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1. EVIDENCE OF HEAVY TAILS IN REAL-LIFE DATA

1.1. Heavy tails in finance.
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Ficure 1. Plot of 9558 S&P500 daily log-returns from January 2, 1953, to December 31, 1990. The
year marks indicate the beginning of the calendar year.
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Fieure 3. Hill plot (dotted line) for the S&P500 data with 95% asymptotic confidence bounds. The
Hill estimator approximates the tail index a in the model P(X; > z) ~ ca™
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Ficure 2. Left: Density plot of the S&P500 data. The limits on the x-axis indicate the range of the

data. QQ-plot of the S&P500 data against the normal distribution.
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Frcure 4. Plot of the ratio T,,(p) = maxi—1,...n | X;|?/(|X1|P + -+ - 4+ | X, |P) for the S&P500 data
for various values of p. If E|X;|P < oo and the data came from a stationary ergodic model, the
ratio should converge to zero a.s., by virtue of the strong law of large numbers.



Ficure 5. Plot of the ratio Tp,(p) = max;—y,..n |X;|?/(| X1|P + -+

pet1 =]

Cauchy variables with tail P(|X| > @) ~ cz~! and p = 0.7,0.9,1.1, 1.3
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Ficure 7. Histogram of the logarithmic Danish fire insurance data.
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1.2. Heavy tails in insurance.
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Ficure 6. Danish fire insurance data.
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Ficure 8. Empirical mean excess function of the Danish fire insurance data.




Teletraffic Data

1.3. Heavy tails in teletraffic. 1 e o ~ : 1
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i . Ficure 10. Mice and elephants plots (S. Marron).
Ficure 9. Time series of transmission durations (BU data).

2. OBJECTIVES IN MODELING HEAVY-TAILED PHENOMENA e Infinite-dimensional structures: extreme value theory for

e Extreme value theory and statistics for spatio-temporal stochastic processes and random fields, e.g., the maximal
structures with heavy-tailed components: time series and height of sea waves along a coast line, maximum temperature
random fields. or maximum rainfall in a given area,....

e Study the influence of very large values in these structures, e.g. ¢ Use results from extreme value theory to build reasonable
large file sizes in telecommunications, large claims in insurance, models for description of heavy-tailed phenomena, e.g. in
large losses/gains in finance, impact of large numbers of teletraffic (ON-OFF process, infinite source Poisson model,. ..
citations in science, storms in hydrology,. . .. financial time series analysis (stochastic volatility models,

e Study extremal dependence in multivariate structures. Find GARCH models,. . .)

measures of dependence beyond covariances. The interplay

between tails and extremal dependence.



3. CONCEPTS OF HEAVY-TAILED DISTRIBUTIONS, ske EMBRECHTS ET AL. (1997) e (3.1) is equivalent to slow variation of L(z) = F(log ), i.e.
L(cx)
L(z)
This means that F(z) = L(e®).

3.1. Long-tailed distributions. A positive random variable X and —1, z—oo0, ¢>0.

its distribution F with tail F = 1 — F are long-tailed if

(3.1) % —1, z—o0, y€cR. e A slowly varying function has Karamata representation, sce
T
Bingham et al. (1987)
e Notice that *e(t)
L(x) = c(x) exp — —~ dty , =2>z,
z

PX>zx+y|X>z)—1, x=—o00, y>0. for some functions e(t) — 0 and ¢(t) — ¢ > 0 as t — oo.

o It satisfies for any 6 > 0 and sufficiently large x
o If X > x exceeded X it is very likely to exceed any higher level

x° < L(x) < .

T+ vy.
e This notion is inconvenient since the class of long-tailed e In particular, for long-tailed F' and any § > 0,
distributions is “too large”. eF(x) = e’ *L(e®) — 00, = — oo,
hence 3.2. Subexponential distributions.
oo ® A positive random variable X and its distribution F' are
Ee’X = / PeX > y)dy = co.
0 subexponential if for iid copies X; of X and any (some) n > 2,
e Exponential moments do not exist. with S, = X; 4 -+ 4+ Xy, M, = max(Xy,..., Xy),

P(S, > x) N P(S, > x)
P(M, > x) n F(x)

e It is reasonable to define ”heavy-tailedness” in relation to some —1, x— o00.

probabilistic structure, e.g. sums, maxima,. .., where one e Subexponential distributions are long-tailed, sce EKM, p. 41.
observes a phase transition of the behavior when changing from e Subexponential distributions do not have finite moment
“light” to “heavy” tails. generating function. See EKM, p. 42, and p. 19 above.

e A simple example: CLT behavior for an iid sequence (X;) with e Examples of subexponential distributions: regularly varying
EX? < 0o or EX? = co. In the first case, normal limits and /7 distributions F(x) = 2~ *L(x), a > 0, L slowly varying (power
normalizations appear, in the latter case infinite variance stable law tails), log-normal, heavy-tailed Weibull F(z) = e,

limits and normalizations n'/®£(n), o € (0,2), may occur. T € (0,1), F(z) = e/ 1og7@) ~ > 0.



e Examples of non-subexponential distributions: exponential,
gamma, (truncated) normal, any distribution with finite upper
endpoint.

e Subexponential distributions are considered as natural
heavy-tailed distributions in the context of insurance
mathematics, queuing, storage, dam, renewal theory.

e In insurance mathematics one is interested in the tail behavior
of a random walk (Sn()) (total claim amount) with iid step
sizes X; (claim sizes), independent of the counting process N

(claim arrivals). For a fixed ¢t > 0, with p, = P(N(t) = n),

P(Snw > x) = Y pnP(S, > ).

n=1

o If N is homogeneous Poisson with intensity A > 0, the ruin
probability in the portfolio is given by (u initial capital, ¢

premium rate)

Pp(u) = P <1121£ (u+ct— Snw) < 0>

=p(1+p)7" D (1L+p) " P(S; > u),
n=1
where p = ¢/(AEX) — 1 is assumed positive (net profit

condition) and (S7) is a random walk with iid positive step

sizes with distribution F,(z) = (EX)™! [ F(t) dt.

e If X; is subexponential, then P(S, > z)/F(xz) < K(¢) (1 +¢)".
See EKM p. 41.

e Hence if Ee"V(*) < oo for some h > 0,

P(Snw > x) _ > P(S, > x) N > _
T_Z B ;pnn_EN(t).

e The total claim amount Sy ) of an insurance portfolio at high

n=1

threshold:
P(SN(t) > :B) ~ EN(t) F(az) .
e The right-hand side decays to zero much slower than

exponential or normal tails.

W, w, w, w, W,

Ficure 11. The risk process U(t) = u + ¢t — Sy and ruin.



e TFAE EKM, p. 581
(1) F, is subexponential,
(2) 1 — 9 is subexponential,
(3) the following relation holds as u — oo

Y(u)

jﬁm)~M1+m4§Jl+mwn=p”-

n=1

e This is in stark contrast to the light-tailed Cramér-Lundberg
case. See EKM, p. 29

e Under general conditions, if the claim size distribution F' has
finite moment generating function in some neighborhood of the

origin: for some C,r > 0,

P(u) ~Ce™™, u— oco.

3.2 Claim Size Distributions 103
Losses[Date [Event Country
20 511]08/24/92[Hurricane “Andrew” US, Bahamas
19 301(09/11/01 | Terrorist attack on WTC, Pentagon
and other buildings uUs
16 989(01/17/94|Northridge earthquake in California uUs
7 456(09/27/91 | Tornado “Mireille” Japan
6 321(01/25/90| Winter storm “Daria” Burope
6 263|12/25/99| Winter storm “Lothar” Europe
6 087|09/15/89|Hurricane “Hugo” P. Rico, US
4 749[10/15/87|Storm and floods Burope
4 393[02/26/90| Winter storm “Vivian” Europe
4 362(09/22/99| Typhoon “Bart” hits the south
of the country Japan
3 895(09/20/98Hurricane “Georges” US, Caribbean
3 200(06/05/01 | Tropical storm “Allison”; flooding Us
3 042[07/06/88|Explosion on “Piper Alpha” offshore oil rig| UK
2 918(01/17/95|Great “Hanshin” earthquake in Kobe Japan
2 592(12/27/99| Winter storm “Martin” France, Spain, CH
2 548|09/10/99|Hurricane “Floyd”, heavy down-pours,
flooding US, Bahamas
2 500(08/06/02|Rains, flooding Europe
2 479(10/01/95|Hurricane “Opal” US, Mexico
2 179|03/10/93|Blizzard, tornadoes US, Mexico, Canada
2 051(09/11/92|Hurricane “Iniki” US, North Pacific
1 930|04/06/01|Hail, floods and tornadoes Us
1 923(10/23/89| Explosion at Philips Petroleum uUs
1 864|09/03/79|Hurricane “Frederic” uUs
1 835/09/05/96|Hurricane “Fran” us
1 824|09/18/74| Tropical cyclone “Fifi” Honduras
1 771|09/03/95| Hurricane “Luis” Caribbean
1 675|04/27/02|Spring storm with several tornadoes Us
1 662|09/12/88| Hurricane “Gilbert” Jamaica
1 620(12/03/99| Winter storm “Anatol” Burope

1 604|05/03/99|Series of 70 tornadoes in the Midwest uUs
1 589|12/17/83|Blizzard, cold wave US, Mexico, Canada,

1 585|10/20/91|Forest fire which spread to urban area uUs

1 570|04/02/74| Tornados in 14 st uUs
1.499/04/25/73 Us

1 484/05/15/98 uUs

1 451(10/17/89| “Loma Prieta” earthquake Us

1 436(08/04/70|Hurrican a” Us

1 409(09/19/98| Typhoon “Vicki” Japan, Philippines
1 358[01/05/98|Cold spell with ice and snow Canada, US

1 340/05/05/95|Wind, hail and flooding uUs

Table 3.2.18 The 40 most costly insurance losses 1970 — 2002. Losses are in mil-
lion $US indezed to 2002 prices. The table is taken from Sigma (73] with friendly
permission of Swiss Re Zurich.
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o Message:

Light-tailed claims are not dangerous. Ruin is very unlikely
(exponentially small probability) for large initial capital wu.
Heavy-tailed claims are dangerous. Ruin is not unlikely even

for large initial capital u. One large claim may cause ruin of

the insurance company.

3.3. Regularly varying distributions.

e A positive measurable function f on (0, 00) is regularly varying
with index p € R if f(x) = L(x) ” for some slowly varying
function L. Bingham et al. (1987)

e A positive measurable function f on (0, c0) is regularly varying

f (cx)

if and only if as * — o0, —= — ¢ ,¢c > 0.
f(x)
e A positive random variable X and its distribution F' are
regularly varying with index a > 0 if for some slowly varying

function L

L(x
(a), x>0.

€T

F(z) = P(X >z) =



e Regularly varying distributions are subexponential sce c.g. Feller e Regular variation is a natural condition in the context of

(1971), EKM p. 37, hence long-tailed. extreme value theory and limit theory for partial sums of iid
e Examples: random variables: For an iid non-negative sequence (X;) with
— L(x
Pareto, distribution F(x) = P(X > x) = ¥, x >0,
T

log-gamma,
4 . _ d
Fréchet limit: n='/*£(n) M, - Yy~®,, a>0,
Fréchet,
o e _ d
Stable limit: n=Y*£(n) (S, —b,) — Ys ~ P,, a € (0,2].
absolute values/positive parts of
See Feller (1971), Ibragimov, Linnik (1971), Petrov (1975,1995) for sums; Galambos (1978),

infinite variance stable
’ Leadbetter et al. (1983), Resnick (1987,2006), EKM for maxima

Cauchy,

student
e There is also joint convergence for a € (0, 2) see Resnick (1986): o If a > 2, there exist a,, b, — oo such that

n=Y%0(n) (M, Sn — bn) > (Yar, Ys) (a;'(S, —nEX),b;' M,) 5 (Ys, Yar),
and Yg, Yas are dependent. Ys, Y are independent, Ys ~ N(0,1), Yy, ~ ®, and
o By the continuous mapping theorem, b,/a, — 0.
(S, — bn) /M, % Ys/ Y. e In particular,
M,/(S, —nEX) > o0.
e In particular, for o € (0,1), e For general iid non-negative X;, M,,/S, L, 0 if and only if
S,/ M, N Ys/Yur EX < oo or P(X > z) = L(xz)z ! for some slowly varying L

. P . e SN
and for o € (1,2) O’Brien (1980), and M, /S, — 1 if and only if F(x) = L(x) Arov and

d Bobrov (1960), Maller and Resnick (1984).
(Sn — nEX)/M, % Ys/ Y.



3.4. Alternative definitions of regular variation.

e X > 0 is regularly varying with index o > 0 if and only if
P(X > tx)
P(X > x)

—t7%, x—oo0o, t>0.
e Replacing = by a,, with P(X > a,) ~n~!or

a, = F~(1 — 1/n), one can show equivalence with

3.2 nPa'X>t) -t *, n—so0, t>0.
n

e For iid copies X; of X, (3.2) has interpretation

E(ZI(t,Oo)(Xi/an)) St t£>0.
=1

4. SOME POINT PROCESS THEORY

The theory of point processes plays a central role in extreme value

theory. Applications include:

e Derivation of joint limiting distribution of order statistics, i.e.,
kth largest order statistic, limiting distribution of maximum
and minimum, etc.

e Calculation of limit distribution of exceedances of a high level.

e Extensions to stationary processes.

e Provides a useful tool in heavy-tailed case for deriving limiting
behavior of various statistics, e.g., sample mean, sample
autocovariances, etc., which are often determined by the

behavior of the extreme order statistics.

Recalling Poisson’s limit theorem, (3.2) is equivalent to

Z It o0)(Xi/an) A Poisson(t™), t >0,
i=1

® (3.2) is equivalent to the point process convergence

n
d
N, = ex,ja, — N ~ PRM(p),
i=1
where p(t,oo] = t~* defines the mean measure of the limiting

Poisson random measure N with state space (0, co].
e (3.2) can be shown to be equivalent to vague convergence of the

measures

nP(a,' X €-) = p(-) on (0,c0].
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4.1. Basic results on convergence of extremes.
e Suppose (X;) is an iid sequence with common distribution F'.

e Assume that there exist sequences of constants a,, > 0 and b,

such that

(4.1) P(a, ' (M, —b,) <z) = F'(ay,z + b,) — H(z)
for all x, where M,, = max(X;,...,X,) and H is a
nondegenerate distribution function.

e By the Fisher-Tippett theorem (1928), (sce Leadbetter ot al. (1983),
Resnick (1987), EKM p. 121) H has to be an extreme value distribution
of which there are only three types.

Example: H(z) = ®,(x) =e ™, x > 0, for some a > 0.

Fréchet distribution.



(4.1) holds iff F is regularly varying with index o and then
one can choose b, = 0 and a, = F~ (1 — 1/n) or such that
F(a,) ~nL

e Taking logarithms and using a Taylor series expansion, (4.1)

holds if and only if for any « € R,
(4.2) nP(a; (X —b,) >z) — —logH(x).

(If H(x) = 0 we interpret — log H(x) as o0.)

Example: In the Fréchet case, (4.2) becomes
nP(X > ayx) —» —log®,(x) =27, x>0.
e Now (4.2) can be strengthened to the statement,

(4.3) nP(a;'(X —b,) € B) — v(B)

Properties:

o If B is the rectangle (a,b] X (¢,d] with 0 < a < b < oo and
—oo < ¢ < d < oo, then since the X; are iid,
N, (B) ~ Bin([nb] — [nal, p,) ([s] = integer part of s), and

Pn = P(a,' (X1 — b,) € (c,d]).

e Provided v(c, d] < oo, it follows from (4.3) that N, (B)
converges in distribution to a Poisson random variable N (B)
with mean p(B) = (b — a) v(c, d].

e In fact, we have the stronger point process convergence,

N, — N,

for all suitably chosen Borel sets B, where the measure v is
defined by its value on intervals of the form (a, b] as
v(a,b] =log H(b) — log H(a) .
e The convergence in (4.3) can be connected with the
convergence in distribution of a sequence of point processes.
e For a bounded Borel set B in the product space (0,0) X R,

define the sequence of point processes (IN,,) by

N,(B) = #{(t/n,a;'( X; —b,)) € B,t=1,2,...}

- 21 € (t/man’ (Xe—bn)) (B) 5
t=

where ¢, is the Dirac measure at the point y.

where N is a Poisson process on (0,00) X R with mean measure
p(dt,dx) = dt x v(dz) and <, denotes convergence in
distribution of point processes.

o Recall that a point process IV is a Poisson process or Poisson
random measure with mean measure g (PRM(p)) and state
space E C R? if N(A) is Poisson(u(A)) distributed and
N(A,),...,N(A,,) are independent if the A;’s are disjoint.

4.2. Convergence for point processes. For our purposes, N, 4N

for point processes IN,, N means that for any collection of bounded

Borel sets By, ..., By for which P(N(90B;) >0)=0,j5=1,...,k,

we have

(Ny(By), ..., No(By) <% (N(By), ..., N(By))



on R¥. Sce Leadbetter et al. (1983), Resnick (1987), EKM, Chapter 4.
Technical remarks:

o In the heavy-tailed case, the state space of the point process is
often defined to be (0,00) X ([—o0,00] \ {0}).

e For the space, [—oo, co] \ {0}, the roles of zero and infinity
have been interchanged so that bounded sets are now those
sets which are bounded away from 0.

® A bounded set on the product space is contained in the
rectangle [0, ¢] X ([—o0, —d] U [d, oo]) for some positive and
finite constants ¢ and d. Under this topology, the mean
measure of the limit Poisson process is ensured to be finite on

all bounded Borel sets.

Similarly, the joint limiting distribution of (X(,_1), M) can be
calculated by noting that for y < x,
{a, (M, — b,) < 2,0, (X(n1) — bn) < y}
= {Na((0,1] X (x,00)) = 0, Nu((0,1] X (y,x]) < 1}.
Hence,
P(G;I(Mn — bn) <z, ay_ll(X(n—l) — bn) < y)
= P(Nn((0,1] X (x,00)) = 0, Ny((0,1] X (y,z]) < 1)
— P(N((0,1] X (z,00)) = 0, N((0,1] X (y,z]) < 1))

= H(y)(1+log H(x) —log H(y)) -

12

Application:

Define X(,,_;) to be the second largest among Xi,..., X,. The
event {a,'(X(,—1) — b,) < y} is the same as

{N,((0,1] x (y,00)) < 1}, we conclude from N,, -> N that

P(a, (X(n—1) — bn) < y) = P(N,((0,1] X (y,00)) < 1)
— P(N((0,1] X (y,00)) < 1)

= H(y) (1 —log H(y)).

5. DEPENDENCE AND TAILS FOR FINANCIAL DATA, see MIKOSCH (2003)

5.1. “Stylized facts”. Log-returns

X; = log(P;/P;_,) = log P, — log P;_,
P,—P_
~ log <1 + 7)

P,
P, — P,_
~ T i —0,1,2... .
P4
P, is a speculative price (share price, stock index, FX rate, ...)

Scale: days, weeks, hours, ..., high frequency data.

Why log-returns? (X;) is unit free. Common belief: prices P;

“increase” exponentially on average, (X;) is stationary.



5.1.1. Marginal distribution.

e sample mean close to zero
e sample variance of order 107°,1076, ...

e distribution is roughly symmetric in the center

e density is sharply peaked at zero (leptokurtic)

e data are non-Gaussian

e heavy tails on both sides,

———

P(X;>xz)=zxz™® asx — o0, a € (2,5)

e The tails of log-returns do not seem to be balanced

(asymmetrlc) . One often estimates different tail parameters o Ficure 12. Hill estimation (based on up to 50% of the order statistics) for 5 minute foreign exchange
. . . i rate log-returns, USD-DEM (top) and USD-FRF (bottom). Left: gains. Right: losses.
for the left and right tails. The left tail is often heavier than

the right tail.

e Since the 1960s, Benoit Mandelbrot has propagated scaling e The Black-Scholes model for the price P, of a risky asset
behavior for various phenomena in nature and society, space prescribes that log P, = ct 4+ o B, t > 0, where o,c > 0 and B
and time (Zipf’s law, fractals, Hurst phenomenon, ...). is Brownian motion. This means that log-returns would be iid

e One of his claims is that log-returns come from an infinite Gaussian: Xy =c+ 0o (B; — B;_1), t = 1,2,.... This assumption
varitance stable distribution. This would imply is convenient from a mathematical point of view but it is not

P(X;>x)~cx™™ for some a € (0,2). realistic.

e There is no statistical evidence for this claim e Various attempts have been made to get more realistic models

in continuous time, e.g. with Lévy process driven SDE: Eberlein;

Barndorff-Nielsen and Shephard; Madan and Seneta,....



5.1.2. Dependence, autocorrelations, clustering of extremes.

e Classical time series analysis: main goal is second order
structure of (Gaussian) stationary time series (X;)
e This structure is determined by

autocovariance function (ACVF)
vx(h) = cov(Xo, Xpn), h€EZ.

autocorrelation function (ACF)

’YX(h)
vx(0)’

px(h) = hezZ.

o ACF determines dependence structure of stationary Gaussian

(Xt)-

THE ACF STYLIZED FACT

e sample ACF p,, x of returns are negligible (possible exception:

1st lag)

e sample ACF's p, x|, p,, x2 are positive and decay very slowly

(typical for “long” time series)

e This is often interpreted as long memory or long-range

dependence (LRD), see Samorodnitsky and Taqqu (1994), Doukhan et al. (2003)

o ACF used for parameter estimation, model testing, prediction
of Gaussian/non-Gaussian time series (ARMA, FARIMA,...)
Brockwell and Davis (1991,1996)

e Since one does not know the ACF/ACVF of real-life data one

needs to estimate them: sample ACVF and sample ACF

n—|h|
1 — —
Ynx(R) = n Z (Xt — Xn)(Xt4n — Xn)
t=1
'YnX(h)
pnx(h) = X2 hez.
X( ) 'Yn,X(O) ’

o If (X,) is stationary ergodic, var(X;) < oo,

Yux(h) =5 vx(R),  pa,x(h) =5 px(h).

[
TN N PR T 1 L1 i Al [T T
I bbbt LA N A AL S AR N
\ \ i ‘
) so 100 150 200
1ag

ACF
Q0500 005 010 05 020 0%

T ———

o s0 100 150 200
lag

ACF
0500 065 010 05 00 0%

Ficure 13. Sample ACFs for the log-returns (fop) and absolute log-returns (bottom) of the SEP500.
Here and in what follows, the horizontal lines in graphs displaying sample ACFs are set as the 95%
confidence bands (£1.96/+/m) corresponding to the ACF of iid Gaussian noise.



THE EXTREMAL STYLIZED FACT

High /low level exceedances of returns tend to appear in
clusters.

THE EXTREMAL INDEX LEADBETTER ET AL. (1983), EKM, SECTION 8.1
e Assume (X,;) iid and M,, = max(Xy,...,X,). Then
P(M, < z) = [P(X: < 2)]".

e This is incorrect for a dependent sequence (X;). For strictly

stationary (X;) (often) for some z, T

P(M, < ;) = [P(X1 < 2,)]" +0(1),

for some 0 € [0, 1], the extremal index.

e A possible interpretation of & > 0: By definition,
P(M, < z,) = [P(Xi < 2,)]" = P(Mug < x,),
where M,, = max(kvl, e ,Xvn) and (:ft) are iid with the same

marginal distribution as Xj.

£ =
- ~ = s ez = -t
N -, -F . = = . 33 ¥ .- == s
S Zooo “ooo scoo
time
=' - - - -
S Zooo “ooo scoo

time

Ficure 14. Top: Absolute returns | X;| of the S&P500 series for which both | X;| and | X¢41]| exceed
the 87% quantile of the data. The latter is indicated by the bottom line. Bottom: The same kind
of plot for an iid sequence from a student distribution with 4 degrees of freedom. In the former case
pairwise exceedances occur in clusters, in the latter case exceedances appear uniformly scattered
through time.

e This means that
P (Mg < @) = P(M, < z,),

i.e., the maximum of n/0 dependent X;’s has roughly the same
distribution as the maximum of n iid )A(/i’s for a sufficiently high
threshold x,,.

e This is due to the fact that large values of X; have roughly the
same value in a small time interval: they generate a cluster of
exceedances of x,,.

e 1/0 is the expected (asymptotic) cluster size.
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Ficure 15. A sequence of iid random variables ¥; (Top) with distribution function v'F, where F is
standard exponential. Bottom: the sequence of pairwise maxima max(Y;, Y;41) with distribution
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F. By construction, extremes appear in clusters of size 2. The extremal index is @ = 1/2.

5.2. Can classical time series analysis model returns?

e Classical time series analysis is about linear processes

X, =Y % Zij, (Z)iid

i=0

in particular ARMA (p, q) processes:

where

(B)X,
= 0(B)Z;

p
p(z) =1-— Z‘Pizl,
i=1

Xi—o1 Xpqg — 0 — ‘Ppthp7

Zi+ 6012y + -+ 0472,

a
9(z):1+20jzj,

i=1

and B*¥A, = A,_;, is the backshift operator.
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Ficure 16. Point estimation of the extremal index for the S€&/P500 data. The estimators are based
on the upper order statistics exceeding the threshold w. The smallest u is the 97% quantile of the
data. The estimator is reliable where it is stable (between 0.03 and 0.04) resulting in an extremal
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index of about 0.7.
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Examples. AR(2) process

(1 — 1B — 2B Xy = Xy — p1X¢-1 — 92 X420 = Z,.

MA (2) process

Xi=2Zi+ 6121+ 60:Z;_5 = (1+ 6,B + 6,B*) Z,.




fime fime

Ficure 17. Simulation of AR(1) process X; = 0.5X;_1 + Z; with iid standard normal noise (left)
and student noise with 3 degrees of freedom (right).

5.3. Multiplicative models.
Xie=p+o: 2y, tel.
We assume
e (Z;) iid mean zero (or symmetric) noise, EZ} =1
e 0; and Z; independent
e (o) volatility sequence (unobservable) stationary
e (X;) stationary

oeu=0

WHICH STYLIZED FACTS CAN BE EXPLAINED BY LINEAR PROCESSES?

e Heavy tails of X; are only possible if the noise Z; has heavy
tails, see p. 121.
e ACF dependence. (X;) must be iid or MA(1).
Examples. The ACFs of the iid sequences (X;) and (| X;|) are
negligible at all lags.
The ACF's of an MA(1) process (X;) and of (|X;|) are zero at lags
> 2 since X; and X;.» are independent.
A linear process cannot explain the complicated dependence
structure of the sequences (|X;|) and (X?).

Conclusion: We need a “non-linear” model.
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5.3.1. Why this model?

e Conditional forecast of X; given o; = f(past). Then
L(X; | past) is known, e.g. Z; ~ N(0,1) and
X, | past ~ N(0,0?) . (Conditional VaR)

px(h) = corr(Xy, Xp) =0, h#0,
in agreement with stylized facts.
e Although the whole time series (X;) is stationary one can
model changing conditional variance over time quite flexibly.

(“volatility clusters”)



65 66

5.3.2. The ARCH family. Engle (1982)

Xt = O0¢ Zt, (Zt) iid

af = ao—i—ZaZ i teZ.

'\ ‘\‘ for ap > 0, certain o; > 0, o, > 0.
; ARCH(p) autoregressive conditionally heteroscedastic process of

order p
Ficure 18. One day 95% distributional forecasts of log-returns of the S&P500 composite stock index
(from top left, top right, bottom left to bottom right: 30, 15, 5, 1 years of data) based on a
GARCH(1,1) model with iid standard normal noise and parameters ag = 107%, oy = 0.07,
B1 = 0.96. The extreme values of the log-returns are not correctly captured by the model.

Wny AR? “7 2.3.3. The GARCH model. Bollerslev (1986), Taylor (1986)
¢(BYX?=oag+B(B)vy, te€Z,
- XP—ot=ot(zi-1), where
is white noise (zero correlations, constant variance) if (o) strictly p(z) =1-— Z @z — Zﬁg » B(z) =1+ Zﬂ] 2,
stationary and EX} < oco. for certain v, 3; Z 0, apBy > 0. "~

BYX?=ao+v:, t€Z,
#(B)X,; ot Generalized ARCH(p, q) (GARCH(p, q))

where
Xy = 01 Zy,

P
pz)=1— Zaizz,
i=1

Notice: (1) is not iid. Since it involves the sequence (X;) one

P q

0't2 = ao—I—Zain_i—i—Zﬁjaf_j, tecZ.
i=1 j=1

knows a priori nothing about its existence and properties.

Problem: ARCH(p) does not fit returns well unless p is large.



Wuy GARCH?

] e Relation to ARMA processes (in general not very helpful for
studying theoretical properties because the noise v; = th - O't2

and X? are closely related)

e Reasonable fit to data (for not too long series) even for

GARCH process
-0.008 -0.006 -0.004 -0.002 0.0 0.002 0.004 0.006

GARCH(1, 1) with only 3 parameters: residuals are iid-like.

e “Uncomplicated” statistical estimation of GARCH parameters.

See Berkes, Horvath and Kokoszka (2003), Straumann, M. (2006) Straumann’s Springer

0 200 400 600 800 1000 Lecture Notes in Statistics (2005).
time

Ficure 19. Simulation of a GARCH(1,1) process with Gaussian noise.
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5.3.4. An easier model: The stochastic volatility model see Davis and M.

(2006).

X, =012y, (Z;) iid centered or symmetric

GARCH process

00080008 0004 00

e (o) strictly stationary

o zoo aoco soo s00 1000

e (Z;) and (o¢) independent e

e Often log o; is assumed to be a Gaussian linear process:

oo
logo, = ch Mm—j, mn; ~ N(0,1) iid
j=0

e No feedback between (o;) and (Z;)

SV s
0w

Rl

L0

e Dependence modeled via (oy), tails via (Z;) s =55 Fr = =55 Toos

time

o Estimation more difficult since the likelihood function is not Ficure 20. Top: 1000 simulated values from the GARCH(1, 1) model X; = (0.0001 + 0.1X? |, +
0.90’?_1)0'5Zt for iid standard normal (Z;). Bottom: 1000 simulated values from the stochastic

volatility model X; = e¥t Z, for iid student noise (Z;) with 4 degrees of freedom, Y; = 0.5Y;_; +

explicit. See Breidt and Carriquiry (1996); Shephard (1996) for a survey. : o ;
0.37:—1 + m¢ is an ARMA(1,1) process with iid standard normal noise ().
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5.4. The stationarity problem. 5.4.2. The GARCH model.

P q
54.1. The SV model. ol = ap+ Z a; X2, + Z B; Ut2—j .
.. i=1 i=1
Xo=01Z, (2)iid The sequence X; = 0:Z; is stationary if (o;) is stationary.
(o:) and (Z;) independent.

The log-volatility sequence ExampLE: THE GARCH(1,1) CASE

o0
logo; = Z ¢ M—i, 1iidmn; ~ N(0,1) Write
i=1

— 2 _ 2
is strictly stationary if and only if ), ¢ < oo. Ay=a1Z; + B, Bi=op and Y,=o0;.

Then

(X¢) is stationary if and only if (o;) is stationary. ) ) ) ) 5
g, = &y + oy thl + 51 0, 1 = &g + (alztfl + /61) 0, 4

or
(5.1) Y. =AY, 1+ B;.
Notice
t
e A; and Y;_; are independent. (5.2) Z At Aipa
1=—00
[ ] ((At, Bt)) is iid. t—1 1 t
=1+ exp{(t —12) | —— log A, .
e (5.1) is a stochastic recurrence equation (SRE) or random i;w { )| t—1 j:;q i1}
coefficient autoregressive model. For fixed t, the SLLN gives as 1 — —o0,
e For constant coefficient AR model (A; = ¢), |¢| < 1 is NASC 1 =t s
Z logA; = FElogA;,
for existence of a unique stationary causal solution. t—1 i1

Hence, if —co < Elog A; < 0, (5.2) converges a.s. for every fixed ¢

Iterate back and notice that B; = By, d
an

t
. Y = ZAt“’Ai—i-lBla tez,
Yi=A- A Y+ Z A¢---Aip1 By =
i=t—r is a strictly stationary solution to SRE.



For any other stationary solution (f’i) to SRE: o If ap = 0, X; = 0 is a solution.

Y, — Y| = Ao Ay |Yieoo1 — Yioyal , , ,
e Since log(3;) < Elog(a1Z; 4+ 31) < 0, 0 < 3; < 1 is necessary

and since A;--- Ay, and |Y;_,_; — Y;_,_1| are independent, the ) .. .
for existence of a non-trivial solution.

LLN and Elog A; < 0 imply Y, =Y, a.s. for every t.

e Elog(A;) = Elog(oZ} 4+ 31) < 0 means that A, < 1 “on

Theorem 5.1. (Nelson (1990), Bougerol and Picard (1992a,b)) There exists an a.s. "
log-average”.

unique non-vanishing strictly stationary causal (i.e., depending
only on past and present values of the Z’s) solution of SRE with
B; = o if and only if

oy > 0 and Elog(a1Z? + 1) < 0.

The general GARCH case

o ’
— 2 2 2 2
Y, = <o-t+1,...,o't_q+2,Xt,...,Xt_p+2) ,
2
- aZ;+B1 B2 -+ Bgo1 Bqg a2 az -+
1 o.. 0 0O O - -0
i 0 +r .. 0 OO0 O --- 0
o
7 A, = 0 0 1 0 0 O o |,
zZ: 0 0 0 0 0
0 0 0O 0 1 O 0
0‘0 0‘2 0‘4 0‘5 0‘8 1‘0 0 0 0 0 O ]. 0
beta_1 ’
Bt:(aO,O,...,O),
Ficure 21. The (aq,B31)-areas below the two curves guarantee the existence of a stationary
GARCH(1, 1) process. Solid line: 1ID student noise with 4 degrees of freedom with variance 1. Then

Dotted line: 1ID standard normal noise.

Y =AY 1 +By, teZ.



e This is a stochastic recurrence equation.
e Notice: ((A¢, By)) iid, Y;—; and (A, B;) independent.
e Existence of stationary solution depends on top Lyapunov
exponent
y=inf {n"! Elog|A,---A]|} <O,
|| - || operator norm corresponding to norm | - |.
o In general, v cannot be calculated explicitly.

e According to the subadditive ergodic theorem,
n~tlog [[Ay - Ayl Sy,
e For GARCH(1,1), A, ---
~ = Elog(a1Z2 + 31).

Ay =[]} (1 Z} + B1) , and so
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Theorem 5.2. (Bougerol and Picard (1992a,b))
The GARCH(p, q) SRE has the a.s. unique strictly stationary

non-vanishing causal (i.e., depending only on past and present Z’s)

solution
t t—1
Y= > A AiBi=Bi+ Y Ay--- A By,

if and only if oy > 0 and v < 0. Moreover, this solution is also

ergodic.

® g > 0 ensures that X; = 0 a.s. is excluded.
° Z?:l B; < 1 is a necessary condition for v < 0.

o> 7 ja;+ > ], B <1is sufficient for v < 0 if EZ7 =1 and
EZ, = 0, and ensures that EX}? < oo.

83 84

Corollary 5.3. The GARCH(p, q) process X; = 01Z;, t € Z, with an
iid mean zero and unit variance noise (Z;) has a non-vanishing
strictly stationary causal ergodic version if and only if oy > 0 and

v < 0.

THE INTEGRATED GARCH PROCESS (IGARCH) ENGLE AND BOLLERSLEV (1986)

P q
SRS LRSS
i=1 Jj=1

IGARCH process has infinite variance; see p. 116. This is not

desirable (e.g. ACF would not make sense) and is in contrast to

statistical evidence.

alphatbeta
0.96 0.98 1.00

0.94

0.92

0.90

1960 1965 1970 1975 1980 1985 1990
time

Ficure 22. The estimated values of a1 + (31 for an increasing sample of the S&P500 log-returns.
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e How can we get heavy tails in these models in order
to achieve agreement with statistical evidence from

returns?

e What is a “multivariate tail”?

e How does one model/measure extremal dependence beyond

covariances?
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e Regular variation is a natural condition which arises in various
contexts in extreme value theory and the weak limit theory for

sums of iid and weakly dependent stationary sequences.

6. AN EXCURSION TO MULTIVARIATE POWER LAW DISTRIBUTIONS:

REGULAR VARIATION

e There is statistical evidence that the tails of various real-life
data, e.g. returns in finance, claim sizes in insurance,
ON-periods in teletraffic, are well modeled by power laws.

e A probabilistic/analytical concept to describe power law
behavior is regular variation.

e A regularly varying function is a power function which is
(possibly) perturbed by a function of “lower order”.

e This is in agreement with real-life data. In this case we can
never expect that they come from a distribution with a pure

power law tail.
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6.1. The univariate case, sce Bingham et al. (1987).

e A positive function on (0, 00) L is slowly varying if it satisfies
L(cx)/L(x) — 1 as x — oo, for each ¢ > 0.

® The random variable X and its distribution F' are regularly
varying with index a > 0 if there exist p,q > 0, p+ q = 1, and
a slowly varying function L such that as x — oo,

L(x)

x>

F(zx) = P(X >x)~p

(6.1)
F(—z) = P(X < —2) ~ q Lgif) .

e This is also called a tail balance condition.



e It is a semi-parametric assumption about the tails; L is not
specified. In particular, its behavior in any neighborhood of the

origin is not of interest.

Examples
Pareto
F(w):ﬁ, x>0, kK>0,a>0,
student
fla) = I'((n+1)/2) (14 a2/n)~MD2 LR,

- T(n/2)/7n
log-gamma

B
f(a) = % (logz)® 'z, z>1, a,>0.

e The limiting expressions determine a measure p on R\ {0}

given by

p(dt) = p o 7 Tg (1) di + g o |7 Ty (1) dt.

e In particular,
. P(z7'X € (t,00])
lim
e P(IX] > )
P(z™'X € [—o0,—t])
im
=00 P(|X| > )

= pt %= ll'(tv OO] )

= qt % = p[—o0, —t].

o Regular variation is equivalent to:
P(X €xA) (A) ( )
im ——— = vague convergence

s P(X[>x) 1 & &

for every Borel set A bounded away from zero with p(8A) = 0.
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Further: (infinite variance) stable distributions, Cauchy, Burr,
Fréchet
Notice: By virtue of Karamata’s theorem, e.g. Bingham et al. (1987), for a

regularly varying density f with index —a, a > 1,

F(z) = /oof(t) dt ~ (o — 1)"'a £(z).

e The tail balancing condition (6.1) is equivalent to: for any

t>0,

. P(X >tx)
lim ————=p
z—o0 P(|X| > )

—Q

a I P(X < —tx)
m ——— =
N T

e For such an A,

. P(XextA) P(|X|>tx)
pu(tA) = lim —
z—oo P(|X| >tx) P(|X|>x)
e Hence p satisfies the homogeneity property

t7 pn(A).
p(tA) =t “pu(A) for every t > 0.
e In spherical coordinates:

P(@=1)=pand P(O=-1) =gq.

For any t > 0 and set S C {—1,1},

. P(X|>te,X/|X]| €S)
lim

=t *P(O € S).
BT P(X] > @) 6 €8)



APPLICATIONS OF UNIVARIATE REGULAR VARIATION
X, ~ F iid
Partial maxima M, = max(Xy,...,X,).

o If

lim P(c,'(M,—d,) <z)=H(z), z€R,

n—oo
H is an extreme value distribution and F' is in the maximum

domain of attraction of H (F € MDA(H)).
e The Fréchet distribution is an extreme value distribution:

H(x) = ®o(x) = exp{—2x"*}, z>0.

o If H has infinite variance (non-Gaussian), it is regularly

varying with almost exact power law tails for some a < 2,

[e% [e%

H,(—x) ~ qcx™, Hy(x) ~pcz™™, x>0.
e FF € DA(H,) if and only if F is regularly varying with index a.
e For P(|X,| > ¢,) ~n7}, i.e., ¢, = n'/*(n) some slowly
varying £,
NSy —dp) S Y ~ H,.
e Only in a very few cases the density of an a-stable distribution
has a pleasant form, including the Cauchy distribution and the

inverse Gaussian sce Feller (1971), Samorodnitsky and Taqqu (1994).

e F € MDA (®,) if and only if F =1 — F is regularly varying

with index —a.

o F(c,) ~n7l, ie., ¢, = n'/*(n) for some slowly varying ¢, and
1 d
M, LY ~a,.

Partial sums S,, = X; +---+ X,,.

o If

lim P(c,' (S, —d,) <z)=H(z), z€R,

n—oo

H is stable and F' is in the domain of attraction of the stable

distribution H (F € DA(H)).
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6.2. Multivariate regular variation, see Resnick (1986,1987,2006).

e X € R? and its distribution are regularly varying with index
a > 0:
there exists ® € S?! such that for any t > 0, S C S% ! with
P(® €dS)=0,

P (|X| >tz,X € s)
(6.2) lim
w00 P(|X]| > z)

=t*P©€S),

where X = x/|x|. (weak convergence)

® Pg is the spectral measure of X.



e Another way of writing (6.2) is
P<|X| >tx,X € S)
lim
w00 P(|X]| > =)
P(|X]| > tx) _,

- 1 PXES’ X| >

—t“P@OcS).

e There is “asymptotic independence” between the radial and
spherical parts of X if |X] is large enough.
e The right-hand side of (6.2) can be interpreted as the

p-measure of

A(t,S) ={x: x| >t, x€S8},

Sequential definition of regular variation.
e Choose P(|X| > ¢,) ~n~1L.
e Then regular variation of X with index a and limiting measure

1 is equivalent to Hult and Lindskog (2005,2006a)
(6.3) n P(c;'X €-) = u(+),
nP<|X| > ten, X € ) Y tep@€c-), t>0.
e It is often more convenient to work with this equivalent notion

of regular variation.

e and (6.2) can be written as
. P(x'X e A(t,9))
im
amoe P(IX]| > x)
The values p(A(t, S)) determine a Radon measure p (i.e., finite

= u(A(, S)) =t p(A(1, S)).

on compact sets) on ﬁd\{O}.

e (6.2) is equivalent to vague convergence:
Pz 'Xe A
m P@XEA) 4y,
z=oo P(|X] > )
for every A bounded away from 0 with u(8A) =0, and p is a

measure on @d\{O} with homogeneity property
p(tA) = t=u(A), t>0.

e Vague convergence
PXex:) ,
S ).
P(|X| > x)

Examples of multivariate regularly varying distributions

multivariate student
multivariate F'
multivariate Cauchy
multivariate stable

multivariate Fréchet extreme value distributions



6.3. Special cases of dependence.

6.3.1. Example: Total independence.

101 102

e X = (X3, X>?) iid F, X; > 0, regularly varying with index «,

|x| = max(zy, x2).
e Notice that
nP(X| > ¢,) = n(1 — P(max(Xy, X2) < ¢,))

= [nF(ca)] (1 + F(ea)
2[nF(c,)] ~1

and therefore

F(c,) ~05n"t.
e Hence for positive z, y,
P(Xl >cpr,Xo > Cny) -~ F(wcn)F(ycn) -0
P(IX] > cn) 2 F(cn)

e The spectral measure is concentrated at the intersection

axes and the unit circle.

Teletraffic file sizes
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Ficure 24. Scatterplot of file sizes of teletraffic data.

of the

103 104

@
©
N
|
X
<
~ '. "
.' * . . .
RN .
°)
0 2 4 6 8
X1

Ficure 23. Plot of 1000 realizations from an iid sample (X;) with iid components satisfying P(X; >
z) ~ =3, The X;’s with large distance from the origin are concentrated along the axes.
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Ficure 25. Scatterplot of US fire insurance losses.



6.3.2. Example: Total dependence.
o X = (X, X) for some regularly varying X > 0 with index

a > 0, |x| = max(zy, x2).
e Then, since P(|X| > ¢,) = P(X > ¢,) ~ 1/n,
nP(X|>c,,XES) =nP(X >cp,(1,1) € 8)

~ I(l,l)(S) .

e The spectral measure is degenerate and concentrated at the

intersection of the unit sphere with the line x = y.
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Ficure 27. Scatterplot of 5 minute foreign exchange rate log-returns, USD-DEM against USD-FRF.
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Ficure 26. Left: Plot of 1000 lagged vectors X; = (Xy, X41) for the AR(1) process X411 =
0.9X; + Z; for iid symmetric regularly varying noise (Z;) with tail index 1.8. The vectors X; with
a large norm |X¢| are typically concentrated along the line y = 0.9x. Right: Scatterplot of the
pairs (X, X¢41) of the daily log-returns X of the S&P500 series. The extremes in the series do
not tend to cluster around the axes.

6.3.3. A toy model: The “2-dimensional Pareto distribution”.

® Assume
X =R (cos ®,sin ®),
where
PR>r)=r"%, r>1,
and R is independent of ® with distribution on (—, 7.
o Take Euclidean norm. Then X is regularly varying with index
a and © = (cos ®,sin ®):
P(X|>tz,X € S)
P(IX| > x)

for some a > 0,

P(R>tx,® € S)
P(R > x)
_ P(R>tx)
~ P(R>x) P©® € 5)

=t *P(O®€S),

provided min(tx,x) > 1.

e The knowledge of the distribution of ® allows for some
straightforward interpretation of the two-dimensional
dependence in the tails.
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Ficure 28. IID vectors X; from the toy model with tail index o = 5. Left: @ is uniform on (—, 7).
Right: @ has a discrete uniform distribution on the points 27i/50.

6.4. Where does multivariate regular variation appear?

6.4.1. In extreme value theory. (X;) iid with positive components.

Regular variation of X; with index a is NASC for
c;l <maxXi(1) gee ,rnaxXi(d)> L P, ,
i<n i<n

where ®, has Fréchet marginals. de Haan and Resnick (1977), sce Resnick (1987)

6.4.2. In summation theory. (X;) iid regularly varying with index

a € (0,2), NASC for
ar_ll(X1+"'+Xn_bn)i’YNSaa

where S, is a-stable, a € (0, 2). Rvaceva (1962)
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Ficure 29. Left: Spectral density estimation for the pairs (X, X¢y1) of the S&P500 returns (X¢).
The vertical lines indicate multiples of 7w /4. Right: Spectral density estimation for the pairs (X, Yz),
where (X}) is the log-return series of the DAX, (¥;) the corresponding series for the CAC40 for the
period from September 21, 1988, till August 24, 1995.
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6.4.3. In stochastic recurrence equations.

e ((A;,B;)) iid pairs of non-negative matrices and vectors, (X;)

stationary solution to the stochastic recurrence equation
(6.4) Xe=A X414+ By, teZ.
o Under general conditions,
(6.5) P((x,Xy)>x)~c(x)z™™, x— oo,

for some a > 0, and ¢(x) # 0 for x € R‘i\{ﬂ}. Kesten (1973)
e In general, there is no Cramér-Wold device for regular

variation (Kesten (1973), Hult, Lindskog (2006b)).
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e However, for A;, B; with non-negative components (6.5), for all
x # 0, is equivalent to regular variation of X. See Basrak, Davis, M.

(2002a) for non-integer o, Boman and Lindskog (2007) in the general case.

6.44. GARCH processes are regularly varying.

e Recall from p. 80 that the squared GARCH(p, q) vector

’
2 2 2 2
(0Fiisee 0% s XEse e s X0

satisfies a stochastic recurrence equation of type (6.4).
e This fact and Kesten’s result ensure that the finite-dimensional

distributions of the GARCH sequences (X;), (|Xy|), (o) are

regularly varying with some index o > 0 provided the noise

TabLe 1. Results for a when a3 = 0.1. Top: Standard normal noise. Bottom: Unit variance student
noise with 4 degrees of freedom.

B/ 0.9 0.8 07 0.6 0.5 04 03 0.2 0.1 0.0
al 2.0 12.5 16.2 18.5 20.2 21.7 23.0 24.2 25.4 26.5
31/0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89
«(11.9 11.3 10.7 9.9 9.1 81 7.0 5.6 4.0

B/ 09 08 07 0.6 0.5 04 0.3 0.2 0.1 0.0
a| 2.0 3.68 3.83 3.88 3.91 3.92 3.93 3.93 3.94 3.94
(31/0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89
a|3.65 3.61 3.56 3.49 3.41 3.29 3.13 2.90 2.54

(Z;) has a density with infinite support. The spectral measures
are not concentrated on the axes. Basrak, Davis, M. (2002b).

e In the general stochastic recurrence equation (6.4), « is given
as the solution to the equation

(6.6) 0= T}Lr&%log E||A, -« Aq]|*/2.

e Recall from p. 74 that for GARCH(1,1), A, = a1 Z? | + (1.

Then (6.6) degenerates to
E(onZ? + 3)¥* =1.

e This equation can be solved numerically for nice densities of Z.
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6.4.5. The IGARCH(1,1) case a1 + 31 = 1.
e Since EZl2 =1,
_E/‘14(11/2 == E(01Zf + ,61)‘1/2 =1
has the unique solution a = 2.
e Kesten yields regular variation with index 2 for the
finite-dimensional distributions of IGARCH:

sz(|Xd|>tm,)~(d€-) 5% ct?P(O®€E-) asx— oo.

e In particular, X; has infinite variance.



e This remains valid in the general case:

p q
Eo‘% = a0+EX12 Zai +EO’% Zﬁ]

=1 Jj=1
p q
2 E E
= &y + EO'l (87} + ,6]
i=1 j=1

= o9+ Ea’f .
Since ay > 0 is necessary for stationarity in the non-degenerate
case, the only possible conclusion is that Fo? = EX} = oo.
e Similar arguments apply to the case > " | o; + Z?:l B; > 1.
e It is an open question as to whether the finite-dimensional
distributions of the general IGARCH(p, q) process are

regularly varying with index a = 2.

e Now suppose that the following condition holds:

(6.7) For all x #0, lim P((x,X) > u)

= w(x) exists
u—oo  y~*L(u) () ’

for some slowly varying L, a > 0, where w is a finite-valued
function, w(x) # 0 for at least one x # 0.

e Then

w(tx) =t “w(x), forallt>0,x#0.

Theorem 6.1. (Basrak, Davis, M. (2002a), Boman and Lindskog (2007)) X is
regularly varying with index a > 0 with a unique spectral measure
(1) if X satisfies (6.7) for some non-integer o > 0,

(2) if X assumes values in [0, 00)? and satisfies (6.7) for some a

integer.
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6.5. Operations on regularly varying random vectors, see Jessen, M.
(2006).
6.5.1. Linear combinations.

o Linear combinations of the components of a regularly varying
random vector X are regularly varying.

e Write

Ay ={y: (x,y) > 1} for x #0.

e Then

P((x,X) > z) . Pz 'X €A,
im ———— - = lim = u(Ay),
e—oo P(|X] > ) z—oo P(|X] > )

hence (x, X) is univariate regularly varying with the same

index as X provided that pu(Ay) > 0.
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There exist examples for « integer when (6.7) does not imply
regular variation of X, Hult and Lindskog (2006b), i.e., there is no

Cramér-Wold device for regular variation.

6.5.2. Aggregation.

o If X = (Xy,...,X,) is regularly varying with index «, so is
X1+ -+ X,, and then, for example,
P(X) + 4 Xo > @)
P(|X]| > x)
e If a vector of returns (Xy,...,X,) is regularly varying with

—p{x:x14+ -+ x, >1}).

index a (e.g. GARCH), the aggregated vector is regularly

varying with the same index «.
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6.5.3. Infinite moving averages.

e (Z;) iid regularly varying with index o > 0 and tail balance

condition

P(Z, >x) ~ pP(|Z] > x)

P(Z, < —x) ~ qP(|Z] > =),

where p + q = 1.

e Then (Z,,...,Z,) is regularly varying with spectral measure at
the intersection of the unit sphere S"~! and the axes.

o Hence linear combinations of finitely many Z;’s are regularly

varying.

6.5.4. Products.

e X and Y independent, non-negative. X is regularly varying
with index v > 0, EY *"¢ < oo for some € > 0.

e Then XY is regularly varying with index «, and Breiman (1965)
P(XY >x) ~EY“ P(X >x) asx — oo.
Example. P(X > x) = ™% « > 1. Then
P(XY >x) =E[P(XY >x|Y)]

- /Ooo P(X > z/y)dP(Y < y)

- /Ow(y/w)a dP(Y <y)+ P(Y >z) ~ 2 “EY*".
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e This remains valid for infinite moving averages (e.g. FARIMA)

o0
Xie= Y ¥iZi;.
Jj=—o0

e Then (see M., Samorodnitsky (2000) for most general conditions)

P(X;>z) & N A
gcl_)I{.lom = Z [p ("/’])+ +4q (d’])—] .

j=—o00

e More generally, the finite-dimensional distributions of (X;) are

regularly varying.
o Only heavy-tailed input causes heavy-tailed output.

e For non-linear processes, light-tailed input (e.g. normal) can

cause heavy-tailed output (e.g. GARCH, see p. 114).

e X € R? regularly varying, A is a ¢ X d matrix, possibly random,

independent of X with

0 < E||A||*" < 0o for some € > 0.

e Then

PelAXE ) o
PX] sy O = Eluo AT,

where - denotes vague convergence in Rd\{O}.

Multivariate Breiman, see Basrak, Davis, M. (2002b).
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6.5.5. Application: The tails of stochastic volatility models, Davis and

M. (2001a,b, 2007b).
oo
Xy =012y, logoy= E CiMt—i -
i=0

1n; ~ N(0,1) iid, independent of iid Z; regularly varying with index
a > 0 such that P(Z, > x)/P(|Z,] > ) — p > 0.

e Then o; is log-normal, hence Eo} < oo for all p > 0.

o One-dimensional Breiman implies

P(X1 > a?) = P(0'1Z1 > 213) ~ EO’? P(Zl > :I:)

(6.8) P(X, < —x) ~ Eo} P(Z, < —x).

e We have for i # j, by Breiman,
P(Xz > ’JC,XJ' > a:) - E[P(o-zZl > 213,0'ij >x | (O't))]
P(|Xy| > z) P(|Xy| > z)
E[P(o;Zy > x| 0;) P(ojZ1 > x| 0j)]
P(O'1|Zl| > m)
E(0:0,)°[P(Z; > o))
Eoc{P(|Z1| > x)

e Similar calculations for left /right tails.

e Hence the spectral measures of the finite-dimensional
distributions of (X;) are concentrated at the intersection of the
unit spheres and the axes, as in the iid case, see p. 101

e Upper tail dependence coefficients for ¢ # j are zero:

)\U:wli_{]goP(Xi>:c|Xj>w):0.

as in the iid case.
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The one-dimensional marginals of an stochastic volatility model
are regularly varying with index «. See also Breidt and Davis (1998) for
the case of a light-tailed stochastic volatility model with Z normal.

o Multivariate Breiman implies

(X1y...,Xy) =diag(o1y...,00) (21 ..., Zy)

is regularly varying since Z = (Z; ..., Z,)’ is regularly varying,

independent of diag(oy,...,04,).

e The extremal index (see p. 55) in this stochastic volatility
model is 0 = 1 as in the iid case.

e On the other hand, the ACFs of (|X;|) and (X?) (if exist) can
decay to zero arbitrarily slowly, i.e., extremal dependence is
not related to the ACF.

e In order to get heavy tails (regular variation) in the considered
stochastic volatility model with lognormal volatility one needs
that the multiplicative noise (Z;) is regularly varying.

e This is in contrast to GARCH. In this case, light-tailed
multiplicative noise (e.g. normal) causes regular variation of

the volatility sequence (o) with index a > 0.
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e In particular, by Breiman
P(X;>=xz) = P(o1Z;>x) ~EZYP(oc >x)~ EZ}cx™“
PX; < —x) =Pl Z1 < —x) ~EZ*P(oc >x) ~ EZ%cx™".

e Compare with the corresponding result (6.8) for a SV model.

e The totality of the relations

nP(c;'X; € Cy) — p(Ca)

for a non-null measure p is equivalent to regular variation.

o Therefore: convergence in distribution of the partial maxima of
iid regularly varying vectors X; with non-negative components
is equivalent to the point process convergence above. See Resnick
(1987)

® An alternative derivation Let N, = >"}' | €(x,,v;)/c,- Then
regular variation of (X,Y) is equivalent to N, <4 N for a

PRM(p)), N, with p(tA) =t~ *u(A).
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6.6. Convergence of componentwise maxima and regular variation.
o X; = (X;,Y;) iid regularly varying with non-negative
components.

e The componentwise maxima

M, (X) = I?;lx X, and M,(Y) = rzngaani .
e Write C, = [0,a]¢, where a € [0, c0]2\{0} .
e Then by a Taylor expansion and regular variation
P(c,'Mn(X) < a1,¢,'Mu(Y) < a2)
= (1 — P(c;'X; € C))"

~ exp{—n P(c;'X; € C,)} — exp{—u(Cy)} -
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e Then
P(c;'Mu(X) < a1,¢;'M,(Y) < a3) = P(N,(C,) = 0)

— P(N(C,) = 0) = e+,

6.7. Maximum domains of attraction and copulas Galambos (1978),
Resnick (1987).
e Let X; = (X;,Y;) be iid vectors (the restriction to d = 2 is
inessential) with continuous distribution F'.
e F' ¢ MDA(H) for some extreme value distribution H if the

componentwise maxima converge in distribution:

e (M(X) = dn,x) 5 (Mn(Y)) — dny)] > Y ~ H.
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e It is (theoretically) possible to transform both marginals of X;
to some standard distribution.

e In extreme value theory it is common to transform both
marginals to unit Fréchet marginals with distribution function
P (x) =e* ', x>0.

e After the transformation F, € MDA (H,) for an extreme value
distribution H, with unit Fréchet marginals.

e In particular,
n (M, (X,), M,(Y.)) > Z, ~ H,.
e This means that FF € MDA (H) if and only if F, is regularly

varying with index 1 and unit Fréchet marginals.

® McNeil, Frey, Embrechts (2005) say that C' is in the copula domain of
attraction of D if (6.9) holds.

e This notion does not add anything to the theory.

e On the contrary, this notion is confusing since it suggests that
copula domain of attraction and MDA of an extreme value

distribution are different objects.
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e Alternatively, one can transform the marginals to uniform
U(0,1) (by the quantile transform F<).

e The resulting multivariate distribution on [0, 1]? is called the
copula of F.

o If F' is an extreme value distribution, the copula is called
extreme value copula.
o It is known Galambos (1978) that FF € MDA (H) for some extreme

value distribution H if and only if the copula C of F, i.e.,
F(x1,z2) = C(Fx(x1), Fy(22)), x1,z2€R,
satisfies
(6.9) C'(z'",y'") - D(z,y), t— oo,

for some copula D with D(z!, y') = D'(z,y).
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6.8. Upper and lower tail dependence coeflicients.
e Let X = (X3, X3) ~ F have identical marginals with support on
(0, 00)2.
e The limits (if exist)
Av = lim P(X; > x| X2 > x),
T—00
AL = lziﬁij(Xl <z| X<z
are the upper/lower tail dependence coefficients of F'.
® These limits do in general not exist.
® One needs some kind of a regular variation condition which in
general will be weaker than multivariate regular variation of

(X1, X5), e.g. hidden regular variation, sce Resnick (2006).
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o If X is regularly varying with index a and limiting measure pu, o About the use and abuse of copulas, see Mikosch (2006) and the

corresponding discussion in the journal Extremes.

P(X:>z,X; > x)
P(X; > =x)
Pz X € (1,00)?)/P(|X]| > x)

Pz X € (1,00) X (0,00))/P(|X]| > x)

Loee)

p((1,00) X (0,00))

e Since the upper tail dependence coefficient focuses on the sets
(1,00)?% it is a rather restricted way of studying extremes.
e The existence of the upper tail index does not ensure

multivariate regular variation of X.
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7. MODELING TELETRAFFIC e The integrated process (cumulative input) is believed to be
71. Some facts. well approximated by a self-similar process (such as fractional
Brownian motion, stable Lévy motion).
o Although the expected cumulative input is growing roughly

li ly th h ti h as in classical i t k:
e Since the beginning of the 1990s models have been proposed inearly through time (such as in classical queuing networks)

L. there are strong deviations from linearity due to erratic
for large communication networks (Internet, local area

behavior.
networks,...). ehavior

. . . . . . e Since work by Taqqu, Willinger, Leland, Crovella,... (1993-) and others the
e Classical queuing models for waiting and service times fail to

. . . assumption of heavy tailed distributions for file sizes,
explain typical behavior.

. . transmission durations, transmission rates,... has been
e There is general agreement that the process of active sources

accepted as a reasonable working hypothesis.
exhibits long range dependence. This notion makes sense for P & Wb

stationary processes.
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e There exists rather convincing evidence that file sizes,

transmission durations, transmission rates,... have Pareto like
<
. . . ° O
distributions:
Fx(z)=P(Xy>x)=ax™ ¢, x— 0. < o
o]
. . . . . ol ]
e Given the stationarity of the process of active sources, a is g, g
o o
often found to be between 1 and 2. (infinite variance) g gy
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Ficure 30. Time series of transmission durations (BU data).
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7.2. Standard models for the process of active sources. e A “realistic” model should, to some extent, explain the
observed phenomena: self-similarity of cumulative input,
L. . interplay between long range dependence of activity process
e Communication networks are too complex to be understood in
. and heavy tailed components.
detail.
e They are run by machines which are very fast (in contrast to
human beings) and therefore fail a lot (in contrast to human
beings who can use their brains).
e Although we do (perhaps) understand a single machine (car)
and we know that the machines’ joint behavior (Autobahn) is
directed by a protocol (traffic lights, police) we do not

understand their interplay (e.g. traffic jam).

e Therefore any model is nothing but a simplistic proxy to reality.
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7.2.1. The ON/OFF process. 7.2.2. The infinite source Poisson model.
e During a transmission, a source transmits at unit rate. .. o .
e Transmission initiations or connections of sources happen at

Otherwise, it is silent. . .
the points of a rate A homogeneous Poisson process

e Lengths of ON and OFF periods are described by two

independent iid sequences of positive random variables.
p q p "'<P—1<F0<0<F1<F2<“‘~
e The ON periods have heavy-tailed distribution.
e The activity of the network is understood as the superposition - . .. .
y perp e Transmission durations are iid random variables Y;,
of a large number of iid ON/OFF sources. independent of (')
i)

® See Taqqu, Willinger, Leland, Crovella,... (1993-1996), Heath, Resnick, Samorodnitsky ° During a transmission a source transmits at unit rate

(1998), M., Resnick, Rootzén, Stegeman (2002). e The stationary process of active sources at time ¢

Ne=> e IH{Ii <t <TIi+Y}, t>0.
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e Since the points (T';,Y;) constitute a PRM(ALeb X Fy), a

simple calculation shows

() = cov(No, Ni) = /\/hoo Ty (t) dt.

oIf Fy(t) = P(Y >t) = L(t)t %, a > 1, for some slowly varying

L, by Karamata’s theorem,
~y(h) ~A(a—1)" hFy(h) =A(a—1)"'h"*L(h), h— .

e Non-summability of v for a € (1,2) is interpreted as long range

dependence. The Hurst coefficient is H = (3 — a)/2 € (0.5, 1),

See Samorodnitsky and Taqqu (1994), Doukhan et al. (2003)

structure
cov(Bg(t), Ba(s)) = 0.5(t* + s*H — |t — s|*H) .
See M., Resnick, Rootzén, Stegeman (2002).
e Fractional Brownian motion By with H € (0.5,1) inherits long
range dependence for the increment process
By(h) — Bg(h—1), h=1,2,...,
but loses the heavy tails.
e Similar results exist for superpositions of ON/OFF processes
given the number M = My of superimposed processes grows

sufficiently fast with T'.
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e The cumulative input process
t
A(t) :/ Ny;ds, t>0,
0
has stationary increments.

7.3. Scaling limits for the cumulative input process.

e For a € (1, 2) scaling limits of (A(T't)):>o converge to spectrally
positive a-stable Lévy motion. (infinite variance, independent
increments)

e Letting the intensity A = Ar grow sufficiently fast, (fast growth)

lim AT Fy(T) =oco0 < lim cov(Ny, Np) = co.
T—oo T—oo
scaling limits of (A(T't)):>o converge to fractional Brownian

motion By with Hurst index H = (3 — «)/2 and covariance

1.8-stable motion

0.0 02 0.4 06 08 10
t

Frcure 33. 1.8-stable sample paths.



153 154

o If Ar (or M) increase too slowly (slow growth):

- lim ATTfy(T) =0 = lim COV(NO, NT) =0,
T—o0 T—o0
a-stable Lévy motion appears in the limit.

e a-stable Lévy motion inherits the heavy tails but loses the long

= range dependence of the activity processes.

e The case of intermediate growth has been treated in Gaigalas and

Kaj (2003).

=1 e In a series of papers, Levy, Pipiras, Taqqu (200...) have extended the

£l

scaling results for the ON-OFF model with random rewards.

The random reward model goes back to Tagqu and Levy (1986)

Ficure 34. Simulation of fractional Brownian sample paths By (t) on [0, 1]. Top left: H = 0.7. Top
right: H = 0.9 Bottom: H = 0.99.
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7.4. The Poisson cluster process Fay, Gonzilez-Arévalo, M., and Samorodnitsky e The points (Fl, Ki, (sz:)k) constitute a
(2006). PRM(ALeb x Fg x Fg°), N*, in R X Ny X R* and
e At the points I'; of a rate A homogeneous Poisson process on R N(a,b] = / Z?:oI{'Y + ZLO z; € (a, b} dN* (v, k, (z;)) -
Rx N xR
the first packet of the ith flow (ith activity) arrives. Lot e
e Le
e The ¢th flow of packets consists of K; packets which arrive at
times An(h) = cov(N(0,1], N(h,h +1]).
k
Yip =Ti+ Su =T + Z Xij, 0< k< K;. How can one get long range dependence for the increments
j=1
?
® (X,;)i are iid, (K;) are iid; (X;), (K;), (I';) are independent. N(h, h +1]7
e The counting process o If var(K) < oo
oo K 1
N(B) = #{(i,k): 1€ Z,0 < k< K, : Yy, € B} / yn(h) dh = AE[Z(K —k+1) / (x A (2 — m))Fsk(m)dm} < 00,
1 0

k=1
is stationary. for the generic renewal process S, = X1 + -+ - + X.
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Ficure 35. Sample ACF of the increments of the UNC packet arrival counting data.

Where do the heavy tails of Sx come from?
e Sk can be large due to large K or large X.
e P(X >z) =2 *L(z), EK < co and
P(K > z) = o(P(X > x)). Then
P(Sk >x) ~EK P(X > x).
e P(K > ) = z7PL(x) for some B > 0, EX < co and
P(X > z) = o(P(K > x)). Then
P(Sk > z) ~ (EX)’P(K > z).

e The assumptions are close to necessity.
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e Long range dependence is impossible unless var(K) = oo
whatever the distribution of X.

e This is in agreement with technological restrictions: Sk is large
due to a large number K.

o A weighted renewal argument Alsmeyer (1992) yields

(k) = AiE(K k41, / st h=1) =T m) da

k=1 (o,

h+1 oo - o
_ ,\/h (Z E(K —k+1), (Fs,(y—1) — Fsk(y))> dy .

k=1
~ AEX)*?*(a—-1)"'hP(K > h),

if P(K > x) = z~“L(«) for some a € (1,2).

e This corresponds to long range dependence.
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7.5. A more general model M. and Samorodnitsky (2007).
e A stationary marked point process on R:
(Th,Z,), mez,
with -+ . < T 1 <Tp <0< Ty <Tp, < --- arrival times of
packets and Z,, > 0 amount of work brought to the system at
time T,,.
e Active sources at time ¢
Ny=Y KT, <t < T+ Zy}

nez
e Cumulative input process

A(t) :/thds: S [Zu At =Ty — Zo A(=Tn)4], t>0.
0 nez
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7.5.1. Growth of the variance.

e The variance of the cumulative input A(t) is given by
t
var(A(t)) =2 / (t—x)g(x)dx,
0
where
g(x) = /2 , I{s1 <0< s1+u,sy < x< s+ us} v2(dsy, dss, duy, dus) ,
RExXRY
and 7. is the covariance measure of the stationary MPP.
e Assume g is regularly varying with index 8 < 0. If 3 € (—1,0]
then
Var(A(t)) ~ mtzg(t) 9 t— o0.

If B3 < —1 then var(A(t)) ~ C't.

7.5.2. Scaling limits for the superposition of cumulative input
processes.
Fast growth.
e Consider the superposition of iid centered copies A; of the
cumulative input A:
n
Dpr =) (Ai(tT) — ptT), t>0.
e Stationary incremel:tls of A and the CLT for iid vectors yield
n_1/2Dn’T(t) 4, GitT), n— oo,
where G is centered Gaussian with stationary increments and

var(G(t)) = var(A(t)).
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e The function g describes the memory in the cumulative input
process A.
e Examples. ON-OFF. g(t) ~ ct Fonx(t) if Fon € RV(—a),
a € (1,2). Then
var(A(t)) ~ ca t*Fon(t) € RV(3 — ).
Marks independent of the ground point process (T},). This case
can be difficult in general, but for (7)) homogeneous Poisson
with rate A,
g(t) ~ANE(Z — )4 ~ Ao — 1)t Fy(t)
if Fz € RV(—a), a > 1, and for a € (1,2),

var(A(t)) ~ cat? Fz(t) € RV(3 — ).
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oIf g € RV(8), B € (—1,0] (hence var(A(t)) € RV(2 + 3)),
(var(A(T)))"2G(tT) % Bu(t), T — oo,
where H =1 + 3/2.
elf g € RV(—p), B < —1 (hence var(A(t)) ~ ct), H = 0.5
(Brownian motion).
e The results remain valid for \,, — oo satisfying a fast growth

condition [n var(A(A,))]/A? — oo (Lyapunov condition):

[n Var(A()\n))]_l/2 D,z (t) = [n Var(A()\n))]_l/2 Z(Ai()\n t) — utA,)

< Bu(t).

e This follows by Lyapunov’s CLT.



Slow growth.
eLet M(t) = #{i € Z: T, € [0,t]} be the ground counting
process.
e The cumulative input of a single source can be decomposed as
follows if the stationary marks Z,, have a finite first moment

EyZ under the Palm measure:

M (t)
> (Zi— BoZ) + EoZ (M(t) — At) + Op(1)
e

=Y (Zi— AEoZ (T — Tin-1)) + Op(1).

=1

A(t) — pt
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e Fractional Brownian motion is a possible limit process as well,
e.g. when (7T;,) comes from a Poisson cluster process: at each
(homogeneous) Poisson point an independent cluster point
process of type

N[0,t] = No[0,¢] A (K +1), t>0,
starts, where Fx € RV(—a), a € (1,2), independent of the

process Ny with increasing arrivals TT(LO) > 0. If the condition

E(Téo)) < ¢n® fails, fractional Brownian motion may occur as a

limit.
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7.

e A variety of limit processes is possible for the workload of a
single source with a regularly varying scaling function
a € RV(«a) for some a > 0,
(a(T) ™ (A(T) — ptT) 5 V(t) .
e a-stable Lévy motion V, a € (1, 2], is one out of many possible
limits.
e The scaling limit is inherited by the superposition of iid

workload processes under slow growth conditions on A,:

(@)™ Do (8) = D (Aint) = pAnt) 5 V(1) -

6. Conclusions.

e The general stationary MPP includes the classical models
(ON-OFF, infinite source Poisson) and allows for flexible
modeling of dependence of the inter-arrival times T,, — T, 1,
the clustering behavior due to the arrival of an impulse
generating a flow of activities, as well as dependence between
the arrival sequence (7T},) and the mark sequence (Z,).

o The memory in the workload depends on a variety of factors
such as the tails of the inter-arrival times or the tails of the
activities initiated at an arrival T,, or the number of activities

started at T,,.



e Fractional Brownian motion and a-stable Lévy motion are
typical scaling limits of one source as well as of the
superposition of an increasing number of iid workload
processes, but many other limits may occur as well.

e However, fractional Brownian motion seems to be a “more

robust” limit than others.
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