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1. Classical L-functions

The first example of a complex variable L-function is the famous Riemann zeta function

ζ(s), introduced by Riemann in 1859 and defined for s = σ + it with σ > 1 by the absolutely
convergent Dirichlet series

ζ(s) =
∞
∑

n=1

1

ns
.

The Riemann zeta function was introduced to study the distribution of prime numbers, and
in particular to detect the asymptotic behaviour as x → ∞ of the prime numbers counting
function

π(x) =
∑

p≤x

1.

The basic connection between ζ(s) and the primes is given by the Euler product

ζ(s) =
∏

p

(

1 − 1

ps

)−1
σ > 1,

a simple but very interesting identity since the primes appear explicitly only on the right hand
side. Thanks to the Euler product, the relation between ζ(s) and π(x) can be made explicit by
a classical Fourier transform argument, thus getting

π(x) log x ∼ 1

2πi

∫ 2+i∞

2−i∞
−ζ

′

ζ
(s)

xs

s
ds. (1.1)

Clearly, in order to deduce the asymptotic behaviour of π(x) from (1.1), we need to know some

analytic properties of − ζ′

ζ
(s). In particular, we require some information on the polar structure

of − ζ′

ζ
(s) or, equivalently, on the distribution of poles and zeros of ζ(s).

The fundamental analytic properties of ζ(s) are as follows.

⋆ ζ(s) has meromorphic continuation to the whole complex plane C and its only singularity
is a simple pole at s = 1.

⋆ Writing

Φ(s) = π−s/2Γ(
s

2
)ζ(s)

(Γ(s) is the Euler Γ-function), ζ(s) satisfies the functional equation

Φ(s) = Φ(1 − s).

⋆ ζ(s) has polynomial growth on vertical strips, that is

ζ(σ + it) = O(|t|c) |t| → ∞

1
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uniformly for a ≤ σ ≤ b, where c = c(a, b).

⋆ ζ(s) 6= 0 for σ > 1 by the Euler product, and hence by the functional equation the zeros of
ζ(s) in the half-plane σ < 0 are simple and located at the points s = −2,−4,−6, ...; such zeros
are called the trivial zeros. The other zeros of ζ(s) are called the non-trivial zeros, are located
inside the critical strip 0 ≤ σ ≤ 1 and are symmetric with respect to the critical line σ = 1

2
and

to the real axis.

⋆ The non-trivial zeros counting function

N(T ) = ♯{ρ = β + iγ : ζ(ρ) = 0, 0 ≤ β ≤ 1, 0 ≤ γ ≤ T}
satisfies

N(T ) ∼ T logT

2π
.

⋆ ζ(s) 6= 0 on the line σ = 1. Moreover, ζ(s) has zero-free regions to the left of σ = 1, the
simplest being of the following form: ζ(σ + it) 6= 0 for

σ > 1 − c

log(|t| + 2)
(1.2)

for some c > 0. Better zero-free regions are known at present, but all are asymptotic to the
line σ = 1 as |t| → ∞.

From the integral representation (1.1) and the above analytic properties we can deduce the
famous Prime Number Theorem, proved independently by Hadamard and de la Vallée-Poussin
in 1896:

π(x) ∼ x

log x
.

Stronger forms of the Prime Number Theorem are known; for instance, from the zero-free region
(1.2) we can get

π(x) = li(x) +O(xe−c
√

log x)

for some c > 0, where

li(x) =
∫ x

2

dt

log t

is the integral logarithm function. However, due to the shape of the known zero-free regions,
no error term of type O(xθ) with θ < 1 is available at present.

The famous Riemann Hypothesis, probably the most important open problem of contempo-
rary mathematics, states that all non-trivial zeros lie on the critical line. Hence the Riemann
Hypothesis gives the best possible zero-free region ζ(s) 6= 0 for σ > 1

2
, from which the essentially

best possible form of the Prime Number Theorem

π(x) = li(x) +O(x1/2 log x)

follows.

We refer to the classical book of H.Davenport [15] for an excellent exposition of the basic
theory of the Riemann zeta function and its applications to the distribution of primes. We also
refer to Weil [79] for a beautiful account of the prehistory of the zeta functions.

Since the appearance of the Riemann zeta function, many other L-functions have been in-
troduced in the theory of numbers, and in other branches of mathematics as well. Here is a
very synthetic list.
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⋆ The Dirichlet L-functions

L(s, χ) =
∞
∑

n=1

χ(n)

ns
,

where χ is a character of the multiplicative group Z∗
q (the coprime residue classes modulo

a positive integer q), were introduced by Dirichlet in 1837, hence about twenty years before
Riemann’s work. However, Dirichlet dealt with the L(s, χ)’s as real variable functions, and
the basic complex variable theory of the Dirichlet L-functions was established after Riemann’s
fundamental paper. The analytic properties of the Dirichlet L-functions are quite similar to
those of the Riemann zeta function, and in fact ζ(s) is the special case corresponding to the
character (mod 1). The Dirichlet L-functions were originally introduced to prove that the prime
numbers are equidistributed in the arithmetic progressions a (mod q) with (a, q) = 1, for any
fixed modulus q. Clearly, the functions L(s, χ) are of arithmetic nature. We refer to Davenport
[15] for the basic theory of the Dirichlet L-functions.

⋆ The Hecke L-functions are defined for σ > 1 by

LK(s, χ) =
∑

I

χ(I)

N(I)s
,

where K is an algebraic number field, I runs over the non-zero ideals of the ring of integers
of K, N(I) denotes the norm of I and χ is a Hecke character of finite or infinite order. The
functions LK(s, χ) are a far reaching generalization of the Dirichlet L-functions. In fact, when
K = Q the Hecke L-functions reduce to the Dirichlet L-functions. Moreover, when χ is trivial
the function LK(s, χ) reduces to the important special case of the Dedekind zeta function

ζK(s) =
∑

I

1

N(I)s
.

The analytic behaviour of the Hecke L-functions is similar to the Dirichlet L-functions, although
the functional equation has a more complicated shape and is definitely more difficult to prove.

A different type of L-functions associated with algebraic number fields is provided by the
Artin L-functions L(s,K/k, ρ). Here K/k is a Galois extension of number fields with Galois
group G, and ρ is a finite dimensional representation of G. The Artin L-functions are defined
for σ > 1 by certain Euler products, and their analytic properties are eventually deduced from
the analytic properties of the Hecke L-functions. In fact, the Artin reciprocity law states if
K/k is abelian, then L(s,K/k, ρ) coincides with a suitable Hecke L-function. Moreover, the
Artin-Brauer theory of group characters implies that every function L(s,K/k, ρ) is a product
of integer powers of abelian Artin L-functions. As a consequence, the Artin L-functions can
be expressed as products of integer powers of Hecke L-functions, hence they have meromorphic
continuation to C, possibly with infinitely many poles. However, the famous Artin conjecture

predicts that every function L(s,K/k, ρ) is holomorphic on C, apart possibly for a pole at
s = 1. The other analytic properties of the Artin L-functions are similar to those of the Hecke
L-functions.

The Hecke and Artin L-functions, clearly of algebraic nature, provide quite a lot of informa-
tion on the structure of algebraic number fields. We refer to Heilbronn [23] for the basic theory
of Hecke and Artin L-functions.

⋆ The Hecke L-functions associated with modular forms are defined for σ sufficiently large
by the Dirichlet series

Lf (s) =
∞
∑

n=1

a(n)

ns
,
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where f(z) is a holomorphic modular form and a(n) are its Fourier coefficients. Under suitable
restrictions and normalizations, the functions Lf (s) satisfy analytic properties similar to those of
the Riemann zeta function. For suitable choices of f(z) (the Eisenstein series), such normalized
L-functions give raise the Dedekind zeta functions of imaginary quadratic fields. There is
an interesting ”operation” between L-functions associated with modular forms, namely the
Rankin-Selberg convolution. Roughly speaking, given two modular forms f(z) and g(z) with
Fourier coefficients a(n) and b(n) respectively, the Rankin-Selberg convolution is defined by the
Dirichlet series

Lf×g(s) =
∞
∑

n=1

a(n)b(n)

ns
.

Under suitable restrictions and normalizations, and modulo a certain ”fudge factor”, the
Rankin-Selberg convolution has analytic properties similar to the Riemann zeta function. A
similar, and in a way more fundamental, ”operation” is the m-symmetric product L-function of
two modular forms. In this case, the analytic properties are known at present only for small
values of the integer m. A related class of L-functions are the Maass L-functions associated
with non-holomorphic modular forms. The definition of such functions is quite complicated,
hence we skip it. We only remark that the known analytic properties of the Maass L-functions
are similar to the Hecke L-functions, but the state of the art is more rudimentary in this case.

Around the mid of the last century, a deep interpretation of the Hecke and Maass L-functions
in terms of representations was established. Roughly speaking, such L-functions were associated
with automorphic representations of GL(2) over the rational field. This theory then evolved into
the theory of automorphic L-functions, associated with automorphic representations of GL(n)
over number fields. The theory of automorphic L-functions is very deep both from technical
and conceptual viewpoints, and is not fully understood at present. For instance, analytic
continuation and functional equation of the automorphic L-functions have been established,
and the above mentioned Rankin-Selberg convolution and m-symmetric power L-functions are
now interpreted as the L-functions associated with the tensor product and the m-symmetric
power of representations, respectively. However, many deep conjectures remain open, and in
particular the amazing Langlands program. The Langlands program is a very deep unifying
program which, roughly speaking, predicts that the L-functions of arithmetic, algebraic and
geometric (see below) nature are in fact members of the class of automorphic L-functions.
An important ”special case” of the Langlands program in the Shimura-Taniyama conjecture,
asserting that the L-functions associated with elliptic curves correspond to suitable L-functions
associated with modular forms. Such a conjecture has been first proved in important special
cases by A.Wiles (see Wiles [80] and Taylor-Wiles [74]) as a key step in the proof of Fermat
Last Theorem, and then in full generality by Wiles’ followers.

The nature of the above L-functions is of course automorphic, and we refer to Hecke [22],
Iwaniec [26] and Bump [8] for the basic theory of such functions (see also the recent survey
by Gelbart-Miller [19]). We conclude the synthetic list of L-functions by remarking that L-
functions of geometric nature, i.e. attached to geometric objects like elliptic curves and varieties,
have been introduced as well, and we refer to Silverman [70] for an introductory presentation.
Moreover, we refer to Chapter 5 of the recent book by Iwaniec-Kowalski [27] for an excellent
introduction to the classical L-functions presented in this section.

Although the nature of the above L-functions is apparently different, once suitably normalized
they share the following important common properties (in some cases only conjecturally):

⋆ ordinary Dirichlet series, absolutely convergent for σ > 1;

⋆ meromorphic continuation to C, with at most a pole at s = 1;
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⋆ functional equation of Riemann type with multiple Γ factors, relating s with 1 − s;

⋆ coefficients are O(nε) for every ε > 0;

⋆ Euler product.

We will see that there is probably a very deep unifying theory behind such common properties
which, in a sense, represents an analytic counterpart of the Langlands program.

2. Basic theory of the Selberg class

The following two natural questions arise at this point:

⋆ what is in general an L-function ?
⋆ are all L-functions already known ?

Clearly, the second question depends on the first one. In a way, an answer to the first question
was given by Selberg [69], defining the Selberg class S of L-functions. Writing f(s) = f(s)
and assuming, as usual, that an empty product equals 1, the Selberg class is axiomatically
defined as follows: F ∈ S if

(i) (ordinary Dirichlet series) F (s) =
∞
∑

n=1
aF (n)n−s, absolutely convergent for σ > 1;

(ii) (analytic continuation) there exists an integer m ≥ 0 such that (s− 1)mF (s) is an entire
function of finite order;

(iii) (functional equation) F (s) satisfies a functional equation of type Φ(s) = ωΦ(1 − s),
where

Φ(s) = Qs
r

∏

j=1

Γ(λjs+ µj)F (s) = γ(s)F (s),

say, with r ≥ 0, Q > 0, λj > 0, ℜµj ≥ 0 and |ω| = 1;

(iv) (Ramanujan conjecture) for every ε > 0, aF (n) ≪ nε;

(v) (Euler product) logF (s) =
∞
∑

n=1
bF (n)n−s, where bF (n) = 0 unless n = pm with m ≥ 1,

and bF (n) ≪ nϑ for some ϑ < 1
2
.

Other axiomatic classes of L-functions have been proposed in the literature, see e.g. Piatetski-
Shapiro [60] and Carletti-Monti Bragadin-Perelli [9]; however, the axioms of the Selberg class
appear to be more satisfactory. Moreover, the problems raised by Selberg are definitely very
interesting. As we shall see, such problems are of a rather different nature with respect to the
classical problems on L-functions, in the sense that they deal with the L-functions as a class.

Examples of members of S are the Riemann zeta function, the Dirichlet L-functions, the
Hecke L-functions associated with algebraic number fields and, under suitable restrictions and
normalizations, the Hecke L-functions associated with holomorphic modular forms. The other
L-functions listed in Section 1 are also in S, provided certain classical conjectures hold. In par-
ticular, the Artin L-functions belong to S if the Artin conjecture holds, while the automorphic
L-functions are in S provided the Ramanujan conjecture holds true.

Here are few comments on the five axioms defining the Selberg class. By axiom (i), the
functions in S are ordinary Dirichlet series. This is an important point since, as we shall see,
the picture would change if general Dirichlet series are allowed. We recall that the general
Dirichlet series are of the form

∞
∑

n=1

a(n)

lsn
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where ln is an increasing sequence of positive real numbers tending to ∞. Restricting the
frequences ln to be integers, as in axiom (i), carries some arithmetical information.

Axiom (ii) allows s = 1 to be the only pole of functions in S, but most probably the picture
does not change much if finitely many poles on the line σ = 1 are allowed.

The function γ(s) in axiom (iii) is called γ-factor, and its factors Γ(λjs + µj) are the Γ-
factors. The form of the γ-factor of a given F ∈ S is clearly not unique. For instance,
application of the Legendre duplication formula for the Γ-function changes its shape, as the
following example shows:

(
π

2
)−s/2Γ(

s

4
)Γ(

s

4
+

1

2
)ζ(s) = (

π

2
)−(1−s)/2Γ(

1 − s

4
)Γ(

1 − s

4
+

1

2
)ζ(1 − s).

In other words, writing λ = (λ1, ..., λr) and µ = (µ1, ..., µr), the data (Q,λ,µ, ω) of F ∈ S
are not uniquely defined by F (s). This gives rise to the notion of invariant, i.e. an expression
defined in terms of the data of F (s) which is uniquely determined by F (s) itself. We will soon
see an important example of invariant.

Probably, axiom (iv) can be weakened to ”for every ε > 0 there exists a positive integer
M = M(ε) such that aF (n) ≪ nε for (n,M) = 1” without changing much the picture. The
advantage of this form of axiom (iv) rests on the fact that a similar bound can be proved for the
coefficients a−1

F (n) and bF (n). In other words, assuming this form of axiom (iv) and denoting by
c(n) any of the coefficients aF (n), a−1

F (n) and bF (n), one has that for every ε > 0 there exists a
positive integer M = M(ε) such that c(n) ≪ nε for (n,M) = 1, and c(n) ≪ nϑ for some ϑ < 1

2
.

Moreover, it is interesting to note that axiom (iv) is crucial for the Riemann Hypothesis. In fact,
Jurek Kaczorowski constructed the following simple example of L-function satisfying axioms
(i), (ii), (iii) and (v) but violating the Riemann Hypothesis. Let χ be a primitive Dirichlet
character with χ(−1) = −1 and write G(s) = L(2s − 1/2, χ). G(s) is absolutely convergent
for σ > 3/4, satisfies a functional equation with λ = 1 and µ = 1/4, and has an Euler product
allowing the choice ϑ = 1/4. Taking 0 < δ < 1/4 and writing F (s) = G(s− δ)G(s+ δ), thanks
to the above properties it is easy to see that F (s) satisfies all axioms but the Ramanujan
conjecture, and has no zeros on the critical line for suitable choices of δ.

Axiom (v) implies in particular that the coefficients aF (n) are multiplicative. Hence the
standard Euler product

F (s) =
∏

p

Fp(s) Fp(s) =
∞
∑

m=0

aF (pm)p−ms

holds; Fp(s) is the p-Euler factor of F (s). Moreover, the seemingly harmless condition ϑ < 1
2

has in fact a relevant role. For instance it implies that Fp(s) 6= 0 for σ > ϑ for every prime p,
and this will be crucial at several places. Moreover, if such a condition is relaxed and values
of ϑ greater than 1

2
are allowed, then examples of functions satisfying axioms (i),...,(v) and

violating the Riemann Hypothesis are easily constructed. A simple example is

f(s) = (1 − 2a−s)(1 − 2b−s) with a + b = 1 and a > 1
2
.

Note that the five axioms of the Selberg class are not completely independent (for example,
axiom (v) implies that F (s) is an ordinary Dirichlet series). We refer to Molteni [47] for further
pathological examples arising if parts of the axioms are dropped.

We finally remark that axioms (i), (ii) and (iii) are more of analytic nature, while axioms
(iv) and (v) are more of arithmetic nature. Therefore, we define the extended Selberg class
S♯ to be the class of the non identically vanishing functions satisfying axioms (i), (ii) and (iii).
Clearly, S♯ ⊃ S, and we shall see that S♯ still carries some of the properties of S. We also
remark that many of the definitions involving S carry over in an obvious way to the case of S♯.
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The standard analytic properties of the functions F ∈ S are easily obtained by means of the
classical arguments used to study the Riemann zeta function. Let F ∈ S. We define the polar
order mF of F (s) to be the least value of m in axiom (ii), and

dF = 2
r

∑

j=1

λj

is the degree of F (s). It is easy to see that

dζ = 1, dL(·,χ) = 1, dζK
= [K : Q], dLK(·,χ) = [K : Q], dLf

= 2 (2.1)

and similarly for the other classical L-functions. The function Ψ(s) = smF (1 − s)mF Φ(s) is an
entire function of order 1, and the Lindelöf µ-function µF (σ) satisfies µF (σ) = 0 for σ ≥ 1 and,
by the functional equation, µF (σ) = dF (1

2
− σ) for σ ≤ 0. This shows in particular that the

degree in an invariant, and hence S can be partitioned as

S =
⋃

d≥0

Sd,

where
Sd = {F ∈ S : dF = d}.

From the Euler product we have that F (s) 6= 0 for σ > 1, hence by the functional equation
we have the familiar notions of critical strip and critical line, i.e. the strip 0 ≤ σ ≤ 1 and
the line σ = 1

2
, respectively. The zeros of F (s) located at the poles of the γ-factor γ(s), i.e. at

ρ = −µj+k

λj
with k = 0, 1, 2, ... and j = 1, ..., r, are called the trivial zeros, and are the only

zeros of F (s) in the half plane σ < 0. The case ρ = 0, if present, requires special attention in
view of the possible pole of F (s) at s = 1. The other zeros, located inside the critical strip,
are called the non-trivial zeros. We cannot a priori exclude the possibility that F (s) has a
trivial and a non-trivial zero at the same point, on the line σ = 0. Moreover, writing

NF (T ) = |{ρ = β + iγ : F (ρ) = 0, 0 ≤ β ≤ 1, 0 ≤ γ ≤ T}|,
the analog of the Riemann-von Mangoldt formula holds in the form

NF (T ) =
dF

2π
T log T + cFT +O(logT ),

where cF is a certain constant depending on F (s). This shows once again that the degree dF

is an invariant (as well as cF ).

For details and further discussions on the matters above we refer to Selberg [69], Conrey-
Ghosh [12], Murty [51] and the survey papers Kaczorowski-Perelli [34], Kaczorowski [29] and
Perelli [57] and [58].

Roughly speaking, the problems about the Selberg class are of two types.

⋆ Classical problems: these are the extension to S of the problems about the classical L-
functions, the most important being the Riemann Hypothesis. In fact, Selberg [69] conjectured
that the Riemann Hypothesis holds for every function F ∈ S, i.e.

Conjecture 2.1. (GRH) Let F ∈ S. Then F (s) 6= 0 for σ > 1
2
.

We remark at this point that the knowledge about the distribution of zeros of the functions
in S is definitely poorer than in the case of the classical L-functions. For example, it is not yet
known in general if F (1 + it) 6= 0 for every t ∈ R.

⋆ Structural problems: these are the problems on the stucture of S as a class. The classifi-
cation of the functions in S, the independence properties of the functions in S, the study of
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the invariants in S, the countability and rigidity conjectures for S are important examples of
structural problems.

In this survey we focus on the structural problems for the Selberg class. Such problems, in
part raised by Selberg himself, deal with L-functions from a somewhat diffferent perspective
with respect to the classical problems, and their solution will eventually lead to a deeper
understanding of the nature of L-functions.

We start with the classification of the functions in the classes S and S♯ with degree smaller
than 1, since such results are needed later in this section. The basic result, Theorem 3.1 below,
has apparently been proved first by Richert [63] and then independently by Bochner [1] and
Conrey-Ghosh [12]. Further proofs have been given by Molteni [44] and Kaczorowski-Perelli
[37], [40].

Theorem 3.1. ([63], [1]. [12]) S♯
d = ∅ for 0 < d < 1.

A key point in the proof of Theorem 3.1 (common to several of the above proofs) is showing

that the Dirichlet series of every function in S♯
d with 0 ≤ d < 1 is absolutely convergent over C.

This contradicts µF (σ) > 0 for σ ≤ 0, provided 0 < d < 1. For d = 0, the functional equation
then shows that

F (s) =
∑

n|qF

aF (n)

ns
(2.2)

with qF = Q2 ∈ N. Thus, in particular, the functions in S♯
0 are Dirichlet polynomials. For

q ∈ N and |ω| = 1, let S♯
0(q, ω) be the set of F ∈ S♯

0 with given ω and qF = q, and let

V ♯
0 (q, ω) = S♯

0(q, ω) ∪ {0}.
Moreover, let d(n) denote the divisor function. The above simple argument leads to

Theorem 3.2. ([33]) Let F ∈ S♯
0. Then qF ∈ N and F (s) has the form (2.2). Moreover,

qF and ω are invariants, thus S♯
0 is the disjoint union of the subclasses S♯

0(q, ω) with q ∈ N and

|ω| = 1. Further, for any such q and ω, V ♯
0 (q, ω) is a real vector space of dimension d(q).

We refer to Steuding [73] for a different characterization of the functions F ∈ S♯
0. Starting

from (2.2), a simple argument based on the Euler product further shows

Theorem 3.3. ([12]) S0 = {1}.

We already noticed that every function in the Selberg class has a standard Euler product,
i.e. it can be expressed as a product of its p-Euler factors. It may happen that two distinct
functions F,G ∈ S have equal p-Euler factors for certain primes p. Denote by EF,G the set of
such primes. The ”exceptional set” EF,G can be pretty large, as the following example shows.
Let χ1 and χ2 be distinct primitive Dirichlet characters (mod q) such that χ1(a) = χ2(a) for
some a coprime to q. Then the corresponding exceptional set contains the primes p ≡ a (mod
q). Hence, in particular, EF,G can have positive density.

On the other hand, a well known result in representation theory, called the Strong Multiplicity

One Theorem (see Piatetski-Shapiro [59]), implies that if the p-Euler factors of two automorphic
L-functions are equal for all but finitely many primes, then the two L-functions are equal. The
analog of such a result for the Selberg class is called the multiplicity one property, and has
been proved by Murty-Murty [53].

Theorem 3.4. ([53]) Let F,G ∈ S. If Fp(s) = Gp(s) for all but finitely many primes p,
then F (s) = G(s).
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The proof amounts to the observation that by the functional equation F (s)/G(s) is entire and
non-vanishing, hence the result follows by Hadamard’s theory. The same argument shows that
the assumption Fp(s) = Gp(s) can be replaced by the weaker requirement that aF (pm) = aG(pm)
for m = 1, 2. It would be desirable to remove the condition involving the squares, as suggested
by the following conjecture.

Conjecture 3.1. (strong multiplicity one) Let F,G ∈ S. If aF (p) = aG(p) for all but
finitely many primes p, then F (s) = G(s).

We will describe a rather sharp unconditional result in this direction in a later section.

Clearly, the classes S and S♯ are multiplicative semigoups and the degree is additive, in the
sense that dF1F2

= dF1
+ dF2

. Moreover, given an entire F ∈ S♯ and θ ∈ R we define the shift
Fθ(s) as Fθ(s) = F (s + iθ). Clearly, Fθ ∈ S if F ∈ S, and the same holds for S♯. Further,
1 is the only constant function in S, and also the only invertible element of S. A function
F ∈ S \ {1} is primitive if F (s) = F1(s)F2(s) with F1, F2 ∈ S implies F1(s) = 1 or F2(s) = 1;
in other words, primitive functions are the irreducible elements of the semigrup S. In view of
Theorems 3.1 and 3.3, every function of degree < 2 is primitive, hence ζ(s) and the L(s, χ)’s
with primitive χ are primitive. Other examples of primitive functions are provided by a suitable
class of normalized L-functions associated with holomorphic modular forms. These are degree
2 functions, and the proof requires a deeper knowledge of the structure of S1, see Section 6.

Primitive functions play an important role in the theory of the Selberg class. As a first result,
Theorems 3.1, 3.3 and a simple induction on the degree give

Theorem 3.5. ([12], [51]) Every F ∈ S can be factored as a product of primitive functions.

In other words, every F ∈ S has a factorization of type

F (s) =
k

∏

j=1

Fj(s)
ej (2.3)

with ej ∈ N and Fj(s) primitive and distinct. A related natural conjecture is

Conjecture 3.2. (unique factorization, UF) Factorization into primitive functions is unique.

If the UF conjecture holds, then (2.3) is called the standard form of F (s).

The Rankin-Selberg convolution method shows that the L-functions associated with holo-
morphic modular forms satisfy a kind of orthogonality relation. Precisely, under suitable nor-
malizations and restrictions, the function Lf×g(s) defined in Section 1 has a simple pole at
s = 1 if f(z) = g(z) and is entire otherwise. A similar result holds in general for the irreducible
automorphic L-functions. Motivated by such properties, Selberg formulated the following fun-
damental conjecture.

Conjecture 3.3. (Selberg orthonormality conjecture, SOC) Let F,G ∈ S be primitive
functions and δF,G = 1 if F (s) = G(s), δF,G = 0 otherwise. Then as x→ ∞

∑

p≤x

aF (p)aG(p)

p
= (δF,G + o(1)) log log x.

In order to appreciate the depth of the Selberg orthonormality conjecture, we list few simple
but interesting consequences in Theorem 3.6 below. We first recall the the Dedekind conjecture

asserts that ζ(s) divides ζK(s) for every algebraic number field K/Q. This is well known in the
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case of normal extensions by the Aramata-Brauer theorem (see [23]). Moreover, given F ∈ S
we define the real number nF , if it exists, by

∑

p≤x

|aF (p)|2
p

= (nF + o(1)) log log x. (2.4)

Further, we denote as usual by σa(F ) the abscissa of absolute convergence of F ∈ S♯. We have

Theorem 3.6. ([12], [51], [53]) Assume SOC and let ej be as in (2.3). Then

i) the UF conjecture holds;

ii) nF =
∑k

j=1 e
2
j , and hence F ∈ S is primitive if and only if nF = 1;

iii) ζ(s) is the only primitive function in S with a pole at s = 1, and hence the Dedekind
conjecture holds;

iv) F (1 + it) 6= 0 for every t ∈ R, for every F ∈ S;

v) the strong multiplicity one conjecture holds;

vi) σa(F ) = 1 for every F ∈ S \ {1}.
We already remarked that at present is not unconditionally known if F (1 + it) 6= 0, t ∈ R,

for every F ∈ S. However, it is not surprising that this follows from SOC. In fact, the standard
proofs of the non-vanishing of L-functions on the 1-line are based on the properties of the
Rankin-Selberg convolution. We also remark that under SOC (in fact, under UF) the usual
notions of coprimality and of greatest common divisor are easily defined in S. From ii) of
Theorem 3.6 it is quite clear that in the case of any F,G ∈ S, SOC becomes

∑

p≤x

aF (p)aG(p)

p
= (

l
∑

j=1

fjgj + o(1)) log log x,

where

F (s) = H(s)
l

∏

j=1

Fj(s)
fj G(s) = K(s)

l
∏

j=1

Fj(s)
gj ,

the functions Fj(s) are primitive and distinct, and H(s), K(s) are coprime and not divisible
by the Fj(s)’s.

We remark here that the proof of the assertion on page 6 of Murty [51] that UF implies the
Dedekind conjecture (unfortunately reported as Proposition 4.2 in Kaczorowski-Perelli [34])
appears to be incorrect. In fact (using the notation in [51]) assuming only UF we do not see
how to exclude, for example, that ζK(s) is primitive and F (s) = ζ(s)H(s) with a primitive
H ∈ S vanishing at s = 1.

Another interesting consequence of SOC, based on the Artin-Brauer theory and on Cheb-
otarev density theorem, is

Theorem 3.7. ([51]) SOC implies the Artin conjecture.

We recall that the Artin conjecture states that the Artin L-functions L(s,K/k, ρ) are entire
if ρ is irreducible and non-trivial. Moreover, the argument in the proof of Theorem 3.7 shows
also that such functions are primitive. It is interesting to note how a conjecture concerning an
axiomatic class of L-functions has a strong consequence on a classical conjecture. The argument
in the proof of Theorem 3.7, coupled with work of Arthur-Clozel on solvable extensions, can be
suitably adapted to show that SOC implies the Langlands reciprocity conjecture for solvable
extensions of Q, see Murty [51].
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One may ask if primitivity can be characterized by the functional equation. Apparently this
is not the case, as shown by an example in Molteni [47] of a degree 2 functional equation with a
non-primitive solution in S (a Dedekind zeta function of a real quadratic field) and, assuming
the Takhtajan-Vinogradov conjecture on the dimension of the space of Maass forms, a primitive
solution as well. We state here a problem about the shifts of primitive functions.

Problem 3.1. Show that Fθ(s) is primitive for all θ ∈ R if F ∈ S is primitive.

There is an easy proof of this statement if axiom (ii) of the Selberg class is weakened to allow
a finite number of poles on the line σ = 1 (note that every function in such a larger class can
be shifted). In fact, suppose that F (s) is primitive, while Fθ(s) = F1(s)F2(s) is a non-trivial
factorization for some θ ∈ R. Then F (s) = Fθ(s− iθ) = F1(s− iθ)F2(s− iθ), a contradiction.
In the framework of the Selberg class S, the problem arises from the situation, which we cannot
a priori exclude, that Fθ(s) is entire while F1(s) has a pole and F2(s) has a zero at s = 1. This
situation is of course impossible under SOC.

The Selberg orthonormality conjecture can be regarded as a rather strong form of indepen-
dence of the functions in S. The unique factorization conjecture, which follows from SOC,
is also an independence statement in S. We may therefore ask if the simplest form of inde-
pendence, namely the linear independence, holds in S. We recall that a Dirichlet series D(s),
absolutely convergent in some right half-plane, is called p-finite if there exists a positive integer
M such that the coefficients c(n) of D(s) vanish whenever n has a prime factor not dividing
M . In this case, the arithmetic function c(n) is called p-finite as well. We denote by F both
the ring of p-finite Dirichlet series and the ring of p-finite arithmetic functions; note that F
contains all Dirichlet polynomials.

Theorem 3.8. ([30]) Distinct functions in S are linearly independent over F .

In particular, distinct functions of S are linearly independent over C. We remark that
Theorem 3.8 is basically a result on multiplicative arithmetic functions. We call equivalent

two multiplicative functions f(n) and g(n) if f(pm) = g(pm) for all integer m ≥ 1 and all but
finitely many primes p. The main step in the proof of Theorem 3.8 is showing that pairwise
non-equivalent multiplicative functions are linearly independent over F . This is in fact an
analogue of Artin’s well known result that distinct characters are linearly independent, and the
proof is similar. Theorem 3.8 follows then by Theorem 3.4, which ensures that the coefficients
of distinct functions in S are pairwise non-equivalent multiplicative functions.

We remark that Theorem 3.8 is a special case of a more general result, see Kaczorowski-
Molteni-Perelli [31]. In fact, its proof can be suitably modified to show the linear independence
of functions in a larger class, including the derivatives of all orders and the inverses of the
functions in S. Moreover, such a class also contains the Artin and the automorphic L-functions,
which are not yet known to belong to S. See also Molteni [46] for further results.

It is well known that the Prime Number Theorem is equivalent to ζ(1 + it) 6= 0 for t ∈ R.
Although the non-vanishing on the 1-line is at present a conditional result in the general
setting of the Selberg class, the analog of the above-mentioned equivalence can be proved
unconditionally in S. Let ΛF (n) be the generalized von Mangoldt function, defined by

−F
′

F
(s) =

∞
∑

n=1

ΛF (n)n−s,

i.e. ΛF (n) = bF (n) logn, and let

ψF (x) =
∑

n≤x

ΛF (n).
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It is expected that the prime number theorem (PNT) holds in the form

ψF (x) = mFx+ o(x)

for every F ∈ S, where mF is the polar order of F (s) defined in Section 2. Writing

ψF×F (x) =
∑

n≤x

|ΛF (n)|2,

a simple consequence of axioms (iv) and (v) is that ψF×F (x) ≪ x1+ε, and hence the bound
ψF (x) ≪ x1+ε holds unconditionally.

Theorem 3.9. ([39]) Let F ∈ S. Then PNT holds if and only if F (1 + it) 6= 0 for every
t ∈ R.

The proof is based on a weak density estimate for the zeros of F (s) close to the 1-line and
on a simple almost periodicity argument. From Theorems 3.6 and 3.9 we see that SOC implies

PNT. However, the argument in the proof of Theorem 3.9 allows to obtain a sharper result. To
this end we introduce the following much weaker version of SOC.

Conjecture 3.4. (normality conjecture, NC) Let F ∈ S \ {1}. Then (2.4) holds with
nF > 0, and nF ≤ 1 if F (s) is primitive.

We have

Theorem 3.10. ([39]) Assume NC and let F ∈ S. Then F (1 + it) 6= 0 for every t ∈ R.

In view of Theorems 3.9 and 3.10, NC implies PNT. We recall that

∑

p≤x

1

p
∼ log log x

is a weaker statement than the Prime Number Theorem, and an analogous assertion holds for
other classical L-functions as well. Hence, NC for a given F ∈ S is, in general, weaker than
PNT for the same function. Therefore Theorem 3.10 is a simple example of the philosophy
that general properties of a family of L-functions can be used to derive stronger consequences
for individual members of the family.

Now we turn to a discussion of the factorization problem in S♯. In order to extend the notion
of primitive function to the class S♯, we need to know the invertible functions in S♯. Clearly, the
non-zero complex constants belong to S♯, and it is easy to see that these are the only invertible
elements of S♯. Hence we say that a non-constant F ∈ S♯ is ♯-primitive if F (s) = F1(s)F2(s)
with F1, F2 ∈ S♯ implies that F1(s) or F2(s) is constant. The problem of the factorization
into primitive functions can therefore be raised for S♯ as well. The analogous property for S
depends on the following three facts: the degree is additive, there are no functions with degree
0 < dF < 1 and S0 = {1}. The first two facts hold for S♯ as well, but S♯

0 is definitely more
complicated than S0. Therefore, the proof of Theorem 3.5 does not carry over to the case of
S♯. However, the argument can be suitably modified to prove

Theorem 3.11. ([38]) Every F ∈ S♯ can be factored as a product of ♯-primitive functions.

The proof is based on the notion of almost-primitive function, that is a function F ∈ S♯

such that F (s) = F1(s)F2(s) implies dF1
= 0 or dF2

= 0. The main part of the proof of
Theorem 3.11 is devoted to the following characterization of almost-primitive functions: if

F ∈ S♯ is almost-primitive, then F (s) = P (s)G(s) with P (s) ♯-primitive and dG = 0. In
turn, such a characterization is based on a uniform estimate for the number of zeros of the
Dirichlet polynomials of S♯

0. Theorem 3.11 follows then from the above characterization by a
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double induction, first on the degree (giving the factorization into almost-primitive functions)

and then on the integer qF in Theorem 3.2 (giving the factorization of the functions of S♯
0 into

♯-primitive functions). We will see in the next section that such an integer qF is a special
instance of the general notion of conductor in S♯.

We remark that the analog of SOC does not hold for S♯. Indeed, let χ1, χ2 be two primitive
Dirichlet characters with the same modulus and parity, and let F (s) = L(s, χ1) + L(s, χ2) and

G(s) = L(s, χ1). Thanks to Theorems 3.1 and 3.2 and to the description of S♯
1 in Section 6,

in view of Theorem 3.8 we have that F (s) and G(s) are ♯-primitive, but it is easily checked
that SOC does not hold for F (s) and G(s). In view of this, we conclude the section with two
problems.

Problem 3.2. Does UF hold for S♯ ?

Problem 3.3. Is it true that a primitive F ∈ S is also ♯-primitive ?

We conclude this section with a problem on the characterization of divisibility in S. In view
of the Hadamard product, a function in S is essentially determined by its zeros. Denoting by
ZF the set of zeros of F ∈ S counted with multiplicity, we raise the following

Problem 3.4. Let F,G ∈ S. Show that F (s) divides G(s) in S if and only if ZF ⊂ ZG.

We refer to Molteni [47] and [45] for closely related results.

3. Invariants

We already pointed out in Section 2 that, due to the application of suitable identities satisfied
by the Γ-function, the shape of the γ-factor γ(s) of F ∈ S♯ is not uniquely determined by F (s).
We also remarked that this fact gives rise to the notion of invariant, i.e. an expression defined
in terms of the data of F (s) which is uniquely determined by F (s) itself. Moreover, we already
met an important invariant, namely the degree dF .

Although their shape may change considerably, γ-factors are essentially uniquely determined

as functions. In fact we have

Theorem 4.1. ([12]) Let γ(s) and γ′(s) be two γ-factors of F ∈ S♯. Then there exists a
constant c0 = c0(γ, γ

′) ∈ C such that γ(s) = c0γ
′(s).

The proof follows by Hadamard’s theory, observing that h(s) = γ(s)/γ′(s) is entire and
non-vanishing thanks to the functional equation.

In view of Theorem 4.1, in order to study the invariants we need to detect the operations
which transform a γ-factor γ(s) of a function F ∈ S♯ into another γ-factor of the same function.
It turns out that such a transformation can be performed by repeated applications to γ(s) of
two basic formulae in the theory of the Γ-function, namely the Legendre-Gauss multiplication

formula

Γ(s) = ms− 1

2 (2π)
1−m

2

m−1
∏

k=0

Γ(
s+ k

m
) m = 2, 3, ... (3.1)

and the factorial formula

Γ(s+ 1) = sΓ(s).

We also need some definitions. Two positive real numbers α, β are Q-equivalent if α/β ∈ Q.
We denote by hF , the γ-class number, the number of Q-equivalence classes arising from the
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λ-coefficients λ1, ..., λr of a γ-factor of F ∈ S♯. Moreover, we say that F (s) is reduced if it has
a γ-factor with 0 ≤ ℜµj < 1 for j = 1, ..., r; such a γ-factor is also called reduced. It turns out
that hF is an invariant, and that F (s) is reduced if and only if all its γ-factors are reduced, so
these are reasonable definitions.

Recalling that c0 is the constant in Theorem 4.1 we have

Theorem 4.2. ([35]) Let γ(s) and γ′(s) be two γ-factors of F ∈ S♯. Then γ(s) can be
transformed into c0γ

′(s) by repeated applications of the multiplication and factorial formulae.
Moreover, the factorial formula can be avoided if hF = 1 or if F (s) is reduced.

We refer to Section 4 of Vignéras [77], as well as to and Serre’s appendix there, for related
results. It is clear that applications of the multiplication formula to a γ-factor give rise to
another γ-factor, and do not change the Q-equivalence classes. Applications of the factorial
formula are a bit more involved. Basically, such a formula is used to reduce a γ-factor, i.e. to
write it as the product of a reduced γ-factor, called the reduced part, times a product of suitable
linear factors. Such linear factors are then re-absorbed into the Γ-factors by further applications
of the factorial formula, provided suitable consistency conditions hold. Although examples of
non-reduced γ-factors are easily produced, see for instance the case of L-functions associated
with holomorphic modular forms (suitably nomalized to meet the axioms of S), according to
the following conjecture we expect hF = 1 to be the general case.

Conjecture 4.1. (γ-class number conjecture) Every F ∈ S♯ has hF = 1.

We will see in Section 6 motivations for this and for the following much stronger conjecture.

Conjecture 4.2. (λ-conjecture) Every F ∈ S♯ has a γ-factor with λj = 1
2

for j = 1, ..., r.

Therefore, we expect that the factorial formula is not necessary in the transformation of the
γ-factors. However, at the present state of the knowledge, we cannot in general avoid using it,
and here is an example:

Γ(s)Γ(
√

2s+ 1) =

√

2

π
2sΓ(

s

2
+ 1)Γ(

s+ 1

2
)Γ(

√
2s).

Note that there are two Q-equivalence classes, and that the pole at s = 0 comes, in the two
sides of the identity, from Γ-factors belonging to different classes. This is the typical situation
requiring application of the factorial formula.

In view of the identity γ(s) = c0γ
′(s) in Theorem 4.1, the proof of Theorem 4.2 rests on a

detailed analysis of the structure of the following general Γ-identity

N
∏

j=1

Γ(λjs+ µj) = easR(s)
M
∏

j=1

Γ(λ′js + µ′
j), (3.2)

where a ∈ C and R(s) is a rational function. Clearly, R(s) arises from applications of the
factorial formula. The structure of (3.2) is studied by means of the analysis of the poles of both
sides. This leads to a transformation algorithm for γ-factors, which we briefly outline. Let γ(s)
and γ′(s) be as in Theorem 4.2. Then γ(s) is transformed into c0γ

′(s) as follows.

Step 1. (reducing) Apply the factorial formula to reduce γ(s) and γ′(s).

Step 2. (grouping) Group the Γ-factors of the reduced parts and the corresponding linear
factors according to Q-equivalence classes. The Q-equivalence classes arising from γ(s) and
γ′(s) are the same, and identity γ(s) = c0γ

′(s) induces suitable sub-identities of type (3.2)
between the pairs of groups with the same Q-equivalence class.
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Step 3. (equating) Apply the multiplication formula to each pair of groups, to obtain new
pairs of groups with the property that all the Γ-factors in the same pair of groups have the
same λ-coefficient. In such a situation, in each pair of groups the Γ-factors coming from γ(s)
are a permutation of those coming from γ′(s).

Step 4. (transforming) Perform on the Γ-factors coming from γ(s) the inverse of the opera-
tions performed in steps 3, 2 and 1 on the Γ-factors coming from γ′(s), thus transforming γ(s)
into c0γ

′(s).

A more combinatorial argument leading to a simple proof of Theorem 4.2 is provided by
Wirsing [81].

The proof of Theorem 4.2 involves also the notion of exact covering system, i.e. a family
(M, lj , mj), j = 1, ...,M, with the property that for every integer n there exists a unique j such
that n ≡ lj (mod mj). As a byproduct of the arguments in the proof, we can get the following
complete description of all γ-factors of the Dirichlet L-functions. Of course, other known L-
functions can be treated analogously. Let χ (mod q) be a primitive Dirichlet character. Then
all γ-factors of L(s, χ) are of the form

Qs
M
∏

j=1

Γ
( s

2mj
+

2lj + a(χ)

2mj

)

,

where (M, lj , mj) is any exact covering system,

Q =
( q

π

M
∏

j=1

m
1/mj

j

)1/2

and a(χ) = 1+χ(−1)
2

.

In order to give a characterization of the invariants by means of Theorem 4.2, we need to give
a more formal definition of invariant. An expression depending on the ”variables” (Q,λ,µ, ω)
is called a parameter. An invariant is a parameter depending only on F (s) and not on the par-
ticular choice of the data of F (s), for every F ∈ S♯. In other words, a parameter I(Q,λ,µ, ω) is
an invariant if I(Q,λ,µ, ω) = I(Q′,λ′,µ′, ω′) for any pair of data (Q,λ,µ, ω), (Q′,λ′,µ′, ω′) of
F (s), for every F ∈ S♯. Parameters and invariants will sometimes be denoted by I(Q,λ,µ, ω).
A generic invariant will be denoted by I, and when referred to a function F (s) will be denoted
by IF or I(F ). An invariant I is called numerical if IF ∈ C for every F ∈ S♯.

We say that a parameter is stable by multiplication formula if I(Q,λ,µ, ω) = I(Q′,λ′,µ′, ω′),
where (Q′,λ′,µ′, ω′) are the new data obtained by application of the multiplication formula to
a Γ-factor. Similarly we say that a parameter is stable by factorial formula, although this case
is a bit more subtle since we always apply the factorial formula to a pair of Γ-factors satisfying
a consistency condition. In fact, by the factorial formula we have

Γ(λs+ µ)Γ(λ′s+ µ′) =
λ

λ′
(λ′s +

(µ− 1)λ′

λ
)Γ(λs+ µ− 1)Γ(λ′s+ µ′),

and assuming the consistency condition

µ− 1

λ
=
µ′

λ′
(3.3)

we get

Γ(λs+ µ)Γ(λ′s+ µ′) =
λ

λ′
Γ(λs+ µ− 1)Γ(λ′s+ µ′ + 1). (3.4)
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The above notions of stability will be clarified below, where we will list several important
examples of invariants. From Theorem 4.2 we immediately obtain

Corollary 4.1. ([35]) A parameter is an invariant if and only if it is stable by multiplication
and factorial formulae.

Here is a short list of important invariants of S♯, as well as some remarks; see Kaczorowski-
Perelli [35], [36].

⋆ The H-invariants HF (n). For a non-negative integer n let

HF (n) = 2
r

∑

j=1

Bn(µj)

λn−1
j

,

where Bn(z) denotes the n-th Bernoulli polynomial. Since B0(z) = 1, B1(z) = z − 1
2
, B2(z) =

z2 − z + 1
6
, ..., we have for instance

HF (0) = 2
r

∑

j=1

λj = dF (the degree)

HF (1) = 2
r

∑

j=1

(µj −
1

2
) = ξF = ηF + iθF (the ξ-invariant).

We sketch the proof that the HF (n) are invariants, hence clarifying Corollary 4.1. Let Γ(λs+µ)
be one of the Γ-factors of F (s). After application of the multiplication formula (3.1) to such a
Γ-factor, we have to prove that

Bn(µ)

λn−1
=

m−1
∑

j=0

Bn(µ+j
m

)

( λ
m

)n−1
n ≥ 0, m ≥ 1,

and this follows from the following identity for Bernoulli polynomials

Bn(z) = mn−1
m−1
∑

j=0

Bn(
z + j

m
) n ≥ 0, m ≥ 1.

Therefore the HF (n) are stable by multiplication formula. In order to check that the HF (n)
are stable by factorial formula as well, let Γ(λs + µ) and Γ(λ′s + µ′) be two Γ-factors of F (s)
and apply the factorial formula as in (3.4). Consequently, we have to prove that

Bn(µ)

λn−1
+
Bn(µ′)

λ′n−1
=
Bn(µ− 1)

λn−1
+
Bn(µ′ + 1)

λ′n−1
n ≥ 0,

and this follows from the identity

Bn(z + 1) = Bn(z) + nzn−1 n ≥ 0,

under the consistency condition (3.3). Hence the HF (n) are invariants by Corollary 4.1. Note
that the H-invariants are additive, i.e. HFG(n) = HF (n) +HG(n).

We already saw in Section 2 the meaning of the degree dF in terms of the function F (s).
Note that the degree of the functions in (2.1) is always an integer; in Section 6 we will state
a fundamental conjecture about the degree, namely the degree conjecture. Concerning the ξ-
invariant ξF , its real part ηF is called the parity of F (s), while its imaginary part θF is the
shift, not to be confused with the shift Fθ(s) introduced in Section 3. Observe that the shift
θF is usually 0 for the classical L-functions (µj ∈ R in many cases). Observe also that the
Hecke L-functions LK(s, χ), with χ character of infinite order, provide non-trivial examples of
θF = 0, due to the fact that χ is normalized. We refer again to Section 6 for the meaning of
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the invariants ηF and θF , at least for degree 1 functions. For general n we raise the following
problem about H-invariants:

Problem 4.1. Give a meaning in terms of F (s) to every invariant HF (n), n ≥ 2.

In Kaczorowski-Perelli [36] an asymptotic expansion of log γ(s) is given that involves the
HF (n). However, Problem 4.2 asks for a more explicit meaning for such invariants, possibly
without explicit reference to the functional equation.

⋆ The conductor qF . We already defined in the previous section the conductor in the case
of functions of degree 0, and we saw that it is an integer and an invariant. In the general case
of F ∈ S♯ we define

qF = (2π)dFQ2
r

∏

j=1

λ
2λj

j .

As before, it is easy to show that the conductor is stable by multiplication and factorial formulae,
hence it is an invariant by Corollary 4.1. Moreover, it is easy to check that

qζ = 1, qL(·,χ) = q, qζK
= |DK |, qLK(·,χ) = |DK |N(f), qLf

= N,

where q is the modulus of the primitive Dirichlet character χ, DK is the discriminant of K,
N(f) is the norm of the conductor f of the primitive Hecke character χ and N is the level of the
holomorphic modular form f(z). Hence the conductor qF appears to be the right extension to
S♯ of the various classical notions of conductor. Note that the conductor is multiplicative, i.e.

qFG = qF qG. Note also that the above functions belong to S, and their conductor is an integer.
In fact, we have

Conjecture 4.3. (conductor conjecture) Every F ∈ S has qF ∈ N.

Probably this conjecture does not hold for S♯, and counterexamples can possibly be found
among the L-functions associated with the Hecke groups G(λ).

⋆ The root number ω∗
F . The root number of F ∈ S♯ is defined by

ω∗
F = ωe−i π

2
(ηF +1)

( qF
(2π)dF

)iθF /dF
r

∏

j=1

λ
−2iℑµj

j .

Once again, it is easy to show that the root number is stable by multiplication and factorial
formulae, hence it is an invariant by Corollary 4.1. The root number ω∗

F comes out naturally
in certain computations, and is of course closely related to ω for the classical L-functions. Here
are two problems about ω∗

F .

Problem 4.2. What is the meaning of ω∗
F ? Is ω∗

F the correct definition of ”root number” ?

Problem 4.3. Is it true that ω∗
F is always an algebraic number for F ∈ S ?

Problem 4.2 is related with the definition of ωF below. Moreover, Problem 4.3 has a negative
answer in the case of S♯, as we will see in Section 6.

A set {Ij}j∈J of numerical invariants is called a set of basic invariants if the Ij characterize
the functional equation of every F ∈ S♯, in the sense that if Ij(F ) = Ij(G) for all j ∈ J then
F (s) and G(s) satisfy the same functional equation, for any F,G ∈ S♯. In principle, such a set
should be called a global set of basic invariants, since we will also deal with local sets of basic
invariants, characterizing the functional equation of a given function F ∈ S♯.

Theorem 4.3. ([36]) The H-invariants HF (n), n ≥ 0, the conductor qF and the root
number ω∗

F are a global set of basic invariants.
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The proof is based on the fact that the function

KF (z) = 2z
r

∑

j=1

ezµj/λj

ez/λj − 1
= −2z

∑

ρ

eρz, (3.5)

where the last sum is over the poles of a γ-factor of F ∈ S♯, has the power series expansion

KF (z) =
∞
∑

n=0

HF (n)

n!
zn,

hence the γ-factors of F (s) and G(s) differ by a factor eas+b if the H-invariants are equal.
Assuming further that conductors and root numbers are equal, it is not difficult to show that
F (s) and G(s) satisfy the same functional equation.

Clearly, if we drop the condition that basic invariants are numerical invariants, then finite
global sets of basic invariants are easily detected, for instance {KF (z), qF , ω

∗
F}. However, Jurek

Kaczorowski and Giuseppe Molteni pointed out that there exist global sets of basic invariants
with cardinality 1. The argument is, roughly speaking, as follows. The set of the functional
equations of axiom (iii) (modulo the ”equivalent” functional equations in the sense of Theorem
4.2) has the cardinality of the continuum, and hence there exists an injective mapping φ from
such functional equations to R. Given F ∈ S♯, define the numerical invariant IF as the value
of the mapping φ at the functional equation satisfied by F (s). Clearly, such an invariant forms
a global set of basic invariants. Of course, the invariants coming from this argument are not
explicit, but more explicit versions can be obtained by refining the argument. However, such
invariants are quite artificial, while the invariants in Theorem 4.3 are definitely more interesting.

Another problem related with invariants is determining an invariant form of the functional
equation, where all data are invariants. Clearly, such an invariant form provides in particular a
local set of basic invariants. We deal with this problem by constructing a special (essentially)
invariant form of the functional equation, which we call the canonical functional equation. The
motivation comes from the fact that the λ-coefficients in the standard functional equation of
the classical L-functions are all equal to 1

2
(or easily transformed to 1

2
). Roughly speaking, the

canonical functional equation plays this role in the general case of S♯.
To construct the canonical functional equation, we split the function KF (z) in (3.5) into

Q-equivalence classes as

KF (z) =
hF
∑

j=1

Kj(z)

and define the canonical exponents Λj by

Λj = max{Λ ∈ R : (ez/Λ − 1)Kj(z) is entire}.

The canonical exponents exist, are positive and distinct, and are invariants, see Kaczorowski-
Perelli [36]. Moreover, every F ∈ S♯ has a balanced γ-factor, i.e. of the form

γ(s) = Qs
hF
∏

j=1

∏

k

Γ(λjs+ µj,k)

with all ratios Λj/λj equal. Such ratios are positive integers, and their minimum over all
balanced γ-factors of F (s) is called the reduction index lF , clearly an invariant; see [36].



19

Given positive integers Kj (j = 1, ..., hF ) and complex numbers µj,k with ℜµj.k ≥ 0 (j =
1, ..., hF , k = 1, ..., lFKj) to be specified later, we write

QF =
(

qF (2π)−dF ldF

F

hF
∏

j=1

Λ
−2KjΛj

j

)1/2

ωF = ω∗
F e

i π
2
(ηF +1)

( qF
(2π)dF

)−iθF /dF

l−iθF

F

hF
∏

j=1

lF Kj
∏

k=1

Λ
2iℑµj,k

j

γF (s) = Qs
F

hF
∏

j=1

lF Kj
∏

k=1

Γ(
Λj

lF
s+ µj,k).

(3.6)

Theorem 4.4. ([36]) Every F ∈ S♯ uniquely determines positive integers Kj such that

γF (s)F (s) = ωFγF (1 − s)F (1 − s), (3.7)

where γF (s) and ωF are given by (3.6) and the µj,k’s are uniquely determined (mod Z) by F (s).
Moreover, the µj,k’s are uniquely determined by F (s) if hF = 1 or if F (s) is reduced, and lF = 1
in the latter case.

The functional equation in (3.7) is called the canonical functional equation, and in view
of Conjecture 4.1 we expect that (3.7) is in invariant form. The non-uniqueness of the µj,k

when hF > 1 comes from possible applications of the factorial formula to Γ-factors belonging
to different Q-equivalence classes. The proof of Theorem 4.4 is quite technical; we refer to
Kaczorowski-Perelli [36] for the proof and for an algorithm for the computation of the canonical
functional equation from a given one.

Assuming that hF = 1, a γ-factor is balanced if and only if all its λ-coefficients are equal,
hence by the definition of lF we have that the canonical functional equation has the minimum

number of Γ-factors among the γ-factors with all λ-coefficients equal. This clarifies somewhat
the meaning of the Λj and of lF in the case of balanced γ-factors: the Λj are the ”largest
possible” λ-coefficients and lF somehow measures the ”reduction” of γ-factors, attainig its
minimum (lF = 1) in the reduced case.

The standard functional equation of ζ(s) and L(s, χ), χ primitive Dirichlet character, co-
incides with the canonical one. This holds for the L-functions Lf(s) as well. The canonical
functional equation of ζK(s) is obtained from the standard one by applying the Legendre du-
plication formula to the Γ-factors with λ-coefficient equal to 1, in those cases where both 1

2
and

1 are present as λ-coefficients. Note that all the classical L-functions have a balanced γ-factor
with λ-coefficient equal to 1

2
or 1. A related problem is

Problem 4.4. Is it true that the canonical functional equation of the classical L-functions
has λ-coefficient always equal to 1

2
or 1 ?

In other words: is it true that all the balanced γ-factors of the classical L-functions have
λ-coefficient not larger than 1 ?

Coming to the local sets of basic invariants, with the notation in Theorem 4.4 let

rF = lF

hF
∑

j=1

Kj, gF = 22hF−1rF − 2hF + 1.

Using the function KF (z) in (3.5) and the canonical exponents, by Theorems 4.3 and 4.4 we
get
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Theorem 4.5. ([36]) (i) A local set of basic invariants of F ∈ S♯ is provided by hF , rF

qF , ω∗
F and the HF (n) with n ≤ gF . (3.8)

(ii) Assuming the λ-conjecture, a local set of basic invariants of F ∈ S♯ is provided by the
invariants in (3.8) with gF replaced by dF .

As a consequence, we expect that qF , ω∗
F and the H-invariants with n ≤ dF characterize the

functional equation of F ∈ S♯. In Section 6 we will see that this is in fact the case for the degree
1 functions. We remark that (ii) of Theorem 4.5 is best possible, in the sense that for every

integer d ≥ 1 there exist F,G ∈ S♯
d for which the invariants in (3.8) with gF replaced by d− 1

are equal, but F (s) and G(s) satisfy different functional equations. Examples are provided by
suitable products of shifted Dirichlet L-functions, see Kaczorowski-Perelli [36].

A fundamental problem in the theory of the Selberg class is describing the admissible values
of the numerical invariants, that is the set of values that numerical invariants attain at the
functions of S and S♯:

Problem 4.5. Given a numerical invariant I : S♯ → C, describe I(S) and I(S♯).

For some invariants there are good conjectures about admissible values, see for example
Conjectures 4.1 and 4.3, Problem 4.3 and the degree conjecture in Section 6.

We end this section by a first measure theoretic result on Problem 4.5; more precise results of
this type will be obtained in Section 6. We denote by R+ and by C+ the positive real numbers
and the complex numbers with non-negative real part, and by T 1 the unit circle. A numerical
invariant I is called a continuous invariant if for every r ≥ 0 there exits a continuous function

fr : R+ × (R+ × C+)r × T 1 → C

such that I(F ) = fr(Q,λ,µ, ω), where (Q,λ,µ, ω) are the data of F ∈ S♯ (remember that
λ and µ are r-dimensional vectors). Examples of continuous numerical invariants are the
H-invariants HF (n), the conductor qF and the root number ω∗

F .

Theorem 4.6. ([42]) Let I be a continuous invariant. Then the sets ℜI(S), ℑI(S), ℜI(S♯)
and ℑI(S♯) are Lebesgue measurable.

Roughly speaking, the proof of Theorem 4.6 is based on the fact that for a given continuous
invariant I, the extended Selberg class S♯ can be endowed with a suitable metric, thus becoming
a metric space with good properties.

4. Linear twists and structure theorems

The main tool for the results of Section 6 on the classification of the functions with degree
1 ≤ d < 2 are the linear twists

F (s, α) =
∞
∑

n=1

aF (n)

ns
e(−nα),

where F ∈ S♯, α ∈ R and e(x) = e2πix. More precisely, the results of Section 6 require certain
analytic properties of the linear twists. In order to get a first impression of the relevance of the
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linear twists, let us consider F (s) = L(s, χ) with a primitive Dirichlet character χ (mod q), let
τ(χ) be its associated Gauss sum and let 0 ≤ α < 1. By orthogonality we have

F (s, α) =
1

τ(χ)

∑

(a,q)=1

χ(a)ζ(s,
a

q
− α), (4.1)

where

ζ(s, λ) =
∞
∑

n=1

e(nλ)n−s

is the Lerch zeta function. It is well known that ζ(s, λ) has a simple pole at s = 1 if λ ∈ Z,
otherwise it is an entire function. Therefore, F (s, α) has a pole at s = 1 if and only if α = a/q
with (a, q) = 1. Thus, for example, information on the modulus q of the character χ can be
obtained from the polar structure of the linear twists of L(s, χ).

In order to study the analytic properties of the linear twists, Kaczorowski-Perelli [33], [37]
start with

FN (s, α) =
∞
∑

n=1

aF (n)

ns
e(−nα)e−n/N ,

where N > 0, which is absolutely convergent over C and has the integral expression

FN(s, α) =
1

2πi

∫

(2)
F (s+ w)Γ(w)z−w

N dw,

where zN = 1
N

+ 2πiα and the integration is on the line from 2 − i∞ to 2 + i∞. Shifting the
line of integration to σ = −K − 1

2
, where K is a suitably large positive integer, and using the

functional equation of F (s) we obtain

FN(s, α) = RN(s, α) + ωQ1−2s
∞
∑

n=1

aF (n)

n1−s
HK(

n

Q2zN
, s), (4.2)

where RN (s, α) is a term arising from the residues, and the functions

HK(z, s) =
1

2πi

∫

(−K− 1

2
)

r
∏

j=1

Γ(λj(1 − s) + µj − λjw)

Γ(λjs+ µj + λjw)
Γ(w)zwdw (4.3)

are rather general cases of Fox hypergeometric functions. Since we will eventually let
N → ∞, we require some information on HK(−iy, s), especially when y = n

2πQ2α
.

An instance of such an approach to the study of the linear twists, in the case F (s) = ζ(s),
can be found in Linnik [43]. In fact, starting from (4.1) with α = 0, Linnik [43] obtained a
new proof of the functional equation of the Dirichlet L-functions using the functional equation
of ζ(s) in a direct way. In Linnik’s special case, the hypergeometric functions (4.3) reduce to
simple well known functions, and hence the right hand side of (4.2) becomes rather explicit.
This is, unfortunately, not the case in more general situations.

For s fixed, the general Fox hypergeometric functions have been studied by Braaksma [7].
Roughly speaking, their behaviour depends on the value of the main parameter µ defined by

µ = 2
r

∑

j=1

λj − 1 = dF − 1.

In the case µ = 0, which corresponds to the degree 1 functions, the behaviour is simpler since
only the ”algebraic part” comes into play, while for µ > 0 (i.e. dF > 1) the behaviour is more
complicated due to the presence of the ”exponential part”; we refer to Braaksma [7] for the
meaning of the algebraic and exponential parts. We remark that the case µ < 0, although not
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directly related to the linear twists (see Theorem 3.1), has also some interest, and that in this
case the situation is simpler thanks to nice convergence properties.

In order to study the linear twists, one has to develop a (z, s)-variables theory of the hyper-
geometric functions (4.3). We present here only the result for dF = 1, where a clean statement
can be given. Let

β =
r

∏

j=1

λ
2λj

j ,

θF be the shift of F ∈ S♯ (see Section 4) and, given R > 1, let K = K(R) be a suitably large
positive integer.

Theorem 5.1. ([33], [40]) Let dF = 1, y > 0 and σ < R. If y 6= β then HK(−iy, s) is
holomorphic, while HK(−iβ, s) has at most simple poles at the points sk = 1 − k − iθF for
k = 0, 1, . . . , with non-vanishing residue at s = s0.

In addition, suitable bounds for HK(−iy, s) as y → ∞, required in (4.2), can be obtained;
see Kaczorowski-Perelli [33], [40]. Moreover, it is in principle possible to check the vanishing or
non-vanishing of the residue at each point sk with k ≥ 1, but there are non-trivial complications
in details. We will say more on this later on, see Problem 5.3.

We refer to Kaczorowski-Perelli [37] and Kaczorowski [29] for the analytic properties of the
hypergeometric functions when 1 < dF < 2, since in this case the statement is more involved
due to the appearance of the above mentioned exponential part. We remark here that such
an exponential part is reflected by the exponential factor in the Dirichlet series DF (s, α) in
Theorem 5.3 below.

The analytic properties of the linear twists of the functions F ∈ S♯
1 follow now from (4.2)

and Theorem 5.1. Let α > 0 and, in view of (4.2) and Theorem 5.1, define the critical value
nα (of course arising from the equation n

2πQ2α
= β) by

nα = qFα,

where qF is the conductor of F (s) defined in Section 4. Moreover, define aF (nα) = 0 if nα /∈ N.
We have

Theorem 5.2. ([33], [40]) Let F ∈ S♯
1 and α > 0. Then F (s, α) is entire if aF (nα) = 0,

while if aF (nα) 6= 0 then F (s, α) has at most simple poles at the points sk = 1 − k − iθF for

k = 0, 1, . . . , with residue at s0 equal to c(F )aF (nα)

n
iθF
α

and c(F ) 6= 0.

Clearly, the vanishing or non-vanishing of the residue at the points sk with k ≥ 1 is closely
related to the analogous problem in Theorem 5.1.

In order to state the properties of the linear twists of functions F ∈ S♯
d with 1 < d < 2 we

need a few more definitions. Let

κ =
1

dF − 1
, A = (dF − 1)q−κ

F , s∗ = κ(s+
dF

2
− 1 + iθF )

and

DF (s, α) =
∞
∑

n=1

aF (n)

ns
e
(

A(
n

α
)κ

)

.

Moreover, let σ∗ denote the real part of s∗ and σa(F ) be the abscissa of absolute convergence
of F (s). We have
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Theorem 5.3. ([37]) Let 1 < d < 2, F ∈ S♯
d, α > 0 and J ≥ 1 be an integer. Then there

exist a constant c0 6= 0 and polynomials Pj(s), with 0 ≤ j ≤ J − 1 and P0(s) = c0 identically,
such that for σ∗ > σa(F )

F (s, α) = qκs
F

J−1
∑

j=0

ακ(dF s−dF /2+iθF +j)Pj(s)DF (s∗ + jκ, α) +GJ(s, α) (4.4)

where GJ(s, α) is holomorphic for s in the half-plane σ∗ > σa(F )−κJ and continuous for α > 0.

Note that σ∗ > σ for σ > 1
2

and 1 < dF < 2, hence (4.4) shows a kind of overconvergence

phenomenon for F (s, α), which will be exploited in Section 6. Observe also that, contrary to
Theorem 5.2 where a clean description of the analytic properties of the linear twists of degree
1 functions is given, in this case the properties of the linear twists are related to those of
certain non-linear twists. However, due to the above overconvergence phenomenon, Theorem
5.3 provides a non-trivial continuation of F (s, α) to a strip to the left of σ = 1. This will
be important in Section 6, where Theorems 5.2 and 5.3 will be applied to obtain a complete
classification of the functions F ∈ S♯

d with 1 ≤ d < 5/3.

The relation in (4.4) between the linear twists and suitable non-linear twists is just a special
case of a more general theory, based on the properties of the Fox hypergeometric functions as in
Kaczorowski-Perelli [37], where a general non-linear twist of F ∈ S♯ is related to its conjugate

non-linear twist. We do not enter such a general theory in this survey.

We remark here that by axiom (i) we have σa(F ) ≤ 1 for every F ∈ S♯, but the exact value
of σa(F ) is not known in general. Assuming the Selberg orthonormality conjecture, in Section
3 we saw that σa(F ) = 1 for every F ∈ S \ {1}. In the general case we raise the following

Problem 5.1. Is it true that σa(F ) = 1 for every F ∈ S♯
d with d > 0 ?

At the beginning of Section 2 we raised two questions. We gave an answer to the first question
but not yet to the second one, asking if all L-functions are already known. An answer to such
question is given by the following impressive conjecture.

Conjecture 6.1. (main conjecture) The Selberg class S coincides with the class of the
GL(n) automorphic L-functions.

Conjecture 6.1, if true, lies very deep. In fact, on the one hand it morally implies the
truth of the Langlands program, since the L-functions of arithmetic, algebraic and geometric
nature (morally in S) would become special cases of automorphic L-functions. On the other
hand, if one accepts that S is the class of all L-functions, then Conjecture 6.1 implies that
all L-functions are already known. Moreover, Conjecture 6.1 immediately implies almost all

the other conjectures in this survey, since most such conjectures are known in the case of the
automorphic L-functions (but not all, for example GRH).

Since the automorphic L-functions have integer degree, we can split Conjecture 6.1 into two
parts as follows.

Conjecture 6.2. (general converse theorem) For d ∈ N

Sd = {automorphic L-functions of degree d}.
Conjecture 6.3. (degree conjecture) For d /∈ N

Sd = ∅.
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Since the standard γ-factors of the automorphic L-functions have all the λ-coefficients equal
to 1

2
, it is clear that Conjectures 6.2 and 6.3 imply and motivate Conjectures 4.1 and 4.2

(restricted to S).

Although we are mainly concerned with the Selberg class S, it is interesting to raise similar
problems for S♯ as well.

Problem 6.1. What does S♯
d contain for d ∈ N ?

We remark here that S♯ is a model, introduced in Kaczorowski-Perelli [33], for the class of
the ”L-functions without Euler product”. However, there are well known classes of L-functions
which in general do not fall into S♯, see for instance the vector spaces of L-functions associated
with holomorphic modular forms (where the functional equation has no conjugation on the
right hand side). Possibly, a better definition of S♯ is obtained by allowing a slightly more
general type of functional equation, for example relating F (s) to G(1− s) instead of F (1− s),
where G(s) satisfies the same properties of F (s). At any rate, we do not expect substantial
differences between the properties of such a class and S♯.

Coming back to the description of S♯, we expect that the degree conjecture holds for S♯ as
well.

Conjecture 6.4. (strong degree conjecture) S♯
d = ∅ for d /∈ N.

Let V ♯(Q,λ,µ, ω) denote the real vector space of the functions of S♯ ∪{0} satisfying a given
functional equation. A much weaker version of Conjecture 6.4 is

Problem 6.2. Prove that dimV ♯(Q,λ,µ, ω) <∞ if d /∈ N.

Probably, dim V ♯(Q,λ,µ, ω) = ∞ for certain degree 2 functional equations (see Chapter II
of Hecke [22]), thus the condition d /∈ N in Problem 6.2 appears to be crucial.

Somehow, the degree conjecture reflects the arithmetical nature of the Selberg class. Although
S♯ is obtained dropping the two arithmetical axioms of S, Conjecture 6.4 suggests that S♯ still
has some arithmetical content. Indeed, by axiom (i) every F ∈ S♯ is an ordinary Dirichlet
series, i.e. the ”frequences” are integers. We may therefore ask if the analog of the degree
conjecture fails once axiom (i) is weakened to allow general Dirichlet series (see Section 2 for
the definition). It turns out that this is essentially the case, as the following simple result
shows. For any choice of (Q,λ,µ, ω) as in axiom (iii), let D(Q,λ,µ, ω) denote the real vector
space of the somewhere absolutely convergent general Dirichlet series satisfying axioms (ii) and
(iii). We have

Theorem 6.1. ([41]) D(Q,λ,µ, ω) has an uncountable basis.

Therefore, the degree conjecture definitely fails in this case. The proof is based on Hecke’s
theory of modular forms associated with the groups G(λ), see Chapter II of Hecke [22], which
provides examples of suitable L-functions with arbitrary non-negative µ-coefficient. Theorem
6.1 is slightly unsatisfactory due to the ”somewhere absolutely convergent” general Dirichlet
series in the definition of D(Q,λ,µ, ω). Therefore we raise

Problem 6.3. Is the analog of Theorem 6.1 true with ”somewhere absolutely convergent”
replaced by ”absolutely convergent for σ > 1” in the definition of D(Q,λ,µ, ω) ?

In Section 3 we presented the results for degree 0 ≤ d < 1 (Theorems 3.1, 3.2 and 3.3), which
confirm Conjectures 6.2 and 6.3 in that range. We remark here that a very simple proof of
Theorem 3.1 can be obtained as a corollary of Theorem 5.4, see Kaczorowski-Perelli [40]. In
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fact, let 0 < d < 1, F ∈ S♯
d, m with aF (m) 6= 0 and let α be such that nα = m. Hence the

non-linear twist Fd(s, α) has a pole on the line σ = d+1
2d

> 1, a contradiction.

Now we turn to the next case, i.e. the classification of the L-functions of S1. By Conjecture
6.2 one expects that these are the Dirichlet L-functions with primitive characters and their
shifts (see Section 3), and this is in fact the case as Theorem 6.3 below shows. We start with

a complete description of the functions F ∈ S♯
1. For a positive integer q and complex numbers

ξ = η + iθ and ω∗ with |ω∗| = 1, we denote by S♯
1(q, ξ, ω

∗) the set of F ∈ S♯
1 such that (see

Section 4)
qF = q, ξF = ξ, ω∗

F = ω∗.

Since qF , ξF = ηF + iθF and ω∗
F are invariants, S♯

1 is a disjoint union of these classes. Moreover,
we write

V ♯
1 (q, ξ, ω∗) = S♯

1(q, ξ, ω
∗) ∪ {0}.

If χ is a Dirichlet character we denote by fχ its conductor and by χ∗ the primitive character
inducing χ. We also denote by ωχ∗ the ω-factor in the standard functional equation of L(s, χ∗)
and, for η ∈ {−1, 0}, we write

X(q, ξ) =







{χ (mod q) with χ(−1) = 1} if η = −1

{χ (mod q) with χ(−1) = −1} if η = 0.

Further, χ0 denotes the principal character (mod q).

Theorem 6.2. ([33]) i) If F ∈ S♯
1, then qF ∈ N, the sequence aF (n)niθF is periodic of period

qF and ηF ∈ {−1, 0}.
ii) Every F ∈ S♯

1(q, ξ, ω
∗), with q ∈ N, η ∈ {−1, 0} and |ω∗| = 1, can be uniquely written as

F (s) =
∑

χ∈X(q,ξ)

Pχ(s+ iθ)L(s + iθ, χ∗)

where Pχ ∈ S♯
0(

q
fχ∗
, ω∗ωχ∗). Moreover, Pχ0

(1) = 0 if θ 6= 0.

iii) For q, ξ and ω∗ as above, V ♯
1 (q, ξ, ω∗) is a real vector space with

dimR V
♯
1 (q, ξ, ω∗) =







[ q
2
] + 1 if ξ = −1

[ q−1−η
2

] otherwise.

Note that by Theorem 6.2 the functions in S♯
1 satisfy the Ramanujan conjecture. Adding the

Euler product axiom, from Theorem 6.2 we obtain

Theorem 6.3. ([33]) Let F ∈ S1. If qF = 1, then F (s) = ζ(s). If qF ≥ 2, then
there exists a primitive Dirichlet character χ (mod qF ) with χ(−1) = −(2ηF + 1) such that
F (s) = L(s+ iθF , χ).

We give a sketch of the first steps of the proof of Theorem 6.2, thus showing the relevance
of the polar structure of F (s, α) in Theorem 5.2. Choose m with aF (m) 6= 0 and let α = m

qF
.

Then the linear twist F (s, α) has a simple pole at s = 1 − iθF , and hence the same holds for
F (s, α+1) by the α-periodicity of linear twists. Therefore nα+1 = qF ( m

qF
+1) ∈ N, thus qF ∈ N.

Similarly, to show the periodicity of the coefficients we choose α = n
qF

. Then F (s, α) has

residue equal to c(F )aF (n)

niθF
at s = 1− iθF , and hence F (s, α+1) has residue c(F ) aF (n+qF )

(n+qF )iθF
at the

same point, and the periodicity follows. Once the periodicity of the coefficients is established,
Dirichlet characters enter the game, and F (s) is expressed as a linear combination of Dirichlet
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L-functions over the Dirichlet polynomials of S♯
0. The full description of the functions in S♯

1

follows then from a careful analysis of the functional equations satisfied by F (s) and by the
involved Dirichlet L-functions.

We refer to Soundararajan [71] for a different proof of Theorem 6.3. For previous partial
results towards Theorems 6.2 and 6.3, and for related results, we refer to Bochner [1], Vignéras
[77], Gérardin-Li [20], Conrey-Ghosh [12] and Funakura [18], and to the literature quoted there.

We remark that Theorem 6.2 confirms (ii) of Theorem 4.5 in the case of degree 1 functions:

the triplet (qF , ω
∗
F , ξF ) determines the functional equation of F ∈ S♯

1. Moreover, Theorem 6.3
clarifies the name and the meaning of the invariant ηF .

A simple consequence of Theorem 6.3 is

Corollary 6.1. ([52]) The nomalized L-functions Lf(s) associated with holomorphic new-
forms f(z) on congruence subgroups of SL(2,Z) are primitive.

This is proved by contradiction, assuming that Lf (s) = L(s + iθ1, χ1)L(s + iθ2, χ2) with χj

primitive Dirichlet characters and θj ∈ R. Taking the Rankin-Selberg convolution of both sides
(or twisting by a suitable character), the order of pole at s = 1 leads to a contradiction.

We remark that the classical converse theorem of Weil [79] characterizes the GL(2) L-
functions by means of their twists by Dirichlet characters. Roughly speaking, a similar phi-
losophy applies in general to the GL(n) converse theorems, see Cogdell and Piatetski-Shapiro
[10]. In fact, the GL(n) L-functions are characterized in terms of suitable Rankin-Selberg con-
volutions, and the twists are of course special instances of such convolutions. Since Theorems
6.2 and 6.3 can be regarded as general converse theorems for degree 1 functions, it is clear that
the use of the linear twists in their proofs fits well into the above philosophy. Note that the
axioms of S do not explicitly include any property of the Rankin-Selberg convolutions; this
increases the difficulties in proving general converse theorems in S. We refer to Conrey-Farmer
[11] for an interesting alternative to Weil’s converse theorem, where the twists are replaced by
the Euler product, although at present this approach produces much less general results.

Another instance showing the relevance of the twists in the problems of this section is the
following. Given F ∈ S♯ and a Dirichlet character χ, define the twist of F (s) as

F χ(s) =
∞
∑

n=1

aF (n)χ(n)

ns
.

The following two natural conjectures about twists are given in Kaczorowski-Perelli [35]; see
also Selberg [69] for other conjectures on twists.

Conjecture 6.5. (twist conjecture) Let F ∈ S with qF ∈ N, m ∈ N with (m, qF ) = 1 and
let χ (mod m) be a primitive Dirichlet character. Then F χ ∈ S.

In addition, in [35] it is also conjectured that F χ(s) is primitive if and only if F (s) is primitive.

Conjecture 6.6. (twisted conductor conjecture) Assume the twist conjecture. Then

qF χ = qFm
dF .

It is easy to see that the conductor conjecture (see Section 4) and Conjectures 6.5 and 6.6
imply the degree conjecture, since qFm

dF ∈ N for all (m, qF ) = 1 implies that dF ∈ N. Although
the twists (by Dirichlet characters) and the linear twists are closely related, a problem of some
interest is to give a proof of Theorem 6.3 closer to the spirit of Weil’s converse theorem.
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Problem 6.4. Give a proof of Theorem 6.3 using the twists (by Dirichlet characters) instead
of the linear twists.

Turning to the range 1 < d < 2 we have

Theorem 6.4. ([37]) S♯
d = ∅ for 1 < d < 5/3. Moreover, for 1 < d < 2 there exist no

F ∈ S♯
d with a pole at s = 1.

The second part of Theorem 6.4 follows immediately from Theorem 5.3 with J = 1. Indeed,
assuming that F (s) has a pole at s = 1, choosing α = 1 and exploiting the α-periodicity of
the linear twists, thanks to the overconvergence phenomenon the right hand side of (4.4) is
holomorphic at s = 1, a contradiction. The holomorphic case is definitely more involved. By a
Fourier transform argument, equation (4.4) is transformed into an identity of type

Σ1(x) = x−κ/2Σ2(x) +O(xσa(F )−κ+ε), (4.5)

where Σ1(x) and Σ2(x) are certain exponential sums. Moreover, Σ1(x) is concentrated at
the integers, while the same phenomenon is not visible in Σ2(x). This fact is exploited by
computing the L2-norm, weighted by the function e(x), of both sides of (4.5). The weight is
clearly irrelevant on the left hand side, but produces some cancellation on the right hand side
when 1 < d < 5/3, thus getting a contradiction in that range.

We remark that in order to avoid the use of the Ramanujan conjecture (axiom (iv)), in the
proof of Theorem 6.4, the following lemma of some independent interest concerning a form of
Rankin-Selberg convolution in S♯ is used. For F ∈ S♯ and σ > 2σa(F ) define

F×F (s) =
∞
∑

n=1

|aF (n)|2n−s. (4.6)

Lemma 6.1. ([37]) Let 1 < d < 2 and F ∈ S♯
d. Then F ×F (s) is holomorphic for

σ > σa(F ) − κ apart from a simple pole at = 1.

Note that the simple pole at s = 1 of F×F (s) is in agreement with the fact that all F ∈ Sd

with 1 < d < 2 (if any !) are primitive, and the Rankin-Selberg convolution (4.6) of a primitive
function is expected to have simple pole at s = 1 (in agreement with the Selberg orthonormality
conjecture).

J.Kaczorowski observed that the same range 1 < d < 5/3 in Theorem 6.4 would follow
from a direct application of the well known conjecture that (ε, 1

2
+ ε) is an exponent pair (see

Chapter 3 of Montgomery [49]) to a certain exponential sum closely linked to the exponential
sums in (4.5). Therefore, Theorem 6.4 appears to be the limit of the method in that respect.
However, the whole range 1 < d < 2 would follow from a natural multidimensional analog of
such a conjecture. In fact, using a more refined Fourier transform argument giving an error
O(xσa(F )− 3

2
κ+ε) in (4.5), by a k-fold iteration of (4.5) one can get an expression for the coefficients

aF (n) involving a certain k-dimensional exponential sum. The full range 1 < d < 2 would then
follow from a square-root cancellation bound for such a sum. We refer to Kaczorowski-Perelli
[37] for further remarks on this subject.

From Theorem 6.4 we easily obtain still another proof of Theorem 3.1, see [37]. Indeed,

assuming that there exists a function F ∈ S♯
d with 0 < d < 1, we may clearly assume (shifting

if necessary) that F (1) 6= 0. Therefore ζ(s)F (s) is a polar function in S♯
d with 1 < d < 2,

a contradiction. The same argument shows that the degree conjecture restricted to the polar

L-functions implies the degree conjecture (and similarly for the strong degree conjecture). We
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conclude by stressing the importance of the α-periodicity of the linear twists, which plays a
fundamental role in the proof of the structure theorems for 1 ≤ d < 2.

Now we come back to the measure theoretic approach to invariants outlined in Section 4. We
recall that a numerical invariant I is additive if I(FG) = I(F )+I(G), and that the H-invariants
are additive; hence in particular so is the degree. We refer to Section 4 for the definition of
continuous invariants, and recall that in this case I(S) and I(S♯) are Lebesgue measurable by
Theorem 4.6. We also recall that, given A ⊂ R, A−A denotes the set of all real numbers of
the form a− a′ with a, a′ ∈ A.

The next result is a 0–1 law for additive invariants which, in view of the degree conjectures,
is particularly interesting in the case of the degree.

Theorem 6.5. ([42]) Let I be a continuous, additive and real-valued invariant. Then either
the set I(S) has Lebesgue measure 0, or I(S) − I(S) = R. The same holds for I(S♯) as well.

A similar result holds in the case of the root number, in the sense that the sets of values ω∗(S)
and ω∗(S♯) taken by the root number ω∗

F over S and S♯ are either of measure zero or coincide
with the unit circle T 1; see Kaczorowski-Perelli [42]. Further, similar results hold for certain

subclasses of S♯, for example Sd and S♯
d with a fixed d. Note that we already met related

examples, involving the invariants ω∗
F and ξF (ω∗

F is not additive), where both alternatives
happen. Indeed, from Theorems 6.2 and 6.3 we see that

ω∗(S♯
1) = T 1 and ω∗(S1) is countable

η(S♯
1) = η(S1) = {−1, 0} and θ(S♯

1) = θ(S1) = R.

In the case of the Selberg class S, a stronger form of Theorem 6.5 is suggested by the following
conjecture in Kaczorowski-Perelli [42].

Conjecture 6.7. (0–1 law conjecture) Let I be a continuous, additive and real-valued
invariant. Then either the set I(S) is countable or it contains a half-line.

We conclude the discussion of the measure theoretic results with the following simple condi-
tional result related to the degree conjectures. Let

E = {d > 0 : d /∈ N and S♯
d 6= ∅}

be the ”exceptional set” for the degree conjecture. Clearly, E is measurable by Theorem 4.6,
and let µ(E) denote its Lebesgue measure.

Theorem 6.6. ([16]) Assume that every F ∈ S♯
d with d ∈ N has a γ-factor with all λj = 1

2
.

Then E ∩ Q = ∅ and µ(E) = 0.

The same result holds for S as well, under the same assumption restricted to the integer
degrees of S. Since Theorem 6.6 is an unpublished result, we give a detailed proof.

Proof of Theorem 6.6. Suppose first that there exists a function F (s) of degree dF = d
n
∈ Q\N,

with (d, n) = 1 and n > 1. Then F n ∈ S♯
d with d ∈ N, hence by the assumption and Theorem

4.1, the n-th power of the γ-factor of F (s) satisfies an identity of type

γ(s)n = c0Q
s

l
∏

j=1

Γ(
s

2
+ µj)

nj , (4.7)

where the µj are distinct. Our first aim is to show that n divides each nj . To this end consider
a row of µj’s with equal imaginary part, and let µj0 be the one with smallest real part. Since
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the poles of the γ-factor of F (s)n are at the points sj,k = −2(µj + k) with k = 0, 1, . . . and
j = 1, . . . , l, the multiplicity of sj0,0 is nj0 . Hence n | nj0 . Let now µj1 be the next one in the
same row. If ℜ(µj1 − µj0) is not an integer, then the same argument shows that n | nj1 . If
ℜ(µj1 − µj0) is an integer, then the multiplicity of sj1,0 is nj0 + nj1, thus n | (nj0 + nj1) and
hence n | nj1 in this case as well. Arguing similarly with the other µj’s we see that n | nj for
j = 1, . . . , l as required.

But from (4.7) we have

dF n = 2
l

∑

j=1

nj

2
= d,

hence n | d, a contradiction. Therefore E ∩Q = ∅. Moreover, S♯ is a multiplicative semigroup,

hence for every d ∈ E and d′ ∈ R+ such that d+ d′ ∈ Q \ N we have S♯
d′ = ∅. Therefore

((Q \ N) −E) ∩ E = ∅, (4.8)

and hence µ(E) = 0. In fact, given A and B with µ(A), µ(B) > 0, the set A + B contains an
open segment, see ex. 19 of Ch. 9 of Rudin [64]. Hence, if µ(E) > 0 there exist r ∈ Q \ N and
d1, d2 ∈ E such that r = d1 + d2, thus r − d1 = d2 contradicting (4.8).

Note that the first part of the proof of Theorem 6.6 is a special case of the following result
(see Molteni [45]): if the multiplicity of all poles of a γ-factor γ1(s) is divisible by n, then there
exists another γ-factor γ2(s) such that γ1(s) = γ2(s)

n. Note also that the crucial point that
E ∩ Q = ∅ is a direct consequence of the assumption on the shape of the functional equation
for integer degrees. A related problem is

Problem 6.5. Replace the assumption in Theorem 6.6 by other function-theoretic properties
of the functions with integer degree.

5. Independence

In Section 3 we presented the simplest independence result in the Selberg class, namely
the linear independence of the functions in S (see Theorem 3.8). We also remarked that the
unique factorization (UF) and the Selberg orthonormality (SOC) conjectures (see Conjectures
3.2 and 3.3) are stronger forms of independence. In this section we present other independence
results, concerning the functions in S and their zeros. Most such results are conditional, but
nevertheless they form a very interesting part of the Selberg class theory.

We start with the following simple consequence of Theorem 3.8, concerning the algebraic
independence in S.

Corollary 7.1. ([30]) S has unique factorization if and only if distinct primitive functions
are algebraically independent.

Clearly, we can’t expect that distinct functions in S are algebraically independent, since S
is a semigroup. However, we have

Theorem 7.1. ([45]) Let F,G ∈ S satisfy F (s)a = G(s)b with a, b ∈ N. Then F (s) = H(s)b

and G(s) = H(s)a for some H ∈ S.

The proof of Theorem 7.1 is based on the characterization of the solubility in S of the equation
Xk = F (s) in terms of the multiplicities of the zeros of F (s) and of its Euler factors Fp(s). Note
that Theorem 7.1 and the linear independence imply that pairs of distinct primitive functions

in S are algebraically independent.
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In the 1940’s, Selberg [67], [68] initiated the study of the moments, and hence of the statistical
distribution, of log ζ(1

2
+ it). Later, see [69], he outlined the extension of such investigations

to the functions in S, obtaining their statistical independence as well. Selberg’s arguments
have been streamlined by Bombieri-Hejhal [3], with the emphasis just on the probabilistic
convergence of the relevant measures, and the goal of applications to the distribution of zeros
of linear combinations of certain Euler products. Here we present Bombieri-Hejhal’s version
of Selberg’s results on the normal distribution and statistical independence of the values of
L-functions. Note that Bombieri-Hejhal [3] work in a moderately general setting, but their
results easily carry over to the Selberg class (see Zanello [82]). Therefore, although Theorems
7.2, 7.3, 7.4 and 7.7 below were originally proved in Bombieri-Hejhal’s setting, we state them in
the setting of the Selberg class, and refer to [82] for the needed changes in the proofs. Moreover,
we refer to the survey paper by Bombieri-Perelli [4] for a discussion of these matters and for a
sketch of the proofs of Theorems 7.3, 7.4 and 7.7 below.

We start with two hypotheses needed in the results which follow. The first is a variant of the
Selberg orthonormality conjecture (see Conjecture 3.3).

Hypothesis S. The coefficients of F1, . . . , FN ∈ S satisfy, for x→ ∞,

∑

p≤x

ai(p)aj(p)

p
= δijnj log log x+ cij +O(

1

logx
),

where nj > 0, cij ∈ C, and δij = 1 if i = j and δij = 0 otherwise.

Note that Hypothesis S is quantitatively stronger than SOC. However, it does not assume
that the functions are primitive (in practice, it requires that Fi(s) and Fj(s) are coprime if
i 6= j), and does not require nj = 1 for primitive functions. Note, however, that for most
applications of SOC the reqirement nj > 0 for primitive functions would also suffice.

Writing

Nj(σ, T ) = ♯{ρ = β + iγ : Fj(ρ) = 0, β ≥ σ, |γ| ≤ T},
the second hypothesis is the following density estimate of Selberg [68] type, which acts as a
substitute of GRH in the results below.

Hypothesis D. The zeros of F1, . . . , FN ∈ S satisfy

Nj(σ, T ) ≪ T 1−a(σ− 1

2
) log T

for some 0 < a < 1, uniformly for σ ≥ 1
2

and j = 1, . . . , N .

Note that Hypothesis D is known for the Riemann zeta function, for the Dirichlet L-functions
and for certain GL(2) L-functions.

We need further notation. Given F1, . . . , FN ∈ S we write

Vj(t) =
logFj(

1
2

+ it)
√

πnj log log t
j = 1, . . . , N

and let

µT (Ω) =
1

T
|{t ∈ [T, 2T ] : (V1(t), . . . , VN(t)) ∈ Ω}|

be the associated probability measure on CN , where Ω ⊂ CN is an open set and |A| denotes

here the Lebesgue measure of A. Moreover, let e−π‖z‖2

denote the gaussian measure on CN and
dω be the euclidean density on CN .
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Theorem 7.2. ([69], [3]) Let F1, . . . , FN ∈ S satisfy Hypotheses S and D. Then, as T → ∞,
the measure µT converges weakly to the gaussian measure with associated density e−π‖z‖2

dω.

By separating real and imaginary parts of the Vj(t), Theorem 7.2 may be expressed as follows.
If F1, . . . , FN ∈ S satisfy Hypotheses S and D, then the functions

log |F1(
1
2

+ it)|√
πn1 log log t

,
argF1(

1
2

+ it)√
πn1 log log t

, . . . ,
log |FN(1

2
+ it)|√

πnN log log t
,

argFN(1
2

+ it)√
πnN log log t

become distributed, in the limit of large t, like independent random variables, each having
gaussian density e−πu2

du. It is interesting to observe how an independence hypothesis of SOC
type (i.e. Hypothesis S) implies the normal distribution and statistical independence of the
values of logFJ(s) on the critical line (Hypothesis D is a technical hypothesis in this context).

Theorem 7.2 is a deep result, and here we just mention the main steps in Bombieri-Hejhal’s
[3] proof. The starting point is the following approximation formula for logFj(

1
2
+ it), obtained

by Mellin transform techniques: for j = 1, . . . , N and 10 ≤ X ≤ |t|2

logFj(
1

2
+ it) = Σj(t, X) +Rj(t, X), (5.1)

where Σj(t, X) is a suitable Dirichlet polynomial approximation and Rj(t, X) is a certain sum
over zeros of Fj(s). In order to derive Theorem 7.2, in [3] the mixed moments of the Σj(t, X)
are evaluated, and an L1-norm bound for the error term Rj(t, X) is obtained:

∫ 2T

T
|Rj(t, X)|dt≪ T

log T

logX
(5.2)

for 10 ≤ X ≤ T a/2, and

∫ 2T

T

N
∏

j=1

Σj(t, X)kjΣj(t, X)
lj
dt = δklk!T

N
∏

j=1

(nj log logX)kj +O
(

(T (log logX)
K+L−1

2

)

(5.3)

for 10 ≤ X ≤ T 1/(K+L+1), where kj, lj are non-negative integers, k = (k1, . . . , kN) and K =
k1 + · · ·+ kN (and similarly for l and L), k! =

∏N
j=1 kj ! and δkl = 1 if k = l, δkl = 0 otherwise.

Theorem 7.2 follows then from (5.1), (5.2) and (5.3) by a probabilistic argument.

For future reference, we state here a short intervals version of Theorem 7.2. Let M ≥ 10,
h = M/ logT ,

Ṽj(t) =
logFj(

1
2

+ i(t+ h)) − logFj(
1
2

+ it)
√

2πnj logM
j = 1, . . . , N

and let µ̃T be the associated probability measure on CN (like µT above). We have

Theorem 7.3. ([5]) Let F1, . . . , FN ∈ S satisfy Hypotheses S and D and let M = M(T ) →
∞ with M ≤ log T

log log T
. Then, as T → ∞, the measure µ̃T converges weakly to the gaussian

measure with associated density e−π‖z‖2

dω.

The proof of Theorem 7.3 is a short intervals version of the argument in Theorem 7.2.

It is generally accepted that functional equation and Euler product are crucial ingredients
for the validity of the Riemann Hypothesis. In the opposite direction, examples of L-functions
without Euler product having zeros off the critical line are well known; see e.g. Section 10.25
of Titchmarsh [76] and Chapter 9 of Davenport [15]. Usually, such L-functions are linear
combinations of Euler products satisfying a common functional equation, and fairly general
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methods often show that the number of zeros on the critical line up to T is ≫ T (for small
degrees). In some cases, lower bounds of type ≫ Tf(T ) with concrete functions f(T ) → ∞
have been obtained, see Section 1 of [3]. Using Theorem 7.2, Bombieri-Hejhal [3] obtained a
very sharp and general result about the zeros on the critical line of linear combinations of Euler
products. In order to state such a result we need the following mild condition of well-spacing
for zeros.

Hypothesis H0. Let F1, . . . , FN ∈ S satisfy GRH and, moreover, let the zeros of each Fj(s)
satisfy

lim
ε→0+

{

lim
T→∞

|{T ≤ γ ≤ 2T : γ′ − γ ≤ ε/ logT}|
T log T

}

= 0,

where 1
2

+ iγ′ is the successor of 1
2

+ iγ.

We will return on Hypothesis H0 later on in this section. Given F1, . . . , FN ∈ S satisfying
the same functional equation, let

F (s) =
N

∑

j=1

cjFj(s), (5.4)

where the coefficients cj are such that cjγ(
1
2

+ it)Fj(
1
2

+ it) ∈ R for t ∈ R and j = 1, . . . , N ,
where γ(s) is the common γ-factor of the Fj(s)’s.

Theorem 7.4. ([2], [3]) Let F1, . . . , FN ∈ S satisfy the same functional equation, GRH and
Hypothesis H0, and let F (s) be defined as in (5.4). Then all but o(T log T ) zeros of F (s) up to
T are simple and lie on the critical line.

Roughly speaking, the proof of Theorem 7.4 rests on the fact that on a given interval of the
critical line of length roughly 1/ logT , one of the functions Fj(s) dominates with oscillations
larger than the others, thus in that interval the function F (s) follows fairly closely the behaviour
of the Fj(s) with largest oscillation. The proof is rather complicated because of, among other
things, the weak measure theoretic setting in Theorem 7.2.

In view of Theorem 7.4, one may ask about the number of off-line zeros up to T of the
function F (s) in (5.4). We refer to Hejhal [24], [25] for several results in this direction. Here we
only recall that there is some expectation that the order of magnitude of the number of such
zeros is about

T logT√
log logT

.

By Hadamard’s theory, the L-functions are essentially determined by their zeros, thus one
expects that ”independent” L-functions have ”independent” zeros. One of the simplest forms of
independence of the zeros is asking for distinct zeros, in the sense defined below; other forms
of independence will be presented later on in this section. In view of SOC and of Theorem
7.2, distinct primitive functions are expected to be independent in several ways, and hence we
may expect that they have few common zeros. Therefore, by factorization, distinct functions in
S should have many distinct zeros. In order to make rigorous and quantitative such heuristic
observations, we need some notation.

Given F,G ∈ S, we define two counting functions of the distinct zeros, with multiplicity, as
follows. The asymmetric difference of the zeros of F (s) and G(s), i.e. the number of zeros
of F (s) which are not zeros of G(s), is defined by

D(T ;F,G) =
∑

|γ|≤T

max(mF (ρ) −mG(ρ), 0),
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where ρ = β + iγ runs over the non-trivial zeros of F (s) and is counted without multiplicity,
and mF (ρ) (resp. mG(ρ)) denotes the multiplicitiy of ρ as zero of F (s) (resp. of G(s)). The
symmetric difference is then defined as

DF,G(T ) = D(T ;F,G) +D(T ;G,F ) =
∑

|γ|≤T

|mF (ρ) −mG(ρ)|,

where ρ runs over the non-trivial zeros of F (s)G(s) and is counted without multiplicity, and
counts the number of zeros and poles of F (s)/G(s) in the critical strip (excluding the contri-
bution of possible trivial zeros, and of poles at s = 1, of F (s) and G(s)).

Of course, the asymmetric difference is more difficult to study than the symmetric difference
since, in general, we cannot expect a positive lower bound for D(T ;F,G), as the example
G(s) = F (s)2 shows. In the symmetric case we expect that DF,G(T ) ≫ T logT as soon as
F (s) 6= G(s); for example, this is trivially the case when dF 6= dG (see (5.5) below). Recalling
that f(x) = Ω(g(x)) is the negation of f(x) = o(g(x)), in the general case we have

Theorem 7.5. ([53]) Let F,G ∈ S be distinct. Then DF,G(T ) = Ω(T ).

The proof follows by a comparison of Landau’s formula, expressing the von Mangoldt function
in terms of an exponential sum over the zeros, for F (s) and G(s). In particular, the Euler
products of F (s) and G(s) are used. We remark that the same Ω-estimate has been obtained
by Bombieri-Perelli [6] for the number of zeros and poles of a class of exponential sums f(s)
assuming only certain function theoretic properties, disregarding their arithmetic aspects. In
this case the proof is more involved and uses Nevanlinna’s theory. Choosing f(s) = F (s)/G(s),
Theorem 2 of [6] yields Ω(T ) distinct zeros in the case of two Dirichlet series F (s) and G(s)
satisfying the same functional equation, without any assumption on the Euler product.

Clearly, in order to get non-trivial lower bounds for the asymmetric difference D(T ;F,G)
we have to assure at least that F (s) ∤ G(s). A convenient way to do this is to assume that
dF ≥ dG. Since clearly (see Section 2)

D(T ;F,G) ≥ NF (T ) −NG(T ) ≫ T log T if dF > dG, (5.5)

as far as we are not concerned with asymptotic formulae for D(T ;F,G) we may simply assume
that dF = dG. An unconditional result in this direction has been obtained by Srinivas [72].

Theorem 7.6. ([72]) Let F,G ∈ S be distinct and dF = dG. Then for T sufficiently large
there exists a zero ρ of F (s) with mF (ρ) > mG(ρ) such that |T − ρ| ≪ log log T . Hence, in
particular,

D(T ;F,G) ≫ T

log log T
.

Of course, the same holds switching the roles of F (s) and G(s). The proof is based on a
contour integration argument applied to the quotient G(s)/F (s). The order log log T of the
short intervals in Theorem 7.6 should be compared with the order 1/ log log logT of the short
intervals containing a zero of a given F ∈ S (extension to S of Littlewood’s theorem, see
Theorem 9.12 of [76], obtained by Anirban-Srinivas, unpublished).

Problem 7.1. Replace the estimates Ω(T ) in Theorem 7.5 and ≫ T/ log log T in Theorem
7.6 by the lower bound ≫ T .

Theorem 7.3 allows to obtain the best possible lower bound for D(T ;F,G), under Hypothesis
S and the technical Hypothesis D.
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Theorem 7.7. ([5]) Let F,G ∈ S be distinct and satisfy Hypotheses S and D, and let
dF = dG. Then

D(T ;F,G) ≫ T log T.

Again, the same result holds switching F (s) and G(s). The proof of Theorem 7.7 rests on
a similar phenomenon as in Theorem 7.4, i.e. usually one of the functions is dominating on
short intervals of length roughly 1/ logT . Also, the weak measure theoretic setting of Theorem
7.3 gives rise to some complications in the proof. A consequence is that the argument is by
contradiction, thus the constant in the ≫-symbol is not effectively computable. However, as
remarked in Section 4 of Bombieri-Perelli [4], an effective constant can be obtained at the
cost of substantial additional complications in the proof. Further, we already remarked that
Hypothesis D is known for many classical L-functions of degree ≤ 2. Since such L-functions
satisfy SOC as well, Theorem 7.7 is unconditional in those cases. Again, we refer to the survey
paper [4] for a discussion of the distinct zeros problem.

We remark at this point that the first result on distinct zeros has been obtained by Fujii
[17]. He proved, by Selberg’s moments method, that D(T ;F,G) ≫ T logT in the case of two
Dirichlet L-functions. Moreover, Raghunathan [61], [62] obtained that D(T ;F,G) → ∞ for
certain classical L-functions F (s) and G(s), by a method based on converse theorems of Hecke
type.

The problem of the strongly-distinct zeros, i.e. the zeros placed at different points,
appears to be more difficult. Conrey-Ghosh-Gonek [13], [14] dealt with the case of two Dirichlet
L-functions, by considering the more difficult problem of getting simple zeros of L(s, χ1)L(s, χ2).
They obtained ≫ T 6/11 such zeros up to T and, assuming the Riemann Hypothesis for one of
the two functions, got a positive proportion of strongly distinct zeros. However, apparently the
analytic techniques in [13] and [14] do not extend to higher degree L-functions.

Problem 7.2. Deal with the strongly-distinct zeros problem for the functions in S.

We conclude the discussion of distinct zeros with the following conjectures.

Conjecture 7.1. (simple zeros conjecture) Let F ∈ S be primitive. Then all but o(T logT )
non-trivial zeros of F (s) up to T are simple.

Conjecture 7.2. (distinct zeros conjecture) Let F,G ∈ S be distinct primitive functions.
Then all but o(T log T ) non-trivial zeros of F (s) and G(s) are strongly-distinct.

Although apparently Conjecture 7.1 cannot be regarded as an independence statement, we
included it here in view of its relevance in the problem of the strongly-distinct zeros. Conjectures
7.1 and 7.2 are not at all the strongest conjectures of this type. In fact, it is generally expected
that a non-trivial zero with multiplicity greater than 1 of a primitive function can occur only
at the point s = 1

2
. The same phenomenon is expected to hold for the distinct zeros as well,

but one has to more careful here. In fact, the shifts of the primitive functions are expected
to be primitive (see Section 3) and GRH is expected to hold, hence it is likely that distinct
primitive function have common zeros other than s = 1

2
. However, if F,G ∈ S are primitive

and normalized, i.e. the shifts θF and θG vanish (as for the classical L-functions), then it is
expected that the only common zero can occur at s = 1

2
. The above expectations take into

account the Birch and Swinnerton-Dyer conjecture.

Another form of independence is the functional independence of the zeros. By this
we mean, roughly speaking, the following problem: given F1, . . . , FN ∈ S and a holomorphic
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function H(z, s), z = (z1, . . . , zN), can

H(logF1(s), . . . , logFN (s), s) or H(
F ′

1

F1
(s), . . . ,

F ′
N

FN
(s), s)

have only finitely many singularities in the half-plane σ ≥ 1
2

?

We consider first the problem with the logarithms. It is clear that one needs to impose some
natural restrictions on the functions F1, . . . , FN ∈ S and on H(z, s) in order to get infinitely
many singularities. To this end, we consider a region D containing the half-plane σ ≥ 1

2
and

holomorphic functions H(z, s) on CN ×D such that for every s0 ∈ D and ε > 0

H(z, s0) ≪ eε‖z‖ ‖z‖ → ∞;

we denote by H the ring of such functions. Moreover, we say that degH = 0 if for every s0 ∈ D,
H(z, s0) is constant as a function of z. Further, for H ∈ H we write

h(s) = H(logF1(s), . . . , logFN(s), s),

which is holomorphic in the region obtained by suitably cutting D at the singularities of the
logFj(s)’s. Note that the growth condition on H(z, s) cannot be significantly relaxed, as shown
by the example with N = 1, F (s) = ζ(s)k, H(z, s) = ez/k and k ∈ N, where h(s) has only the
singularity at s = 1. Moreover, the logF1(s), . . . , logFN (s) must be linearly independent over
Q, otherwise there are simple examples of H ∈ H such that h(s) has no singularities at all.
The following result shows that h(s) has always infinitely many singularities in the half-plane
σ ≥ 1

2
, unless there are obvious reasons for the cancellation of the singularities.

Theorem 7.8. ([32]) Let F1, . . . , FN ∈ S be such that logF1(s), ..., logFN(s) are linearly
independent over Q, and let H ∈ H with degH 6= 0. Then h(s) has infinitely many singularities
in the half-plane σ ≥ 1

2
.

Since the polynomials belong to H, Theorem 7.8 provides, in particular, a kind of algebraic

independence of the zeros, in the sense explained above. Moreover, if the unique factorization
conjecture holds (see Conjecture 3.2), then h(s) has infinitely many singularities in σ ≥ 1

2
for

any distinct primitive functions F1, . . . , FN ∈ S and H ∈ H with degH 6= 0. We also remark
that Theorem 7.8 allows to describe the structure of the functions H ∈ H such that h(s) is
holomorphic on D, depending on the number of F1, . . . , FN ∈ S with linearly independent
logarithms, see [32]. As a consequence, one obtains the following corollary of Theorem 7.8 (see
[32]):

if F1, . . . , FN ∈ S and H ∈ H, then h(s) is either holomorphic on D or has infinitely many
singularities on σ ≥ 1

2
.

Moreover, non-trivial examples of vanishing Q-linear forms of logarithms, and hence of
holomorphic h(s), can be obtained in the framework of Artin and Hecke L-functions (see
Kaczorowski-Perelli [32]).

The proof of Theorem 7.8 is based on the following lemma, which is of some independent
interest. Given ρ ∈ C we write m(ρ) = (m1(ρ), . . . , mN(ρ)), where mj(ρ) denotes, as usual,
the multiplicity of ρ as zero of Fj(s). Moreover, ρj denotes a non-trivial zero of Fj(s) in the
half-plane σ ≥ 1

2
.

Lemma 7.1. ([32]) Let F1, . . . , FN ∈ S be as in Theorem 7.8. Then there exist infinitely
many N -tuples (ρ1, . . . , ρN) such that the vectors m(ρ1), . . . ,m(ρN ) form a basis of RN .

Very likely, Lemma 7.1 can be made quantitative in the sense that many such N -tuples
(ρ1, . . . , ρN) up to T can be obtained. Therefore, quantitative versions of Theorem 7.8 are
within reach. Accordingly, we raise the following
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Problem 7.3. Get a quantitative version of Theorem 7.8, with at least Ω(T ) singularities.

The analogous problem with the logarithmic derivatives in place of the logarithms is more
delicate, since poles are easier to cancel than logarithmic singularities. In this case we cannot
even expect as general results as before. In fact, let F1, . . . , FN ∈ S, mFj

be the polar order of
Fj(s), P (z) be a polynomial of degree k ≥ 1, and let

h(s) =
(

N
∏

j=1

(s− 1)mFj
+1Fj(s)

)k
P

(F ′
1

F1

(s), . . . ,
F ′

N

FN

(s)
)

;

clearly, h(s) in an entire function. We have

Theorem 7.9. ([32]) Let P (z) be a polynomial with degree > 0, F1, . . . , FN ∈ S, kj, αj ∈ N
and ηj ∈ C for j = 1, . . . , N . Then

h(s) = P
(F ′

1

F1
(α1s + η1)

(k1), . . . ,
F ′

N

FN
(αNs + ηN)(kN )

)

is either constant or has infinitely many poles.

Note that Theorem 7.9 is weaker than the above stated corollary of Theorem 7.8, in the sense
that the function h(s) is of less general type and there is no non-trivial lower bound for the real
part of the singularities. The proof of Theorem 7.9 is based on a Mellin transform argument.
Similarly to Problem 7.3, one may ask for explicit lower bounds for the number of poles up to
T in Theorem 7.9.

Clearly, the functional independence of the zeros is closely related, at least morally, to the
distinct zeros; we therefore raise the following

Problem 7.4. Are there direct implications between the results on the functional indepen-
dence and on the distinct zeros ?

We finally turn to a very strong form of independence of the zeros, namely the pair corre-
lation. Following Montgomery [48], given F,G ∈ S and α ∈ R, Murty-Perelli [54] defined the
(asymmetric and normalized) pair correlation function

F(α;F,G) =
π

dFT log T

∑

|γF |,|γG|≤T

T iαdF (γF −γG)w(γF − γG),

where γF , γG are the imaginary parts of the non-trivial zeros of F (s),G(s) and w(u) = 4/(4+u2),
and studied the behaviour of F(α;F,G) under GRH. Writing

ΛF (n, x) =







ΛF (n)(n
x
)1/2 if n ≤ x

ΛF (n)( x
n
)3/2 if n > x

and ΨF×G(x) =
∞
∑

n=1

ΛF (n, x)ΛG(n, x)

they obtained

Proposition 7.1. ([54]) Assume GRH and let F,G ∈ S, ε > 0 and X = T αdF . Then,
uniformly for 0 ≤ αdF ≤ 1 − ε, as T → ∞ we have

F(α;F,G) =
1

dFX logT
ΨF×G(X) + (1 + o(1))dGT

−2αdF logT + o(1).

We may consider only α ≥ 0 since F(−α;F,G) = F(α;F,G). Note that ΨF×G(x) is related
by partial summation to

ψF×G(x) =
∑

n≤x

ΛF (n)ΛG(n),
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for which SOC suggests the asymptotic formula

ψF×G(x) = (δF,G + o(1))x log x, (5.6)

provided F (s) and G(s) are primitive. Therefore, assuming GRH and (5.6), Proposition 7.1
yields

F(α;F,G) = δF,Gα + (1 + o(1))dGT
−2αdF log T + o(1)

uniformly for 0 ≤ αdF ≤ 1 − ε. This is the analog of the Theorem in Montgomery [48], and
still in analogy with [48], the following conjecture has been stated in [54].

Conjecture 7.3. (pair correlation conjecture, PC) Let F,G ∈ S be primitive. Then

F(α;F,G) =







δF,G|α| + (1 + o(1))dGT
−2|α|dF logT + o(1) if |α| ≤ 1

δF,G + o(1) if |α| ≥ 1

as T → ∞, uniformly for α in any bounded interval.

Clearly, Conjecture 7.3 can be suitably modified if F,G ∈ S are not primitive, see (3.5) of
[54]. As already remarked above, Conjecture 7.3 is a very strong independence statement. For
example, by convolution with suitable kernels (see [48]) PC yields

Theorem 7.10. ([54]) PC implies Conjectures 7.1 and 7.2. Moreover, if the asymptotic
formula of PC holds for some α0 > 0, then the unique factorization conjecture follows.

We remark that the UF conjecture is deduced in Theorem 7.10 using the properties of the
pair correlation function F(α;F,G) in a direct way. However, it is quite clear from Proposition
7.1 that PC has implications on the following version of SOC

ΨF×G(x) = (δF,G + o(1))x log x. (5.7)

Precisely, (5.7) follows from GRH and

F(α0;F,G) = δF,Gα0 + o(1) (5.8)

for a suitably small 0 < α0 = α0(F,G). But (5.7) can be used as a substitute of SOC in
results like Theorems 3.6 and 3.7. Hence, in turn, GRH and (5.8) imply results of such type,
in particular the Artin conjecture.

The pair correlation conjecture may also be formulated, more explicitly, in terms of the
differences of the imaginary parts of the zeros, as in (12) of [48]. In that way one sees that
Hypothesis H0 is in fact a weak version of PC, dealing only with the behaviour at α = 0.

The above treatment of PC follows Montgomery’s [48] approach, thus assumes GRH. How-
ever, Rudnik-Sarnak [65], [66] investigated suitably weighted versions of the n-level correlation
of the zeros of automorphic L-functions (assuming a mild form of the Ramanujan conjecture
when the degree is > 4) without assuming the Riemann Hypothesis for such L-functions, thus
getting interesting general results. This point of view has been carried over by Murty-Zaharescu
[55] to the framework of the Selberg class.

To this end, Murty-Zaharescu [55] defined the pair correlation function in the following
slightly modified way (here w(z) = 4

4−z2 )

F̃(α;F,G) =
π

dFT log T

∑

|γF |,|γG|≤T

T αdF (ρF +ρG−1)w(ρF + ρG − 1),

so that F̃(α;F,G) = F(α;F,G) under GRH. Observing that an off-line zero ρ = β + iγ of a
primitive F ∈ S gives rise to a term of order T αdF (2β−1)/T log T in F̃(α;F, F ), and that such a
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term tends to infinity as T → ∞ provided α is suitably large, it is clear that Conjecture 7.3,
with F̃(α;F,G) in place of F(α;F,G), morally (at least) assumes GRH. In order to have a
GRH-free form of PC, in [55] the following conjecture has been formulated.

Conjecture 7.4. (weak pair correlation conjecture, WPC) Let F,G ∈ S be primitive. Then
there exists a constant cF,G > 0 such that for any 0 < α < cF,G

F̃(α;F,G) = δF,Gα + o(1) as T → ∞.

As pointed out in [55], results of this type are indeed proved in Rudnik-Sarnak [66] in the
framework of automorphic L-functions. Moreover, it is clear from the second statement of
Theorem 7.10 and from the discussion after it that WPC has interesting consequences. In fact,
the following unconditional version of Proposition 7.1 holds (recall that ϑF appears in axiom
(v) of the Selberg class).

Proposition 7.2. ([55]) Let F,G ∈ S, ε > 0 and X = T αdF . Then for ε ≤ αdF ≤ 1 − ε, as
T → ∞ we have

F̃(α;F,G) =
1

dFX log T
ΨF×G(X) +O(T−δ),

where δ = εmin(1
2
, 1 − ϑF − ϑG).

In view of the discussion after Theorem 7.10, WPC implies (5.7) and hence

Corollary 7.2. ([55]) WPC implies UF, the Artin conjecture and the Langlands reciprocity
conjecture for solvable extensions of Q.

It is natural to raise at this point the following

Problem 7.5. Prove that some form of PC implies SOC.

The proof of Proposition 7.2 is based on a suitable version of Landau’s formula, see Proposi-
tion 1 of [55]. Such a technique allows to introduce weight functions, thus giving more general
explicit formulae for the pair correlation of the zeros of functions in S, of type

∑

|γF |,|γG|≤T

f(ρF + ρG) =
∞
∑

n=1

ΛF (n)ΛG(n)g(n) + error, (5.9)

where g(u) is a suitable weight function and f(s) is its Mellin transform (see Theorems 3 and
4 and Corollaries 1 and 2 in Murty-Zaharescu [55]).

In Section 6 we already met an extension to S♯ of the classical Rankin-Selberg convolution,
namely F×F (s). Of course, the same type of convolution can be defined more generally for
two functions F,G ∈ S♯ as

F×G(s) =
∞
∑

n=1

aF (n)aG(n)n−s. (5.10)

Another type of extension to S of the Rankin-Selberg convolution appears in Narayanan [56],
and is defined as follows (see also [55]). For F,G ∈ S define

F⊗G(s) =
∏

p

(F⊗G)p(s), (5.11)

where for all but finitely many primes p

log(F⊗G)p(s) =
∞
∑

m=1

mbF (pm)bG(pm)

pms
.
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Note that in view of the multiplicity one property of S (see Theorem 3.4) the definition of the
Euler factors at a finite number of primes is not critical. Note also that the convolutions (5.10)
and (5.11) are closely related, and that (5.11) is expected to have better analytic properties
(see Chapter II of Moroz [50]).

Assuming that F⊗G ∈ S, from (5.11) we see that (apart from n = pm with p in a finite set)

ΛF (n)ΛG(n) = Λ(n)ΛF⊗G(n), (5.12)

where Λ(n) denotes the classical von Mangoldt function associated with ζ(s). Hence the explicit
formulae of type (5.9) and Proposition 7.2 imply

Corollary 7.3. ([55]) Let F,G ∈ S be such that F⊗G ∈ S. Then for f(s) as in (5.9)
∑

|γF |,|γG|≤T

f(ρF + ρG) =
∑

|γ|,|γF⊗G|≤T

f(ρ+ ρF⊗G) + error,

where ρ and ρF⊗G denote the non-trivial zeros of ζ(s) and F⊗G(s). Moreover, for ε > 0 and
ε ≤ αdF ≤ 1 − ε, as T → ∞

F̃(α;F,G) = F̃(α; ζ, F⊗G) +O(T−δ),

where δ = εmin(1
2
, 1 − ϑF − ϑG).

Corollary 7.3 reflects once again the universality of the pair correlation of the L-functions, as
well as the expectation that F,G ∈ S are coprime if and only if the Rankin-Selberg convolution

F⊗G(s) is holomorphic at s = 1 (or, equivalently, if and only if F⊗G(s) is coprime with ζ(s)).
Another consequence of Proposition 7.2 pointed out in [55] is that, in analogy to Rudnik-Sarnak
[66], if F,G ∈ S are primitive and F⊗G(s) has nice analytic properties, then WPC holds for

F̃(α;F,G). In fact, by standard arguments in prime number theory one gets, via (5.12), the
expected asymptotic formula (5.7) from mild information on the analytic continuation, polar
structure at s = 1 and zero-free regions of F⊗G(s).

We finally state a natural problem on the extension of the pair correlation problems (see
Section 7 of [55]).

Problem 7.6. Investigate the N -level correlation of the zeros of functions in S (or the
correlation of the zeros of N -tuples of functions in S).
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