Faculty of Mathematics and Informatics
Vilnius University
Naugarduko g. 24, LT-03225
Vilnius, Lithuania
Tel: +370-5-2193090
Fax: +370-5-2151585
rimvydas(dot)krasauskas(eta)mif.vu.lt
Applications of algebraic and differential geometry to surface modeling,
computer aided geometric design, computer graphics.
Selected publications
M. Skopenkov, R. Krasauskas,
Surfaces containing two circles through each point, Mathematische Annalen, published on line 13 August 2018.
[view-only version]
R. Krasauskas,
Unifying Theory of Pythagorean-Normal Surfaces Based on Geometric Algebra,
Advances in Applied Clifford Algebras 27, (2017) 491-502.
R. Krasauskas,
Rational patches on Darboux and isotropic cyclides and their modeling applications - Part I,
BIRS Workshop "Computational Algebra and Geometric Modeling", Oaxaca, Mexico, 2016, August 7-12.
[video]
S. Zube, R. Krasauskas,
Representation of Dupin cyclides using quaternions,
Graphical Models 82, (2015) 110-122.
R. Krasauskas, S. Zube, S. Cacciola,
Bilinear Clifford-Bezier Patches on Isotropic Cyclides, In:
Mathematical Methods for Curves and Surfaces, Lect. Notes Comput. Sc. 8177 (2014), 283-303.
[pdf file]
R. Krasauskas, S. Zube,
Rational Bezier formulas with quaternion and Clifford algebra weights,
in: Tor Dokken, Georg Muntingh (eds.), SAGA - Advances in ShApes, Geometry, and Algebra,
Geometry and Computing, vol. 10, Springer, 2014, pp. 147-166.
[pdf file]
V. Karpavicius, R. Krasauskas,
Real-time visualization of Moebius transformations in space using Quaternionic-Bezier
approach, in: 21-st International Conference on Computer Graphics,
Visualization and Computer Vision (WSCG), Communication Papers Proceedings, 2013, pp.
259-266.
[pdf file]
H.E.I. Dahl, R. Krasauskas,
Rational fixed radius rolling ball blends between natural quadrics,
Computer Aided Geometric Design 29, (2012) 691-706.
R. Krasauskas and S. Zube,
Bezier-like parametrizations of spheres and cyclides using geometric algebra,
9th International Conference on Clifford Algebras and their Applications in Mathematical Physics, K. Guerlebeck (ed.) Weimar, Germany, 15-20 July 2011.
[pdf file]
S. Zube and R. Krasauskas,
Dupin Cyclide Representation Using Quaternions,
Poster at the SAGA Autumn School, Kolympari, Crete, October 4-8, 2010.
[pdf file]
R. Krasauskas and M. Peternell,
Rational offset surfaces and their modeling applications,
in: IMA Volume 151: Nonlinear Computational Geometry,
(eds.) I.Z. Emiris, F. Sottile, and Th. Theobald, p. 109-135, 2010.
[pdf file]
R. Krasauskas,
Branching blend of natural quadrics based on surfaces with rational offsets,
Computer Aided Geometric Design 25, (2008) 332-341.
[pdf file]
R. Krasauskas, S. Zube,
Canal surfaces defined by quadratic families of spheres
in: B. Juettler and R. Piene (eds.)
Geometric Modeling and Algebraic Geometry, Springer 2008, 79-92.
R. Krasauskas,
Minimal rational parametrizations of canal surfaces,
Computing 79, (2007) 281-290.
[pdf file]
R. Krasauskas, Bezier patches on almost toric surfaces,
in: Elkadi, M., Mourrain, B. and Piene, R. (eds.),
Algebraic Geometry and Geometric Modeling,
Mathematics and Visualization Series, Springer, (2006) 135-150.
[pdf file: preprint version]
R. Krasauskas, M. Kazakeviciute,
Universal rational parametrizations and spline curves on toric surfaces,
in: Computational Methods for Algebraic Spline Surfaces,
ESF Explo-ratory Workshop, Springer, (2005) 213-232.
R. Krasauskas, R. Goldman, Toric Bezier patches with
depth, Topics in Algebraic Geometry and Geometric Modeling,
Contemporary Mathematics 334, (2003) 65-291.
D. Cox, R. Krasauskas, M. Mustata, Universal
rational parametrizations and toric varieties,
Topics in Algebraic Geometry and Geometric Modeling,
Contemporary Mathematics 334, (2003) 241-265.
R. Krasauskas, Toric surface patches,
Advances in Computational mathematics 17, (2002) 89-113.
[pdf file]
R. Krasauskas, Shape of Toric Surfaces, in: R. Durikovic,
S. Czanner (eds.), Proceedings of the Spring Conference on
Computer Graphics SCCG 2001}, IEEE, 2001, 55-62.
[pdf file]
J. Walner, R. Krasauskas, H. Pottmann, Error propagation
in geometric constructions, Computer-Aided Design 32, (2000) 631-641.
R. Krasauskas, C. Maeurer, Studying Cyclides with Laguerre
Geometry, Computer Aided Geometric Design 17, (2000), 101-126.