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Preamble

These lecture notes were written for a 2nd-year Ph.D. course in econometrics of
panel data and limited-dependent-variable-models. The primary goal of the course
is to introduce tools necessary to understand and implement empirical studies in
economics focusing on other than time-series issues. The main emphasis of the
course is twofold: (i) to extend regression models in the context of cross-section
and panel data analysis, (ii) to focus on situations where linear regression models
are not appropriate and to study alternative methods. Examples from applied
work will be used to illustrate the discussed methods. Note that the course covers
much of the work of the Nobel prize laureates for 2000.

The main reference textbooks for the course are:

1. Econometric Analysis of Cross Section and Panel Data, [W], Jeffrey M.
Wooldridge, MIT Press 2002.

2. Econometric Analysis, [G], William H. Green.

3. Analysis of Panel Data, [H], Cheng Hsiao, Cambridge U. Press, 1986.

4. Limited-dependent and Qualitative Variables in Econometrics, [M], G.S.
Maddala, Cambridge U. Press, 1983.

Other useful references are:

1. Advanced Econometrics, [A], Takeshi Amemiya, Harvard U. Press, 1985
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2. Gary Chamberlain (1984) “Panel Data”, [C] in Handbook of Econometrics
vol. II, pp. 1247-1318. Amsterdam North- Holland.

3. Modelling Individual Choice, [P], S. Pudney, Basil Blackwell, 1989.

4. The Econometric Analysis of Transition Data, [L], Tony Lancaster, Cam-
bridge U. Press, 1990.

5. Estimation and inference in econometrics [DM] Davidson, R., and J.G.
MacKinnon, Oxford University Press, 1993.

6. Structural Analysis of Discrete Data and Econometric Applications [MF],
Manski & McFadden <elsa.berkeley.edu/users/mcfadden/discrete.html>

7. Applied Nonparametric Regression, [N]Wolfgang Härdle, Cambridge U. Press,
1989.

8. Panel Data Models: Some Recent Developments, [AH] Manuel Arellano and
Bo Honoré <ftp://ftp.cemfi.es/wp/00/0016.pdf>

Below find a simplified course outline including selected readings:

1. Causal parameters and policy analysis in econometrics

• Heckman, J.J. (2000) “Causal parameters and policy analysis in econo-
metrics: A twentieth century perspective” QJE February 2000.

2. Review of basic linear regression model and Introduction to Maximum Like-
lihood Estimation and Hypothesis testing ([G])

3. Cases where residuals are correlated ([G] 14 ,[A] 6)

• GLS

White, H. (1980) “A Heteroscedasticity-Consistent Covariance Matrix
Estimator and a Direct Test for Heteroscedasticity, ” Econometrica
48:817-838.

• Panel data analysis ([H] 3.3, 6)

4. Cases where residuals and regressors are correlated ([H] 6-7, [A] 7-8)
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• Unobserved fixed effect in panel data analysis ([H] 3)

Ashenfelter O. and A. Kruger (1994) “Estimates of the Economic Re-
turn to Schooling from a New Sample of Twins,” American Economic
Review 84: 1157-1173.

Jacubson (1991) “Estimation and Testing of the Union Wage Effect
Using Panel Data,” Review of Economic Studies 58:971-991.

• Misspecification ([H] 3.4, 3.5, 3.8, [C])

Hausman, J. (1978) “Specification Tests in Econometrics,” Economet-
rica 46:1251-1272

Newey, W. (1985) “GeneralizedMethod of Moments Specification Tests,”
Journal of Econometrics 29:229-238.

• Errors in variables ([H] 3.9,[G] 9)

Griliches Z. and J. Hausman (1986) “Errors in Variables in Panel
Data,” Journal of Econometrics 31:93-118.

• Simultaneity ([G] 20)

5. Cases where linear regression models are not appropriate

• Maximum Likelihood Estimation ([A] 3-4)

• Qualitative response models ([M] 2-3, [A] 9, [H] 7, [G] 21)

• Tobit models ([A] 10, H [6], [G] 22)

Amemiya T. (1984) “Tobit Models: A Survey,” Journal of Economet-
rics 24(1-2).

• Self selection models ([M] 9)

Heckman, J.J. (1979) “Sample Selection Bias as a Specification Error,”
Econometrica 47:153-161.

• Duration analysis ([L], [G] 22)

Kiefer N. (1988) “Economic Duration Data and Hazard Functions,”
Journal of Economic Literature 25(3): 646-679.

6. Introduction to nonparametric methods

• Kernel estimation and Local Linear Regression
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Density Estimation for Statistics and Data Analysis (1986), B.W. Sil-
verman, Chapman and Hall.

Local Polynomial Modelling and its Applications (1996), J. Fan and I.
Gijbels, Chapman and Hall.

• Discrete choice models

Matzkin R. (1992) “Nonparametric and Distribution Free Estimation
of Threshold crossing and Binary Choice Models,” Econometrica 60(2).

• Selection bias

Heckman J., H. Ichimura, J. Smith and P. Todd (1995) “Nonparametric
Characterization of Selection Bias Using Experimental Data: A Study
of Adult Males in JTPA”

• Trimmed LS and Censored LAD Estimators

Powell, J.L. (1984) “Least Absolute Deviation Estimation for the Cen-
sored Regression Model,” Journal of Econometrics 25(3).

Powell, J.L. (1986) “Symmetrically trimmed Least Squares Estimation
for Tobit Models,” Econometrica 54(6).
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Part I

Introduction

1. Causal Parameters and Policy Analysis in Econometrics

Econometrics1 differs from statistics in defining the identification problem (in
terms of structural versus reduced form equations). “Cross-sectional” economet-
rics (as opposed to time-series) operationalizes Marshall’s comparative statics idea
(ceteris paribus) into its main notion of causality (compare to time-series analysis
and its statistical Granger causality definition). The ultimate goal of econometrics
is to provide policy evaluation.

In the classical paradigm of econometrics, economic models based on clearly
stated axioms allow for a definition of well-defined structural “policy invariant”
parameters. Recovery of the structural models allows for induction of causal
parameters.

This paradigm was built within the work of the Cowless Commission starting
in the 1930s. The Commission’s agenda concerned macroeconomic Simultaneous
Equation Models and was considered an intellectual success, but empirical failure
due to incredible identifying assumptions.

A number of responses to the empirical failure of SEM developed, includ-
ing first VAR and structural estimation methodology and later calibration, non-
parametrics (sensitivity analysis), and the “natural experiment” approach. Let
us in brief survey the advantages (+) and disadvantages (−) of each approach:

• VAR is “innovation accounting” time-series econometrics, which is not rooted
in theory.

(+) accurate data description

(−) black box; may also suffer from incredible identifying restrictions (as
macro SEM); most importantly, results hard to interpret in terms of models.

• Structural estimation is based on explicit parametrization of preferences and
technology. Here we take the economic theory as the correct full descrip-

1This introductory class is based on a recent survey by J.J. Heckman (2000).
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tion of the data. The arguments of utility or technology are expressed as
functions of explanatory variables. Given these i−specific arguments and
an initial value of structural parameters, the optimization within the eco-
nomic model (e.g., a nonlinear dynamic optimization problem) is carried out
for each decision unit (e.g., unemployed worker). The predicted behavior is
then compared with the observed decisions which leads to an adjustment of
the parameters. Iteration on this algorithm (e.g., within MLE framework)
provides the final estimates.

(+) ambitious

(−) computer hungry; empirically questionable: based on many specific
functional form and distributional assumptions, but little sensitivity analy-
sis is carried out given the computational demands, so estimates are not
credible.

• Calibration: explicitly rely on theory, but reject “fit” as the desired main
outcome, focus on general equilibrium issues.

(+) transparency in conditional nature of causal knowledge

(−) casual in use of micro estimates, poor fit.

• Non-parametrics (as an extension of sensitivity analysis): do not specify any
functional form of the “regression” in fear of biasing the results by too much
unjustified structure.

(+) transparency: clarify the role of distributional and functional form as-
sumptions.

(−) non-parametrics is very data hungry.

• Natural experiment: search for situations in the real world that remind us
of an experimental setup. Use such experiments of nature to identify causal
effects.

(+) transparency: credible identification.

(−) theory remains only at an intuitive level; causal parameters are relative
to IV (LATE2); it is hard to cumulate knowledge and the estimates to not
render counterfactual policy predictions.

2See Section 11.
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The fundamental problem of econometric policy evaluation is that to predict
the future, it must be like the past, but the goal is to predict effects of a new policy,
i.e. to predict a future that will not be like the past. Here, Marschak (1953) argues
that predicting effects of future policy may be possible by finding past variation
related to variation induced by new policy. The relationship between past and
future variation is made using an economic model. Using this approach we may
not need to know the full structural model to evaluate a particular policy. See
Ichimura and Taber (2000).

Finally, note that today, the Cowless commission paradigm (Haavelmo, 1944;
Popper, 1959) is partly abandoned in favor of more interaction with data (learning)
so that it is merely used as a reporting style (Leamer, 1978).

In this course, we will mostly remain within the classical paradigm and discuss
parametric reduced-form econometric models. We will also occasionaly touch on
non-parametric and natural-experiment research and return to discussing causal
inference when introducing the program evaluation literature in Section 11.

2. Reminder

This section aims at reminding ourselves with some of the basic econometric is-
sues. See also [W]1. First, in subsection 2.1, we make the link between a linear
regression and the true regression function E[y | x]. Second, we survey the main
principles of hypothesis testing. Finally, we remind ourselves about the sensi-
tivity of extremum estimators to distributional assumptions and preview the is-
sues important in cross-sectional data: measurement error, sampling (endogenous
sampling and consistency, multiple-stage sampling and inference), combining data
sets, etc.

2.1. Note on Properties of Joint Normal pdf

In this note we show that the “true” regression function is linear if the variables
we analyze are jointly Normal. Let

X =

(
X1

X2

)
, µ =

(
µ1
µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Exercise 2.1. Show that

Σ12 = 0 ⇐⇒ f(x | −) = f(x1 | µ1,Σ11)f(x2 | µ2,Σ22)
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i.e., under normality, linear independence is equivalent to independence in
probability.

Theorem 2.1. E[X2 | X1] is linear in X1.

Proof. To get the conditional distribution of X2 | X1 first find a linear transfor-
mation of X which block-diagonalizes Σ :(

Y1
Y2

)
=

(
I1 0

−Σ21Σ
−1
11 I2

)(
X1

X2

)
=⇒ V AR

(
X1

Y2

)
=

(
Σ11 0
0 Σ22.1

)
and X1and Y2 are independent i.e., Y2 ≡ Y2 | X1 ∼ N(µ2 − Σ21Σ

−1
11 µ1,Σ22.1).

Now note that X2 = Y2 + Σ21Σ
−1
11X1 and conditioning on X1the last term is a

constant=⇒ X2 | X1 ∼ N(µ2 + Σ21Σ
−1
11 (X1 − µ1),Σ22.1) or equivalently X2 |

X1 ∼ N(µ2.1 +∆2.1X1,Σ22.1).

Remark 1. µ2.1 = µ2 −∆2.1µ1 is the intercept, ∆2.1 = Σ21Σ
−1
11 is the regression

coefficient, and Σ22.1 = Σ22 − Σ21Σ
−1
11 Σ12 is the conditional covariance matrix

which is constant i.e., does not depend on X1 (homoscedasticity).

2.2. Testing Issues

• Basic principles: Wald, Lagrange Multiplier, Likelihood Ratio. In class we
provide a visualization of these in a graph. Note that they are asymptotically
equivalent. So, obtaining different answers from each test principle may
signal miss-specification.

• Specification tests: preview of Hansen and Hausman.

• Sequential testing, data mining: While test properties are derived based
on a one-shot reasoning, in practice we carry out a sequence of such tests,
where the outcome of one test affects the next test, invalidating the test
properties. These concerns may be dealt with by setting aside a portion of
the data before the start of the analysis and verifying the ‘final’ regression
on this subset at the end of the analysis by means of a one-shot specification
test. Another response is that you first have to “make” your model “fly”
(i.e. achieve Durbin Watson =2) and only later can you go about testing it.
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• Non-nested testing.

Note that in econometrics we either test theory by means of estimation or
use theory to identify our models (e.g., by invoking the Rational Expectations
hypothesis in estimation of dynamic models in order to identify valid instruments).

Exercise 2.2. Prove or provide a counterexample for the following statements:

• Y ⊥ X ⇐⇒ COV (X,Y ) = 0. See also Exercise 2.1.

• E[X | Y ] = 0 ⇐⇒ E[XY ] = 0 ⇐⇒ COV (X,Y ) = 0

• E[X | Y ] = 0 =⇒ E[Xg(Y )] = 0 ∀g(·). Is COV (X | Y ) = 0 ?

• E[Y ] = EX [EY (Y | X)] and V [Y ] = EX [VY (Y | X)]
residual variation

+ VX [E(Y | X)]
explained variation

.

3. Deviations from the Basic Linear Regression Model

Here, we consider 3 main departures from the basic classical linear model: (a)
when they occur, (b) what the consequences are, and (c) how to remedy them.
This preview sets the stage for our subsequent work in panel-data and limited-
dependent-variable (LIMDEP) estimation techniques.

(i) V [εi|xi] = σ2i �= σ2ε , i.e. the diagonal of the variance-covariance matrix is not
full of 1s: (a) e.g., linear prediction vs. E[y | x] or heteroscedasticity,3 (b)
the inference problem of having underestimated standard errors and hence
invalidating tests, (c) GLS based on assumed form of heteroscedasticity or
the heteroscedasticity-consistent standard errors (White, 1980). The Huber-
White idea is that you don’t need to specify the usually unknown form of
how V [εi | xi] depends on xi. The method ingeniously avoids having to
estimate N of σ2i (xi) by pointing out that the k by k matrix

∑N
i=1 xix

′

iε̂i
2,

where ε̂i is the OLS predicted residual4, converges to the true matrix with
all of the V [ε|x] so that

V̂ (β̂OLS) =

(
N∑
i=1

xix
′

i

)−1 N∑
i=1

xix
′

iε̂i
2

(
N∑
i=1

xix
′

i

)−1

.

3Arises all the time. For example when working with regional averages yr = 1
Nr

∑Nr

i=1 yir we

have V (yr) =
1
Nr

V (yir).
4Remember that with heteroscedasticity OLS still provides unbiased estimates of βs, so that

ε̂ = y − x
′

β̂OLS is also unbiased.
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(Here we also preview the Hausman test by comparing the OLS and Hu-
ber/White variance-covariance matrix. See [G]14.6, [W]4.2.3.

(ii) COV [εi, εj | xi, xj] �= 0 : (a) time series or unobserved random effect (family
effects), (b) possible inconsistency of β (for example when estimating y =
α + ε, the asymptotic variance of α̂ does not converge to 0) , (c) GLS,
Chamberlin’s trick (see below).

(iii) E[εi | xi] �= 0 : (a) Misspecification, Simultaneity, Lagged dependent vari-
ables and serial correlation in errors, Fixed effect model, Measurement error,
Limited dependent variables; (b) inconsistency of β, (c) GMM/IV, non-
parametrics, MLE.

In the first part of the course on panel data, we will first deal with (i) and (ii) by
running various GLS estimators. Second we will also explore panel data techniques
of dealing with (iii). The second part of the course on LIMDEP techniques will
all address (iii).

Example 3.1. GLS in spacial econometrics (see p.526 in Anselin, 1988) Here we
present a way of parametrizing cross-regional correlation in εs (using analogy be-
tween time correlation coefficient and spacial correlation) and provide an example
of how non-nested testing arises (e.g., with respect to how we specify the conti-
guity matrix summarizing prior beliefs about the spacial correlation) and what it
means to concentrate the likelihood. Most importantly, we remind ourselves of
how FGLS works in two steps. The first part of the panel data analysis (Section
4) will all be FGLS.

12
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Part II

Panel Data Regression Analysis

Reading assignment: [H] 1.2, 2, 3.2 - 3.6, 3.8, 3.9.

4. GLS with Panel Data

So far we talked about cases when OLS fails to do its job and GLS fixes the
problem, i.e. cases where the variance assumption is violated. Now, we are going
to apply that reasoning in the panel data context.

The model we have in mind is

yit = x′itβit + εit with i = 1, ..., N and t = 1, ..., T , or (4.1)

yi
T×1

= Xi
T×k

βit
k×1

+ εi with i = 1, ..., N or

y
NT×1

=


X1

X2
...
XN

βit + ε ,
where the covariance structure of εit will again be of interest to us. In a panel
model we can allow for much more flexible assumptions then in a time series or a
cross-section.

Remark 2. N and T do not necessarily refer to number of individuals and time
periods respectively. Other examples include families and family members, firms
and industries, etc.

Remark 3. The number of time periods T may differ for each person. This is
often referred to as unbalanced panel.

Remark 4. T is usually smaller than N and most asymptotic results rely on
N → ∞ with T fixed.

The first question is whether we constrain β to be the same across either
dimension. We cannot estimate βit as there is only NT observations.
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4.1. SURE

Suppose we assume βit = βi ∀t, that is for some economic reason we want to know
how βs differ across cross-sectional units or F-test rejects βit = β ∀i, t.

If E[εit | xit] = 0 ∀t and V [εit | xit] = σ2ii and (xit, εit) is iid ∀t then we estimate
βi by running N separate OLS regressions. (Alternatively we can estimate yit =
x′itβt + εit.)

Now, if the covariance takes on a simple structure in that E(εitεjt) = σ2ij
and E(εitεjs) = 0 there is cross-equation information available that we can use
to improve the efficiency of our equation-specific βis. We have V [ε] = E[εε′] =
Σ⊗IT �= σ2INT , i.e. the ε ’s are correlated across equations and we gain efficiency

by running GLS (if Xi �= Xj) with σ̂2ij = 1
T
ε̂i

′

ε̂j where the ε̂ first comes from
OLS as usual. Iterated FGLS results in MLE in asymptotic theory. In class we
demonstrate the GLS formula for SURE and get used to having two dimensions
in our data (formulas) and variance-covariance matrices. See [G].

4.2. Random Coefficients Model

What if we still want to allow parameter flexibility across cross-sectional units, but
some of the βis are very uninformative. Then one solution may be to combine the
estimate of βi from each time series regression 4.2 with the ‘composite’ estimate of

β from the pooled data in order to improve upon an imprecise β̂i using information
from other equations.5 In constructing β, each βi should then be given a weight
depending on how informative it is.

To operationalize this idea, the RCM model allows the coefficients to have a
random component (something typical for Bayesians, see [H 6.2.2]), i.e. we assume

yi
T×1

= Xiβi + εi (4.2)

where the error terms are well behaved, but

βi
K×1

= β
nonstochastic

+ νi with E[νi] = 0 and E[νiν
′

i] = Γ.

OLS on 4.2 will produce β̂i with V [β̂i] = σ2i (X
′

iXi)
−1 + Γ = Vi + Γ

Exercise 4.1. Show that the variance-covariance matrix of the residuals in the
pooled data is Π = diag(Πi), where Πi = σ2i I+ X

′

iΓXi.

5Note that in a SURE system, each β̂i is coming from equation by equation OLS.
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Remark 5. Vi tells us how much variance around β is in β̂i . Large Vi means the
estimate is imprecise.

Let β̂ =
∑N

i=1wiβ̂i , where
∑N

i=1wi = I . The optimal choice of weights is

wi =

[
N∑
j=1

(Vj + Γ)−1

]−1

(Vi + Γ)−1 (4.3)

Γ can be estimated from the sample variance in β̂i ’s ([G] p460). Note that β̂
is really a matrix weighted average of OLS.

Exercise 4.2. Show that β̂ is the GLS estimator in the pooled sample.

Remark 6. As a digression, consider a situation when simple cross-sectional data
are not representative across sampling strata, but weights are available to re-
establish population moments.6 First consider calculating the expectation of y
(weighted mean). Then consider weighting in a regression. Under the assump-
tion that regression coefficients are identical across strata, both OLS and WLS
(weighted least squares) estimators are consistent, and OLS is efficient. If the
parameter vectors differ for each sampling strata s = 1, ..., S so that βs �= β, a
regression slope estimator analogous to the mean estimator is a weighted average
of strata-specific regression estimates:

β̂ =
S∑

s=1

Wsβ̂s, V̂ (β̂) =
S∑

s=1

W 2
s V̂ (β̂s), (4.4)

where Ws are scalar strata-specific weights, and where β̂s is an OLS estimate
based on observations from stratum s. In contrast, the WLS procedure applied to
pooled data from all strata results in an estimator β̂WLS,

β̂WLS =

(
S∑

s=1

WsX
′

sXs

)−1 S∑
s=1

WsX
′

sys =

(
S∑

s=1

WsX
′

sXs

)−1 S∑
s=1

WsX
′

sXsβ̂s,

which is in general not consistent for the weighted average of βs.
7

6For source see Deaton’s Analysis of Household Surveys (1997, pp. 67-72).
7The WLS estimator is consistent for β if the parameter variation across strata is indepen-

dent of the moment matrices and if the number of strata is large (see, e.g., Deaton, 1997, p.
70). Further, Pesaran et al. (2000) note that neglecting coefficient heterogeneity can result
in significant estimates of incorrectly included regressors and bias other parameters even if the
erroneously included variables are orthogonal to the true regressors.
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Remark 7. As usual we need asymptotics to analyze the behavior of β̂ since
weights are nonlinear.

Remark 8. Γ̂ is coming from the cross-sectional dimension, while β̂i is estimated
off time series variation.

Finally, we recombine
̂̂
βi = Aiβ̂ + (I − Ai)β̂i with optimal8 Ai = (Γ−1 +

V −1
i )−1Γ−1.

Remark 9. If E[νi] = f(Xi) =⇒ E[νi | Xi] �= 0 =⇒ β̂i is not consistent for βi.

4.3. Random Effects Model

Assuming βit = β ∀i, t in Equation 4.1 one can impose a covariance structure
on ε ’s and apply the usual GLS approach. The random effects model (REM)
specifies a particularly simple form of the residual covariance structure, namely
εit = αi + uit with E[αiαj] = σ2α if i = j and is 0 otherwise. Other than that
the only covariance is between uit and uit which is σ2u. We could also add a time
random effect λt to εit.

Given this structure V ≡ V ( εi
T×1

) = σ2uIT +σ
2
αeT e

′

T , where eT is a T ×1 column

of numbers 1. We write down E[εε
′

] using V and invert V using the partitioned
inverse formula to write down the GLS formula:

β̂GLS =

(
N∑
i=1

X
′

iV
−1Xi

)−1 N∑
i=1

X
′

iV
−1yi (4.5)

The GLS random effects estimator has an interpretation as a weighted average
of a “within” and “across” estimator. We show this in class by first skipping to
the fixed effect model to describe this within estimator. Then we return to the
above GLS formula, reparametrize V −1 using the matrix Q = IT − 1

T
eTe

′

T , which
takes things in deviation from time mean, and gain intuition by observing the
two types of elements inside the GLS formula: (i) the “within” estimator based
on deviations from mean xit − xi and (ii) the “across” estimator working off the
time averages of the cross-sectional units, i.e. xi − x. Treating αi as random (and
uncorrelated with x) provides us with an intermediate solution between treating
αi as being the same (σ2α = 0) and as being different (σ2α → ∞). We combine
both sources of variance: (i) over time within i units and (ii) over cross-sectional
units.

8See [H] p.134 if you are interested in the optimality of Ai.
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Remark 10. As usual, the random effects GLS estimator is carried out as FGLS

(need to get σ̂2u and σ̂2α from OLS on within and across dimensions).

Remark 11. However, with panel data one does not have to impose so much
structure as in REM: (i) can estimate the person specific covariance using ε̂OLS

it ,
t = 1, ..., T (we will come to this later in one empirical example, see example 8.6),
(ii) we can use minimum distance methods and leave the structure of error terms
very flexible (see section 6.2.2).

5. What to Do When E[ε | x] �= 0

5.1. The Fixed Effect Model

One of the (two) most important potential sources of bias in cross-sectional econo-
metrics is the so called heterogeneity bias arising from unobserved heterogeneity
related to both y and x.

Example 5.1. Estimation of the effect of fertilizer on farm production in presence
of unobserved land quality; an earnings function and schooling when ability is not
observed, or a production function when managerial capacity is not in the data,
imply possibility of heterogeneity bias.

If we have valid IVs (exclusion restriction), we can estimate our model by
TSLS. If we have panel data, however, we can achieve consistency even when we
do not have IVs available. If we assume that the unobservable element correlated
with x does not change over time, we can get rid of this source of bias by running
the fixed effect model (FEM). This model allows for an individual specific constant,
which will capture all time-constant (unobserved) characteristics:

yit = αi + x
′
itβ + εit (5.1)

When T ≥ 2 the fixed effects αi are estimable, but if N is large, they become
nuisance parameters and we tend to get rid of them: by estimating the model on
data taken in deviation from the time mean or by time differencing.

To summarize, the FEM is appropriate when the unobservable element α does
not vary over time and when COV [αi,Xi] �= 0 . This nonzero covariance makes

the β̂OLS and β̂GLS inconsistent. We’ll come to the testing issue in section 6.
Suppose x

′

it = (wit, zi) and partition β appropriately into βw and βz. In this
case note that we cannot separately identify βz from αi. This shows that when we
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run the fixed effect model, β̂ is identified from individual variation in Xi around
the individual mean, i.e. β̂ is estimated off those who switch (change x over time).
α̂i’s are unbiased, but inconsistent if T is fixed. Despite the increasing number of

parameters as N −→ ∞, OLS applied to 5.1 yields consistent β̂w because it does
not depend on α̂i. To see this solve the following exercise.

Exercise 5.1. Let MD = INT −D(D
′

D)−1D
′

, where

D =


eT 0 . . . 0
0 eT . . . 0
...

. . . . . .
...

0 0 0 eT

 and eT =


1
1
...
1

 .
Using the definition of MD show β̂w is estimated by a regression of yit− yi· on

wit − wi· , where wi· =
1
T

∑T
t=1wit.

Remark 12. For small T the average wi· is not a constant, but a r.v. Hence
E[εit | wit] = 0 is no longer enough, we need E[εit − εi· |Wi] = 0.

Remark 13. Of course, we may also include time dummies, i.e. time fixed effects.
We may also run out of degrees of freedom.

Remark 14. There is an alternative to using panel data with fixed effects that
uses repeated observations on cohort averages instead of repeated data on indi-
viduals. See Deaton (1985) Journal of Econometrics.

Remark 15. While effects of time-constant variables are not identifies in fixed
effects models, one can estimate the change in the effect of these variables. Angrist
(1995) AER.

Remark 16. Bertrand et al. (2001) suggest that a fixed effect estimation using
state-time changes in laws etc. such as

yist = αs + δt + γxist + βTst + εist

may have the wrong standard errors because (i) it relies on long time series, (ii) the
dependent variables are typically highly positively serially correlated, and (iii) the
treatment dummy Tst itself changes little over time. In their paper, placebo laws
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generate significant effects 45% of the time, as oposed to 5%. As a solution they
propose to aggregate up the time series dimension into pre- and post-treatment
observations or allow for arbitrary covariance over time and within each state.
These solutions work fine if the number of groups is sufficiently large. If not, they
suggest the use of randomization inference tests: Use the distribution of estimated
placebo laws to form the test statistic. However, recently Kézdi (2002) suggests
that using option cluster() in Stata is fine.9

5.2. Errors in Variables

([H] 3.9) One particular form of endogeneity of RHS variables was of concern in the
previous section. We used the fixed effect model to capture time constant person-
specific characteristics. The second most important potential source of bias is
measurement error. Its effects are opposite to those of a typical unobserved fixed
effect. Consider the model 5.1, where x is measured with error, i.e. we only
observe x̃ such that

x̃i = xi + νi (5.2)

In the case of classical measurement error, when E[νε] = 0, OLS is inconsistent
and biased towards 0. For a univariate xit we show in class that

β̂OLS

p−→ σ2x
σ2x + σ

2
ν

β (5.3)

Note that what matters is the ratio of the ‘signal’ σ2x to ‘noise’ σ2ν. Also note that
adding additional regressors will typically exacerbate the measurement error bias
because the additional regressors absorb some of the signal in x̃.

Exercise 5.2. Suppose there are two variables in xit, only one of which is mea-
sured with error. Show whether the coefficient estimator for the other variable is
affected as well.

Remark 17. In the case of miss-clasification of a binary variables E[νε] = 0
cannot hold. This still biases the coefficient towards 0 (Aigner, 1973). However,
the bias can go either way in other cases of non-classical measurement error.

Remark 18. Within estimators (differencing) will typically make the measure-
ment error bias worse. The signal-to-noise ratio will depend on σ2x and on σ2x +

9http://www.econ.lsa.umich.edu/~kezdi/FE-RobustSE-2002-feb.pdf
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σ2ν [(1− τ)/(1−ρ)] where τ is the first-order serial correlation in the measurement
error and ρ is the first-order serial correlation in x. Again, the intuition is that
differencing kills some of the signal in x̃ because x is serially correlated, while the
measurement error can occur in either period.

Exercise 5.3. Derive the above-stated result.

Exercise 5.4. Explain how we could use a second measurement of xit to consis-
tently estimate β.

Remark 19. When you don’t have an IV, use reliability measures (separate re-
search gives you these).

Remark 20. IV estimation method for errors in variables does not generalize to
general nonlinear regression models. If the model is polynomial of finite order it
does: see Hausman et al. (1991). See Schennach for use of Fourier transformation
to derive a general repeated-measurement estimator for non-linear models with
measurement error.

Exercise 5.5. Assume a simple non-linear regression model yi = βf(xi) + εi
with one regressor xi measured with error as in Equation 5.2. Use Taylor series
expansion around x̃ to illustrate why normal IV fails here.

Example 5.2. In estimating the labor supply equation off PSID data the measure
of wages is created as earnings over hours. If there is a measurement error in hours,
the measurement error in wages will be negatively correlated with the error term
in the hours equation.

Griliches and Hausman (1986): “Within” estimators are often unsatisfactory,
which was blamed on measurement error. Their point: we may not need extrane-
ous information. If T > 2 differencing of different lengths and the deviations-from-
mean estimator will eliminate fixed effects and have a different effect on potential
bias caused by measurement error. Therefore differencing may suggest if mea-
surement error is present, can be used to test if errors are correlated, and derive a
consistent estimator in some cases. Note that here again (as with the fixed effect
model) panel data allows us to deal with estimation problems that would not be
possible to solve in simple cross-section data in absence of valid instruments.
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6. Testing in Panel Data Analysis

Tests like Breusch-Pagan tell us whether to run OLS or random effects (GLS).
What we really want to know is whether we should run fixed effects or random
effects, i.e., is COV [αi,Xi] �= 0 ?

Remark 21. Mundlak’s formulation connects random and fixed effects by para-
metrizing αi (see [H] 3).

6.1. Hausman test

• Basic idea is to compare two estimators10: one consistent under both null
hypothesis (no misspecification) and under the alternative (with misspecifi-
cation), the other consistent only under the null. If the two estimates are
significantly different, we reject the null.

β̂LSDV fixed effects β̂GLS random effects
H0 : COV [αi, Xi] = 0 consistent, inefficient consistent, efficient
HA : COV [αi, Xi] �= 0 consistent inconsistent

• The mechanics of the test:

Theorem 6.1. UnderH0 assume
√
n(β̂j−β) D−→ N(0, V (β̂j)), j ∈ {LSDV,GLS}

and V (β̂LSDV ) ≥ V (β̂GLS) and define
√
n q̂ =

√
n(β̂LSDV − β̂GLS) D−→ N(0, V (q̂))

where

Vq ≡ V (q̂) = V (β̂LSDV ) + V (β̂GLS)−COV (β̂LSDV , β̂
′

GLS)−COV (β̂GLS, β̂
′

LSDV ).

then

COV (β̂LSDV , β̂
′

GLS) = COV (β̂GLS, β̂
′

LSDV ) = V (β̂GLS)

so that we can easily evaluate the test statistic q̂
′

V −1
q q̂ −→ χ2(k).

We prove the theorem in class using the fact that under H0 the β̂GLS achieves
the Rao-Cramer lower bound.

Remark 22. Hausman asks if the impact of X on y within a person is the same
as the impact identified from both within and cross-sectional variation.

10But it is not really LR test as the two hypotheses are non-nested.
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Remark 23. Similar to the Hansen test (see Section 8), Hausman is an all-
encompassing misspecification test, which does not point only to COV [αi,Xi] �= 0,
but may indicate misspecification. Of course, tests against specific alternatives
will have more power.

Remark 24. The power of the Hausman test might be low if there is little vari-
ation for each cross-sectional unit. The fixed effect β̂ is then imprecise and the
test will not reject even when the βs are different.

Remark 25. There is also a typical sequential testing issue. What if I suspect
both individual and time fixed effects: which should I first run Hausman on. Since
T is usually fixed, it seems safe to run Hausman on the individual effects, with
time dummies included. But then we may run out of degrees of freedom.

6.2. Using Minimum Distance Methods in Panel Data

Hausman test might reject COV [αi, Xi] = 0 and one may then use of the fixed
effect model. But the fixed effect model model is fairly restrictive and eats up
a lot of variation for αis. When T is small we can test the validity of those
restrictions using the MD methods. The same technique allows for estimation of
β with a minimal structure imposed on α, allowing for correlation between the
unobservable α and the regressors x. We will first understand the MD method
and then apply it to panel data problems.

6.2.1. The Minimum Distance Method

Suppose we have a model which implies restrictions on parameters which are
hard to implement in the MLE framework. When estimation of an unconstrained
version of our model is easy (OLS) and consistent, the MD method offers a way
to impose the restrictions and regain efficiency and also to test the validity of the
restrictions ([H] 3A).

Denote the unconstrained estimator as π̂N , where N is the sample size in
the unconstrained estimation problem, and denote the constrained parameter of
interest as θ. Next, maintain the assumption that at the true value of θ the
restrictions π = f(θ) are valid. The objective is to find θ̂ such that the distance
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between π̂ and f(θ̂) is minimized:11

θ̂N = argmin{SN} where SN = N [π̂N − f(θ)]′AN [π̂N − f(θ)], (6.1)

and where AN
p−→ A is a weighting matrix and

√
N [π̂N − f(θ)] D−→ N(0,∆).12

Remark 26. The minimization problem 6.1 is of considerably smaller dimension
than any constrained estimation with the N data points.

Theorem 6.2. Under the above assumptions and if f is 2nd order differentiable

and ∂f

∂θ
′ has full column rank then a)

√
N [̂θN −θ] D−→ N(0, V (A)) , b) the optimal

A = ∆−1, and c) ŜN
D−→ χ2(r) where r = dim(π) − dim(θ) is the number of

overidentifying restrictions.

We provide the proof in class. To show a) simply take a FOC and use Taylor

series expansion to relate the distribution of θ̂N to that of π̂N .

Remark 27. Note that the Minimum Distance Method is applicable in Simulta-
neous Equation Models to test for exclusion restrictions.

Γyt +Bxt = ut ⇒ yt = Πxt + vt where Π = −Γ−1B

and we can test zero restrictions in Γ and B.

Remark 28. MD is efficient only among the class of estimators which do not
impose apriori restrictions on the error structure.

Remark 29. The MD method can be used to pool two data sets to create an IV
estimator (Arellano and Meghir 1991) if instruments are in both data sets, while
one of the data sets includes the dependent variable and the other includes the
explanatory variable of interest.

11Find the minimum distance between the unconstrained estimator and the hyperplane of
constraints. If restrictions are valid, asymptotically the projection will prove to be unnecessary.

12See Breusch-Godfrey 1981 test in Godfrey, L. (1988).
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6.2.2. Arbitrary Error Structure

When we estimate random effects, COV [α, x] must be 0; further, the variance-
covariance structure in the random effect model is quite restrictive. At the other
extreme, when we estimate fixed effects, we lose a lot of variation and face multi-
collinearity between αi and time constant x variables.

However, when T is fixed and N −→ ∞, 13 one can allow α to have a general
expectations structure given x and estimate this structure together with our main
parameter of interest: β (Chamberlain 1982, [H] 3.8). That is we will not elimi-
nate αi (and its correlation with x) by first differencing. Instead, we will control
for (absorb) the correlation between α and x by explicitly parametrizing and esti-
mating it. This parametrization can be rich: In particular, serial correlation and
heteroscedasticity can be allowed for without imposing a particular structure on
the variance-covariance matrix. In sum, we will estimate β with as little struc-
ture on the omitted latent random variable α as possible.14 The technique of
estimation will be the MD method.

Assume the usual fixed effect model with only E[εit | xit, α∗
i ] = 0

yi = eTα
∗
i + Xi

T×K
β + εi (6.2)

and let xi = vec(X
′

i).
15 To allow for possible correlation between αi and Xi ,

assume E[α∗
i | Xi] = µ+ λ

′

xi =
∑T

t=1 λ
′

txit (note µ and λ do not vary over i) and
plug back into 6.2 to obtain

yi = eTµ+ (IT ⊗ β ′

+ eTλ
′

)xi + [yi −E[yi | xi]] = eTµ+ Π
T×KT

xi + υi (6.3)

We can obtain Π̂ by gigantic OLS and impose the restrictions on Π using MD.16

We only need to assume xit are iid for t = 1, . . . , T. Further, we do not need to
assume E[αi | Xi] is linear, but can treat µ + λ

′

Xi as a projection, so that the
error term υi is heteroscedastic.

Exercise 6.1. Note how having two data dimensions is the key. In particular,
try to implement this approach in cross-section data.

13So that (N − T 2K) is large.
14The omitted variable has to be either time-invariant or individual-invariant.
15Here, vec is the vector operator stacking columns of matrices on top of each other into one

long vector. We provide the definition and some basic algebra of the vec operator in class.
16How many underlying parameters are there in Π? Only K +KT .
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Remark 30. Hsiao’s formulae (3.8.9.) and (3.8.10.) do not follow the treatment
in (3.8.8.), but use time varying intercepts.

6.2.3. Testing the Fixed Effects Model

Jakubson (1991): In estimating the effect of unions on wages we face the potential
bias from unionized firms selecting workers with higher productivity. Jakubson
uses the fixed effect model and tests its validity. We can use the MD framework
to test for the restrictions implied by the typical fixed effect model. The MD test
is an omnibus, all-encompassing test and Jakubson (1991) offers narrower tests of
the fixed effect model as well:

• The MD test: Assume

yit = βtxit + εit with εit = γtαi + uit

where αi is potentially correlated with xi
17. Hence specify αi = λ

′

xi
T×k

+ ξi.

Now, if we estimate
yi = Π

T×T
xi + νi

the above model implies the non-linear restrictions Π = diag(β1, . . . , βT ) +
γλ

′

which we can test using MD. If H0 is not rejected, we can further test
for the fixed effect model, where βt = β ∀t and γt = 1 ∀t.

• Test against particular departures:18

— Is differencing valid? Substitute for αi to get

yit = βtxit + (
γt
γt−1

)yit−1 − (βt−1

γt
γt−1

)xit−1 + [uit − (
γt
γt−1

)uit−1]

Estimate overparametrized model by 3SLS with x as an IV for lagged
y, test exclusion restrictions (see Remark 30), test ( γt

γt−1
) = 1 (does it

make sense to use ∆yit on the left-hand side?), if valid test βt = β ∀t.
— Is the effect “symmetric”?

∆yit = δ1tENTERit + δ2tLEAV E + δ3tSTAY +∆µit
17If αi is correlated with xit then it is also correlated with xis ∀s.
18These tests are more powerful than the omnibus MD test. Further, when MD test rejectsH0

then the test against particular departure can be used to point to the source of misspecification.
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— Does the effect vary with other Xs?

Remark 31. In the fixed effect model we rely on changing xit over time. Note
the implicit assumption that union status changes are random.

7. Simultaneous Equations

Simultaneous Equations are unique to social science. They occur when more than
one equation links the same observed variables. Identification issues.

Solution: IV/GMM to find variation in the X with simultaneity bias which is

not related to the variation in the εs, i.e., use X̂ instead. Theory or intuition is
often used to find an “exclusion restriction” postulating that a certain variable (a
potential instrument) does not belong to the equation in question. We can also
use restrictions on the variance-covariance matrix of the structural system errors
to identify parameters which are not identified by exclusion restrictions.

Example 7.1. To illustrate this, consider the demand and supply system from
Econometrics I:

qD = α0 + α1p+ α2y + εD

qS = β0 + β1p+ +εS

qD = qS

where S stands for supply, D stands for demand and p is price and y is income.
We solve for the reduced form

p = π1y + υp

q = π2y + υq

and note that one can identify β1 by instrumenting for p using y which is excluded
from the demand equation. Here we note that in exactly identified models like this
the IV estimate β̂1 =

π̂1

π̂2
; this is called indirect least squares and demasks IV. To

identify α1 estimate Ω , the variance-covariance matrix of the reduced form, relate
the structural and reduced form covariance matrices and assume COV (εD, εS) = 0
to express α1 as a function of β1.

A valid instrument Z must be correlated with the endogenous part of X (in
the first-stage regression controlling for all exogenous explanatory variables!) and
not correlated with ε.
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Remark 32. For testing the validity of exclusion restrictions (overidentification),
that is testing COV (Z, ε) = 0, see remark 27.

Example 7.2. See Card (1993) who estimates returns to schooling using prox-
imity to college as an instrument for education and tests for exclusion of college
proximity from the wage equation. To do this he assumes that college proximity
times poverty status is a valid instrument and enters college proximity into the
main wage equation. Notice that you have to maintain just identification to test
overidentification.

Example 7.3. Aside from econometric tests for IV validity (overidentification),
one can also conduct intuitive tests when the exogenous variation (IV) comes from
some quasi-experiment. For example, one can ask whether there is an association
between the instrument and outcomes in samples where there should be none.
For example Angrist in the Vietnam draft paper asks if earning vary with draft-
eligibility status for the 1953 cohort, which had a lottery, but was never drafted.

Remark 33. Other then testing for COV (Z, ε) = 0, one should also consider the
weak instrument problem (make sure that COV (X,Z) �= 0). Even a small omitted

variable bias (COV (Z, ε) �= 0) can go a long way in biasing β̂ if COV (X,Z) is

small because p lim β̂ = β0 + COV (Z, ε)/COV (X,Z). See [W]5.2.6.
IV is an asymptotic estimator, unlike OLS which is unbiased in small samples.19

IV needs large samples to invoke consistency. Finite sample bias is larger when
there are more instruments, samples are smaller, and instruments are weaker.
Bound et al. (1995) suggest the use of F tests in the first stage. Also see Staiger
and Stock (1997) who suggest that an F statistic below 5 suggests weak instru-
ments. Alternatively, use LIML which is median-unbiased. Or use exactly identi-
fied models.

Exercise 7.1. Consider an endogenous dummy variable problem. Do you put in
the predicted outcome or probability?

8. GMM and its Application in Panel Data

Read at least one of the two handouts on GMMwhich are available in the reference
folder for this course in the library. The shorter is also easier to read.

19IV is consistent but not unbiased because it features a ratio of two random variables.
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Theory (model) gives us population orthogonality conditions, which link the
data to parameters, i.e., E[m(X,Y, θ)] = 0. The GMM idea: to find the popula-
tion moments use their sample analogues (averages)

∑N
i=1m(Xi, Yi, θ) = qN and

find θ̂ to get sample analogue close to 0.
If there are more orthogonality conditions than parameters (e.g. more IV’s

than endogenous variables) we cannot satisfy all conditions exactly so we have
to weight the distance just like in the MD method, and the resulting minimized
value of the objective function is again χ2 with the degrees of freedom equal to
the number of overidentifying conditions. This is the so called Hansen test or J
test or GMM test of overidentifying restrictions:

θ̂
GMM

N = argmin{qN(θ)′WNqN(θ)} (8.1)

To reach χ2 distribution, one must use the optimal weighting matrix, V̂ (m)
−1

,
so that those moment conditions that are better estimated are forced to hold more
closely (see Section 6.2.1 for similar intuition). A feasible procedure is to first run

GMM with the identity matrix, which provides consistent θ̂ and use the resulting
ε̂s to form the optimal weighting matrix.

Remark 34. GMM nests most other estimators we use and is helpful in compar-
ing them and/or pooling different estimation methods.

Example 8.1. OLS: y = Xβ + ε, where E[ε|X] = 0 =⇒ E[X
′

ε] = 0 so solve

X
′

(y −Xβ̂) = 0.

Example 8.2. IV: E[X
′

ε] �= 0 but E[Z
′

ε] = 0 so set Z
′

(y−Xβ̂) = 0 if dim(Z) =

dim(X). If dim(Z) > dim(X) solve 8.1 to verify that here β̂GMM = β̂TSLS.

Example 8.3. Non-linear IV: y = f(X, β)+ ε, but still E[Z
′

ε] = 0 so set Z
′

(y−
f(X, β̂)) = 0.

Example 8.4. Euler equations: Et[u
′

(ct+1)] = γu
′

(ct) ⇒ Et[u
′

(ct+1)− γu′

(ct)] =
0. Use rational expectations to find instruments: Zt containing information dates
t and before. So Et[Z

′

t(u
′

(ct+1) − γu
′

(ct))] = 0 is the orthogonality condition.
Note that here ε is the forecast error that will average out to 0 over time for each
individual but not for each year over people so we need large T .
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Example 8.5. One can use GMM to jointly estimate models that have a link
and so neatly improve efficiency by imposing the cross-equation moment condi-
tions. For example, Engberg (1992) jointly estimates an unemployment hazard
model (MLE) and an accepted wage equation (LS), which are linked together by
a selection correction, using the GMM estimator.

Remark 35. GMM does not require strong distributional assumptions on ε like
MLE. Further, when εs are not independent, the MLE will not piece out nicely,
but GMM will still provide consistent estimates.

Remark 36. GMM is consistent, but biased in general. It is a large sample
estimator. In small samples it is often biased downwards (Altonji and Segal 1994).

Remark 37. GMM allows us to compute variance estimators in situations when
we are not using the exact likelihood or the exact E[y | x] but only their ap-
proximations. See section 5. of the GMM handout by George Jakubson in the
library.

Example 8.6. The GMM analogue to TSLS with general form of heteroscedas-
ticity is

β̂GMM = (X ′ZΩ̂−1Z ′X)−1X ′ZΩ̂−1Z ′Y (8.2)

and with panel data we can apply the White (1980) idea to estimate Ω̂ while
allowing for any conditional heteroscedasticity and for correlation over time within
a cross-sectional unit:

Ω̂ =
N∑
i=1

Z
′

i ε̂iε̂i
′

Zi

where the ε̂i comes from a consistent estimator such as homoscedastic TSLS.

Exercise 8.1. Show that even with heteroscedastic errors, the GMM estimator
is equivalent to TSLS when the model is exactly identified.

Exercise 8.2. Compare the way we allow for flexible assumptions on the error
terms in the estimator 8.2 to the strategy proposed in section 6.2.2.

Example 8.7. Nonlinear system of simultaneous equations. Euler equations.

McFadden (1989) and Pakes (1989) allow the moments to be simulated: SMM
(see Remark 44). Imbens and Hellerstein (1993) propose a method to utilize
exact knowledge of some population moments while estimating θ from the sample
moments: reweight the data so that the transformed sample moments would equal
the population moments.
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Part III

Qualitative and Limited

Dependent Variables

9. Qualitative response models

Reading assignment: [M] 1,2, [G] 21.
Our usual regression methods are designed for a continuous dependent variable.

In practice, we very often analyze a qualitative response - a discrete dependent
variable. For example: decide to buy a car, quit a job, retire, move, work; choose
among many alternatives such as how to commute to work; choose sequentially
the level of education; influence the number of injuries in a plant, etc. While
it was entirely plausible to assume that ε in our usual regression model with a
continuous y had a continuous pdf, this assumption is not valid here. The usual
E[y | x] no longer does the job in those situations.

Most models are estimated by MLE which allows us to write down even very
complicated models.20 As a consequence, IV is not easily possible and panel data
analysis is difficult. Further, heteroscedasticity or omission of an explanatory vari-
able orthogonal to the included regressors cause bias unlike in the linear regression
analysis!21 Since MLE crucially hinges on distributional assumptions, recent liter-
ature focuses on estimation methods not requiring specification of any parametric
distribution.

9.1. Binary Choice Models

9.1.1. Linear Probability Model

In the Linear Probability Model we assume our usual linear regression even though
yi ∈ {0, 1}. As a consequence the interpretation of E[yi | xi] = β

′

xi being the

20Also testing using the LR principle is very convenient.
21For example, Arabmazar and Schmidt (1981), give some examples of the asymptotic biases

for the Tobit model, see section 10.1.
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probability the event occurs breaks down when β̂
′

xi /∈ [0, 1].

Exercise 9.1. Show that given E[εi] = 0, the residuals εi which can take on only
two values are heteroscedastic.

The advantage of the LPM is in its ability to handle IV estimation easily.
Applying the LPM is valid in large samples when the empirical ŷis are not close
to 0 or 1.One should also allow the xs to enter as finite order polynomials, allowing
for non-linearity.

Example 9.1. Cutler and Gruber (1995) estimate the crowding out effect of
public insurance in a large sample of individuals. They specify a LPM:

Coveragei = β1Eligi +Xiβ2 + εi

Eligibility is potentially endogenous and also subject to measurement error. To
instrument for Eligi they select a national random sample and assign that sample
to each state in each year to impute an average state level eligibility. This measure
is not affected by state level demographic composition and serves as an IV since
it is not correlated with individual demand for insurance or measurement error,
but is correlated with individual eligibility.

9.1.2. Logit and Probit MLE

The MLE methods transform the discrete dependent variable into a continuous
domain using cumulative distribution functions. This is a natural choice as any
F (·) ∈ [0, 1].

Assume existence of a continuous latent variable y∗i = β
′

xi+ ui where we only
observe yi = 1 if y∗i > 0 and yi = 0 otherwise. Then for a symmetric F (·) we have

P [yi = 1 | xi] = P [ui > −β′

xi] = 1− F (−β′

xi) = F (β
′

xi). (9.1)

Two common choices are Λ(β
′

xi) =
exp(β

′

xi)

1+exp(β
′

xi)
(logit) and Φ(β

′

xi) (probit). The

sample likelihood is then built under random sampling.

Remark 38. MLE maximizes the log-likelihood L(θ) =∑N
i=1 log f(xi, θ), where

f(xi, θ) is the individual likelihood contribution, for computational convenience.
It is a natural thing to do since

E {L(θ)−L(θ0)} =
iid
nE

{
log

[
f(xi, θ)

f(xi, θ0)

]}
≤

Jensen
n log

[
E

{
f(xi, θ)

f(xi, θ0)

}]
= 0.
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Therefore we construct a sample analogue to E log f(xi, θ) and maximize w.r.t. θ.
Random sampling guarantees that 1

N

∑N
i=1 log l(xi, θ) converges to E log f(xi, θ).

Hence, lack of independence will not be a problem if the marginals do not shift
around, even though L(θ) is no longer the right likelihood. Similar convergence
property underlies the GMM.

Remark 39. Both models are suitable for non-linear optimization using the Newton-
Raphson methods as the Hessian is always n.d.

Remark 40. β̂
′

s from logit and probit are not directly comparable (β̂Logit �
1.6β̂Pr obit , see [M p.23]). Further, while β̂OLS = ∂E[yi|xi]

∂xi
we need to find the prob-

ability derivatives for logits and probits, e.g. β̂Logit �= ∂P [yi=1|xi]
∂xi

= Λ(−β ′

xi)[1 −
Λ(−β′

xi)]β̂Logit.

Remark 41. Parametric methods (e.g. probit and logit) force strict monotonic-
ity and homoscedasticity.22

Remark 42. There are bivariate extensions in the SURE spirit ([G] 21.6). Also
see section 5.2. of the GMM handout by George Jakubson in the library for an
example with correlated probits and their univariate approximation.

Exercise 9.2. Show that in Probit, one can only estimate β/σ.

Exercise 9.3. Estimates from binary response models are essentially WLS es-
timates: Find the corresponding GMM/IV interpretation for logit model using
the FOC’s of the MLE. Compare it to the corresponding probit expression and
find the WNLLS interpretation for probit. Will they give the same answer as the
MLE in small samples? Think of the intuition behind the size of the weight as a
function of x′β.

Remark 43. See Davidson and MacKinnon (1993) textbook, chapter 15.4 for a
useful auxiliary regression connected to qualitative response models.

22There is a heterogeneity test for probit ([G]p.649).
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9.1.3. The WLS-MD for Multiple Observations

([M] 2.8, [G] 21.4.3) Suppose we have ni observations corresponding to xi and that
for mi of them the event occurred. Then assume p̂i =

mi

ni
= pi + ui = β

′

xi + ui
and correct for heteroscedasticity. For non-linear models we invert the cdf and we
need a Taylor series expansion to find the form of heteroscedasticity.

Example 9.2. For the logit model pi = Λ(β
′

xi) and we get Λ−1(pi) = ln pi
1−pi

=

β
′

xi + ui .�

Exercise 9.4. Show the WLS is a genuine MD (see HW#4).

9.1.4. Panel Data Applications of Binary Choice Models

The usual suspects: Random and Fixed Effects. See [H] 7.

Random Effect Probit Probit does not allow the fixed effect treatment at all.
Random effects model is feasible but has been difficult because of multidimensional
integration. To prevent contamination of β′s, we need to integrate the random
effects α out. For MLE we must assume a particular distribution for α, say g(α)
depending on parameters δ. Then allowing for correlation of α over time for the
same person we can maximize the following with respect to both β and δ :

L(θ) =
N∑
i=1

log

∫ T∏
t=1

Φ(β
′

xit + α)
yit
[
1− Φ(β

′

xit + α)
]1−yit

dG(α|δ)dα (9.2)

Notice the multidimensional integral (eachΦ is an integral inside the T -dimensional
integral over α). We can simplify matters by assuming that the correlation of α
between any two time periods is the same. Then we can look at each yit and∫
P [yit = 1 | xit, αi] g(α)dα = P [yit = 1 | xit]. For each yit we then have a double

integral.

Remark 44. When we allow for general structure of g(α) we need the simu-
lated method of moments (SMM) to evaluate the integrals fast (McFadden, 1988):
When computing the P [yi = 1 | Xi] = Pi presents a formidable computational
problem one solution is to use their unbiased estimates. To illustrate this method
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return back to a cross-section and consider the GMM interpretation of probit
where Pi = Φ(β

′

xi) (see exercise 9.3):

0 =
N∑
i=1

(yi − Pi) Xiφ(x
′

iβ)

Pi(1− Pi) =
N∑
i=1

(εi)wi.

Suppose Pi is hard to calculate. Solution? Use wi = Xi, which will deliver
inefficient but consistent estimates. You still need to evaluate the Pi inside the εi.
To do this, let I(·) be the indicator function and consider

Φ(β
′

xi) =

∫ β
′

xi

−∞

φ(s)ds =

∫ ∞

−∞

φ(s)I(s < β
′

xi)ds = Es[I(s < β
′

xi)].

To simulate the integral generateR values sr ∼ N(0, 1) and evaluate 1
R

∑R
r=1 I(sr <

β
′

xi) to obtain an unbiased estimate of Pi. (It’s not consistent as long as R is finite
so can’t use it in the wi.). To conclude, drive the simulated moment condition to
0.

Remark 45. To allow (flexible) correlation between xi and αi we may follow
Chamberlain (1980), but we now need the true regression function (see section
6.2.2) and a distributional assumption on the α equation error term.

Remark 46. There is a specific counterpart to random effects usable with the
logit model: NP-MLE (Non-Parametric Maximum Likelihood, see Heckman and
Singer, 1984, for such duration models). Simply approximate the g(α) with a dis-
crete distribution. Estimate the points of support and the respective probabilities
as part of your likelihood maximization.

Conditional Fixed Effect Logit The motivation for a fixed effect model is
similar as in panel data linear regression. In MLE the αis are again consistent
only with T −→ ∞. Since T is usually fixed and since MLE relies on consistency,
the αis must be swept out. But how do you “difference out” an additive element
from a non-linear function?

Logit does allow for such a trick. Consider the T observations on yit as one
T− variate observation yi. The suggestion of Chamberlain (1980) is to maximize
the conditional likelihood (see section 9.2.1) of yi given

∑T
t=1 yit which turns out

to remove the heterogeneity. Conditional on αis we have independence over both
i and t.
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Exercise 9.5. To verify this, write down the conditional likelihood contribution
of y

′

i = (0, 1) when T = 2.

Remark 47. Again, use Hausman test to compare the fixed effect model with
the αi = α simple pooled-data logit.

Remark 48. The conditional fixed effect logit is computationally cumbersome
for T ≥ 10.

Exercise 9.6. Explain why yis with no change over time are not used in the
estimation and show that observations with time constant xs are not used either.

9.1.5. Choice-based sampling

[A]9.523 To analyze a rare event when population probabilities p(yi) = P [yi = 1]
are tiny (training treatment, violent crime), sample randomly within each group
to obtain f(xi | yi). Then note f(xi, yi) = p(yi | xi)f(xi) = f(xi | yi)p(yi) and
write the likelihood function for the two samples

L(·) =
∏
i∈S1

f(xi | yi = 1)
∏
i∈S2

f(xi | yi = 0) (9.3)

in terms of p(yi | xi) = F (β
′

xi) (in the bivariate example).

Remark 49. P [yi = 1], P [yi = 0] usually come from a different data set (are
known), but can be estimated as part of the problem.

Manski and McFadden (1981) set up an intuitive conditional maximum like-
lihood estimator using the formula for the conditional probability of i given x in
the sample. For j = 1, ...,M choices:

L(θ) =
N∑
i=1

ln
p(y = yi|xi, θ)Hyi/p(y = yi)∑M
j=1 p(yi = j|xi, θ)Hj/p(yi = j))

, (9.4)

where Hj is the probability of sampling from a strata j (can be unknown to
the researcher). However, as noted in Cosslett (1981) paper, this estimator is
not efficient. Partly because the sample distribution of x actually depends on θ :
g(x) =

∑S
s=1Hs/p(s)

∑
j∈I(s) p(j|x, θ)f(x). So we should use this information to

help us estimate θ better. But then we do not get rid of f(x), which was the
beauty of 9.4.

23Se also Pudney (1989), chapter 3.2.3.
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Remark 50. Replacing H with Ĥ actually improves efficiency. Counterintuitive.
Only works with an inefficient estimator.

Cosslett (1981) devised a pseudo-likelihood estimator, replacing the f(x) with
a set of discrete densities fn. Counterintuitively, even though the number of para-
meters climbs with n, this estimator is efficient. (Think of estimating a mean this
way.) However, it is not practical. So, Imbens (1992) comes up with a repara-
metrization of Cosslett moment conditions which is implementable. It is based
on the intuition that to devise a moment condition based on x with many points
of support, I do not need to know the points of support themselves (see the ex-
ample below). He uses change in variables in the FOC (moment conditions) of
the Cosslett estimator between a subset of the points of support of x and the
population marginal densities p to come up with nice moment conditions.

Example 9.3. Suppose you want to estimate δ = Pr(z > 0). If z is discrete with
{z1, z2, ..., zL} points of support and unknown probabilities {π1, π2, ..., πL} one
could efficiently estimate δ on the basis of i = 1, ..., N independent observations
of zi by ML as δ̂ =

∑
l|zl>0 π̂l =

1
N

∑N
n=1 I[zn > 0] where the last representation

of the estimator does not depend on the points of support. It can also be used
when δ does not have a discrete distribution.

9.1.6. Relaxing the distributional assumptions of binary choice models

Parametric models of choice (like logit or probit) are inconsistent if the distribution
of the error term is misspecified, including the presence of heteroscedasticity.

One can go fully non-parametric. Matzkin (1992): Let E[yi | xi] = m(x) =
F (h(x)) and study the identification of h from F. This is the most general and
least operational we can go.

Index models Cosslett (1981): max L(θ) w.r.t. both β and F (g(β, xi)), where
g(·) is assumed parametric. Only consistency derived, but no asymptotic distri-
bution. Further research on index models includes Ichimura (1993) with a

√
n

estimator and Klein and Spady (1993). All of these require ε and x to be inde-
pendent.

Maximum rank estimators Manski’s Maximum Score Estimator (1975, 1985)
maximizes the number of correct predictions, is n−1/3 consistent, and is in L�����.
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The idea is based on E[yi | xi] = F (β
′

0xi). Assume F (s) = .5 iff s = 0.24 Then
β

′

0xi ≥ (≤)0 iff E[yi | xi] ≥ (≤).5 and we use sgn(β
′

xi) −sgn(E[yi | xi]− .5) = 0
as a moment condition.25 Then

β̂MRE = argmax
s.t.β

′

β=1

1

n

n∑
i=1

[
(2yi − 1)sgn(β

′

xi)
]

(9.5)

Functionally related regressors are excluded by identification assumptions and
β̂MRE is identified up to a scaling factor. Asymptotic distribution is not normal
and not easy to use since variance is not the right measure of variation so we need
to bootstrap. The method allows for conditional heteroscedasticity and generalizes
to multinomial setting.

Smoothed MSE by Horowitz (1992) can be made arbitrarily close to
√
n con-

vergence. The idea is to smooth the score function to make it continuous and
differentiable by using cdf in place of sgn.

Another method of maximizing correct predictions is based on the Powell idea
of comparing pairs of people.26 Assume the model yi = di = 1{xiβ + εi > 0}
and assume εi independent of xi (no heteroscedasticity), then E[di − dj|xi, xj] =
E[di|xi] − E[dj|xj] = Fε(xiβ) − Fε(xjβ) > 0 iff (xi − xj)β > 0 so estimate β by
maximum rank estimator such as

max
β

∑
i<j

sign(di − dj)sign((xi − xj)β) (9.6)

This, of course gets rid of the intercept, so Heckman (1990) proposed that in
presence of exclusion restriction, one can get the intercept off those who have
p(di = 1) almost equal to one.

Finally, Sognian Chen (1999) uses the additional assumption of symmetry of
the distribution of ε to allow for

√
n estimation of the constant term. (All other

semiparametric methods make for a slower rate for the constant even if they
deliver

√
n for the slope.) (You still need to normalize the scale.) He also allows

for heteroscedasticity of a particular form: f(ε|x) = f(ε|x̃) where x̃ is a subset of
x. Assuming f is symmetric implies that E[di+dj|xi, xj] = Fε(xiβ)+Fε(xjβ) > 1
iff (xi+xj)β > 0 (draw a picture of f symmetric around 0 to see why). Note that

24The choice of the median can be generalized to any quantile.
25Note that sgn(·) is not invertible.
26See the discussion on selection the Powell’s way below in Section 10.6.4
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sum does not get rid of the intercept. So, estimate something like

max
β

∑
i<j

sign(di − dj − 1)sign((xi + xj)β). (9.7)

9.2. Multinomial Choice Models

See McFadden (1984) for a summary of pioneering research, the L����� �.7

(1995) manual for recent references and examples of application, and S. Pudney
(1989), Modelling Individual Choice, [P], chapter 3, for discussion of the material
in view of the underlying economic theory. ([M]2,3, [A]9, [G]21)

9.2.1. Unordered Response Models

So far we talked about 0/1 decisions. What if there are more choices?

Example 9.4. Choice of commuting to work, choice among occupations, pur-
chasing one of many product brands, etc.

We want to analyze simultaneous choice among m alternatives. The idea is to
look at pairwise comparisons to some reference outcome:

pj
pj + pm

= F (β
′

jx) ⇒
pj
pm

=
F (β

′

jx)

1− F (β′

jx)
= G(β

′

jx) ⇒ pj =
G(β

′

jx)

1 +
∑m−1

k=1 G(β
′

kx)
(9.8)

Remark 51. Note that in our binary choice example (m = 2), we also started
by defining pj(pj + pm)

−1 = p/(p+ 1− p) = p = F (β
′

jx).

Multinomial Logit If F (β
′

jx) = Λ(β
′

jx) then G(β
′

jx) = exp(β
′

jx) and the
estimation does not require any integration. Simply define yij = 1 if person i
chooses the j -th choice and, yij = 0 otherwise, and

max
β1,β2,...,βm−1

logL =
N∑
i=1

m∑
j=1

yij log pij, where (9.9)

pij =
exp(β

′

jxi)

1 +
∑m−1

l=1 exp(β
′

lxi)
for j = 1, ...,m− 1 and pim =

1

1 +
∑m−1

l=1 exp(β
′

lxi)
.



Notes on Lim-Dep-Variable Models 39

Remark 52. The FOCs again have the familiar GMM interpretation

N∑
i=1

(yij − p̂ij)xi = 0 for j = 1, ...,m− 1

and again imply that if x consists only of a constant, the model predicts the actual
frequencies (see exercise 9.3). This can be used to define a measure of fit based
on comparing our log-likelihood with the benchmark that one would obtain by
merely regressing the outcome on constants αj.

Exercise 9.7. Verify that the benchmark likelihood equals
∏m

j=1

(
Nj

N

)
where

Nj =
∑N

i=1 yij.

Exercise 9.8. What happens in the commuting choice example when all males
choose to drive?

Remark 53. To interpret the estimates β̂ we need the derivatives w.r.t. xk
(k-th element of x) even more as β̂jk shows up in pl l = 1, . . . ,m.

∂pj
∂xk

=

pj[βjk
∑m−1

s=1 psβsk].

Remark 54. There is a utility maximization model of individual choice which
leads to the multinomial logit, assuming additivity of disturbances y∗ij = Vj(xi)+εi
with yik = 1 iff ∀j �= k y∗ik > y∗ij and assuming εi’s are iid type I extreme value
distribution.27 P [yk = 1|xi] corresponds to the joint occurrence of Vk(xi) + εk >
Vj(xi) + εj ∀j �= k, that is

P [yk = 1|xi] =
∫ ∏

j �=k

F (εk + Vk(xi)− Vj(xi))f(εk)dεk.

In class we show that this equals exp(Vk(xi))/
∑m

j=1 exp(Vj(xi)).

Exercise 9.9. Verify the derivatives in [M] p.36 and show
pj
pk

= exp[(βj − βk)′x].
27Because the difference of two random variables following type I extreme value actually

follows logistic distribution. Of course, this is much simple with Normal distribution, where a
difference is again Normal. See Multinomial Probit below.
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The joint distribution of extreme value εs does not involve any unknown pa-
rameters and is therefore not capable of approximating a wide range of stochastic
structures. Furthermore, the multinomial logit model (MNL) assumes that distur-
bances are independent (see Remark 54). When there is correlation, consistency
suffers. Consider for example the choice between a blue bus, a red bus and a
train. Hence, multinomial logit conforms to the IIA hypothesis (independence
from irrelevant alternatives). See exercise 9.9 which shows that

pj
pk

does not de-
pend on characteristics or even the existence of choices other than j or k. Hence
an introduction of a new alternative means that all of the existing probabilities are
reduced by the same amount, irrespective of the new choice degree of similarity
to any of the existing ones. The model restricts the choice probabilities to share
a uniform set of cross-elasticities.28

Inclusion of some potentially correlated alternatives can be tested with a typ-
ical Hausman test (Hausman and McFadden, 1984). Under H0 : IIA, one can
estimate a subset of the βj parameters consistently but inefficiently by dropping

the individuals who choose the potentially correlated alternatives. These β̂js can
then be compared to those estimated off the whole data set with all options. Of
course, if IIA is violated, the latter will be inconsistent.

Remark 55. In absence of some natural grouping of the alternatives, the choice
of the subset to leave out is arbitrary and, hence, so is the test.

McFadden’s Conditional Logit So far we focused on the question of how indi-
vidual characteristics influence the choice. Next, answer the question of how often
will individuals choose a new alternative, i.e., express the probability of choice as
a function of the characteristics of the choice k (as perceived by individual i), say
zik, not necessarily the characteristics of the individual xi.

P [yi = k] =
exp(β

′

zik)∑m
s=1 exp(β

′

zis)
(9.10)

Remark 56. Individual characteristics which do not change with the choice drop
out unless we combine the two models, i.e., allow for both choice and personal
characteristics.

Exercise 9.10. Show
pj
pk

= exp[(zj − zk)′β].
28 ∂ logP [yi=j|z]

∂ log zk
= −P [yi = k | z] ∂β

′

zk
∂ log zk

See Pudney, p. 118.
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Remark 57. The elimination by aspect model ([M]3.4) represents another way
how to account for similarities between alternative choices.

Multinomial Probit and GEV Unlike MNL, the multivariate probit allows
for a full correlation structure with ε ∼ N(0,Σ) and requires m − 1 dimensional
numerical integration. One has to impose normalization and identification restric-
tions on them(m−1) free elements σ of them×mmatrixΣ.The likelihood requires
m − 1 dimensional numerical integration, numerical 1st and 2nd derivatives and
is therefore potentially messy.

Example 9.5. With m = 3, the choice of the first alternative P [yi = 1|xi]
corresponds to the joint occurrence of η12 ≡ ε1 − ε2 > V2(xi) − V1(xi) and
η13 ≡ ε1 − ε3 > V3(xi) − V1(xi). One can then derive the variance-covariance

of the joint normal pdf of η12 and η13, the 2x2 matrix Σ̃, from the original σ
elements. Finally,

P [yi = 1|xi] =
∫ V2−V1

−∞

∫ V3−V1

−∞

1

2π

√∣∣∣Σ̃∣∣∣ exp
[
−1

2
(η12, η13)

′

Σ̃−1(η12, η13)

]
dη12dη13.

Alternatively, the independence assumption of MNL can be relaxed using the
generalized extreme value (GEV) models ([M]3.7). The GEV distribution gen-
eralizes the independent univariate extreme value cdfs to allow for ε correlation
across choices:

F (ε1, ε2, ..., εm) = exp [−G(exp(−ε1), ..., exp(−εm))] , (9.11)

where the function G is such that F follows properties of (multinomial) cdf . The
GEV approach has been widely used in the context of the nested multinomial
logit model (see section 9.2.2).

Example 9.6. With G(a1, a2, ..., am) =
∑
am we obtain the simple MNL model.

With m = 2 and

G(a1, a2) =

[
a

1
1−σ

1 + a
1

1−σ

2

]1−σ

we can interpret the σ parameter as correlation. In this case

P [yi = j|xi] =
exp(

Vj(xi)

1−σ
)

exp(V1(xi)
1−σ

) + exp(V2(xi)
1−σ

)

where Vj is the valuation of choice j (see Remark 54).
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9.2.2. Sequential Choice Models

These models have a much richer set of coefficients than the ordered response
models. They arise naturally when decisions take place at different points in time
(e.g. choice of education level).

In the simplest case assume independence of disturbances and estimate the
model using a sequence of independent binary choice models. (In doing so, one
places severe restrictions on the underlying prefferences and opportunity sets.)
On the other hand, they have been used to lower the computational burden of
simultaneous choice among m alternatives with correlated disturbances.

Example 9.7. First, choose to graduate from high school or not (this occurs with
probability 1−F (β ′

Hxi)); if you do then choose to go to college (F (β
′

Hxi)F (β
′

Cxi))
or not (F (β

′

Hxi)[1− F (β
′

Cxi)]). Note that the likelihood can be optimized sepa-
rately with respect to βH and βC — we can run two separate logit/probit likeli-
hoods, one over the choice of high school, the other over the choice of college (for
those who did graduate from high school).

In the most advanced case of modelling intertemporal choice under uncer-
tainty, it is more satisfactory to use dynamic programming techniques. Below, we
will focus on a simpler case where the set of choices has a nested structure (not
necessarily corresponding to time sequence).

Nested Multinomial Logit Model Here, our goal is to (a) study the use
of the multinomial logit model in tree structures, and (b) use GEV to allow for
departure from IIA within groups of alternatives, whilst assuming separability
between groups.

Example 9.8. Choice of house: choose the neighborhood and select a specific
house within a chosen neighborhood. Choose to travel by plane, then choose
among the airlines.

(a) In presence of a nested structure of the decision problem we assume the
utility from house j in neighborhood i looks as follows: Vij = β′xij + α

′zi, where
zi are characteristics of neighborhoods and xij are house-specific characteristics.
To facilitate estimation when the number of choices is very large but the decision
problem has a tree structure, we use pij = pipj|i,

29 where as it turns out pj|i only

29Of course pijk = pipj|ipk|i,j .
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involves β but not α:

pj|i =
exp(β′xij + α

′zi)∑Ni

n=1 exp(β
′xin + α′zi)

=
exp(β′xij)∑Ni

n=1 exp(β
′xin)

. (9.12)

Similarly,

pi =
exp(Ii + α

′zi)∑C
m=1 exp(Im + α′zm)

, where Ii = log

[
Ni∑
n=1

exp(β′xin)

]
(9.13)

is the so-called inclusive value (the total contribution of each house in a neigh-
borhood). One can therefore first estimate β off the choice within neighborhoods

(based on pj|i) and then use the β̂ to impute Îi and estimate α by maximizing
a likelihood consisting of pi. This sequential estimation provides consistent esti-
mates, but MLE iteration based on these starting values can be used to improve
efficiency. If MLE gives different results it suggests misspecification.30

Remark 58. The assumed forms of utility functions can differ across branches
and decisions.

Remark 59. The NMNL gives identical fits to data as the hierarchical elimina-
tion by aspect model.

(b) Next, we use generalized extreme value distribution to allow for correlation
of the disturbances. Start off by assuming stochastic utility maximization along
the lines of Example 54 but assume GEV instead of type I extreme value. This
will lead to a generalization of the NMNL model that actually nests independence
(and generalizes to multivariate setting):

pi =
exp[(1− σ)Ii + α′zi]∑C

m=1 exp[(1− σ)Im + α′zm]
(9.14)

Here one can test for within-neighborhood correlation by asking whether σ̂ = 0.

Remark 60. Nlogit is in L�����.

30The likelihood is no longer globaly concave in all parameters. For estimation methods see
[MF]p.1426.
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9.2.3. Ordered Response Models

Example 9.9. Ratings, opinion surveys, attained education level. 0 < 1 < 2 but
1− 0 �= 2− 1.

Use threshold “constants” to split the range of εs. A common β affects the
decision among many alternatives.

Example 9.10. With 3 ordered choices assume that the latent y∗i = −β′

xi + ui.
Then (i) yi = 1 if y∗i < 0 ⇔ ui < β

′

xi, (ii) yi = 2 if y∗i ∈ (0, c) ⇔ β
′

xi <
ui < β

′

xi + c, (iii) yi = 3 if y∗i > c ⇔ β
′

xi + c < ui, where c is another parameter
to be estimated. Following the usual logic the likelihood is based on a product of
individual i contributions, which depend on choice: P [yi = 1|xi] = F (β

′

xi) while
P [yi = 2|xi] = F (β

′

xi + c)− F (β′

xi) and P [yi = 3|xi] = 1− F (β′

xi + c).

The model generates to multinomial settings. Interpreting the coefficients
based on their sign (!) is not obvious in the ordered response model (see [G]
p.674).

9.3. Models for Count Data

Example 9.11. Number of accidents in a given plant. Number of visits to a
doctor.

The essential limiting form of binomial processes is Poisson distribution:
P [y = r] = exp(−λ)λr(r!)−1. Assume the number of accidents in each plant
follows Poisson with plant-specific parameter λi and that these processes are in-
dependent across plants. To bring in x′β assume lnλi = β

′

xi and maximize the
likelihood:

max
β
L =
∏
i

exp(−λi)λyii (yi!)−1. (9.15)

However, Poisson is restrictive in many ways: First, the model assumes inde-
pendence of number of occurrences in two successive periods. Second, the prob-
ability of occurrence will depend on time length of interval. Third, the model
assumes the equality of mean and variance:

E[yi | xi] = V [yi | xi] = λi = exp(β
′

xi) =⇒ ∂E[yi | xi]
∂xi

= λiβ (9.16)
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The last assumption is relaxed by the Negative Binomial extension of Pois-
son, which allows for overdispersion: Let lnλi = β

′

xi + ε where ε ∼ Γ(1, α).
Integrate the ε out of likelihood before maximization (as in Random Effect Pro-
bit) and maximize w.r.t. both β and α, the overdispersion parameter.31

See L����� manual, section 26.2, for extensions of both models to panel data,
censoring and truncation, the zero-inflated probability (see immediately below)
and sample selection (see section 10.4).

9.4. Threshold Models

Combine a binary choice model with other likelihoods. In case of the count data
estimation this approach has been coined as the zero inflated probability model:

Consider the example of accident counts in plants. The zero-inflated version
allows for the possibility that there could not be any accidents in plant i: When
we observe yi = 0, it can either correspond to our usual Poisson data generating
process where out of luck, there were no accidents in the given time period or it
can correspond to a plant where the probability of having an accident is zero (in
that event Zi = 1): that is we can express P [yi = 0|xi] as

P [0|xi] = P [Zi = 1|xi] + P [Zi = 0|xi]P [y∗i = 0|xi] =
= F (γ

′

xi) + (1− F (γ′

xi)) exp(−λi)λyii (yi!)−1. (9.17)

Ideally, there is at least one variable affecting Z, but not y∗i to aid identification.

Example 9.12. Use a binary choice model to estimate the probability of having
any children or not and combine this decision with the ordered or count model of
how many children you have given you decided to have some.

31V [yi | xi] = E[yi | xi](1 + αE[yi | xi])
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10. Limited Dependent Variables

See [M]6, [G]22, [P]4. Let’s combine qualitative choice with continuous variation.

Example 10.1. Zero expenditure and corner solutions: labor force participation,
smoking, demand. A change in the xs affects both the usual intensive margin and
the extensive margin of the corner solution.

The difference between censoring and truncation, which both have to do with
thresholds on observable ys, is in observing the xs for the censored values of ys.

Technical Preliminaries

(a) Means of truncated distributions:

E[ε | ε ≥ c] =

∫ ∞

c

εf(ε)

1− F (c)dε (10.1)

Exercise 10.1. Show that if ε ∼ N(µ, σ2) then E[ε | ε ≥ c] = µ+σλ( c−µ
σ
), where

λ(·) = ϕ(·)
1−Φ(·)

is the so called inverse of the Mills’ ratio.32 Also find V [ε | ε ≥ c].

(b) Means of censored distributions, where εc = max {c, ε} :

E[εc] = F (c)c+ [1− F (c)]E[ε | ε ≥ c] (10.2)

10.1. Censored Models

Example 10.2. When actual income is above $ 100 000, the reported income is
$ 100 000.

The structural model is using the concept of an underlying latent variable y∗i :

y∗i = β
′

xi + ui with ui ∼ N(µ, σ2) (10.3)

yi = y∗i iff y∗i > c

yi = c iff y∗i ≤ c

32Using the fact that
∫
εφ(ε)dε = −

∫
dφ(ε) = −φ(ε)
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Tobit Model When the data are censored, variation in the observed variable
will understate the effect of the regressors on the “true” dependent variable. As
a result, OLS will typically result in coefficients biased towards zero.

WLOG33 suppose the threshold occurs at c = 0. OLS is inconsistent no matter

whether we include or exclude the zero observations because E[β̂OLS−β] depends
on the truncated expectation of ui in either case.

Exercise 10.2. Characterize the bias of the OLS estimator when applied only to
the nonzero y observations and show that OLS estimator when applied to all y
observations is inconsistent.

Therefore we use MLE:

L =
∏
y∗i >c

1

σ
ϕ

(
yi − x′

iβ

σ

) ∏
y∗i ≤c

Φ

(
c− x′

iβ

σ

)
, (10.4)

which has a single maximum, but two step procedures have been devised by
Heckman ([M]8.2) and Amemiya ([M]6.5).

Remark 61. The two step procedure of Heckman starts with a Probit on yi > 0

or not. This delivers consistent β̂/σ. In the second step, bring in the continuous
information and consider

E[yi|xi] = P [y∗i > 0]E[yi|y∗i > 0] + P [yi = 0]E[yi|yi = 0] =

= Φ

(
x

′

iβ

σ

)
x

′

iβ + σϕ

(
x

′

iβ

σ

)
+ 0 = Φix

′

iβ + σϕi.

Use the first-step β̂/σ to predict Φ̂i and ϕ̂i and estimate yi = Φ̂ix
′

iβ + σ ϕ̂i for a

new set of β̂ and σ̂. As usual, drastic differences between first- and second-step
estimates signal misspecification.

The model has many extensions allowing for multiple and variable thresholds
ci, heteroscedasticity,34 panel data random effects, sample selection (see section
10.4), SEM, nested structures, and non-normality (see L����� manual, Ch. 27).35

33Assuming there is a constant in x ([M]p.159).
34The available methods use a parametric assumption on the form of heteroscedasticity. Semi-

parametric estimators are a focus of much current research, see section 10.3.
35For a survey of Tobit specification tests see [P]4.1.5. For further reading see special issues

of the Journal of Econometrics (84-1,86-1,87-1). One strand of tests is based on conditional
moment restrictions, see [G]22.3.4d.
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How do we interpret the coefficients? There are 3 types of predictions we can
consider, using the definitions of E[y∗ | x], E[y | x] and E[y | x, y∗ > 0].

Exercise 10.3. Find the expressions for these 3 conditional mean functions and
their derivatives w.r.t. x.

Remark 62. There is little theoretical justification for Tobit in rational choice
models (see [P]p.141).

Remark 63. The estimator is biased in presence of heteroscedasticity. See Arab-
mazar and Schmidt (1981) for the potential magnitude of the bias. See Koenker
and Bassett (1982) for quantile regression tests for heteroscedasticity. Pagan and
Vella (1989) propose a test for heteroscedasticity when the dependent variable is
censored. Need zero-expected-value residuals to construct the test. These can be
obtained by a trimmed LS estimator (Powell 1986). See section 10.3 for recent
heteroscedasticity-robust alternatives to Tobit such as CLAD.

Remark 64. The likelihood is only piece-wise continuous.

Remark 65. First think: Are you really interested in the intensive and extensive
margin separately?

Remark 66. Of course the model can be easily extended to censoring from above
and below.

Remark 67. Up to now the c threshold was exogenous. There is a wide variety
of models where the classification criteria are endogenous.

Remark 68. Under joint normality of error terms, one probably could instrument
in a Tobit. Of course, heteroscedasticity kills it, so one should use CLAD or Ahn
and Powell, etc., but then can you do IV there?

Grouped Data

Example 10.3. Wages reported only in ranges, i.e. wi ∈ [$10000, $20000), i.e.
wi ∈ [cj−1, cj) j = 1, . . . J
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The difference between this model and the ordered choice models is that the
threshold values are known here. For cj = H and cj−1 = L the likelihood contri-
bution of observations with yis in those ranges is

lnLHL =
N∑
i=1

{
ln[Φ(ηH − x′

iγ)− Φ(ηL− x′

iγ)]
}
, (10.5)

where γ = β
σ
and η = 1

σ
(similar reparametrization of the likelihood is used in the

estimation of the Tobit mode, see Olsen 1978). Use

E[y∗i | xi] = x
′

iβ + σ
ϕiL − ϕiH

ΦiH − ΦiL
(10.6)

for prediction. Again, the model can be extended to allow for sample selection.

10.2. Truncated Models

Example 10.4. Only have data on low income households when studying the
impact of variable x on income y.

L =
∏
y∗i >c

1

σ
ϕ

(
yi − x′

iβ

σ

)[
1− Φ

(
c− x′

iβ

σ

)]−1

(10.7)

Tobit-type model is not feasible here as we do not observe xs for the y = 0
observations. To evaluate the impact of x on y, in a simple truncation, use

E[yi | xi, yi < c] = x
′

iβ + σ
ϕ(c/σ)

Φ(c/σ)
.

In a double truncation region, use Equation 10.6 for E[yi | ciL ≤ yi ≤ ciH ].
Finally, it is an opportune time, to note that the Tobit model is restrictive

in constraining the coefficients and the xs affecting the extensive and intensive
margins to be the same ([G]p.700).

Example 10.5. Consider studying the impact of the age of a building on the cost
from a fire in that building. In some buildings there is no fire and cost is zero, in
other buildings you observe a fire and the associated cost. It is likely that older
buildings are more likely to experience fire, while the cost of fire, conditional on
having one, is likely to be higher in a newer building.
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We can relax the Tobit likelihood and split it into two (independent) parts: (i)
0/1 probit for whether there is a fire or not, and (ii) a truncated normal regression
of the cost of fire estimated on those buildings where there was a fire. Further,
we can allow different explanatory variables to enter each of the separate two
likelihoods.

Remark 69. Assuming the xs affecting both margins (equations) are the same,
note that under the equality of coefficients, the relaxed two-part model boils down
to the restricted Tobit model. Hence, the equality of coefficients is testable using
a LR test:

LR = −2{lnLPROB + lnLTRUNC − lnLTOBIT} ∼ χ2(k) where k = dim(β).

Remark 70. But the disturbances from the two separate equations are likely
dependent, which is why we need a sample selection model!

10.3. Semiparametric Truncated and Censored Estimators

If the residual in a censored model is subject to heteroscedasticity of an unknown
form or if we do not know the distribution of the ε for sure, then standard MLE
will be inconsistent. Also, maximum likelihood estimation of censored panel-data
fixed-effect models will be generally inconsistent even when we have the correct
parametric form of the conditional error distribution (Honoré, 1992).

Below, we will continue to specify the regression function parametrically, but
will try to do without assuming parametric distributions for ε. The estimators
will alternate between additional “recensoring,” which will compensate for the
original censoring in the data, and a “regression” step using only the “trimmed”
data part. For simplicity, consider only censoring or truncation from below at 0.

Symmetrically Trimmed Least Squares How can we estimate truncated
or censored models without relying on particular distributional assumptions? Con-
sider truncation from below at 0 in a model y∗i = x

′

iβ+εi. The idea of the estimator
is to trim (truncate) the dependent variable additionally from above to make it
symmetrically distributed. The new dependent variable will be symmetrically dis-
tributed around the regression function so we can apply least squares. But where
do you trim from above? Depends on β. Assume that fε(s|x) is symmetric around
zero and unimodal. Then for x

′

iβ > 0, the ε is truncated at 0−x′

iβ so a symmetric
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truncation of ε is at x
′

iβ − 0. This corresponds to truncating y at 2x
′

iβ − 0 (plot
a distribution graph to see this point).

Powell’s (1986) Symmetrically Trimmed LS is consistent and asymptotically
normal for a wide class of symmetric error distributions with heteroscedasticity
of unknown form. With data truncated from below, the estimator minimizes∑

I{x′

iβ > 0}I{yi < 2x
′

iβ}
[
y − x′

iβ
]2
. (10.8)

Alternatively, with censoring from below, apply the same idea (Symmetrically
Censored LS) to minimize∑

I{x′

iβ > 0}
[
min(yi, 2x

′

iβ)− x
′

iβ
]2
. (10.9)

Censored Least Absolute Deviation Powell’s (1984) CLAD is again based
on additional censoring of y. The main idea is to look at median as opposed to
mean, because median median is not affected by censoring. (This is true as long
as we are in the uncensored part of the data. If we are below the censoring point,
then the median does not depend on x′β. So, again, we work only with variation
in the x

′

iβ > 0 area.)
The main assumption of the estimator is zero median of Fε(s|x). We consider

median(y∗i |xi) = max{x′

iβ, 0} and note that medians are estimated using LAD.36

The CLAD is found by minimizing∑∣∣∣yi −max{0, x′

iβ}
∣∣∣ . (10.10)

It can be used in a Tobit or Heckman’s λ setup (see below) in presence of het-
eroscedasticity and it is even more robust than STLS. CLAD is programmed into
Stata.37 Also see Newey and Powell (1990). More accessible treatment of re-
lated topics can be found in a book on Methods of Moments and Semiparametric
Econometrics for Limited Dependent Variable Models by Myoung-jae Lee.38

36Estimate δ,the median of zi, by min
∑

i |zi − δ|.LAD is not a least-squares, but a median
(quantile) regression (these are in general more robust to outliers, see Section 14.6).

37By D. Jolliffee, a former CERGE-EI faculty member, and by two of your co-students.
38Stata ado files for these semiparametric models can be downloaded from

http://emlab.berkeley.edu/users/kenchay .
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10.4. Introduction to Sample Selection

A focus of an enormous volume of empirical and theoretical literature. It involves
features of both truncated and censored models. The treatment of the data where
sampling depends on outcomes is different in cases where the variables determining
selection are observable and when they are not (for an introductory discussion see
[P]2.5).

We first consider situations where the econometrician (data collection agency)
chooses to base sampling on y.

Example 10.6. Consider a sample of families and estimate the impact of x on
family income. However, the sample is such that low-income families are over-
sampled.

Second, we consider situations where the individual behavior results in sample
selection: situations where people/firms/etc. select themselves into different states
based on potentially unobserved characteristics.

Example 10.7. You can only measure the impact of x on wages (y) for those
women who work (selection on y). Whether or not a woman works, depends on
the wage she could get when working.

Example 10.8. College wage effect (remember Card IV for ability bias?).

Example 10.9. Past unemployment predicts future unemployment.

Example 10.10. Average wage over the business cycle: seems flatter due to
selective drop out of work.

10.5. Endogenous Stratified Sampling

It occurs when the probability that an individual is observed in the sample depends
on ys.39

Remark 71. Stratification (over/undersampling) based on x variables presents
no problem for OLS, as long as there is no parameter heterogeneity across strata
(see Remark 6).

39Estimation using data split into subsamples based on the level of the dependent variable is
a no-no thing in econometrics.
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Assume the final sample is obtained by repeated random drawings, with each
draw being made from stratum i with probability pj =

nj

Nj
which is independent

of the xs. Here nj is the number of observations in data from strata j and Nj

is the population size of strata j. Let yij denote the value of y for person i from
strata j. The typical solution in practice is WLS:

min
∑
i,j

1

pj
(yij − x′

ijβ)
2,

which, however, only works asymptotically. In small samples it will be biased.
A potentially better solution is MLE. Consider an example of endogenous

stratification (think oversampling or undersampling) with known threshold L and
with 2 strata (j = 1, 2) of the level of y ([M]6.10.). Assume Normality and
maximize a likelihood based on40,41

L(yi|xi) = L−1
i p1φ((yi − x

′

ijβ)/σ) if yi < L and (10.11)

L(yi|xi) = L−1
i (1− p1)φ((yi − x′

ijβ)/σ)) if yi > L where

Li = p1Φ[(L− x′

ijβ)/σ] + (1− p1)(1− Φ[(L− x′

ijβ)/σ]).

Example 10.11. Another example was the choice based sampling method of
section 9.1.5.

In the next subsection, we will consider cases when truncation or censoring
occurs with stochastic or unobservable thresholds.

10.6. Models with Self-selectivity

Example 10.12. Fishing and hunting: the Roy’s model ([M]9.1); workers choose
their union status based on the wage “in” and on the wage “out”; labor force par-
ticipation; returns to education; migration and income; effect of training programs,
evaluation of social policy.

There are two main types of models: first, when we do not observe the y under
one choice and observe it under the other (labor force participation, Heckman’s λ),
second, when we observe y under all chosen alternatives (union wages, switching
regression).

40The formulas in [M]6.10 are conditional on yij actually being drawn from a given strata j.
41See [Mp.173] for the asymptotic justification of WLS based on this MLE.
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10.6.1. Roy’s model

First consider a classical theory (paradigm) on the topic. A worker i chooses to
either hunt or fish, depending on which of corresponding outputs yiH and yiF is
larger. Note that we never observe both yiH and yiF for each worker, but only
one of the two outcomes.42

Assuming that (
yiH
yiF

)
∼ N

(
µH
µF

,

(
σ2H σHF

σHF σ2F

))
,

one can show that

E[yiH |yiH > yiF ] = µH +
COV (yiH , yiH − yiF )√

V (yiH − yiF )
φ(z)

Φ(z)
, where z =

µH − µF√
V (yiH − yiF )

.

In short, E[yiH |yiH > yiF ] = µH +
σ2
H−σHF

σ
φ(z)
Φ(z)

and similarly for E[yiF |yiH > yiF ].
There are 3 possible cases of a Roy’s economy:

1. If σ2H − σHF > 0 and σ2F − σHF > 0, those who hunt are better off then
an average hunter (similarly for the fishermen). This is the case of absolute
advantage.

2. When σ2H − σHF > 0 and σ2F − σHF < 0, those who hunt are better than
average in both occupations, but they are better in hunting (comparative
advantage).

3. Reverse of 2.

Remark 72. Notice that individuals with better skills choose the occupation
with higher variance of earnings. Also notice the importance of σHF �= 0 (see
Remark 70).

Remark 73. Note that σ2H − σHF < 0 and σ2F − σHF < 0 cannot happen due to
Cauchy-Schwartz inequality.

42For purposes of policy evaluation we will need to deal with estimating the counterfactual.
See subsection 11.
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10.6.2. Heckman’s λ

See Heckman (1980), [M]6.11, 8.4. Consider a two-equation behavioral model:

yi1 = x
′

i1β1 + ui1 (10.12)

yi2 = x
′

i2β2 + ui2,

where yi1 is observed only when yi2 > 0.

Example 10.13. Observe wages (yi1) only for women who work (yi2 > 0).

Note that the expectation of data on yi1 you observe depends on the selection
rule which determines that yi1 is observable:

E[yi1|xi, yi2 > 0] = x
′

i1β1 + E[ui1|selection rule] = (10.13)

= x
′

i1β1 +E[ui1|yi2 > 0] = x
′

i1β1 +E[ui1|ui2 > −x′

i2β2].

We have an omitted variable problem: xi2 enters the yi1 equation. Of course
E[ui1|ui2 > −x′

i2β2] = 0 if ui1 and ui2 are independent (again, think of Remark
70 and σHF in the Roy’s model).

If we assume that ui1 and ui2 are jointly normal with correlation σ12 and
variances σ21 and σ22 respectively, we know what E[ui1|ui2 > −x′

i2β2] looks like: It
is the usual inverse of the Mills’ ratio, which we will call here Heckman’s lambda:

E[yi1|xi, yi2 > 0] = x
′

i1β1 +
σ12
σ2

φ(x
′

i2β2/σ2)

Φ(x
′

i2β2/σ2)
= x

′

i1β1 + σλλ(x
′

i2β2). (10.14)

While we can numerically identify σλ from β1 even when xi2 = xi1 because λ
is a non-linear function, there is need for exclusion restrictions (variables in xi2
not included in xi1) in order to avoid identification by functional form (i.e. by
distributional assumption implying nonlinearity in xs).

The model can be estimated by FIML or in two stages. The two-stage esti-
mation starts with a probit on yi2 > 0 which delivers β̂2 which can be used to

calculate λ̂i = λ(x
′

i2β̂2). In the second stage yi1 is ran on xi1 and λ̂i to estimate

β̂1 and σ̂λ. Of course, if σ̂λ = 0, selection is not important.
The joint normality implies a particular form of heteroscedasticity at the sec-

ond step regression (GLS matrix Γ). Further, we have to make another GLS

correction for the fact that we’re not using λi(z) but only λ̂i(z) so that the error

term contains the following: σλ(λi − λ̂i) ∼= ∂λi

∂z
(β2 − β̂2)xi2 evaluated at z = x

′

i2β2
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(this approach of using the first order Taylor series approximation is often called
the Delta method—the point is general: whenever you use predicted regressors,
you need to correct your standard errors!). Hence, the variance-covariance of the

error term in the second-step regression is composed of Γ plus
(
∂λ
∂z

)′
V ar(β̂2)

(
∂λ
∂z

)
.

Recent semiparametric literature is relaxing the assumption of joint normality
of disturbances (see section 10.6.4 below).

Example 10.14. First run probit on labor force participation and obtain λ̂, then
run the wage regression to get the effect of education on wages β̂ (and σ̂).

Example 10.15. Consider the hours labor-supply regression with wages on the
RHS. First, you need to correct the hours equation for sample selection into labor
force (only observe h for those who work). This correction comes from a compar-
ison of behavior equations governing reservation wages wR

i and market wages wi

which leads to a 0/1 participation estimation depending on Z
′

iγ, where Z is the
collection of RHS variables from both wR

i and wi equations. Second, you need to
instrument for wi which is likely endogenous. The first stage regression where you
predict ŵi also needs to have a selection correction in it. Finally, you can estimate

hi = δŵi + x
′

iβ + σλ(Z
′

i γ̂) + εi.

There is serious need for exclusion restrictions: you need an exclusion restriction
for running IV for wi (that is a variable predicting wages but not hours) and you
need another exclusion restriction to identify the selection correction in the first-
stage wage equation (that is you need a variable affecting participation, but not
wages).

Remark 74. Asymptotic distribution: two stage methods are efficient in one
iteration.

Remark 75. The λ method is also applicable in unbalanced panel data, see La-
fontaine and Shaw (1995) for an example. Franchisees who go out of business
have shorter Ti. Their fixed effect estimates eliminate most of the selection bias
suggesting that within-firm variation in selection has little effect.

Remark 76. Estimating parametric Limdep models with a λ on the RHS is a big
problem, especially with heteroscedasticity, which kills consistency. The λ problem
is that selection affects the whole distribution and λ only fixes the expectation
(centering).

Remark 77. If the unobservable selection threshold is time constant we can use
a fixed effect panel data model to deal with it.
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10.6.3. Switching Regression

In this case we observe y (and x) under all chosen alternatives.

Example 10.16. The union-nonunion or migrants-stayers wage model. The owner-
rental housing demand. The privatized-state profit function.

A first approximation in case of two choices is a restrictive constant effect
model which pools data into one regression:

yi = x′iβ + αDi + εi, (10.15)

which is estimated by IV under the assumption that y1i − y0i = α, where 0 and
1 denote the two different states (union/nonunion, treatment/control). The first

stage is based on P [Di = 1 | zi] = P [z
′

iγ + νi ≥ 0 | zi] so that D̂i = Fν(z
′

iγ̂) for a
symmetric Fν(·).

Remark 78. The consistency is contingent on correct specification of the error
distribution Fν(·).

Remark 79. Again, the standard errors of β need to be corrected for the esti-
mation of γ, see Lee (1981), and the discussion of Delta method above for β2.

Remark 80. The restrictions of the model can be somewhat relaxed, see Robin-
son (1988).

A more general and widely used approach called switching regression as-
sumes there are two (or more) regression functions and a discrete choice model
determining which one applies. The typical estimation is similar to Heckman’s λ.
See HW#6.

Example 10.17. Engberg and Kim (1995) study the intra-metropolitan earnings
variation: is it caused by person or place effects? People i choose their location j
(inner city/poor suburb/rich suburb) based on their (latent) wage in each location
w∗(think Roy model) and the location’s amenities:

U∗
ij = w∗

ijγj + x
′

iαj + νij, where w∗
ij = x

′

iβj + εij.

U∗ is the latent utility of each location. Assuming that εijγj+νij is iid logit, they
look up the appropriate λ sample-selection formula and proceed to run switching
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wage regressions. The place effect is measured as x′(βSuburb−βCity).Actually, they
present 6 different results based on what kind of control method they choose,
starting with unconditional means. Assuming MNL iid error terms for the choice
equation is not appropriate given their maintained assumption of no location
effects for the most highly educated workers. They have no credible exclusion
restrictions. Identifying the model off functional form blows it up. So they use
non-linearities for identification: these come from non-parametric estimation of
the selection equation. Do you find this credible? Finally, they run a semi-
parametric selection (of location) model:

10.6.4. Semiparametric Sample Selection

Assume di = 1{xiγ + v1i > 0}, yi = yi2 ∗ di, yi2 = xiβ +v2i and assume that
f(v1, v2) is independent of xi. Then if I do not want to assume a particular form
for the selection term (i.e., I am not willing to assume a particular distribution
f), follow Powel and choose person i and j such that xiγ = xjγ so that yi2−yj2 =
(xi − xj)β + λ(xiγ)− λ(xjγ) = (xi − xj)β. In practice do a Kernel on those pairs
which are close, i.e., use an estimator such as[∑

K

(
(xi − xj)γ̂

n

)
(xi − xj)(xi − xj)′

]−1 [∑
K

(
(xi − xj)γ̂

n

)
(xi − xj)(yi − yj)

]
(10.16)

Example 10.18. Return to Engberg and Kim and note the use of their main-
tained assumption as both a measuring stick for their different methods and as an
identifying assumption for the semi-parametric sample selection estimation, where
the constant is differenced out: Using x′(βSuburb − βCity) = 0 for highly educated
white males identifies the constant difference for other group.

Index Sufficiency (Matching on Propensity Score) Ahn and Powel further
suggest that one needs to match on the probability of selection, as there is no need
for any γ here an all can be done non-parametrically. See Rosenbaum and Rubin
for early theoretical work on matching using the propensity score. More recent
work arguing that a useful way of controlling for selection bias is to compare
the outcome for those with similar probability of selection includes Heckman,
Ichimura, Smith, and Todd (1995) and Angrist (1995). Matching is practical
when the causing variable takes on two values (union status, military service, see
Angrist 1998). We return to this work below within a general setup.
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Remark 81. Of course, all of these models assume away heteroscedasticity, which
is most likely to exist in large micro-data. Songian Chen uses symmetry assump-
tion on f(v1, v2) to deal with heterogeneity of a particular form at both stages:
f(|x) = f(v1, v2|x̃) where x̃ is a subset of x.

11. Program Evaluation

This is where the above discussion (and this whole course) naturally anchors, but
a thorough treatment goes beyond the scope of the course. Still, some leads are
given below:

After all, evaluation of social programs is what much of true micro-econometrics
is all about. (Otherwise we simply use regressions as a statistical data description
tool, not to estimate causal parameters.) We ask how to estimate the effect of a
social program (policy) (i.e., participation in a training program, change in college
tuition) in absence of controlled experiments ([M]9.2.). How can one create the
counterfactual? (Return to the first class of the course for a broad introduction to
causal inference; also, see again the section on sample selection. Further read-
ing starts with Holland (1986) and continues with many of the recent Heckman’s
articles. See also Angrist and Krueger (1999), or Card (1993).

Setup43 Effect of a training program: y1i are earnings with training, y0i are
earnings without training (think Roy model). We only look at the population
of eligible workers. They first choose to apply for the training program or not.
We observe y1i only when Di = 1 (the person applied for and took training) and
observe y0i only when Di = 0 (these are the so called eligible non-participants,
ENPs). We want to know E[y1i − y0i] — under random assignment. We also want
to know E[y1i − y0i|Di = 1] and E[y1i − y0i|Di = 0]. Think of the first parameter
(effect of treatment on treated, TT): the data only provides E[y1i|Di = 1] but
E[y0i|Di = 1] is the counterfactual.

Experimental Solution Almost ideal for measuring causal effects (think
of medical trials using placebo). Basic structure: Take the D = 1 group and
randomize into treatment (R = 1) and control (R = 0) group. Then construct
the experimental outcome: E[y∗1i|D∗

i = 1, Ri = 1] − E[y∗0i|D∗
i = 1, Ri = 0]. This

43Based on Heckman, Ichimura and Todd (1995).
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can be used as a benchmark for the accuracy of sample selection techniques that
we need when we have no experiment.

Remark 82. However, experiments are costly, often socially unacceptable (in
Europe), and people may behave differently knowing they are in an experiment
(think of expanding medical coverage).

Remark 83. Even with experimental data, there are often problems of selectiv-
ity. See Ham and LaLonde (1996) for a duration study.

Non-experimental Solution Can we use E[y0|D = 0] as a surrogate for
the counterfactual E[y0|D = 1]? If E[y0|D = 1,X] = E[y0|D = 0, X] then we
can (this is the matching method): E[y0|D = 1] = E{E[y0|D = 1,X]|D = 1} =
E{E[y0|D = 0, X]|D = 1} so estimate RHS by

1

N1

∑
i∈{D=1}

Ê[y0|D = 0, X = xi]

that is estimate a regression using D = 0 but predict outcome using D = 1.
But what if the X support of E[y0|D = 1,X] and E[y0|D = 1, X] does not
coincide? We need to predict out of the sample of X for D = 0. This is hard non-
parametrically especially given that the dimension of X may be high. So here
index sufficiency enters the picture: Instead of conditioning on X, it is enough to
condition on P (X), the probability of selection (see above). So we condition on
P (X) over the common support — compare the outcome for those (pairs of) indi-
viduals (ENPs compared to Treatments) with similar probability of participation
in the program.

Big Picture At a fundamental level, we need to differentiate two types of
problems: (1) Treatment Effect Problem: What is the effect of a program
in place on participants and nonparticipants compared to no program at all; (2)
Structural Problem: What is the likely effect of a new program or an old
program applied to a new setting. The latter problem is perhaps too ambitious
and definitely requires more heroic assumptions. (See, e.g., Heckman’s Nobel
lecture.44) So focus on (1).

44For example at http://www.nobel.se/economics/laureates/2000/heckman-video.html
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Crucially, we ask about partial equilibrium effects here; no answers given
on across-board policy evaluation (such as making every student go to college) —
no general equilibrium effects are taken into account!

The literature makes clear the key need to properly define the policy pa-
rameters of interest: What do we want to know? The effect of the program
treatment on the treated (TT; useful for cost-benefit analysis), the effect of the
program on untreated (whom we could make participate), the average treatment
effect in the population (ATE), or a treatment effect related to a specific new
policy.

A recent set of papers by Heckman and others (1998, 2000) shows when IV
estimates uninteresting policy parameters. The comparison is between IV (LATE)
and sample selection:

First, consider the Local Average Treatment Effect interpretation of IV
estimates.45 Oversimplifying: Suppose that the effect of x on y differs across
groups of the population (parameter heterogeneity). Then it can be shown that
IV estimates are weighted averages of these group-specific effects where higher
weight is given to those groups whose x is better explained (predicted) by the
instrument. So the IV estimate is the treatment effect on specific groups—it is a
“local” effect.

Example 11.1. Angrist and Krueger (1991) use quarter of birth and compulsory
schooling laws requiring children to enrol at age 6 and remain in school until their
16th birthday to estimate returns to education. This approach uses only a small
part of the overall variation in schooling; in particular, the variation comes from
those who are unlikely to have higher education.

Example 11.2. Similarly, one may think of the Angrist (1990) estimate of the ef-
fect of military service as corresponding to the effect of the service on those drafted
using the Vietnam-era lottery, but not those (majority) soldiers who volunteered.

Remark 84. Note, that this is a general problem of all estimation. The only
difference is that IV selects a specific part of variation (we know who identifies
the effect) whereas OLS can be thought of as weighted average of many sources
of variation, some potentially endogenous.

Second, consider the research work by Heckman and coauthors, who use the
concept of the marginal treatment effect (MTE) to unify the IV and sample se-
lection literature (see example below for estimating the returns to education).

45For an introduction to LATE, see <http://www.irs.princeton.edu/pubs/pdfs/415.pdf>.
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Example 11.3. Carneiro, Heckman and Vytlacil (2002): There are two general
approaches to estimating the return to schooling (college/high school, S = 1/0).

(a) Griliches (1977) Human capital is homogenous. There is one “true” effect
of schooling on wages β. Schooling may be correlated with unobservables through
ability bias or measurement error (see first half of this course) so we need to run
IV for S in estimating:46

lnY = α+ βS + U.

(b) Roy (1951), Willis and Rosen (1979) Human capital is heterogeneous.
People know (estimate) their varying returns from education and act upon the
size of the return:

lnY0 = α+ U0

lnY1 = α+ β + U1,

so that the causal effect β = lnY1− lnY0 = β+U1−U0. There is a distribution of
returns (random coefficients, ex post causal effects) that cannot be summarized
by one number β as in (a). There is a range of policy parameters (TT, UT,
ATE, etc.) that can be expresses as differentially weighted averages (integrals
over population) of the marginal treatment effects. MTE is the effect of S on a
person with X = x and U = u that is just indifferent between taking up college.
IV and OLS can also be expressed as weighted averages of MTE, but the weights
are not those of TT, ATE, etc. IV weights are related to the type of instrument
(LATE interpretation). Heckman et al. conclude that while IV estimation may be
more statistically robust compared to sample selection methods, IV may often not
answer any economically interesting questions.47 Also note that there are more
econometric problems here compared to (a): COV (S,U0) �= 0 as before, but also
COV (β, U0) �= 0 and crucially COV (β, S) �= 0.

46Alternatively, in terms of potential outcomes write the common effec model as lnY0 = α+U,

lnY1 = α+ β + U.
47In the IV literature on returns to schooling, we worry about (a) upward ability bias

(COV (S,U) �= 0), (b) downward measurement error bias, and (c) the weak instrument bias,

where COV (U,S)
COV (IV,S) is large because COV (IV, S) is small. Card uses college proximity as an IV

(see example 7.2). Typically in the IV literature βIV > βOLS . Now think of the LATE IV
interpretation: βIV is the effect of college on wages for those people whose college participation
is affected by whether or not they grow up near college — these are students from low income
families. Card therefore interprets βIV > βOLS as saying that students from low income fam-
ilies have high β,but don’t attend college because of credit constraints. Heckman et al. say
this interpretation is wrong. They say that there is a large positive sorting gain (comparative
advantage), Willis and Rosen prevail, and true β > IV>OLS.
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12. Duration Analysis

Here we return to simpler reduced-form distribution-based maximum likelihood
modelling, which is designed to fit the processes that result in variation in duration
(length).48

Example 12.1. Length of a job, duration of a marriage, how long a business
lasts, when a worker retires, duration of a strike, length of an unemployment
spell, length of a stay in a hospital depending on the type of insurance, etc.

The advantage of duration models is in their ability to handle time changing
xs (both with respect to calendar and duration time), duration dependence, and
right censoring. The models can also handle multiple exits and multiple states.
Read Kiefer (1988), [G]22.5, [L].

12.1. Hazard Function

Duration models build upon the concept of a hazard function λ(t), which is defined
as the probability of leaving a given state at duration t conditional upon staying
there up to that point. Using this definition one can build a likelihood function
for the observed durations and estimate it using standard methods (MLE, GMM).
For example, if the hazard does not depend on either xs or duration t, then we can
express the unconditional probability of observing a spell of duration t, denoted
f(t) as f(t) = λ(1− λ)t−1. The probability that a spell lasts at least T periods is
called survival S(T ) = Pr[t ≥ T ] = 1−F (t) = (1−λ)T−1. This type of spell, where
we do not observe the end of the spell, is called right censored. A left censored
spell occurs when we do not observe the first part of the spell, but do observe
when it ended. What makes a tremendous difference is whether we know when a
left censored spell started or not. Of course λ(t) = f(t)

S(T )
.

Exercise 12.1. Suppose the hazard depends on t and write down the likelihood
contribution for a completed spell and for a right censored spell. Next assume
that there is no duration dependence and write down the likelihood contribution
of a left censored spell. Finally, how would your last answer differ in presence of
duration dependence, depending on whether you know when a left censored spell
started.

48Think of how we built a model from Poisson distribution as the natural model for count
processes.
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Remark 85. A first approximation to the hazard, ignoring both observed and
unobserved differences is the so called Kaplan-Meier statistic (also called empirical
hazard):

λ(t) =
#[exit(t)]

#[risk(t)]
with σλ(t) =

√
λ(t)(1− λ(t))
#[risk(t)]

. (12.1)

Exercise 12.2. Verify the formula for σλ. Also, think of how you would estimate
the empirical hazard in a case of competing risks, i.e., when there are two or more
ways how to leave a given state.

One can use either discrete time or continuous time hazard models. In a
discrete time model, the transition can occur at most once in a given time period,
i.e., these models depend on the unit of the time interval. In a continuous time
model

λ(t) = lim
h→0

1

h
Pr(t ≤ t∗ < t+ h | t∗ ≥ t) (12.2)

A widely used continuous time model is the proportional hazard model, λi(t) =
exp(h(t)) exp(x

′

iβ) = λ0(t) exp(x
′

iβ), where λ0(t) is the so called baseline hazard.

Remark 86. Note that in continuous time, the hazard equals

−d lnS(t)
dt

= −d ln[1− F (t)]
dt

=
f(t)

1− F (t) = λ(t),

which implies that

S(t) = exp−
∫ t

0

λ(τ)dτ , and f(t) = λ(t) exp−
∫ t

0

λ(τ)dτ .

Example 12.2. One possible choice of a discrete time hazard is the logit speci-
fication:

λj(t, xt|θjk) =
1

1 + e−hj(t,xt|θ
j
k
)

where hj(t, xt|θjk) = β
′

jxt+gj(t, γj)+θ
j
k. Here, gj(t, γj) is a function capturing the

duration dependence.49

Exercise 12.3. Can the logit model be interpreted as an approximation to a
proportional hazard model?

Remark 87. One can trick L����� or other software to estimate the logit du-
ration model.

49For proportional hazard models, Elbers and Ridder show that the heterogeneity distribution
and the duration dependence can be separately identified.
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12.2. Estimation Issues

First, there is a possibility of the so called length-biased (stock) sampling: correct
sampling is from inflow during a certain time window (sampling frame). Sampling
from stock oversamples long spells (somebody starting a quarter ago with a short
spell will not be in today’s stock).

Second, left censored spells with an unknown date of start create a difficult
estimation problem (see Exercise 12.1 and below).50

Third, it is well known that in the presence of unobserved person-specific char-
acteristics affecting the probability of exit, all of the estimated coefficients will be
biased.51

One of the widely used methods of controlling for unobserved factors is the
flexible semi-parametric heterogeneity MLE estimator proposed by Heckman and
Singer (1984). They show that if there is a parametric continuous distribution
of unobservables, the estimated distribution has to be that of a discrete mixing
distribution with a step function nature. (Think of random effect probit.) Using
simulations, a small number of points of support has been shown to remove the bias
in βs. There is no known way of correctly constructing the asymptotic standard
errors, since the dimension of the parameter space depends on the sample size. So
assume the number of points of support is fixed to invoke standard asymptotics.

Remark 88. The heterogeneity bias in duration dependence coefficients has been
shown to be negative. To see why, think of two flat hazards λM/S(t) of married
and single women and construct the empirical hazard in absence of the marital
status info.

Remark 89. Note that if there is no variation in the xs independent of duration,
identification will be difficult.

12.2.1. Flexible Heterogeneity Approach

Let us concentrate on a discrete time logit hazard model. We need to allow the
likelihood to pick up the presence of unobservable person-specific heterogeneity.

50We can fix things if we know start of spell unless there are unobservables, which would lead
to dynamic distorsion of the distribution of unobservables by selection on who of the left-censored
makes it into the sample.

51Here, we are concerned with the effects of unobserved heterogeneity in duration models. For
an example of similar methods in other settings, see Berry, Carnall and Spiller (1995), where
they explicitly allow for two types of airline customers (businessmen vs. tourists), unobserved
by the econometrician.
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To use the “random effects” approach, estimate a discrete mixing distribution
p(θ) of an unobserved heterogeneity term θ as a part of the optimization prob-
lem. In doing so, one can approximate any underlying distribution function of
unobservables.

More specifically, let λj(t, xt|θjk) be the conditional probability (hazard) of
leaving a given state at time (duration) t for someone with person specific char-
acteristics xt, conditional upon this person having the unobserved factor θjk,
k = 1, 2, ..., N j

θ . The j subscript stands for the different ways of leaving a given
state and serves, therefore, as a state subscript as well. For example one can leave
unemployment for a new job or for a recall, in which case j ∈ {r, n}, or one can
leave employment through a quit or through a layoff, in which case j ∈ {q, l}. This
is often referred to as a competing risk model. Below, we will use the example of
quit, layoff, recall and new job. See also the discussion in [P]6.5.1.

To give an example of how the sample likelihood is evaluated using the concept
of a hazard function, assume away any complications arising from the competing
risks for now. Let λ denote the overall hazard out of a given state. In the absence
of any unobserved heterogeneity, the likelihood function contribution of a single
employment spell which ended at duration t would be

Le(t) = λ(t, xt)
t−1∏
v=1

[1− λ(v, xv)]. (12.3)

In a competing risks specification with layoff and quit hazards (not allowing for
unobserved factors), the unconditional probability of someone leaving employment
through a quit at duration t would become

Lq
e(t) = λq(t, xt)

t−1∏
v=1

[1− λq(v, xv)][1− λl(v, xv)], (12.4)

where λq and λl denote the quit and layoff hazards respectively. Similarly, for
someone who gets laid off in week t of an employment spell, the likelihood contri-
bution becomes

Ll
e(t) = λl(t, xt)

t−1∏
v=1

[1− λq(v, xv)][1− λl(v, xv)]. (12.5)

Hazard models are natural candidates for dealing with the problem of right-
censoring. For an employment spell which is still in progress at the end of our
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sampling frame (i.e., no transition out of employment has been observed), one
enters the survival probability

Se(T ) =
T∏

v=1

[1− λq(v, xv)][1− λl(v, xv)]. (12.6)

Here, T denotes the highest duration at which we observe the spell in progress and
Se(T ) gives the probability of a given spell lasting at least T periods. The sample
likelihood then equals the product of individual likelihood contributions. Now, if
we introduce the unobserved heterogeneity, the likelihood function contribution
for someone leaving unemployment at duration t for a new job would be

Ln
u(t) =

Nn
θ∑

k=1

Nr
θ∑

m=1

p(θnk , θ
r
m)L

n
u(t|θnk , θrm), (12.7)

where p(θnk , θ
r
m) is the probability of having the unobserved components θnk and

θrm in the new job and recall hazards respectively, and where

Ln
u(t|θnk , θrm) = λn(t, xt|θnk)

t−1∏
v=1

[1− λn(v, xv|θnk)] [1− λr(v, xv|θrm)]. (12.8)

The likelihood of leaving an employment spell in week s, denoted Le(s), is specified
in a similar fashion (with quit and layoff being the different reasons for exit here).

The previous discussion focuses on examples with a single spell of each type.
Equation 12.9 gives the likelihood contribution of a person with two completed
spells of employment. The first spell starts in week t + 1 and ends with a layoff
in week s (at duration s− t); the second spell starts in week r + 1 and ends with
a quit in week w (at duration w − r − s− t).

L(s, w) =

Nq
θ∑

k=1

N l
θ∑

m=1

p(θqk, θ
l
m)L

l
e(s|θqk, θlm)Lq

e(w|θqk, θlm) (12.9)

Here θq and θl denote the unobserved terms entering quit and layoff hazards
respectively and

Ll
e(s|θqk, θlm) = λl(s, xs|θlm)

s−1∏
v=t+1

[1− λq(v, xv|θqk)] [1− λl(v, xv|θlm)] , (12.10)
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Lq
e(w|θqk, θlm) = λq(w, xw|θlm)

w−1∏
v=r+1

[1− λq(v, xv|θqk)] [1− λl(v, xv|θlm)] .

Using multiple spell data provides greater variation and improves identification of
the unobserved heterogeneity distribution (need to separate duration dependence
from unobserved heterogeneity). However, use of this type of data raises the
possibility of selection bias; i.e., the individuals with more than one spell of either
type may be a non-random sample. To control for this problem, one can estimate
the whole duration history of all states jointly while allowing the unobserved
heterogeneity to be correlated across these spells. To continue in the example we
used up to now, the unemployment and employment hazard have to be estimated
jointly in order to control for selection bias into multiple spells. One has to take
into account the joint density of the unobservables across the two hazards, denoted
by p(θu, θe). Suppose we want to estimate a competing risks specification for
quits and layoffs jointly with an overall hazard for unemployment. The likelihood
contribution of someone leaving the first unemployment spell after t weeks, then
getting laid off after s− t weeks on a job and staying in the second unemployment
spell till the date of the interview, say at T − s− t weeks into the last spell, then
becomes

Lu,l,u(t, s, T ) =

Nu
θ∑

k=1

Nq
θ∑

m=1

N l
θ∑

n=1

p(θuk, θ
q
m, θ

l
n)Lu(t|θuk)Ll

e(s|θqm, θln)Su(T |θuk), (12.11)

where

Lu(t|θuk) = λu(t, xt|θuk)
t−1∏
v=1

[1− λu(v, xv|θuk)] .

The employment contribution, Ll
e is defined in equation 12.10 . Finally

Su(T |θuk) =
T∏

v=s+1

[1− λu(v, xv|θuk)]

is the survivor function expressing the probability of a given spell lasting at least
T periods.

One can compute individual contributions to the sample likelihood for other
labor market histories in a similar way. The number of points of support of the
distribution of unobservables (Nu

θ , N
q
θ and N l

θ) is determined from the sample
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likelihood (using Schwarz or Akaike criterion).52 Note the assumption of θu, θq

and θl staying the same across multiple unemployment and employment spells
respectively. There are many possible choices for the distribution of unobservables:

Heterogeneity Distributions

1. Independent Heterogeneity: p(θu, θe) = pu(θ
u)pe(θ

e)

2. Bivariate Heterogeneity Distribution:

θl1 θl2 . . . θlN
θq1 p(θq1, θ

l
1) p(θq1, θ

l
2) . . . p(θq1, θ

l
N)

θq2 p(θq2, θ
l
1) p(θq2, θ

l
2) . . . p(θq2, θ

l
N)

. . . . . . . . . . . . . . .
θqM p(θqM , θ

l
1) p(θqM , θ

l
2) . . . p(θqM , θ

l
N)

3. One factor loading:

p(Θ1) Θ1 = {θl1, cθq1}
p(Θ2) Θ2 = {θl2, cθq2}
. . . . . .
p(ΘN) ΘN = {θlN , cθqN}

4. Heterogeneity distribution with 3-tuples (corresponding to one way of leav-
ing unemployment and 2 ways of leaving employment.)

p(Θ1) Θ1 = {θu1 , θl1, θq1}
p(Θ2) Θ2 = {θu2 , θl2, θq2}
. . . . . .
p(ΘN) ΘN = {θuN , θlN , θqN}

5. ‘Stayer’ heterogeneity: Suppose that we want to allow for the possibility
of never leaving employment through a quit (or for the possibility of never
returning to a prison.) Assume, for now, that the only way to transit out
of employment is to quit. Furthermore, assume that there is no unobserved
heterogeneity. A typical stayer model would then parametrize an individ-
ual’s contribution to the likelihood as follows:

L(t) = ps + (1− ps){λq(t, xt)
t−1∏
v=1

[1− λq(v, xv)] },

52See Baker and Melino (2000).
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where ps is the probability of never leaving employment and λq is a quit
hazard. See Jurajda (2002) for details on estimation.

6. Continuous parametric distributions of heterogeneity, for example Weibull.

12.2.2. Left Censored Spells

We need to know when they started. In presence of unobserved heterogeneity,
dropping left censored spells will cause bias. See Ham and Lalonde (1997) for an
example where the bias matters. Heckman and Singer (1984) suggest to model
the interrupted spells with a separate hazard, i.e., a new hazard with a different
β from the fresh spells. See also exercise 12.1.

12.2.3. Expected Duration Simulations

How to evaluate the magnitude of coefficients? Use the unconditional probability
of leaving a given state to compute the expected durations under different values
of xs. Interpret the difference between expected durations as the magnitude of
the particular β. The expected duration is computed as

E(t|X) =
I∑

i=1

∑∞
t=1 tfi(t)

I
, (12.12)

where I is the number of spells in the sample, xit is the vector of all explanatory
variables for a spell i at duration t, and X represents the collection of all xit
vectors.53 Finally, using the example of a recall and new job hazard out of un-
employment, the unconditional probability of leaving unemployment at duration
t denoted fi(t) is computed as follows:

fi(t) =
N∑
k=1

p(θrk, θ
n
k)fi(t|θrk, θnk), where

fi(t|θrk, θnk) = {λr(t, xit|θrk) + λn(t, xit|θnk)− λr(t, xit|θrk)λn(t, xit|θnk)} ×
t−1∏
v=1

[1− λr(v, xv|θrk)] [1− λn(v, xv|θnk)] .

Remark 90. In multiple-state multiple-spell data, single-spell duration simula-
tions do not provide a full picture. See, e.g., Jurajda (2002).

53A simpler (biased) approach is to evaluate the expected duration at a mean individual x.
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12.2.4. Partial Likelihood

Cox (1972, 1975): estimate β in the proportional hazard model λi(t) = λ0(t) exp(x
′

iβ),
without specifying the form of the baseline hazard λ0(t). Order the completed du-
rations ti into t(i). The conditional probability that individual 1 concludes a spell
at time t(1), given that all other individuals could have completed their spells at
that duration is

λ(t(1), x(1))∑n
i=1 λ(t(1), x(i))

=
exp(x

′

(1)
β)∑n

i=1 exp(x
′

(i)
β)
. (12.13)

In the absence of information about the form of duration dependence, only the
information about the order of the spell durations is used.

Remark 91. This method alone does not allow the expected duration simula-
tions. It is possible, though, to construct a nonparametric estimate of the baseline
hazard using the estimated exp(x

′

iβ̂). See [P].
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Part IV

Some Recent Topics in

Econometrics

13. Structural Estimation

is possible without closed form solutions. It has been applied to (RE) dynamic
models of discrete choice (for example ICAPM) by Miller (1984), Wolpin (1984),
Pakes (1986), and Rust (1987). For recent surveys see Eckstein and Wolpin (1989)
and Rust (1992, 1994).

Example 13.1. Engberg (1992) estimates a structural model of job search al-
lowing for unobserved heterogeneity.

Example 13.2. In a stopping problem Hotz and Miller (1993) provide a new
method of estimating dynamic discrete choice models, not requiring evaluation of
the value functions. They can estimate the parameters without the need to solve
the problem numerically using an inversion results between conditional choice
probabilities (which one can estimate from the cell data) and a difference of the
value functions.

Example 13.3. Other applications include equilibrium models of unemployment
(e.g. van den Berg and Ridder 1993) or local jurisdictions54 (Epple and Sieg 1996).

14. Nonparametrics

The very opposite of the structural models. We already mentioned the use of semi-
parametric methods in the estimation of discrete choice models (section 9.1.6) and
in the selection bias models (section 10.6.4). Here, we will discuss the basic non-
parametric methods underlying the semi-parametric applications.

54Look at an equilibrium distribution of households by income across communities.
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14.1. Kernel estimation

A typical OLS regression will use information from the whole range of x ∈ [x, x]
to estimate E[yi | x = xi] = β′xi. Here, we will estimate a conditional expectation
function E[y | x] = m(x) using ‘local’ information from an area A(x) ‘close’ to x:

Ê[y | x] = m̂(x) =

∑n
i=1 I{i ∈ A(x)}yi∑n
i=1 I{i ∈ A(x)}

=
n∑
i=1

wi(x)yi.

Two questions: (i) how to define A(x), (ii) are the weights wi(x) from above
optimal. Instead of the indicator function I{·} let us use a bounded, symmetric
Kernel function K(·) such that

∫
K(u)du = 1. For asymptotic theory on choosing

the optimal Kernel and bandwidth55, see [N] and Silverman (1986).

14.2. K-th Nearest Neighbor

Define J(x) = {i : xi is one of the K nearest neighbors} and use wi(x) = 1
K

if
i ∈ J(x). Kernel estimation lets precision vary and keeps bias constant. KNN
does the opposite.

14.3. Local Linear Regression

See Fan and Gijbels (1996). Kernel estimation has problems at the boundary of
the space of x which LLR is able to remedy.

m̂(x0) = α̂, where α̂ = argmin
α,β

n∑
i=1

{yi − α− β(xi − x0)}2K
(
xi − x0
an

)
The kernel K and an are chosen to optimize the asymptotic MSE.56

Kernels used in practice are:

• Epanechnikov: K(u) = 3
4
(1 − u2)I{| u |≤ 1} (optimal K in both LLR and

Kernel estimation, optimal an differ)

55The bandwidth can be also data-dependent.
56The bias in Kernel estimation depends on the distribution of regressors and on the slope of

the regression function. The LLR bias only depends on the second derivative of the regression
function. The asymptotic variance of the two methods is close unless data is sparce or m is
changing rapidly around the x0 data point.
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• Quartic: K(u) = 15
16
(1− u2)2I{| u |≤ 1}

• Triangle: K(u) = (1− | u |)I{| u |≤ 1}

The choice of an can be made using

• a point-wise plug-in method which relies on an initial estimate,

• a cross-validation method which chooses global an to minimize the MSE∑n
i=1(yi − m̂i(xi))

2.

• a fishing expedition: increase an as long as linearity is not rejected.

Remark 92. S
�
� has a kernel smoother and does local linear regression. Ad-
vanced programs are available on the www for S-�
�� (http:\\lib.stat.cmu.edu\).

Remark 93. Kernel estimation is basically a LLR on just the constant term.

Remark 94. There are also extensions of the localization idea to the MLE frame-
work, see Tibshirani and Hastie (1987).

14.4. Multidimensional Extensions

The curse of dimensionality is severe. To have a reasonable speed of convergence
need very large samples. There are a few ways how to proceed (the last two have
applications in econometrics):

• Regression trees: recursively split x to estimate step functions; derive a
stopping rule to minimize mean square error.

• Impose additive separability or Projection pursuit regression:

m(x) = g1(xβ1) + g2(xβ2) + . . . .

• Index sufficiency. It was mentioned in the semiparametric sample selection
literature.

• Average derivative estimation: If I am interested in θ = E
{

∂m(xi)
∂xi

}
then θ

can be estimated with
√
n speed of convergence. Example: binary choice or

tobit models.
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14.5. Partial Linear Model

For a model y = zβ+f(x)+ε, where both z and x are scalars, estimators of β can
be constructed which are asymptotically normal at the

√
n speed of convergence.

See Yatchew, A. (1998).

14.6. Quantile Regression

Also related to other non-least-squares regressions, like the LAD estimator. One
goal of these robust regression methods is to reduce the influence of outliers.
Minimize

n∑
i=1

{| ti | +(2α− 1)ti}K
(
xi − x0
an

)
with ti = yi −

k∑
j=0

βj(xi − x0)j

For example with α = 0.5 it would be a median regression. See Fan and Gijbels
book (p.201) for details and Chamberlain (1982). Also see the L����� procedure
in S-�
��.

15. Miscellaneous Other Topics

• Bootstrap. A simulation-based set of techniques which provide estimates of
variability, confidence intervals and critical levels for test procedures. They
are used when asymptotic results are not available. Also, they may turn
more accurate than asymptotic theory because they are constructed based
on the right sample size (see Hall’s book from 1992).

The idea is to create k replications of the original data set of size N by
randomly drawing N data points from it with replacement. The model is
re-estimated on each simulated sample and the variation in β̂ over k is used
to answer questions about its distribution etc. In the residual bootstrap the
resampling population is not the data set, but ε̂.

• Empirical Process Method of Showing Consistency of an Extremum
Estimator with a Non-smooth Objective Function. Does not require
continuity or differentiability. Among the books on the topic are van der
Vaart and Wellner (1996), Pollard (1994), and Pollard (1990).
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• Gibbs Sampler. A new Bayesian approach to estimation introduced by
Geman and Geman (1984). Related methods: data augmentation, Metropo-
lis algorithm. Unlike Newton-Raphson, these methods allow us to obtain the
marginal of the likelihood function or posterior density. Alternatively, they
can be used to obtain a sample of parameter values. The idea is to draw
from the joint distribution by drawing successively from various conditional
distributions to avoid direct evaluation of the likelihood. These methods
require a random input stream and iteration. See Tanner (1993). Further,
just about every issue of JASA has a paper with Gibbs sampler these days.
For an example of multinomial probit estimation see McCulloch and Rossi
(1994).

• Combining Data Sets. See Arelano and Meghir (1992) and Angrist
(1990). If ys and instruments are in one sample and xs and instruments
are in the other sample, combine using MD.

• Censored panel-data models with a lagged dependent variable. See
[AH] and note that this course covered only the (easier) part of panel-data
econometrics where we assume regressors strictly exogenous as opposed to
predetermined.
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