[1] |
V. Zacharovas. Cesàro summation and
multiplicative functions on a symmetric group. Liet. Mat.
Rink., 41(Special Issue):140-148, 2001. [ Arxiv ] |
[2] |
V. Zacharovas. The convergence rate in CLT
for random variables on permutations. In Analytic and
probabilistic methods in number theory (Palanga, 2001),
pages 329-338. TEV, Vilnius, 2002.
|
[3] |
V. Zacharovas. On the rate of convergence
of a random variable defined on random polynomials to the normal
law. Liet. Mat. Rink., 42(1):113-138, 2002. [ DOI ] |
[4] |
V. Zacharovas. Distribution of the
logarithm of the order of a random permutation. Liet. Mat.
Rink., 44(3):372-406, 2004. [ DOI ] |
[5] |
V. Zacharovas. Convergence rate for some
additive function on random permutations. Analysis
(Munich), 25(2):113-121, 2005. [ Preprint ] |
[6] |
G. J. Babu, E. Manstavičius, and
V. Zacharovas. Limiting processes with dependent increments for
measures on symmetric group of permutations. In Probability
and number theory-Kanazawa 2005, volume 49 of Adv. Stud.
Pure Math., pages 41-67. Math. Soc. Japan, Tokyo, 2007.
[ Preprint ] |
[7] |
V. Zacharovas and H.-K. Hwang. A
Charlier-Parseval approach to Poisson approximation and its
applications. Lith. Math. J., 50(1):88-119, 2010.
[ Arxiv | DOI ] |
[8] |
H.-K. Hwang, M. Fuchs, and V. Zacharovas.
Asymptotic variance of random symmetric digital search trees.
Discrete Math. Theor. Comput. Sci., 12(2):103-165, 2010.
[ Arxiv ] |
[9] |
H.-K. Hwang and V. Zacharovas. Uniform
asymptotics of Poisson approximation to the Poisson-binomial
distribution. Teor. Veroyatn. Primen., 55(2):305-334,
2010. [ Preprint |
DOI ] |
[10] |
V. Zacharovas. A Tauberian theorem for the
Ingham summation method. Acta Arith., 148(1):31-54,
2011. [ DOI |
Arxiv ] |
[11] |
V. Zacharovas. Voronoi summation formulae
and multiplicative functions on permutations. Ramanujan
J., 24(3):289-329, 2011. [ DOI | Arxiv ] |
[12] |
C. Banderier , H.-K. Hwang, V. Ravelomanana and V. Zacharovas. Analysis of an exhaustive search algorithm in random graphs
and the n c log(n)-asymptotics. SIAM J. Discrete Math., 28(1):342-371,
2014. [ DOI | PDF | Arxiv ] |
[13] |
H.-K. Hwang, M. Fuchs and V. Zacharovas.
An analytic approach to the asymptotic variance of trie statistics and related structures. Theoret. Comput. Sci. , 527:1-36,
2014.[ DOI | Arxiv ] |
[14] |
Louis H. Y. Chen, H.-K. Hwang and V. Zacharovas. Distribution of the sum-of-digits function of random integers: a survey. Probab. Surv., 11:177-236,
2014. [ DOI | Arxiv ] |
[15] |
H.-K. Hwang and V. Zacharovas. Limit laws of the coefficients of polynomials
with only unit roots. Random Structures & Algorithms, 46(4):707-738, 2015. [ DOI |Preprint |Arxiv ] |
[16] |
V. Zacharovas. On the exponential decay of the characteristic function
of the quicksort distribution. In Proceedings of the 27th International Conference
on Probabilistic, Combinatorial and Asymptotic Methods for the
Analysis of Algorithms -- AofA'16, page 9. Jagiellonian Univ., Dep. Theor.
Comput. Sci., Krakow, 2016.[Arxiv ] |
[17] |
V. Zacharovas. The estimate of χ2 distance between binomial and generalized
binomial distributions. Theory of Probability & Its Applications, 64(3):444-455, 2019. [ DOI | Arxiv ] |