of the lemma.
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Proof of the lemma 16

Proof is identical to the proof of lemma 15. Instead of analyzing configura-
tions when wuy(r) > uy(r™), analyze configurations when uy(r™) > wuy(r).
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Chapter 3

Functional central limit
theorems

Functional central limit theorems deal with weak convergence of summa-
tion processes. Classical approach is to prove first the convergence of finite-
dimensional distributions usually using central limit theorem, and then to
show that the summation process is tight. Due to Prokhorov theorem this
then gives the weak convergence and we say that functional central limit
theorem is proved. Functional central limit theorem is called the invariance
principle if necessary and sufficient conditions for the convergence are given.
In this section we prove invariance principle for i.i.d. Hilbert space valued
random variables in Holder space. We also prove functional central limit
theorem for real valued independent but non-identically distributed random
variables. Usually proving tightness is harder task, but that is not necessarily
so as we show for the triangular array.

For better readability shorter proofs are given straight after theorems in
this chapter. The end of the proof is noted by the symbol [

3.1 Invariance principle

3.1.1 Finite dimensional distributions

Recall the definition of summation process &,:

1—1 1
n n

o4



The so called jump summation process is defined by (,(t) = Spny which can
be put alternatively as

Ca(t) =D 1(j/n €[0,%]) X;.

j<n
The following theorem holds.

Theorem 17 Let {X;,1 <1 < n} be a collection of H-valued random vari-
ables. Assume that all variables have finite second moment and uniform
variance o* = E||X;||* < oo for all ¢ < m. Then if E(X;, X;) = 0 for
1<i#j<mn,

7 (n) 7 2(&n(8) = Ga()]] ——— 0, (3.1)

m(n)—oo
for each t € [0,1]%.
Proof. For each t we can write 7(n)~"2(&,(t) — (u(t)) = > i<n ;. X;, where
0z o= () 2([(i — 1)/n,i/m] N[0, 8] — ()1 (i/n € [0,4]))

Then

Elln(n) (&G -G =Y ey E(X;, X;) =07 o

i<n j<n i<n

Now |o;| < 1, and vanishes if [(¢ — 1)/n,4/n) C [0,t], or [(¢ —1)/n,i/n) N
[0,t] = @. Actually «; # 0 if and only if ¢ € I, where [ is defined as

I'={i<n;Vke{l,...,d}, ix <[ngty] +1 and
dl e {1, ce ,d}, 1y = [nﬂfl} + 1}.

For any Borel set A C [0, 1]? define for ¢ > 0
A® = {yE]Rd, dz € A; |z — vy <€}, AT =R\ (RY\ A).
Put €, := m(n)~! and (3,(¢t) :=|[0,¢]** \ [0, t]°"|. Then

Yoai = ai < fa(t)

1<n el

and this upper bound tends to zero since the Lebesgue measure of [0, ] \
[0, t] " is clearly O(e,) = O(m(n)™!). Combined with the estimate P(||Y|| >
r) < r2E|Y]]?, for any random variable Y, the theorem follows. [
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This theorem coupled with Slutsky’s lemma, implies then that for i.i.d.
H-valued random variables the limits of finite dimensional distributions of
both processes 7 (n)~/2¢, and mw(n)~1/2(, coincide. Note that for fixed ¢

Cn(t): Z Xja

jeJ(n)

where

Jn):={jeN:j/ncl0t]}
If X, are zero mean i.i.d. H-valued random variables, satisfying E || X1 ||* < oo
and G is the Gaussian random variable with the same covariance operator
as Xy, {X,} satisfy CLT in H [21, Th. 10.5]., i.e.

7(n) 23 X; — G, as w(n) — .

j<n
By denoting [(n) the number of elements in the set J(n), we then get

I(n)™2 Y X, @, asl(n) — .

je€J(n)

So it is easier to deal with the limits of finite-dimensional distributions of (.
Now

Un) _ 1y
= P(U, €[0,8]) —— [[0,8]| =t ... 14,

with U, - random variable uniformly distributed on the points j/n. Recalling
definition of H-valued Brownian sheet we get

7 (n) V2, () ——— W (k). (3.2)

m(n)—oo

It turns out that this convergence also holds for any vector
(Cn(t1), . ,Q“n(tq)) under the same conditions.

Theorem 18 The convergence

()2 (Caltr), - Galty)) ———— (W(t),..., W(t,))

m(n)—oo

holds for each ¢ > 1 and each ty,...,t, € [0,1]%, if X; are zero mean i.i.d.
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H-valued random variables, satisfying E || X1]]? < oo.

This in view of theorem 17 gives the following.

Theorem 19 Let {X;,1 < i < mn},n € N be a collection of H-valued i.i.d.
random variables. Assume that EX; = 0, E||Xy|*> < oco. Then for each
q-tuple ti, ..., t, €[0,1]¢

w(n) 2 (Ga(t), . &alty)) 2 (W(t), ..., W (L))

Proof of theorem 18

For convenience write En = mw(n)"Y2¢,. Equip H? with product topology.

Then the net (Cu(t1), ..., Ca(t,)) is tight in HY since the nets (C,(t;)) are
tight in H due to (3.2).
Denote by (-, -), the scalar product in H? which is defined by
q
<hag>q = Z(hlﬂ gi>= h = (hh s 7h¢1>7 g = (.917 cee 7g¢I> € He.

=1

Accounting the above mentionned tightness, to prove the theorem we have
to check that for each h € H, the following weak convergence holds

Vo= ((Caltr), -, Galty)) by ———— ((W(t), ... ,W(tq)>,h>q. (3.3)

¢ m(n)—oo

This will be done through Lindeberg theorem. The first step is to establish
the convergence of the variance b,, := E V,? using the decomposition

zi: Cn tk 1/2221 z/n E 0 tk]) <Xl,hk>

i<n k=1

Denoting by I' the covariance operator of X, we get
ba= 2 > > > 1(i/n e [0,t]) 1(i/n € [0,]) E (X, hi) (X5, hu))

=SS (T, ) ﬂ(ln) 10/ € [0.6:] N [0.1))

k=11=1 i<n
q q
= Z Z<Fhk7 hl)‘P(Un € [07tk] N [07tl])7
k=11=1

where the discrete random variable U, is uniformly distributed on the grid
i/n, 1 < i < mn. Under this form it is clear that when m(n) goes to infinity,
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b, converges to b given by

= 3 S50 0.6 1 0.8 = B (207 (8.1}

k=1 1=1 k=1

When b = 0, the convergence (3.3) is obvious. When b > 0, let us introduce
the real random variables

zq: 1/21 'L/’I'L € [O tk]) <Xl,hk>,

which have both zero mean and finite variance and note that V,, = 37, Yy ;.
To obtain (3.3) we have to check, by Lindeberg theorem, that for each ¢ > 0,

— ;nE (V2,1 (|Ynal > €b)/?) ) ——0 (3.4)

Now we have

nzziz

S S 1 /n € [0, L (i/m € 0.8) (Xio ) ()

=11

3

o
—

1 q
q

q
—— Z S X o | ]|

n) =

:]

(n)
1
(n)

el
—

1imn1mw— x|
k 3 — 7'r(n) 7 .

(n)

:]

Recalling that the number of terms in Y°,.,, is exactly mw(n) and choosing
m(n) large enough to have b, > b/2, we obtain :

2 be
) < 2B (1P (0l > o) ).
Ch
which gives (3.4) by square integrability of Xj.

3.1.2 Necessity

Suppose we have weak convergence of summation process m(n)~'/2¢, to H-
valued Brownian sheet W,. Since the function w,(-,d) is continuous on
HC ([0, 1]4), by continuous mapping theorem it follows that

lim  P(wa((ny...1n4)"%,,0) > a) = P(wa(Wy, ) > a) (3.5)

m(n)—oo
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for each continuity point a of distribution function of the random variable
wa(Wy,d). Since paths of Wy lie in HC ([0, 1]9),

P(wa(W4,0) >t) -0 as 0 — 0. (3.6)

Thus oscillations of process 7 () ~!/2£, should be small. Recall that &, (k/n) =
Sy. For arbitrary § > 0 and n such that |1/n| = m(n)~! < §, we have

P(wa((nl .. .nd)_l/zfn, 9) > t)

_ Sk — St
ZP((n ..ng)"Y? max >t>.
T ey [(k - 1) /nfe

On the other hand since
Xy =AW AP,

we get

Xl = | AR Y eisi

el

<[> Aps;

i€l

where g; = +1 and [ is some apropriate subset of [0,m] N N with 2¢-!
elements. Thus

max @ S 2d_1 M
i<ksn n =z [(k = 1)/n|®

Now with p = (1/2 — )™t

X
P((nl ...ng) Y% max M > t)

1<k<n ny

-1 —1/2 —1/2
= P(nyPng . ong " ma || X]| > 1)

and we see that (3.6) gives us

—1/p, —1/2 —1/2 Pr
ny Py g lrg,?g(nHXkH Y 0. (3.7)
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If we assume that { X, k < n} are independent and identically distributed,
we have for each ¢ > 0

P(nll/pnzl/2 ong? max || X > t)

1<k<n

ning...ng
- < P(I X > tn)/"ny/? .. .n;/2)> . (38)
Thus (3.7) is equivalent to

ndP(||X1|| > ny/Pny/? --nil/Q) — 0. (3.9)

m(n)—oo
Note that (3.7) is as well equivalent to

w(n)P(| X > nifrm(n_,,)"?) ———0, (3.10)

m(n)—oo

for any m € {2,...,d}.

3.1.3 Tightness

In this subsection we prove the tightness of summation process ﬁ(n)_l/ 2¢,
in the space HY ([0, 1]¢) for the mean-zero i.i.d. collection of random variables
{X;,5 € N4}, We use tightness criteria, theorem 5, so we have to check
two conditions. The first about asymptotic tightness of the net &, at each
point t readily follows from finite-dimensional convergence, which requires
that E || X;1]]* < co.

Recalling the estimate (2.34) from the section 2.1.3 and the relation (1.4)
from the section 1.2.3 it follows that

lim lim sup P(sup 2% max Aju(m(n) 126,)| > ) =0

J=0 mn)—oo 2T veV,

holds if

Q

nem(n)"V2zm (3.11)

m(n)—oo

and

lim lim sup P( max 27 (n)"Y? max ¢, (t, te) > 5) =0 (3.12)

J =00 1 (n)—oo J<j<logm 0<k<2i
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hold for each m = 1,...,d. It turns out that condition

w(n)P(|\X1H > n,ln/pﬂ'(n,m)l/z) —0, m=1,...,d, (3.13)

m(n)—oo

is sufficient for (3.11) and (3.12) to hold. Since (3.13) ensures that E || X;]|? <
00, then condition (3.13) alone is sufficient for tightness of summation process

m(n)Y2¢,.
Proof of (3.11)

We prove (3.11) for m = 1, since the proof is the same for other m. For this
reason we drop superscript ) from Z,,. Note first that really

ko kq
Zn = max X NI
T DORD SR T
= d

Fix € > 0 and associate to any ¢ € (0,1) the truncated random variables )N(]
and X} defined as

Xy = X (10 < oni” (na...na) V2).
X, =X;-EX;, 1<j<n.

Substituting X; by )A(/j, respectively X7, in the definition of Z,, we obtain Zns
respectively Z/ . Introducing the complementary events

Eyn = {¥k <n, | Xl <on"(ny...na)'"?},  Ef = Q\ En,
we have
P(Zn > enyP(ny .. .ng)'?) < P({Zy > eni’P(ny. . .ng)" %} N E,) + P(ES).
Clearly Z,, = Zn on the event F,. By identical distribution of the X}’s,

P(ES) < ny...ngP(|X1| > 60" (ns. . .ng)"?)
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and this upper bound goes to zero when m(n) goes to infinity by condition
(3.13). This leads to

limsup P(Z, > eny/P(ny .. .ng)"?)

m(n)—oo

< limsup P(Zn > en/P(ny ... ng)?). (3.14)

m(n)—oo

Because ny P(ns...ng)2|EXy| — 0 as m(n) — oo by lemma 23, the
right-hand side of (3.14) does not exceed

lim sup P(nl_l/p(ng ong) V27 > ).

m(n)—oo

Using the extension of Doob inequality (1.12), we obtain with ¢ > p

P(n; P (ny...ng) %7 > €)

k2:q
<nm P max > X1 >z—:n/ (ng...ng)"?
12.a<kza<n2a||, ‘= et
2:d=12:d
1 n2:d q
< 5_qn1_Q/p(n2 . PR Y X1 igia)
12:4=12:d

Applying Rosenthal inequality (1.10) together with the estimates (3.34),
(3.35), provided in subsection 3.1.5 below, we obtain

Py (n, .. ng) V27! > ¢)
< ey (.. .nd)_Q/QCq((T@ ona) P (B X117

Y ng...ngE HX1||q)

_ 2q+1 m
< Cpe™( nTP (B || X |2)9/? + ——Bm e,
! q—p

Combined with (3.14) this gives

lim sup P(nl_l/p(ng oong) Y22, > ) < ed17P,

m(n)—oo

where the constant ¢ depends on e, p and ¢. Since ¢ > p and § may be
choosen arbitrarily small in (0, 1), the convergence (3.11) follows.
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Proof of (3.12)
Again we give the proof for m = 1 and subsequently drop the superscript. For

notational simplification, let us agree to denote by &’ the successive splittings

of €, i.e. & = ce where the constant ¢ € (0,1) may decrease from one

formula to following one. Notations ) (tx41,tr) and 9, (g1, 1) mean that
X are substituted by X and X} respectively in the definition of U (a1, tr)-

Accordingly we introduce the notations P(J,n;e’) and P'(J, n;e’) where

P(J,n;e) = P( max 2% (n) Y2 max ¥ (teg, te) > 8') (3.15)

J<j<logni 0<k<2J
Splitting €2 in complementary events
Ep = {vk <n, | X <o (na.. . na)"2},  Ef = Q\ Enp,
like in previous subsection we obtain
P(J,n;e) < P(J,nje) +ny .. .ngP(|| X1|| = 601" (na ... ng)?).
Then (3.12) is reduced by condition (3.13) to

lim limsup P(J,n;e') = 0. (3.16)

J—oo m(n)—oo

The number of variables Yk to be centered in the sum @En(tkﬂ, ty) is at most
ny(teir — t)na ... ng < ni2 7 ny .. ng and (3.32) yields

S 29 g B < nd 28 et (s na) !

=26""Pc,m(ny ... ng) "

Therefore

limsup max 2%(ny...ng) Y127 ny . ng||E Xq|| < 8 Pe, 277
m(n)—oo JSI<logny

This upper bound going to zero when J goes to infinity, (3.16) is reduced to

lim limsup P'(J,n;e’) = 0. (3.17)

J =00 (n)—oo
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We have with ¢ > p

logni

P'(Jn;e) < P(2%(ny ...ng) Y2 ! (trgr, tr) > €
(Fmse) < 30 P(20m - om) ™ ma vt ) > <)
logni A .
< N7 2% (ny L ng) TP IR A, (e, ) (3.18)
j=J

Denote uy, = [nytx] and observe that w1 — up < ni277. By (1.12),

Uk+1 Nn2:d a

> 2 X

i1=14ug i3.q=12.q

E ), (tg1,t)? < E

Estimating this last g-moment by Rosenthal inequality (1.10) with a number
of summands N < (n;277)ny ... ng, we obtain

E ) (try1,t,)? < Cq<(n12j)q/2(n2 . .nd)q/QE 1 X117 + 112770y ... ngE HX;H‘J)
S OqE ||X1||22_jq/2(n1 Ce nd)‘I/Q
1
M(gq—pg—jng/l’(m o na) "2,
q—p

Reporting this estimate into (3.18) we obtain
P'(Jn;e) <Xi(J,n;e") + Xa(J,m;e’)

with ¥; and Y5 explicited and bounded as follows. First

C ,
¥i(,mye) = ;,ZEHXlHQ Y oltalas1/2)

J<j<logn

E ||X1H2 Z 9—(a/p=1)j
j=J
C 9—(a/p=1)J

. q 2
= EEHXIH T o=@

Cy

< =z
—glq

Hence
lim limsup ¥4 (J,n;e’) = 0.

" m(n)—oco
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Next

q+1
2 chpvm 5q—pn*q0¢ 2jqa
(¢ —p)e” Y
J<j<logni
+1 g
277 CyCpm cqp, —qa M
(¢ —p)e 210 — 1

Yo(J,m;e') =

Noting that m = m(n) and limsup,, . ¢,.m = ¢, We obtain

21+
lim sup Xo(J,m;¢’) < 4 P

m(n)—o0 (g —p)(29 — 1)e"

Recalling (3.15) and summing up all the successive reductions leads to

21+1C
limsup limsup P(J,n;e) < % p

J—oo m(n)—oo (q - p)(Qqa - 1)5/11

Since P(J,n;e) does not depend on § which may be choosen arbirarily small,
the left-hand side is null and this gives (3.12).

3.1.4 Corollaries

We state now the invariance principle in the space H2 ([0, 1]%).

Theorem 20 For 0 < a < 1/2, set p = p(a) :==1/(1/2 — «). For d > 2,
let {X;; 1 € N%, 4 > 1} be an i.i.d. collection of square integrable centered
random elements in the separable Hilbert space H and &, be the summation
process defined by

i_l,i N[0, t)| X;. (3.19)
EaDY

Let W be a H-valued Brownian sheet with the same covariance operator as
X1. Then the convergence

HZ ([0,1]%)
—

w(n) V2%, = W (3.20)
holds if and only if
ﬁ(n)POleH > n}ﬂr{pﬂ-(nfmy/z) — 0, (3.21)

form=1,...,d.
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Proof. 1t is really nothing left to prove, since necessity is proved in subsection
3.1.2, the convergence of finite-dimensional distributions follow since (3.21)
ensures that E || X1]|?> < oo and tightness is proved in subsection 3.1.3. O

Though condition (3.21) looks rather technical it turns out that it is
equivalent to the finiteness of the weak p-moment of X7, i.e.

sup t? P(|| X1]| > t) < 0. (3.22)
>0

We prove this for m = 1 as the proof is the same for all m. Note that (3.21)
is equivalent to

v} (vg - - -vd)QP(HXlH > Vg - vd) —0 (3.23)

m(v)—o0
and in return (3.23) is equivalent to the convergence

where
F(m):= sup vf(vs-- 'Ud)2P(||X1|| > U1Ug -+ 'Ud>-

m(v)>m

Now introducing the function ¢(t) := P(||X1]| > t) and the sets
Hipo={v e RE: v > m, vivg---vg = t},

we have

F(m) = sup sup v t%g(t) = sup t3g(t) sup v} >

thd 'Uth,m thd 'Uth,nL

When t > m¢, H,,, is non empty and on this set, v; = t(vg---vg)~! is

maximal for v, = -+ = vy = m, so

t2g(t) sup vV = tPg(t)ym~d-Dr=2),

vEHtm

Finally
F(m) =m~4=D@=2 sup tP4(t).
t>md
Recalling that d > 1 and p > 2, this reduces the convergence (3.24) to the
finiteness of supy,,q tPg(t) for some mo > 0. As t#g(t) is bounded on any
interval [0,a] for a < oo, this finiteness is equivalent to (3.22). Thus we
proved the following theorem.
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Theorem 21 The convergence

H,([0,1)%)
—_—

W(n)’l/%n %4

m(n)—oo
holds if and only if

supt" @ P(|[ Xy > 1) < o0, pla) =(1/2—a)™",
t>0

As condition (3.22) is weaker than E ||X;[|” < oo, then theorem 20 improves
when H = R, Erickson’s [12] result for Qg :

Hg,((0,1)%)
—_—

(nl"'nd>71/2€n W)

m(n)—oo

if 0 << 1/2 and E|X;|? < 00, where ¢ > dp(«).
Considering the convergence of random fields (&, n € N¢) along the fixed
path n = (n,...,n) € N n € N we obtain the following result.

Theorem 22 The convergence

n Py e W (3.25)
holds if and only if
Jim #7% P([| X1 | > ) = 0. (3.26)

Proof. Looking back at the proofs in previous subsections and having in
mind the extra assumption that n;y = ny = --- = ng = n, it should be clear
the condition obtained by reporting this equality of the n;’s in (3.9), namely
to

ndP(||X1|| > n1/p+(d_1)/2> —— 0. (3.27)

n—oo

It is easily checked that in (3.27) the integer n can be replaced by a positive
real number s and then puting t = s'/PT(@=1)/2 we obtain the equivalence of
(3.27) with

2pd
Jim t770 P([| Xq]| > t) = 0. (3.28)
Finally recalling that p = p(a) = 2/(1 — 2a), we get
2pd 2d

24p(d—-1) d—2a’
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which reported in (3.28) gives (3.26) and completes the proof. [

Since 2d/(d — 2a) < 2d/(d — 1) we see that E || X1]]*¥4~1) < oo yields
(3.26). In particular E || X1]|* < oo gives the convergence (3.25) for any
d > 2 and any 0 < a < 1/2. This contrasts with the corresponding result for
Holder convergence of the usual Donsker-Prokhorov polygonal line processes
where necessarily E | X;|? < oo for any ¢ < p(«) as follows from (1).

Of course, Theorem 22 is only a striking special case and similar results
can be obtained adapting the proof of Theorem 20 for summation processes
with index going to infinity along some various paths or surfaces.

As passing from n to n+ 1 brings O(n¢"!) new summands in the summa-
tion process of Theorem 22, one may be tempted to look for similar weakening
of the assumption in the Holderian FCLT for d = 1, when restricting for sub-
sequences. In fact even so, the situation is quite different: it is easy to see that
for any increasing sequence of integers ny such that sup,, ng1/np < 00, the

convergence to zero of ni(a)P(|X1| > ny) when k tends to infinity implies (1).

As ng(a)P(|X1| > ny) = o(1) is a necessary condition for (&,, )x>1 to satisfy
the FCLT in H([0, 1]¢) when d = 1, there is no hope to obtain this FCLT
for (&, )k>1 under some condition weaker than (1).

3.1.5 Truncated variables

In this subsection we complete the technical details about the estimates of
moment of truncated variables used above. Such estimates are obtained
under the assumption:

nl'--ndP(HXlﬂ > n}/pn§/2~~n3/2) — 0. (3.29)

m(n)—oo

Let § € (0,1) be an arbitrary number. Define

X; = X1 (|1X5] < om/"(na...na)""2}), (3.30)
X,=X;-EX;, 1<j<n. (3.31)
Though we give the proof for (3.30) definition of truncated variable, the
estimates hold for any permutation of indexes 1,...,d in (3.30) combined

with the same permutation in (3.29).
Denote for m > 0

c(m) = sup sup uvy ... vaP(|| X[ > w!P(vy ... vg)"/?)

U2 Vg >M

¢p i= supt¥ V2P| X4 || > t).
£>0
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Evidently condition (3.29) yields ¢(m) — 0 as m — oo and ¢, < co. Set

Cpm = max{cy; c(m)}.
Lemma 23 With m = m(n) and any q > p
HEj(vl I < 2617pcp,mni/pil(n2 .. .nd)il/QQ
E | X, < jcﬁ’zzéq_pn({/p_l(nz o ong) 2
B|X)° < B X%

2‘]+1 _
E| X< f;’“aqpn({/p Yng ... ng)¥> 1,

Proof. To check (3.32), we observe first that since E X; = 0,
IEX;|| = ||EX: - EX;1 (||X1|| > 571}/?(”2 N -nd)1/2> H

</ P(| Xa]| > 1) dt

ny/P (n2...na)t/2

1/2
+0mP(na . na) 2P (|| X1l > 6nP(na . ona) ).

Next we have

/ P(1X | > 1) dt

ny/? (na...ng)1/2

1/p—1 12 [ 2
= on, (ng...nd)’//1/2vn1n3...nd
Ty

P(| Xy > dvni’P(ns...ng)""*) —

2

< ony" (ng .. .ng)"V2b(m, 8) /2 v 2 dv
< 8b(m, )ni’" H(ny . . .ng) V2,

where

b(m,d) := sup sup uvy...vgP(||Xq|| > 6uP(vy ... vg)Y?).

u>m vy, g>m
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We complete the proof of (3.32) noting that

b(m;0) = 6P sup sup uvy...vgP(]|Xq]] >u1/p(v2...vd)1/2)

u>6Pm va.q>m

= 6‘pmax{ sup  sup uvy. .. vgP(|| X1 > utP(vy. .. vg)?);

m>u>6Pm va.q>m

sup sup uvs...vgP(]|X1|| >u1/p(vz...vd)1/2)}

U2 V2:4 2>

< 5‘pcp,m, (3.36)
since

sup sup uvs ... vgP (|| X1l > u'/P(vy. .. vg)"?)
u<m va.q>m

< sup sup uvs.. .vdcp(ul/p(UQ L ug)Y?) /2=

u<m vg.q>m

= ¢, sup preld=1/(d=2a) gy, (vg.. .vd)’%‘/(d’m) = Cp.

u<m V2:42>2M

Next we have

1/2

_ Jni/p(ng..‘n )
E|X < [ ELP(|X | > 1)t
0
5(na...ng)/? 1
:/ 7 P(| Xy || > 1) dt
0

5n}/p(n2...nd)1/2
+/5 $1P(|| X | > ¢) dt.

(ng...nd)1/2

By Chebyshev inequality P(||X;]|| > ¢) < t~2, hence the first integral does not

1/p
exceed (g — 2)71692(ny. .. ng)?> 1. As [T < n?P7', the second integral
does not exceed
1/p

5q(”2---nd)q/271/ 1 ny...ngu P(|| Xq| > 5“(”2---nd)1/2)uq7p*1 du
1

< 8Uny...ng)"* " sup  sup wvs...vgP(| X1 > 6uMP(vs ... vg) /PP
v2.q2>m 1<u<ng

1
< — maX{b/(ma 6)7 b(m7 5)}5qn(f/p_1(n2 ... nd)q/Q—l’
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where

V'(m,d) == sup sup uvy...vgP(||Xq| > 5u1/p(712 .. .vd)1/2)

v2:.g2m 1<u<m

< 572d/(d/27a)cp < (SipCp,

recalling that 0 < § < 1 and p = (1/2 — a)~!. Accounting (3.36) inequality
(3.33) now follows.

To check (3.34), let us denote by (ex, k € N) some orthonormal basis of
the separable Hilbert space H. Then we have

2

)

1X12 =3 [(% - B X e = 3 [(Kiex) — B(Xy ex)
k=0 k=0

whence
‘2

BIIX{[? = Var((Xy,ex)) < DB (X1, ex)
k=0 k=0
(e%e] . 9 L
=B [(Xi,e)| =E[X|* <E|X1]?
k=0

which gives (3.34).

Finally we note that (3.35) is obviously obtained from (3.33) since the con-
vexity inequality || X7 |9 < 2971 X ||942971|E X, || together with E || X; || <
(E X191 gives BJIX{[|* < 2/E | Xy 7. O

3.2 Triangular array

3.2.1 Finite dimensional distributions

In this subsection we find the limits of finite-dimensional distributions of
process =,. We show that the convergence to Brownian sheet is only a
special case. In general case the limiting process is Gaussian, if the limit
exists, but that is not always the case. As in the i.i.d. case we show that it is
more convenient to analyze the jump version Z,, of process =,,. Then we give
some examples for which convergence to the Brownian sheet fails. Finally
we give the conditions and assumptions, under which the finite-dimensional
distributions converge to some Gaussian process.

Recall definitions B(k) and b;(k;) from equations (2.41) and (2.42) in the
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section 2.2.1. Define then the jump process as

Zn(t) = Y. 1(B(k) € [0,t]) Xy

1<k<k,
The following result holds.

Lemma 24 Assume

%rgllag}ilé%?g}ig Abi(k)) — 0, as m(n) — oo. (3.37)

Then
E|Z,.(t) — Z,(t)]> — 0, as m(n) — oo (3.38)
and subsequently
Zn(t) — Za(t)] 20, as m(n) — oo.

Proof. For each t we have

where

Qnk = ‘Qn,k‘_l‘Qn,k’ - 1{B(k) € [07t]}

Now || < 1, and vanishes if Q. C [0,t], or Qnir N[0,t] = @. Actually
ank # 0 if and only if k € I, where [ is defined as

1= {Z <n;Vk e {1, ce ,d}, 1 < bk(uk(tk) + 1) and
dl e {1, R ,d}, 1y = bl(ul(tl) + 1)}

Thus

d
E|2.(t) — Gu(t)]? =Y annonp <Y 0np < D Ab(ug(t) +1).

kel kel =1

Now due to (3.37) we have
E|Z,.(t) — Z,(t)|]> — 0, as m(n) — oo,

which coupled with the estimate P(]Y| > r) < r—2E|Y|?, for any random
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variable Y gives us
Zn(t) — Zo(t)] 50, as m(n) — co. O

The condition (3.37) ensures that the grid gets thinner and thinner as m(n)
approach the infinity. It is more restrictive than the condition of asymptotic
negligibility. Define now

int) = Y UB(K) € [0,8]}02,, (3.39)
1<k<kn
It is clear that u,(t) = E Z,(t)?. If the limiting finite-dimensional distribu-

tions of Z,, were those of Brownian sheet, then p,(t) would converge to 7(t)
for each t. Consider the following example of triangular array.

Example 1 For n = (n,n) and k, = (2n,2n) take X, = aniYs, with
{Yi,k < k,,} i.i.d. random variables with standard normal distribution, and

s {101712’ for k < (n,n)

a _—
n,k .
otherwise.

(3.40)

_3
10n2°

Thus defined triangular array satisfies the condition (3.37), but simple alge-
bra shows that for such an array

Mn(t) — I/(t) . L <5t1 A 1) <5t2 A 1) + M (5t2 V 1>

“10\2 9 10 2
L(B=2)vo(ls ((5t1 = 2) v 0) ((5t2 — 2) V 0)
10 21 30 '

Furthermore for the following example p,(t) does not converge for any ¢.

Example 2 For n = (n,n) and k, = (n,n) take Xpp = bprYr with
{Yi,k < k,} i.i.d. random variables with standard normal distribution, and

2o m(kn)™t, form=(201—1,21—1), l €N
ke app, forn =(20,2l), le N

where an g are defined as in (3.40).

Nevertheless we can get some fruitful results by making following assumption.
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Assumption 1 There exists a function u : [0,1]* — R such that

vt € [0,1]4, lim  pn(t) = u(t). (3.41)

m(n)—oo

With this assumption we can state the following result whose proof is post-
poned for a while.

Theorem 25 Given assumption 1 there exists a Gaussian process {G(t),t €
[0, 1]%} with covariance function EG(t)G(8) = u(t A 8). Furthermore if

fgza%é%%; Abi(k;)) — 0, as m(n) — oo (3.42)

and for every e > 0

lim > EX.1{|Xnx >e} =0, (3.43)
m(n)—oo 1<k<kn
then for any collection of m points ty, ..., t,, € [0,1]%

D

(Zn(t1), ..., Zn(tn)) = (G(t1),...,G(ty)).
For the process =,,, the following theorem holds.

Theorem 26 If there exists a function p : [0,1]% — R such that

vt € [0,1]°, (li)m EZ2(t) = p(t) (3.44)
and
max max Ab(k;) — 0, as m(n) — oo (3.45)

1<i<d 1<k, <kl

and for every e > 0

lim > EX. 1{|Xnx >e} =0, (3.46)
m(n)—oo 1<k<kn
then given any collection of m points ti, ..., t,, € [0,1]¢

(En(tr), .., Enltn) 2 (G(t1), ... G(tw)),

where G is a Gaussian process satisfying EG(t)G(s) = u(t A s) fort,s €
[0, 1)7.
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Proof. Since (3.45) is satisfied lemma 24 gives us
IEZ2(t) — E Z2(t)] 5 0, as m(n) — oo,

thus the limits p(¢) in (3.41) and (3.44) coincide. The theorem 25 then gives
us the existence of the process G and the same theorem combined again with
lemma 24 gives us the proof. [J

For triangular arrays with certain variance structure, the limiting process
is always a Brownian sheet. Take double indexed triangular array {X,, ;;,1 <
i < 1,1 <j < Jo}withEX? = ab;, where a;, b; > 0and Y a; = 1 = Y b;.

Recalling notations (2.41) we get

= Z:a bo(l) = 3 b,

j=1

so our grid rectangle is now

k—1 k -1 !
Qn,kl:[zaiazah))( Z%Z%)-
i=1 =1 j=1  j=1

We see that grid points on x-axis are defined only by a; and on y-axis by b;.
Now the variance of jump process in this case will be

- iil ((kzlak,Zbl) € [0, 8] x [0>t1]) aib;

i=1j=1
—21 (Zak e [0 t1>a221 (Zbl e [0 t2>
=1 J=1
and if we assume the condition (3.45) which in this case translates to

max a; — 0, max b; — 0,
1<i<I, 1<5<Jy,

we see that

/'Ln(t) - t1t27

which is the variance of Brownian sheet. Thus assuming the Lindeberg condi-
tion (3.46), theorem 25 implies that limiting finite-dimensional distributions
in this case are those of Brownian sheet.
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Proof of theorem 25
Define

g(t,s) = Jim fin(t A S).

mn—>oo

If we prove that g(t, s) is positive definite, then the existence of zero mean
Gaussian process {G(t),t € [0, 1]¢} with covariance function E G(t)G(s) =
g(t, s) is ensured by theorem 7. Take p € N, vy,...,v, € Rand ty,...,¢t, €
[0,1]%. Note that for any ¢, s, € [0,1]? we have

{r €[0,tAs]} =1{r €[0,t]N[0,s]} = 1{r € [0,t]}1{r € [0, s]}. (3.47)
Then

2 et A )ty = 33 ey 3 UBK) € 0.1}

i=1j=1

=X nk(zm{g e 0.t ]})220.

=1

Since this holds for each n, taking the limit as m(n) — oo gives the positive
definiteness of ¢(t, s). So the first part of the theorem is proved.
Now fix ¢1,...,t, € [0,1]¢ and vy, ..., v, real, and set

Vn - Zijn(tp> = Z an,an,ka
p=1 1<k<kn

where
Ank = Z vpl (B(k) € [0, tp]) .
p=1

Now using (3.47) we get

by =EV.= > abiony

k<kn

=2 Zvavq ) €(0,£,])1(B(k) € [0,t,]) o7 1

k<k, P

:szpvq:un p AN g).
P q
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Letting m(m) tend to infinity and using assumption 1, we obtain

DS vvgu(t, Aty) =E (vaG(tp))2 =: .

bn

m(n)—oo

If b = 0, then V,, converges to zero in distribution since EV/? tends to
zero. In this special case we also have }°, v,G(t,) = 0 almost surely, thus the
convergence of finite dimensional distributions holds.

Assume now, that b > 0. For convenience put Y, = ap i Xnr and v =
> 2 Uptq. Conditions (3.42) and (3.43) ensures that triangular array X, ;
satisfies the conditions for central limit theorem: infinitesimal negligibility
and Lindeberg condition. The same is true for triangular array {Y,,.}. We
have

2 2
Y%k fzU}(n,k?

thus Y, ; satisfies the condition of infinitesimal negligibility. For m(n) large
enough to have b, > b/2, we get

Ei/z Z E (Y'rik]-{|yn,k|2 > ?E Vi})

n 1<k<k,

v be?
<5 Y E (be,k1{|xn,k|2 > 2@})

1<k<kn

Thus Lindeberg condition for V,, is also satisfied and that gives us the con-
vergence of finite dimensional distributions and the proof of the theorem.

3.2.2 Tightness

To prove tightness of process =,, only certain moment conditions are required.
There is no need for additional variance structure assumptions as proving the
convergence of finite-dimensional distributions. This is quite clear, since due
to results from section 2.2.2 and corollary 6, the process Z,, is tight if

lim P( sup |En(t)] > a) =0 (3.48)

=0 tef0,1]¢
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and for every e >0 and m=1,...,d,

(li)m P(Z,gm) > 5)2 0; (3.49)
lim lim P/(sup2 7 max,(r,r™ m > e)= 0; 3.50
J—o00o m(n)—oo (jZIJ) reD; ¢ ( ) ( )
lim lim P sup277®max,(r,r)™ > ¢ ]=0, 3.51
J—o00 m(n)—oo <j>5) reD; w ( ) ( )

recalling respectively the definitions (2.51),(2.50) and(2.52).
Using Doob inequality (1.12) we have

P( sup |Z,(¢)| > a) = P(max|S,(k)| > a)
te[o,1]¢ k<kn
<aES,(k,)*=a?—0, as a — 00,

thus (3.48) is satisfied leaving us with checking (3.49) to (3.51). As the
expressions in the probability involve only sums we can use similar techniques
as in proving tightness of process &,. We give now two sets of conditions.

Theorem 27 For 0 < o <1/2, setp(a) :=1/(1/2 — ). If

Fgllag}iu;l%}ig Ab(k;) — 0, as m(n) — oo. (3.52)

and for some q > p(«a)

lim Y 0, W E|Xul? =0, (3.53)

m(n)—0oy 2
then the net {Z,,n € N} is asymptotically tight in the space H° ([0, 1]%).
Introduce for every 7 > 0, the truncated random variables:

Xnkr = Xnrel{|Xnkl < Tai?‘k )
Theorem 28 Assume that

fglaé}illg;?g}ig Ab(k;) — 0, as m(n) — oo. (3.54)

and that the following conditions hold.
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(a). For every e > 0,
lim Y P(| X, >e02%) = 0. (3.55)
mm) =00 ) <k
(b). For everye >0,
lim Y EX.1{| X, >e}=0. (3.56)
m(n) =00y 5k,
(c). For some q>1/(1/2 — a),
lim lim > 0, 37°E|Xpk.|?=0. (3.57)
7—0 m(n)—oo 1<k<kn

Then the net {Z,,n € N} is asymptoticaly tight in the space HS([0, 1]%).

Proof of the theorem 27

We only need to check that (3.52) and (3.53) ensure (3.49), (3.50), (3.51).
We check only the case m = 1, since the proof is the same for other m, thus

in following proofs we drop the superscript m.
Proof of (3.49). Using Markov and Doob (1.12) inequalities for ¢ >

1/(1/2 — a) we get

P(zn > 5> < kz p( max |A,§1>sn(k>| > 5(Ab1(k:))°‘>

q
<Zs (Aby (K an( max |A,(€1)Sn(k)|>
kQ:dSkn,Zd

<25 (Aby (k) E |AY S, (k).

Rosenthal inequality (1.10) gives

P(Z > g) < cig 1(Aby (k)7 ((Abl(k))q/er % % E|Xn,k]q>.

k=1 ko=1  kg=1
(3.58)

79



We have

%(Abl(k))qw—a) < < max Ab; (k)

1
= 1<k<kl

q(1/2—a)—-1 Kk}
) S Aby (k) (3.59)
k=1

q(1/2—a)—1
= ( max Abl(k)> — 0, as m(n) — oo,

1<k<kl

due to (3.52) and the fact that ¢ > (1/2 —a)~!. Also

kL k2 kd
D (Aby(R)™ > Y B Xnkl' = Y (Abi(k1) " E [Xpl?
k=1 ko=1 kq=1 k<kn
< Z U;,ian | X k| — 0,
k<kn

as m(n) — oo, due to (3.53), since (Aby(ky)) % < U;iqa forall1 <k < k,.
Reporting these estimates to (3.58) we see that (3.52) and (3.53) imply (3.49).

Proof of (3.50) and (3.51). We check only (3.50) since (3.51) is treated
similarly. Define

II(J,n,e) = P(sup 279 max 1, (r, r_)(m) > 5)

i>J rebD;

then

II(J,n,e) < Z P(20‘j ng%xz/)n(r, rT)>e¢) < Z Z £TI0IIE, [t (7 7) |2

i>J j>J reD;
Doob (1.12) and then Rosenthal (1.9) inequalities give us

q

En(r,r7)T <E

u1(r)
> (2 xu
y+2

ko.q<kn2:.4 \ki=ui(r—

uy(r) q/2
(55w

ki=u1(r—)+2 k2.4<kn 2.4

u1(r)
LY Y E |Xn,,cyq>.

ki=u1 (’I"_)+2 k2:d§k‘n,2:d
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Due to definition of u;(r)
u1(r) u1(r) .
Z Z O-'?L,k = Z Ab1<k1) S r—r = 27]7
ki=u1(r—)4+21<k2.q<kn 2.9 k1=u1(r—)+2

thus

(Jm,e) < £ 3 ot

]>J
uy(r)
° Z oo % > E[Xuill (3.60)
J>J reD; ki=ui(r=)+2 k2.a<(kn)2:4

Denote by I(J,n, q) the second sum without the constant cs=%. By changing
the order of summation we get

I(J n,q Z E’Xnk|q22aqj Z 1{'LL1 —|—1 < ky <U1< )}

1<k<kn i>J reD;

(3.61)
The proof further proceeds as in [28]. Consider for fixed k; the condition
ur(r7) + 1 <k < uy(r). (3.62)

Suppose that there exists r € D; satisfying (3.62) and take another 7" € D;.
Since u; is non decreasing, if v’ < r~ we have u; (") < uy(r~) +1 < k, and
thus 7’ cannot satisfy (3.62). If ' > r, then '~ > r, whence k£ < uy(r) <
ur (") < ui (') + 1 and again if follows that ' cannot satisfy (3.62). Thus
there will exists at most only one r satisfying (3.62). If such r exists we have

ur(r”)+1 k1 ui(r)

i=1 =1 =1
Thus Abl(k’l) < 277. So

Ve =1,... 0 ky, Y Hui(r7) + 1 < ki <u(r)} < 1{Abi (k) <277}

reD;

SO

210

D29 3N Mg (r7) +1 < by <ug(r )}§2qa_1

i>J rED;

(Aby (k1)) (3.63)
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(we can sum only those j, for which Ab;(k;) < 277, because for larger j, r
and r~ will be closer together and will fall in the same R, x).
Reporting estimate (3.63) to (3.61) we get

I(J;n,q) <C 37 (Abi(k1)) B [ Xnkl! < 3 0,0 E [ Xpl?

and substituting this into inequality (3.60) we get

[(J,nse) < Cre127790F102 1 0y 3 g W B | X, 5|7
k<kn

Thus

lim II(J,n;e) =0

m(n)—oo

follows from (3.53), which gives us the proof of the theorem.

Proof of theorem 28

As in proof of the theorem 27 we check (3.49), (3.50), (3.51) and give a proof
only for case m = 1.

Proof of (3.49) Define:

Snﬂ'(k): Z Xn,j,fa Snﬂ'(k)/: Z (Xn,j,T_EXnJ,T)

1<j<k 1<j<k

and

A, = { max | X| < Taif“k}.

1<k<kn
Then we can estimate the probability in (3.49) by
P(Z, >¢)=: P(n,e) < P(n,e,7) + P(A;)

where

A(l) (K
Pl(n,e,T):P< max |kIS’()|>5>.

B (AL (k) (364)

Due to (3.55) the probability P(A¢) tends to zero so we need only to study
the asymptotics of Pj(n,e,T).
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Using the splitting
AL S (k) = ALS, (k) + BALS, (k).

let us begin with some estimate of the expectation term, since X,, i » are not
centered.
We have

E| X, <SEYAX2 P Xppl > 1025).
By applying Cauchy inequality we get

1 kn,2:
e [EAL S (R) Sy B | X |

Kk (Aby(k1)® —ishisks  (Aby(ky))e

1/2
(Aby (ky))'/? < zﬁ;jﬁl P(| Xnx| > mi?k))

<
= 2k (Aby (kr))e

1/2
< 1/2—a 2a '
< g ())o(F PNl > 7o)

Due to (3.54) and (3.55) the last expression is bounded by ¢/2 for n > ny,
where ny depends on ¢ and 7. Thus for n > ny we have Pi(n,e,7) <
P/(n,e,7), where

: _ AL)S, (k)]
Pl(n,€77—)—P<1£I}€8%};n(Abl(k'l))a>5/2 . (365)

Since

VarX, . < E X}

n,k,m

<EX],=o.

n,k>
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using Markov, Doob and Rosenthal inequalities for ¢ > 1/(1/2 — ) we get
kn

Pl(n,e,7) <3 (/2)71(Aby (k) "B |ALS, (k)|

k=1

< cé(a/Q)Q(Abl(k))qa ((Abl(k))q/2 + ni:d E |Xn,k,T|q>

ka.q=1
ks,
< oo/ S@AREIT 4 S 0B Kl
k=1 1<k<kn

Note that this estimate holds for each 7 > 0. Combining all the estimates
we get

V7 >0, limsup P(n,e) <climsup ) aﬁfo‘E | X kr |

m(n)—00 m(n)—00 1 <k<k,

with the constant ¢ depending only on ¢. By letting 7 — 0 due to (3.57),
(3.49) follows.

Proof of (3.50) and (3.51) We again prove only (3.50) since (3.51) is
treated similarly. Introduce definitions v, -(r,7~) and ¥, (r,r") by ex-
changing variables X,,  with variables X, j » and X;t,kﬁ = Xnkr—EXnkr
respectively. Define

P(J,n,e) = P(sup 2% max Yy, (r,r7) > 5).

j>J reD;

Similar to the proof of (3.49) we need only to deal with asymptotics of
Py (J,n,e, 1), where

P(Jn,e,1)= P(sup 207 m%an,T(r, rT) > 8).

§>J rel;
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Again we need to estimate the expectation term. We have

sup2®/ max max
§>J r€D; 19:0<ko:a<kn2:d | ._

u1(r) 1/2 ur(r)  kn2wd 1/2
< sup 2% max ( Z Ab (i )) ( > > P(|Xpk| > o )>

jzJ i=ug (r—)+2 i=u1(r—)+2 ka.q=1
1/2
S2J(a—1/2)< Z P(| Xnkl >Uffk)> .
1<k<k,

The last expression is bounded by £/2 for n > ng, due to (3.55) where ny
depends on ¢ and 7, but not on J. Thus P(J,n,e,7) < P{(J,n,e,7), where

P/(J,m,e 1) := P(sup 207 maxw A7) > 5/2). (3.66)

i>J reD;

Applying the same arguments as in proving (3.60) we get

P/(J,n,e,7) < % Z 9(ao+1-4/2)j

j=J
uy(r)
A DIDIELEEDY > Bl
]>J rebD; ki=u1(r—)+2 1<k2.q<kn 2.4

Now using estimate (3.63) we get

P{(Jn,e 1) < 0201927 4 0y N 0 HOE | X g |7,

1<k<kn

where constants C; and C5 depend on ¢, o and €. Note that this inequality
holds for each 7 > 0. Combining all the estimates we get

V7T > 0, hm limsup P(J,n,e) < Csylimsup Z 1% Qan\Xn,”\

7% m(n)—o0 m(n)—00 1 <k<ky,

By letting 7 — 0 due to (3.57), (3.50) follows.

3.2.3 Corollaries

Recalling the results from previous subsections we have the following func-
tional central limit theorem for the summation process =,,.
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Theorem 29 Suppose there exists a function p : [0,1]4 — R such that

vt [0,1]%,  lim EZZ(t) = u(t). (3.67)

m(n)—oo
For0<a<1/2, set p(a) :=1/(1/2 — «). If

g?;&é%%@b Ab(k;)) — 0, as m(n) — oo (3.68)

and for some q > p(«a)

lim Y 0, B [ Xk

m(n)—oo 1<k<kn

=0, (3.69)

then
o d
En3§%ﬁaa, (3.70)

where G is a centered Gaussian process satisfying EG(t)G(s) = u(t A s) for
t,s e[0,1].

Proof. We have
1
S BN,z < 3 Bl

1<k<kn,

Since Ufhk < 1, condition (3.69) ensures that 3°; <g<p, E|Xyx|? converges to
zero, thus conditions of theorem 26 are satisfied and we have convergence
of finite-dimensional distributions. Furthermore the conditions for theorem
27 are satisfied also, so the process =, is asymptotically tight in the space
H?([0,1]%). The theorem then follows. [J

Our motivation for introducing special construction for the collections
of random variables with non-uniform variance was to get one limiting pro-
cess in functional central limit theorem for all possible variance structures of
the collection. It is clear from theorem 29 that this goal was not achieved.
Nevertheless we think that this is an improvement compared to using non-
modified construction. The convergence of process &, in case of non-uniform
variance was investigated by Goldie and Greenwood [13], [14]. Their focus
was on non-independent variables and although the domain of summation
process was wider, for [0, 1]¢ their process coincides with &,. They proved
the convergence to Brownian sheet in case n = (n,...,n) in the space of
continuous functions, but naturally their result requires that E&,(t) — m(t)
for all t € [0,1]?, which is the special case of our requirement (3.67). Fur-
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thermore to achieve the convergence they place quite strict conditions on
variances of random variables by requiring that

lim sup En’X],1 (|nd/2Xn’k| > c) = 0.

€70 1<k<kn

This limit follows from Lindeberg condition if we take EX,ik = n~% Thus
the variances in Goldie-Greenwood case have the additional restriction, which
is unnecessary when using our proposed construction. Furthermore for the
special structure of variances the convergence EZ,(t) — m(t) is always
satisfied.

Corollary 30 Let 0}, = 7(anx), where {@nk = (ah .- a0 ,,)} is a
triangular array of real vectors satisfying the following conditions for each

1=1,...,d and for all k < k,,.
i) Y al =1 with ai,,, > 0.
0, )
122}; an, — 0, as m(n) — oo
Then condition (3.69) is sufficient for weak convergence of summation process

=, in the space HO([0,1]%) and the limiting process is then Brownian sheet

w.
Proof. The result follows from theorem 29 if we check that

EZ2(t) — m(t), (3.71)
since evidently the condition (3.37) is satisfied. We have
ki
(kz) = Z a;,ka
k=1
thus
1{B(k) H 1{bi(k i}

so for jump process Z,, we have

EZX(t)= ) 1{B(¢t) Ot}ank—HZHb € [0, ¢} al, . -

k<kn i=1k;=1
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But

Zl{b € [0, ¢} al, ;. = Za

thus (3.71) holds due to lemma 24 and the result follows. [

The weak convergence of summation process for random variables with
such variance structure was investigated by Bickel and Wichura [5] for case
d = 2. They investigated weak convergence in the space of cadlag functions.
Naturally the convergence to Brownian sheet was proved.

Since in i.i.d. case we have E X ; = 7(k,,) this corollary then shows that
theorem 29 is a generalization of invariance principle 20 in case of real valued
random variables. The moment condition (3.69) in i.i.d. case then becomes

lim Zﬁ(n>an|Xi/7T(n)l/2’q: lim 7 (n)"@ " YYE | X7 =0

m(n)—oo i<n m(n)—oo

for some ¢ > 1/2 — a and 0 < a < 1/2 which holds whenever E | X;]? < occ.
Compared to requirement sup,.,t"/2~*P(|X;| > t) we see that our moment
condition is not optimal, but not very far from optimality. We can further
weaken it by introducing truncated variables

Xn,k;r = n,kl{an,k| < 7-0-72«3]@
Then following theorem holds.

Theorem 31 Suppose there exists a function p : [0,1]4 — R such that

vt € [0,1]%, (li)m EZ2(t) = u(t). (3.72)
If
max max Ab(k;) — 0, as m(n) — oo (3.73)

1<I<d 1<k <kl
and following conditions hold:

(a). For every e > 0,

lim Y P Xl > 202) = 0; (3.74)

m(n)—oo 1<k<kn
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(b). For everye >0,

lim Y EX.1{| X, >e} =0; (3.75)

m(n)—oo 1<k<kn
(c). For some q>1/(1/2 - «),
lim lim > 0, 3B | X, 5|7 = 0; (3.76)

T7—0m(n)—oo 1<k<kn

then

= Ha(0,1%
=

—n
m(n)—oo ’

where G is a centered Gaussian process satisfying EG(t)G(s) = u(t A s) for
t,s e[0,1]7.

Proof. The proof is identical to that of theorem 29. Just notice that the
theorem conditions ensure the conditions of the theorems 28 and 19. [

89



Chapter 4

Applications

To apply our theoretical results we have to look at the examples where we
can naturally assign multi-dimensional index to random observations. One
of such examples is so called panel or longitudinal data, where a sample of
individuals is observed over some period of time. In this case each observation
has two indexes, one denoting the number of individual and another the
time period at which the individual was observed. For such type of data
all classical statistical problems can be discussed in a view of adjustments
necessary for accomodation of the additional index. We restrict ourselves to
regression and change point problems with the goal of developing the test for
detecting the occurence of the change of the regression coefficient in a given
sample.

We briefly recount the general setting. The classical panel data regression
model which we investigate can be presented as

Yit = Oy + X;tﬂ + Usz, (41)
where s =1,..., N, t=1,...,T, y; is an observation of dependent variable
for individual 7 at time period t, X}, = [T14,...,Zki] is the K x 1 vector

of observations on the independent variables and u; are zero mean distur-
bances. The classical panel regression problem is to estimate 3 in a view of
various assumptions on intercepts «;, x;; and u;, see for example Baltagi [2],
Hsiao [15]. After estimating 3 the usual statistical procedure is to test the
goodness-of-fit and the validity of the model assumptions. One of the possi-
ble violations of the validity is that relationship (4.1) holds only for certain
subsample of data, i.e. the true model is

iy = {ai + X%t,@() + g, for (2, t)yel, (4.9)

a; + X, B + uy, for (i,t) € I°
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with I C {1,...,N} x {1,...,T}. Such violation is called change point
problem. It can also appear for larger class of models, usually in parametric
problems, for more general treatment see Csorgo and Horvath [7]. First test
for detecting the change point in the regression setting was developed by
Brown, Durbin and Evans [6], for testing the model

Y = X8 + uy, (4.3)

against the alternative

X3 +uy, t=1,... 1,
tz{ ot 0 (4.4

Xé,@l—l-ut, t:to—f—l,...,T,

where u; are independent standard normal variables. They examined the
cumulative sums of so called recursive regression residuals:

_ Yr — X;ﬁr—l
\/1 + x! (52 xex),) I, 7

w,

where 3, is the least squares estimate of the model (4.3) calculated using
first r observations. Suitably normalized jump sum process based on these
residuals converges to Brownian motion. For the alternative model (4.4) they
show the w, no longer have zero mean, thus cumulative sum converges to
infinity. The normality restriction was lifted by Sen [36], who proved similar
result for the case of i.i.d. regression errors with finite variance. Ploberger
and Kradmer[22] proved similar result for usual regression residuals. The
limiting process in this case is the Brownian bridge.

All these three results use the same test statistic, the maximum of the
cumulative sum. Since this is also a maximum norm of the jump sum process,
and maximum norm is the continous functional, due to FCLT and continuous
mapping theorem, the statistic converges to maximum of limiting process
(Brownian motion or Brownian bridge) under null hypothesis of no change.

Other types of alternative models are also considered. For epidemic al-
ternative:

/ t=1,..., %t 1,....7T
Y = {Xtﬁ0+ut7 ) 5 L0y 1+ ) ) (45)

X2B1+ut, t:to—f—l,...,tl,
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Rackauskas [25] proves that it is better to use the statistic

1 l
X 7o o Jpaie 15k 1) = (k) = 75,
where S(k) is the cumulative sum of the regression residuals. This statistic
allows testing against shorter epidemics, than the usual maximum test.

In their paper Kao, Trapani and Urga [16] write “Despite the potential
usefulness in economics, the econometric theory of the testing and estimation
of structural changes in panels is still underdeveloped”. Current results focus
on testing the change point in presence of unit roots.

In light of these results we first develop the test against epidemic rect-
angles using techniques from Csoérgé and Horvath [7] and then apply these
tests for panel regression to generalize the results of Ploberger and Kramer.

4.1 Tests for epidemic alternatives

4.1.1 Epidemic rectangles

The question arises of how to generalize epidemic alternatives for multi-
indexed case. In case of panel data where we have interpretation of indexes
as individuals and times several simple scenarios are immediately apparent.

e In some time interval the change occurs for all individuals.
e At the start of observation, the change occurs for certain individuals.
e At the end of observation, the change occurs for certain individuals.

For the moment assume that we are only testing the change of mean. Let
{Xi;,1 <i<n,1<j<m} beasample of panel data. The null hypothesis
of no change then is

(Ho) : Xij have all the same mean p.
The scenarios we want to test against fall into general setting:

(Ha) : There are integers 1 < a* <b* <n, 1 <c* <d* <m and a
constant 1y # po such that

B Xi; = po+m1((i,§) € [, x [, d"] NN?) |
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Classical log-likelihood statistic from Csorgé and Horvath [7] for testing
change of a mean in a certain set I (if it is known in advance) is

Rz%(%Xi—wéXn» (4.6)

where |I| is the cardinality of set I C {1,...,n}. This statistic is suitable
for testing epidemics of size n?, where v > 1/2. In order to test shorter
epidemics you have to weight this statistic with some function of |I|.

For two-dimensional setting assume now, that integers a*,b*, c*, d* are

known. Define the set
o[22
n’'n m’' m

and introduce the analog of statistic (4.6)

S X1 (o) €0) — o DX X

nm ;- 55

where k* = b* — a*, I* = d* — ¢*. Under hypothesis Hy, if X;; are i.i.d. with
finite variance o

(nm) 2R — N(0,0%|D*|(1 — | D))

when n A m — oo. Under alternative hypothesis if {X;;, (i/n,j/m) € D*}
and {X;;, (i/n,j/m) € [0,1]*\D*} are separately i.i.d. but with different
means, we have

_ k*l* k*l*
()21 = 5 (1 B Gy )+ 0,

and we see that the statistic will converge to infinity as long as k* > Cn”
and [* > Cym? with v,8 > 1/2 and some positive constants Cy, Cs.

In order to test shorter epidemics we have to weight the statistic . One
of the possible weights is diam(D)®, since clearly diam(D) — 0, as k*/n — 0
and [*/m — 0 and vice versa.

Let us rewrite the @ = R/ diam(D)* in terms of the summation process.
Denote s; = i/n, t; = j/m. Then
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Q = diam(D)™“ ( i i Xij — er i in‘j)

i=a*+1 j=c*+1 nm ;2o
_ A]lﬁ*A%* Sb*d* — (Sb* — Sa*)(td* — tc*)San

max{sp — Sgr, bgr — Lex }@

When a*, b*, ¢*, d* are unknown it is reasonable to replace ) with maximum
over all possible their combinations:

A} AF_Sha— (55— 8a)(ta —te)Snm
DUI(n,m,a) = max 14 BacSha = (5 = 50){fa ~ te)Snnl (4.7)
1<a<b<n max{s, — Sa,tq — tc}°
1<c<d<m

For n = (n,m) € N?, consider the functionals g, ,, defined on H2([0,1]*) by

Gnm () 1= 1§I?<agxgn I(z,i/n,5/n), (4.8)
where
_ A Al 2(t) = (B = s1)(f2 — s2)2(1)]

[<x7 S7t) - hos S |t_ S|a

It is clear that
DUI(n,m,a) = gn.m(&nm)-
The following theorem holds.

Theorem 32 Functionals {g,m, (n,m) € N*} and g are continuous in the
Holder space HS([0, 1]%). Furthermore {gn.m, (n, m) € N*} are equicontinuous
and for each x € H2([0,1]?)

lim_gum(@) = 9(2) (19)
where
g(x):= sup I(z,s,t). (4.10)
0<s<t<1

Proof. To show continuity of functionals g, ,, and g and equicontinuity of
family {gnm, (n,m) € N*} we use lemma 9. Clearly the functional ¢ =
I(-,s,t) satisfies conditions (a) and (b) of lemma 9. Let us check condi-
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tion (c). For all ¢, s € [0, 1]?

(t1 — s1)(t2 — 52) <1
it — s|* B

Thus if t; — s1 <ty — $9, then

|x(ty, t2) — x(t1, s2)]  |x(s1,t2) — x(s1, S2)|

I(z,s,t) < Ty — 5ol Ty — 5l +x(1,1)
< 2]l (4.11)
Similarly if t; — 51 >ty — s9
I(z,s,t) < \x(t17|i21)_—sfilevt2)! ’x(tljﬁi)—_ﬁjl’&)’ +z(1,1)
< 2]l (4.12)

So functional (-, s, t) satisfies condition (c) with C' = 2. Thus the continuity
and equicontinuity follows immediately from (1.7).

For (4.9) it is sufficient to show that the function (s,t) — I(z,s,t) can
be extended by continuity to the compact set T = {(s,t) € [0,1]%;0 <
s <t < 1}. From (4.11) and (4.12) we get 0 < I(z,s,t) < 2w,(z,|t —
s|)+ [t —s|'7@z(1, 1), which allows continuous extension when ¢ = s putting
I(xz,s8,8)=0. O

Functionals g, ,, and ¢ satisfy the conditions of lemma 8 thus FCLT for
X; gives the limiting distribution of statistic DUI(n, m, ). Due to results in
previous sections, the FCLT in the space H2([0, 1]?) holds for the summation
processes based on i.i.d. random variables. Thus we have to strengthen the
null hypothesis:

(H{) :X;j are independent identically distributed with mean denoted
by wo-

For better clarity for any real function x with two dimensional argument
introduce definition

A gr = x(t) — x(s1,t2) — x(t1, 52) + 2(8).

This sometimes is called the increment of x around the rectangle [s,t]. Con-
sider the following random variable

ANiggW — (t; — ty — s9)W (1
DUI(O() = sup ’ [5,t] (1 81)( 2 S2> ( >|

0<s<t<1 |t — s|®

(4.13)
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Then following theorem holds.

Theorem 33 Under H|, assume that 0 < o < 1/2 and

supt? P(| X1] > t) > o0
>0

forp=1/(1/2 —«). Then
o nm) " 2DUI(n,m,a) 2 DUI(a), asn Am — oo,
where 0? = E X3.

Proof. Note first, that under H|, the value of statistic DUI(n,m,«) does

not change if X; are exchanged with X; — po. Assume then that uy = 0.

Theorem 21 together with theorem 32 and lemma 8 gives us the result. [
The consistency of the test is given by following theorem.

Theorem 34 Assume under (Ha) that the X;; are independent and o} =
sup,, var(X,,) is finite. If

h
dim ()2 2R = o] — oo, (4.14)
where
E*I* k*1* k* 1
Popm, = <1 — > and dy, ,, = max {, } , (4.15)
nm nm n’'m
then
(nm)~Y2DUI(n,m,a) — co. (4.16)

For the case d = 1 our result replicates the result of Rackauskas and Su-

quet [30]. In this case the test will be able to detect epidemics of order
1—2«

n2—2 . Now for two dimensional case assume that k* = n?, [* = m® and that

p1 — po does not depend on (n, m). Then the condition (4.14) becomes

nY—1/20-1/2

[n'y—l \Vi mé—l]a

If V=1 > m°! (4.14) reduces to

pl—a)ta=1/2,,6-1/2 o0,
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thus we can detect very short epidemics of k*, but we can never get better
rate for epidemic length of I*. Notice that for § > 1/2 condition n?~! > m?°~!
will be satisfied if m > n% So we see that to detect very short epidemics for
one index we must have more data for the other index. In case n =m, v =9
we have

n’y(lfa)+ozfl/2+'yfl/2 _ n’y(Qfoz)Jrafl — 00,
and the best rate is v > 1/3. We get that in two-dimensional case the rates of
epidemic are influenced not only by «, but also by the relationship between
n and m.

The choice of a is important in the convergence of null hypothesis. In one
dimensional case for the convergence we have the condition lim;_,, t" P(| X1 | >
t) =0, where p =1/(1/2—«). Since ;:gg — 0, when o« — 1/2, we get better
rates with higher moment conditions.

For case m = n? the moment condition for convergence is
lim_o t37225 P(|X;| > t) = 0. Thus E X9 is sufficient.

For case m = n from theorem 22 it follows that 4* moment is sufficient
for convergence for any «a, but the rate cannot be lower than 1/3. In one
dimensional case detecting an epidemic of length n'/? comes with the choice
a = 1/4, which means that we need 4" moment.

Proof of the theorem 34
Define set I,,,, = [a*,b*] x [¢*,d*] " N? and random variables
X" . Xij — Mo, (17]) € Iﬁb,m
' Xij— 1, (4,7) € Inm

We have

k*l*
ALAZS,. oo — (s — 502 )(tge — t0)S0 = S(L, ) —
1 Speae — (86 — 50+ ) (ta )Snm = S(Inm) .

= k*l" (1— i
nm

(S(Unm) + 5L 1))

> (,ul - ,MO) + Rn,ma
(4.17)

where

E*l*
Ry = Z X+ (1 -

i€lg

) ¥ x

i€lnm
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Now

1 (k0
var((nm) V2R, ) < — ( ) (nm — k*1*)o]

nm nm
1 k2
+— (1 — ) k*l*0g = 0ghpm.
nm nm

This estimate together with (4.17) leads to the lower bound

hnm 1/2
()™ DU T(n,m,0) 2 (mm) /22" |y = po| + O <dm> |

Now hpm < d2,,, thus limg, o h}/2/de, =0, so the theorem follows due

n,m?

to condition (4.14).

4.1.2 Some special cases

In previous section we constructed statistic for detetecting the change in
subrectangle of unit square. Our motivation for such statistic came from
three simple scenarios:

S1. At the start of observation, the change occurs for certain individuals
S2. At the end of observation, the change occurs for certain individuals.
S3. In some time interval the change occurs for all individuals

Using results from the previous section we can adapt the general statistic
DUI(n,m, ) for each of these scenarios. Recall that the alternative hypoth-
esis was of the change in an epidemic rectangle

Then the respective epidemic rectangles for the scenarios are

b* d* ]
D;:[o,]x[o, |
n m |
D; = {a,l X c—,l ,
n m
c* d*
D:=10,1 —. —.
3 [7 ]X [mam_
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Denote s; = i/n, t; = j/m. Then the statistic adapted for specific first
scenario is

de — Sbtds
DUIL(n,m,a) = max 155, oot ;am|
1<b<n max{s
s bs Ud
since Sp.q = Soo = Spo = 0, and s, = t. = 0. For the second scenario we
have

A WA —(1—s,)(1—t
DUL(n.m.0) = max An=eBm=cSnm = (1= 30)(1 = te)Sum|

Isb<n max{(1 —s,), (1 —t.)}

For the third scenario the statistic is defined as

Sn - Sn c tg — tc Sn m
DUI3(n,m,a) = max [Sn.a e~ (ta ), |,
1<c<d<m (tg —to)™

where we changed the denominator, since Sp. = Spq = 0 and in the nom-
inator only the difference of the second argument matters. All the three
statistics are the functionals of summation process &, ,, similar to functional
gn defined by (4.10). With minimal adaptation similar proposition to the
theorem 32 holds. Define following functionals of Brownian sheet

|W(t) — t1taW (1, 1)]

DUI (o) = sup

0<t<1 ||~
AW — (1 —t1)(1 —t)W(1
DUIy(«a) = Sup S <|1 _lt>|(a )W )|,

DUI3(a) = sup

0<s<t<1 |t — s|*

Then following theorem holds.

Theorem 35 For i.i.d. sample of double-indexed data and under null hy-
pothesis of no change for scenarios S1, S2 and S3 assume that 0 < o < 1/2
and

supt? P(| X1| > t) > oo,
>0

forp=1/(1/2 —«). Then fori=1, 2, 3.

o nm) V2 DUL(n,m,a) 2 DUIL(c), asnAm — oo,
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where 0? = E X3.

Under the alternative hypothesis of the change of the mean in the rectangles
Dy i =1,2 3, the lengths of epidemics are

k* =0b*, [ =d", for the rectangle D7,
kE*=1—a" ["=1-—c", for the rectangle D3,
E*=n, [I"=d"—c", for the rectangle D5.

For the rectangles D} and Dj the consistency is then the direct corollary of
the theorem (34).

Corollary 36 Given the independent family X,;; with o = sup,, var(X,)
finite under alternative hypothesis of the change of the mean in rectangles
D7 and D3 we have

(nm)~Y2DUT,(n,m, ) — oo (4.18)
fori=1,2if
: 1/2 hn,m
(11)m (nm) dT'“l — to| — o0, (4.19)
where
k*l* k*l* E* U
Ny, = <1 - > and d,, , = max {, } : (4.20)
nm nm n’'m

For the rectangle Dj the conditions for the consistency are slightly different,
since the denominator in the test statistic is different.

Corollary 37 Given the independent family X;; with of = sup,, var(X,)
finite under alternative hypothesis of the change of the mean in rectangle D}
we have

(nm)~Y2DU I3(n, m, a) — oo, (4.21)
if
I* 1-a I*
li Al 1—— — . 4.22
m(;)nioo(nm) (m) ( m) "ul MO‘ o ( )
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This corollary enables us to improve the detection of short epidemics for the
scenario S3 . If we let [* = m? for some § > 0, condition (4.22) becomes

/27,00

1—a)+a—1/2(1 —m

5—1) — 00,

for 6 > 1{2:;1. Since 0 < av < 1/2 we can make ¢ arbitrarily small. Thus for
certain rectangles it is possible to get similar results as in one dimensional
case.

4.2 Functional central limit theorems for panel
data regressions

4.2.1 Models and the assumptions

Suppose we have a sample of panel data {(y;;,x;),i=1,...,n; =1,...,m}
where x}; = (@ij1,- .., xijr). We investigate FCLT for following panel regres-
sion models

Yij = X8 + uij, (4.23)
Yij = X8 + pi + ui, (4.24)

where u;; are the disturbances, mean-zero random variables with finite vari-
ance independent of y;; and x;;.

The goal of panel regression is to estimate coefficient vector 3. The
model (4.23) is the classical linear regression model for observations with
two dimensional indexes. The coefficients 3 are then usually estimated using
least squares:

8= (Xn:ixijxgj) zn:ixijyij. (4.25)

i=1j=1 i=1j=1

In classical panel data literature (Baltagi [2], Hsiao [15]) this estimate is called
pooled or ordinary least squares estimate, and it is assumed that z;;; = 1
for all 7,7, i.e. there is only one constant term. For the model (4.24) the
constant term is allowed to vary through ¢ and is considered as a nuisance
parameter. The coefficient vector B in this case is estimated by solving least
squares problem for the model

Yij — Ui = (Xij — X.)B + uyj — Uy, (4.26)
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where

1 m
Yo = — > Yijs Xi=

1
m m
j=1

m 1 m
Xiis ﬂi- = — Wij.
> Xij > uis
—

The estimate of 3 is then
(Z Z (xi; — Xi) (%35 — Xi,)’) ZZ Xi; — X ) (Yij — vir).  (4.27)
=1 j=1

We are interested in proving FCLT for regression residuals. For model (4.23)
they are defined as

Uij = Yij Xw = ui; — x;(B — B).
By substituting the expression for y;; we immediately get
Uy = uy — X;;(8 = B). (4.28)
Now
n m -1 n m
= (Z > Xin;j) > D Xijuij,
i=1j=1 i=1j=1

and we see that FCLT for regression residuals depends on distributional prop-
erties of regression disturbances. For this section let us make the following
assumption.

Assumption F Let random variables w;; have zero mean, variance o* and
be independent of x;;. Assume that the summation process based on these
random variables defined as

Enm(t, ) —nmzz [

=1 7=1
satisfies the functional central limit theorem:

) {jq;l 7}71) N[0,¢] x [0, 8] wij, (4.29)

1
o/nm

in the space H°([0,1]%) with 0 < o < 1/2.

Enm(t, ) 2, Wi(t,s), asn Am — oo,

From (4.28) it is also evident that we have to make assumptions on x;; in
the panel regression model (4.23).
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Assumption A Let x;;1 =1 for all 1 < (i,7) < (n,m). Assume that
1 n m

lim  — "% "x;x}; = R, (4.30)

nAm—oo nm, 4 .
=1 j=1

for some nonsingular (K x K) matriz R. Furthermore assume that the model
s reparameterized such that

1 0
R= lo R*], (4.31)

which in turn implies that

znjixij =[1,0,...,0]. (4.32)

i=1j=1

_ 1
c= lim —
nAm—oo nm,

Assumption F implies that u,; satisfy central limit theorem, which together
with assumption A implies that

-1
1 n m , n m D 9
XX, x;;ui; — N(0,0°R), asn Am — oo. (4.33)
— (;; j ]) ;; i

Assumption A also implies that

1 [t ms]
—Zszj — tse, as n A'm — 00,
nm 21 =1
for each fixed t and s. Using results from section 2.1 we get that summation
process based on x;; also has the same limit

1 & i—1 i j—1 j)
Xnm ty - y D N O7t X 07 1]
m(t:9) nm;nm[n n)x{m m [0,2] > {0, 5] x5
— tsc (4.34)

for each fixed ¢ and s. But assumption A also ensures that {X,, ., (n,m) €
N2} is equicontinuous in Hélder space H9 ([0, 1), RX). Thus we get that

X,m(t,s) — tse, asn Am — oo. (4.35)
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in H2([0,1]2, R¥). We can write

1 n m
DD ui
. 1 0 vnm = =
XU,
vm == !
where xj; = [%42,...,%ik]'. This representation together with (4.34) gives

us the convergence

1 m

Jj=1

z’—17i) y [j—l’j) N[0, x [0,s]|x,(8 - B)

m o m

Dy tsW(1,1),
as n/Am — oo in the space H ([0, 1]?). We have proved the following theorem.

Theorem 38 For the panel regression model
Yij = ngﬁ + Ui, (4.36)

define the summation process

Wem(t, s) = nm SN

i=1j=1

ny L
,Z) « [”,J) N 10,4 x [0, ]| .
n n m m

[z’

Given the assumptions F and A we have

1
o\/nm

in the space H°([0,1]%), with 0 < a < 1/2.

Wem) (¢ s) 2 Wit s) — tsW(1,1), asnAm — oo,

Let us turn now to the model (4.24). Since the fixed effect estimate BFE
comes from the adjusted regression (4.26) it is natural to define residuals as

~FE _ ~ ~ QFE
U =Yij — XijIB )

where 9;; = vi; — U;., and X;; is defined analogously. Substituting the model
(4.24) we get that

For model (4.24) we make slightly different assumptions about x;;.
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Assumption B Assume that
lim anfjsasi =R
nAmM—oo MM P L)%y

for some nonsingular (K x K) matriz R, and that

1 n m

for some c € RX,

Now
n m -1 n m
ﬁFE - ﬁ = (Z Z iiji;;j) Z Z iw (UU Ui )
i=1j=1 i=1j=1
n m -1 n m
= (Z > lei;j) D Xijuig,
i=1j=1 i=1j5=1
since

Thus assumption (F) gives us

Vam(B7F — 8) £ N(0,62R).
From condition (4.38) we get
| [ [ms)

%szzj—”)’

i=1j=1

(4.37)

(4.38)

for each fixed t and s. Then similar to (4.35) for summation process X, (£, s)

based on X;; we get that

X,m(t,s) =0, asnAm — oo,
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in H2([0,1]?, R¥). Now relationships

V_l’Z) [J—l,j)m[o,t]x[o,s]

;.

P e n ’'n m m

:iin F 1,Z)O[O,t] uzli [‘H,j>ﬂ[0,s]
i=1 =1 n - n j=1 m

:siinm [i_l Z) X =1 ‘7> [0,t] x [0 1]’u
o o n 'n m ' m ’ “

complete the proof of the following theorem.

Theorem 39 For the panel regression model
Yij = X8 + i + wij, (4.40)

define the summation process

WEE( s) —nmzz [2_1 Z)x[j_l,r‘;)ﬂ[O,t] x [0, s]| al”.

i=17=1 m

Given the assumptions F and B, we have
WEB(t,s) 2o W(t,s) — sW(t,1), asn Am — oo,

in the space H°([0,1]%), with 0 < o < 1/2.

4.2.2 Local alternatives

It is possible to get meaningful results if we alter the original regression
models. Assume that coefficient B in the pooled regression actually varies
accross ¢ and j:

Bij =B+ \/rlz_mg (;’ ;n) (4.41)

where g is K-vector valued function continuous on [0, 1]2.
As n A m — oo this alternative to the regresion model

loc __
yz] XIJ/B’LJ + u’Lj7

converges to model (4.23). Define least squares estimate for this regression
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as
3loc o o loc
B = (szijxéj) DD Xy
i=1j=1 =1 j=1
The following theorem then holds

Theorem 40 Define summation process Wmm) based on residuals

loc __  loc 1 Aaloc
U’zy _y’bj _Xile .

Given the assumptions F and A we have

W (it sy 2 wit, s) — tsW(1,1)

t s 1
+/ / cg(u,v)dudv — tsc’/ / g(u,v) dudv.
0 Jo 0 Jo

Proof. Note that
Bloc o B+ 1 d
BRI TR
where
_ n m , ]
- (zz) >3 g (L1,
i=1j=1 i=1j=1

loc

;7 into following sums:

Thus we can decompose the residuals u!

loc _ 1 Aloc
u ul] + XZJIBZJ ij/8

1 i 1
= W45 — - — ] — "dnm
i = X8 = B) <9 () N

1 ] 1
- uz] + l ]> - X/"dn,m

vnm ”g (n m vnm Y

Using assumption A and properties of g for each fixed ¢ and s we get

[nt] [ms]

—ZZ ( > // cdg(u,v)dudv, (4.42)
=1 j=1
as nAm — o0o. Using the same arguments as in (4.34) we get that summation

process based on x;;g (%, %) has the same limit in Hélder space H ([0, 1]?).
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Similarly we get

1 1
dym — / / g(u,v)dudv, as n A m — oo.
0 Jo

(4.43)

Since d,, ,,, does not depend on i and j, the convergence (4.34) and theorem

38 complete the proof. [J

Consider the same local alternatives (4.41) for the fixed-effects panel re-

gression. Then the alternative model is
yﬁ;’c = i + X;jﬂij + Uiy
Define analogously fixed effect estimate

n m

Z > XU

i=1j=1

n m 71
e = (Zziz‘jiéj)

i=1j=1
Then the following theorem holds.

Theorem 41 Define summation process Wmm) based on residuals

~loc __ ~loc =~/ FFE
Ui; = Yi; — XiPloc -

Given the assumptions F and B we have
W (tos) B Wit s) — sW(t, 1)
t rs t rl
+/ / dg(u,v)dudv — s/ / c'g(u,v)dudv,
0 Jo 0 Jo
as n Am — oo, in the space H2([0,1]?), with 0 < a < 1/2.

Proof. Introduce definitions

I AU B
gZJ _g< 7m>7 fZ~ - m;Xz]gU‘

n

Then for our alternative model (4.44) we get

1 _

1 /
Vim 590 = Fi

~loc __ =/ ~
Yi;. = X8+ uij +
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Then from the definition (4.45) it follows that

where
-1
n m n m _
dy o = (Z > Xijxgj) > > Xij(xi;95 — fi)-
Substituting these expressions to the definition of the residuals we obtain

alOC = XZ]IB + uZJ + fl ) l};cE

L
NoTia
N 1 : 1
o~ > FE
=t — X;(B77 = B) + \/—(X;J'g”' - fi)- vnm

1
_aFE‘i‘ fz)

Lo
= U e — ) =

Now given assumption B, similar to (4.42) we get that

=/
xijdmm

3
3

[nt] [ms]
—ZZ ”g( ) //cguv ) dudv,

11]1

as n A'm — oo for each fixed t and s. Similarly

%Wiﬁ 722 <,)—>8//cguvdudv

11]1 lel

as n A m — oo for each fixed ¢t and s. From
> X =0
j=1

it follows that

LZ Xzyfz _Oandizziw_l =0.

7,1]1 7,1]1
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Since g is continuous on [0, 1]?, it is bounded:

sup |g(t,s)| < C.

t,s€[0,1]2
Then
dypm=|— XX, — X (XijGij — 7@
, (nm;jz:lxszg) nm;jz:lxj(xjgj fi)
= | — X;i X i X (X, g +X..g;) < C
(nm ;;XJXZ]) nm ;;X](ijg] _I_Xz-gj) =~

and similar to the proof of the theorem 40 the convergence (4.39) and theorem
38 complete the proof. [

4.3 Change point statistics for panel regres-
sions

4.3.1 Tests and their behaviour under null hypothesis

Combining results from previous sections we can now suggest statistics for
detecting the change point in panel regression models and give their limiting
distributions. Under assumption F and respective assumptions A and B the
residuals for our regression models

yij = X;jIB + Uij, (446)
Yij = X8 + pi + ui, (4.47)
satisfy functional central limit theorem. Then it is natural to “plug” respec-
tive partial sums of these regression residuals to statistic DUI(n, m,«) and

its special variants DU I;(n, m,«), i = 1,2, 3. For the model (4.46) define the
partial sums

k l
Su =)D U

i=1j=1
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and the statistic

— Al AQ S\ - — 9q t _tcgnm

DU](n7 m7 OC) = max | b=a d=c b’d (Sb i )( d ) . | (448)
1<a<b<n max{s, — Sq,tqa — tc}®
1<e<d<m

with s, = k/n and t; = I/m. We have then the following corollary

Corollary 42 Under null hypothesis of no change in the regression coeffi-
cient B of the model 4.46 given the assumptions F and A

Ufl(nm)’lﬂﬁU\I(n,m,a) D, DUI(a), asn Am — oo,

for the local alternatives model

010 o ()

with g continuous on [0, 1]?, we have similar result with the limiting statistic

DUI"(a) =

AggW —mw(t—s)W(Q)+ [,ncg—7w(t—s et
NV R W) ¢ g =) el
0<s<t<1 |t — s|®

Note that the limiting statistic remains the same as in the theorem 33. This
corollary can be considered as the generalization of the results of Ploberger
and Kramer [22] for the regression of double-indexed random variables.

For the regression model (4.47) define partial sums

ko1
S =22 "
i=1j=1

and the statistic

_—_FE AL A% Spa— (55— 8a)(ta — te)Spm

DUI ~ (n,m,a) = max 184 aBicSa = (5 = Sa)(fa = fe) Sl (4.50)
1<a<b<n max{s, — Sq,tqa — tc}
1<c<d<m

The limiting distribution then is

DU]FE(OZ) — sup |A[37t]W - (t2 - 82)[W<t17 ]‘) - W(‘Sl? 1)” )

0<s<t<1 |t — s|®

and the corollary
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Corollary 43 Under null hypothesis of no change in the regression coeffi-
cient B of the model (4.24) given the assumptions F and B

_—_FE
o nm) " 2DUT "~ (n,m,a) 2 DUITP(a), as n Am — o,

for the local alternatives model

Bi; =B+

it (o)
nmg n’'m

with g continuous on [0, 1)?, we have similar result with the limiting statistic

DUILE(a) = (4.51)
“ A gW = (t2 = $2) AL W(t1, 1) + fi, g €9 — (t2 — 52) [ 5 €]
0§s<It)§1 it — sl '

(4.52)

4.3.2 Consistency of the epidemic alternatives

Consider that there is a change of the regression coefficient 3 in rectangle

or that the true panel regression models are

Yij = ngﬁo + X;jdij + wi; (4.53)
Yij = X80 + Xj;di; + i + ugj, (4.54)
where
dij = (B1 — Bo)1 ({, } ND ) .
n’' m
Denote by
n m -1 n m
Enm = (Z > Xijxgj) > xixjdi;
i=1j=1 i=1j=1
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and introduce quantity

o k[ n o m .
A(namuD)_< nm);] 1Xz]dzj
—Zwaenml({n m} npT) 4t R S g
=1 j5=1 1=1j=1

where k* = b* — a*, [* = d* — ¢* are the lengths of epidemics.

Theorem 44 Under alternative hypothesis of the change of the regression
coefficient B of the model (4.46)
(nm)’l/zﬁU\I(n, m,qa) — 00, asmAm — o0

provided

fx [ a
(nm)~/? max{ ) } |A(nm, D*)| — 0o, as n Am — oc.
n’'m

Proof. The least squares estimate for the model (4.53) satisfies

-1

i=1j=1 =1 j=1
-1
n m n m
— /
Bo+ (Z ZXUXJ) DD Xijij + €nm
i=1j=1 i=1 j=1

The regression residuals then satisfy

~alt =~ I g
Uz = Ugj + Xz‘jdw X;j€n,m;

where #;; are the regression residuals of the model (4.46). Under alternative
hypothesis then

ALaz g - "Cg
n

* -
> R A D" —|T D*
_max{n,m} (IA(nm, D*)| — [T(n,m, D)),
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where

E*l*
T(n,m,D*) = AL A} Sb* —Snm
m
since

(nm)~'/? max {IZ, 7Zn} T(n,m,D*) = Op(1),

due to corollary 42, the proof is complete. [
Denote by

and define

AFE(n,m,D*): (1_Z;>szl*d ZX/* FE' (

i) .
ij nm 7m}mD)
i=1 j=1 =1 j=1

¥« nom
k:l ZZX/* FE
i5€n,m>
nmi 1j=1
where

(; Z‘{ iw~;j> Z Z XX dij-

i=1j5=1

Theorem 45 Under alternative hypothesis of the change of the regression
coefficient 3 of the model (4.47)

_—FE
(nm)"Y2DUI ~ (n,m,a) — 0o, asn Am — oo
provided

k** -«
(nm)_1/2max{,} |IATE(n,m, D*)| — oo, asn Am — oo
n’'m

Proof. Due to definition of d;; we have

y XUBO + X *dZ] + ’ljij,
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since B3P is the least squares estimate of

— I e
Yis = Xijﬁ + Uy

The proof is identical to the proof of the theorem 44 with notation changed. [J

4.3.3 Practical considerations and discussion

Note that all of the results in this section relied on the assumption, that
regression disturbances satisfy FCLT in Holder space H([0,1]?). From the
chapter 3 we know that FCLT holds if disturbances are i.i.d. and satisfy the
moment condition

sup t/ /279 P(juyy | > t) < 0.
>0

For the practical applications the i.i.d. condition sometimes can be too re-
strictive. On the other hand to lift this restriction we just need to prove
the FCLT for wider class of double-indexed random variables. Statistics for
testing the change of the regression coefficients remain the same.

Throughout this chapter we focused on constructing statistics for testing
against epidemic alternatives. Then the FCLT in Hoélder space is needed,
since the statistics are the functionals which are continuous only in Holder
space. If in the statistic DUI(n, m,«) we drop the denominator, then the
statistics are continuous functionals in the spaces C([0,1]?) and D([0, 1]?).
Then all the results from previous section apply for such statistics given the
assumption of the FCLT in C([0, 1]¢) or D([0,1]?). The FCLT in D([0,1]?)
is proved for wider class of random variables, for strictly stationary multi-
indexed random variables satisfying mixing condition by Deo [9] and for
strictly stationary multi-indexed martingale differences by Basu and Dorea
[4] to name a few. Thus we can apply these types of statistics for wider class
of disturbances. In particular if we drop the denominator in the statistic
DU I (n,m, «), our results are then a generalization of Ploberger and Kramer
[22].
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