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1 Introduction

A remarkable property of Efron’s (1979) nonparametric bootstrap is the,
so called, second-order correctness first observed by Singh (1981). Singh
(1981) showed that the asymptotic accuracy of bootstrap approximation to
the distribution function of the standardized sample mean is comparable to
the one-term Edgeworth corrected normal approximation. Since then the
phenomenon of the second order asymptotic accuracy of the nonparametric
bootstrap has been studied by many authors (Babu and Singh (1983, 1984),
Bhattacharya and Qumsiyeh (1989), Hall (1988, 1992), Helmers (1991), etc).
The second order correctness of the bootstrap approximation was shown
for a large class of asymptotically linear statistics admitting an Edgeworth
expansion.

For samples drawn without replacement, the second-order correct boot-
strap approximations were constructed by Booth, Butler and Hall (1994), see
also Chen and Sitter (1993) and Sitter (1992). Booth, Butler and Hall (1994)
considered Studentized versions of stratified sample means, and Studentized
estimates based on ratio and regression estimators which are smooth func-
tions of vector means.

The present paper focuses on U−statistics. There are several reasons
to consider U statistics in this context. Firstly, many U statistics are not
smooth functions of (multivariate) sample means and, therefore, the results
(and techniques) of Booth, Butler and Hall (1994) are not applicable to
them. Secondly, U statistics provide good approximations to general sym-
metric statistics via Hoeffding’s decomposition. In this way, results obtained
for U statistics can be extended to more general asymptotically linear statis-
tics. We show that the without-replacement bootstrap introduced in Booth,
Butler and Hall (1994) provides second-order correct approximation to the
distribution function of Studentized U−statistics. Similar approximation
accuracy is shown to hold also for a version of the without-replacement
bootstrap by Bickel and Freedman (1984) and Chao and Lo (1985) but with
a randomized resample size. In Section 2 we present the results. Proofs are
given in Section 3.

Acknowledgement. I would like to thank Prof. R. Helmers for valuable
discussion that motivated present study.
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2 Results

Before presenting the results we introduce some notation related to finite
population U statistics.

2.1. Preliminaries. Let X = {x1, . . . , xN} denote a finite popula-
tion. Assume that we want to estimate the population expression u =∑

1≤i<j≤N t(xi, xj), where t is a real valued function symmetric in its argu-
ments (i.e., t(x, y) = t(y, x)). The U− statistic

û = ûn(X) =

(
N
2

)
(
n
2

)
∑

1≤i<j≤n

t(Xi, Xj) (1)

based on the simple random sample X = {X1, . . . , Xn} drawn without re-
placement from X is an unbiased estimator of u. U−statistics generalize
linear estimators. In particular, choosing t(x, y) = 1

2(N
2 )

(x + y) we obtain

the sample mean û = n−1(X1 + · · · + Xn). For t = 1

(N
2 )
|x − y| we obtain

Gini’s mean difference estimator.
In order to make an inference about the unknown population value u

we need good approximations to the distribution function of (properly stan-
dardized) estimator û. We shall construct bootstrap approximations to the
distribution function of Studentized U−statistic F (x) = P{û − u ≤ xS},
where

S2 = S2(X) =
N − n

N

n− 1
n

n∑

i=1

(
ûn−1(Xi)− u

)2 (2)

is the jackknife estimator of variance of û. Here u = 1
n

∑n
i=1 ûn−1(Xi), Xi

denotes the simple random sample of size n−1 obtained from X by removing
the observation Xi.

It is convenient to represent û by the sum

û = u + L + Q, (3)

where L = w
∑n

i=1 g(Xi) and Q = w
∑

1≤i<j≤n ψ(Xi, Xj) are uncorrelated.
Here

g(Xi) = (n− 1)
N − 1
N − 2

h(Xi) (4)

and

ψ(Xi, Xj) = t(Xi, Xj)−Et(Xi, Xj)− N − 1
N − 2

(h(Xi) + h(Xj)) (5)
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are uncorrelated, h(x) = E
(
t(X1, X2) − Et(X1, X2)|X1 = x

)
and w = (N

2 )
(n
2)

.

By the Erdős-Rényi (1959) central limit theorem, for large n, the distribu-
tion of the linear statistic L can be approximated by the normal distribution.
In the case where the linear part L dominates the statistic (this corresponds
to the case of non degenerate U−statistics in the i.i.d. setup) the normal ap-
proximation applies to û as well. An improvement upon the normal approx-
imation is provided by an Edgeworth expansion. The one-term Edgeworth
expansion of the distribution function F (x) is

G(x) = Φ(x) +
(1− 2f)α + (2− f)α x2 + 3τ2 κ (x2 + 1)

6τ
Φ′(x). (6)

Here Φ denotes the standard normal distribution function and Φ′ denotes
its derivative, f = n/N denotes the sample fraction, τ2 = N f (1− f), and

α = σ−3Eg3(X1), κ = σ−3Eψ(X1, X2)g(X1)g(X2), σ2 = Eg2(X1).
(7)

Let us note, that the decomposition (3) (called Hoeffding’s decomposi-
tion) was first used in Hoeffding (1948) in the case of independent observa-
tions. Using Hoeffding’s decomposition Bentkus, Götze and van Zwet (1997)
constructed second order aproximations to distribution functions of general
asymptotically linear symmetric statistics of independent observations.

For samples drawn without replacement Hoeffding’s decomposition was
studied in Bloznelis and Götze (2001) and Zhao and Chen (1990). The
one-term Edgeworth expansion for finite population Student statistic is
shown in Babu and Singh (1985). Edgeworth expansion of finite population
U−statistics was constructed by Kokic and Weber (1990). The expansion
(6) is shown in Bloznelis (2003). For i.i.d. samples the one-term Edgeworth
expansion of Studentized U− statistics was shown in Helmers (1991).

2.2. Bootstrap The without replacement bootstrap (Bickel and Freed-
man (1984), Chao and Lo (1985), Booth, Butler and Hall (1994)) approxi-
mates the distribution of an estimator θ̂n(X) by the conditional distribution
(given X) of θ̂n(X∗), where X∗ is the simple random sample of size n drawn
without replacement from an empirical population X ∗. Elements of empir-
ical (bootstrap) population are replicates of the observations X1, . . . , Xn.
In the case where the population size is a multiple of the sample size, i.e.,
N = nk, put X ∗ = ∪k

j=1X ∗
j , where, for every j, X ∗

j = {Xj1, . . . , Xjn} is a
copy of X. For N = nk + l and 0 < l < n, two ways of generating X ∗ are
considered in the literature. Booth, Butler and Hall (1994) define the empir-
ical population X ∗ = (∪k

j=1X ∗
j ) ∪ {Y1, . . . , Yl} of size N by adding elements
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Y1, . . . , Yl drawn without replacement from X. Bickel and Freedman (1984)
and Chao and Lo (1985) define X ∗ via randomization: X ∗ = X ∗

[k] with prob-
ability γ and X ∗ = X ∗

[k+1] with probability 1− γ. Here, for h = 1, 2, . . . , we
denote X ∗

[h] = ∪h
j=1X ∗

j . In what follows the two bootstrap procedures are
called BBH bootstrap and BFCL bootstrap respectively.

We shall consider the accuracy of BBH and BFCL bootstrap approx-
imations when both the population size and the sample size are large.
It is convenient to introduce a sequence of populations X (ν) and a se-
quence of statistics û(ν) defined by (1) and based on simple random samples
X(ν) = {X(ν)

1 , . . . , X
(ν)
n } drawn without replacement from X (ν). Here the

kernel t = t(ν) the sample size n = n(ν) and the population size N = N (ν)

all depend on ν = 1, 2, 3, . . . . In order to keep the notation simple we shall
skip the superscript ν whenever this does not cause an ambiguity.

We shall assume that n,N −n →∞ as ν →∞. Furthermore we assume
that there exists a constant C0 > 0 such that for every ν = 1, 2, . . . we have

0 < Et6(X1, X2)/s6 < C0, where s2 = Eh2(X1) > 0. (8)

2.2.1. Without-replacement BBH bootstrap. Write N = nk + l,
where 0 ≤ l < n. Let X̃ = {X̃1, . . . , X̃n} be the simple random sample
drawn without replacement from the population X̃ := X ∗

[k] ∪ Y, where Y =
{Y1, . . . , Yl} denotes the simple random sample drawn without replacement
from X. Introduce the resampling estimator of û

Un(X̃) =

(
N
2

)
(
n
2

)
∑

{x,y}⊂X̃
v(x, y), (9)

where
v(Xi, Xj) = t(Xi, Xj)I{i6=j}, for Xi, Xj ∈ X. (10)

Note that using the kernel v instead of t we avoid possibly undefined quan-
tities t(Xi, Xi). Write, for short, Ũ = Un(X̃). The conditional distribution
function

F ∗(x) = P{Ũ − E(Ũ |X,Y) ≤ x S̃
∣∣X},

is the BBH bootstrap approximation of F (x). Here S̃2 = S2(X̃) denotes the
jackknife estimate (2) of the conditional variance of Ũ given X and Y.

We show that F ∗ is the second order correct approximation of the dis-
tribution function F as n,N − n →∞, i.e.,

F (x) = F ∗(x) + oP (τ−1). (11)
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We outline the proof of (11). Let F̃ (x) = P{Ũ −E(Ũ |X,Y) ≤ x S̃
∣∣X,Y}

denote the conditional distribution function given X and Y and let G̃(x)
denote the one-term Edgeworth expansion of F̃ (x) given by (6). Thus, G̃(x)
is obtained by replacing α and κ in (6) by respective conditional moments
α̃ and κ̃ of Ũ = Un(X̃) given X and Y. Let E∗ denote the conditional
expectation given X. We have F ∗(x) = E∗F̃ (x). Write

F̃ (x)− F (x) = r1 + r2 + r3, (12)

where r1 = F̃ (x)−G̃(x), r2 = G̃(x)−G(x) and r3 = G(x)−F (x). Introduce
the event A = {|s̃2−s2| < s2/2}, where s̃2 is the BBH bootstrap estimate of
s2 defined in (24) below. Let A denotes the complement event. From (12)
we obtain that

|F ∗(x)− F (x)| ≤ R1 + R2 + R3 + R4, (13)

where R1 =
∣∣E∗(F̃ (x)− G̃(x))IA

∣∣, R2 =
∣∣E∗(G̃(x)−G(x))IA

∣∣, R3 = |G(x)−
F (x)|, and R4 = E∗IA.

Theorem 1 in Bloznelis (2003) provides an explicit estimate for |G(x)−
F (x)| which yields the bound R3 = o(τ−1) under moment conditions on
L and Q and asymptotic nonlatticeness condition on the linear part L. In
order to show that R1 = oP (τ−1) we apply the law of large numbers to the
estimate of |F̃ (x) − G̃(x)| provided by Theorem 1 (ibidem). Finally, the
bounds Ri = oP (τ−1), i = 2, 4 follow from Theorem 1 below. Collecting
the bounds Ri = oP (τ−1), for i = 1, 2, 4 and R3 = o(τ−1) in (13) we obtain
(11).

Theorem 1. Assume that (8) holds. Then

E∗(α̃−α) IA = OP (n−1/2), E∗(κ̃−κ) IA = OP (n−3/2), E∗IA = OP (n−1).
(14)

2.2.2. Without-replacement BFCL bootstrap. Given integers h
and m let X? = {X?

1 , . . . , X?
m} be the simple random sample drawn without

replacement from the population X ∗
[h]. Introduce the statistic

U?
h,m = U?

h,m(X?) =

(
Nh
2

)
(
m
2

)
∑

{x,y}⊂X?

v(x, y), (15)

and the conditional distribution function

F ?
h,m(x) = P{U?

h,m −E(U?
h,m|X) ≤ xS?

h,m

∣∣X}. (16)
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Here Nh = nh, the kernel v is defined in (10), and S?2
h,m denotes the jack-

knife estimate (2) of the conditional variance of U?
h,m given X.

BFCL bootstrap approximation F ?(x) of F (x) is defined as follows. For
N = nk put F ?(x) = F ?

k,n(x). For N = nk + l with 0 < l < n, put

F ?(x) = γF ?
1 (x) + (1− γ)F ?

2 (x), (17)

where we denote, for short, F ?
1 (x) = F ?

k,m1
(x) and F ?

2 (x) = F ?
k+1,m2

(x). The
integers m1,m2 are defined by the inequalities

m1 ≤ fnk < m1 + 1, and m2 − 1 < fn(k + 1) ≤ m2. (18)

The probability γ satisfies the equation

γ

√
n√

m1
+ (1− γ)

√
n√

m2
= 1. (19)

We show that F ? is the second order correct approximation of the dis-
tribution function F as n,N − n →∞, i.e.,

F (x) = F ?(x) + oP (τ−1). (20)

We outline the proof of (20). For j = 1, 2, let G?
j (x) denote the one-term

Edgeworth expansion (6) of F ?
j (x), where α and κ are replaced by respective

conditional moments α?
j and κ?

j of U?
j given X, and f, τ are replaced by

fj , τj . Here we denote U?
1 = U?

k,m1
and U?

2 = U?
k+1,m2

and f1 = m1/nk,
f2 = m2/n(k + 1), and τ2

j = mj(1− fj). We have

F ?(x)− F (x) = γR11 + (1− γ)R12 + R2 + R3, (21)

where R1.j = F ?
j (x) − G?

j (x), R2 = γG?
1(x) + (1 − γ)G?

2(x) − G(x), and
R3 = G(x)−F (x). In order to show that R1.j = oP (τ−1) we apply Theorem
1 of Bloznelis (2003) which provides an explicit estimate for |F ?

j (x)−G?
j (x)|.

The bounds R1.j = oP (τ−1), j = 1, 2, then follow by the law of large numbers
applied to this estimate. Furthermore, the bound R2 = oP (τ−1) follows from
Theorem 2 below. The bound R3 = o(τ−1) is shown in (13). Collecting these
bounds in (21) we obtain (20).

Theorem 2. Assume that (8) holds. Then, for j = 1, 2, we have as
n,N − n →∞

α?
j − α = OP (n−1/2), τ2

j κ?
j − τ2κ = OP (n−3/2), (22)

fj − f = O(N−1),
γ

τ1
+

1− γ

τ2
− 1

τ
= O(n−1). (23)
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Remark. Theorems 1 and 2 yield the bootstrap approximation accuracy
bound OP (τ−2) in (11) and (20) in the case where the one-term Edgeworth
expansion is valid with the error O(τ−2). Such error bound can be shown
under a Cramér type condition on the linear part L and moment conditions
on L and Q, cf. Bloznelis and Götze (2001).

3 Proofs

We give the proof of Theorem 1. The proof of Theorem 2 is much the same.
Denote s2 = Eh2(X1), a = Eh3(X1) and b = Eψ(X1, X2)h(X1)h(X2).

We have α = a/s3 and κ = b/s3A, where A = (n− 1)N−1
N−2 .

Let us define the bootstrap estimates of s2, a, b and α, κ. Let {X∗
1 , X∗

2 , X∗
3}

be the simple random sample of size 3 drawn without replacement from the
(random) set X. The naive bootstrap estimates of s2, a, b are the conditional
moments (given X)

s2
0 = E∗h2

0(X
∗
1 ), a0 = E∗h3

0(X
∗
1 ), b0 = E∗ψ0(X∗

1 , X∗
2 )h0(X∗

1 )h0(X∗
2 ),

where h0(x) = E∗(t(X∗
1 , X∗

2 )−E∗t(X∗
1 , X∗

2 )|X∗
1 = x), and

ψ0(x, y) = t(x, y)−E∗t(X∗
1 , X∗

2 )− n− 1
n− 2

(h0(x) + h0(y)).

Furthermore, α0 = a0/s3
0 and κ0 = b0/s3

0A are naive bootstrap estimates of
α and κ.

Let Ẽ denote the conditional expectation given X and Y. Introduce the
BBH bootstrap estimates

s̃2 = Ẽh̃2(X̃1), ã = Ẽh̃3(X̃1), b̃ = Ẽψ̃(X̃1, X̃2)h̃(X̃1)h̃(X̃2), (24)
α̃ = s̃−3ã, κ̃ = A−1s̃−3b̃.

Here

h̃(x) = Ẽ
(
v(X̃1, X̃2)− Ẽv(X̃1, X̃2)

∣∣X̃1 = x
)
,

ψ̃(x, y) = v(x, y)− Ẽv(X̃1, X̃2)− N − 1
N − 2

(h̃(x) + h̃(y)).

In the proof we show that the bootstrap estimates ã, b̃, s̃2 are close to the
corresponding naive bootstrap estimates a0, b0, s

2
0 and that the latter ones

are consistent.
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Denote t0 = Et(X1, X2), t̃ = Ev(X̃1, X̃2) and for xi, xj ∈ X write

v0(xi, xj) = (t(xi, xj)− t0)I{i6=j}, ṽ(xi, xj) = v(xi, xj)− t̃,

u0 = E∗v0(X∗
1 , X∗

2 ), ũ = Ẽṽ(X̃1, X̃2). (25)

Observe, that Eu0 = Eũ = 0. Furthermore, a calculation shows that

t̃ = (1− δ)t0, δ = k(N + l − n)/N(N − 1) < 1/n.

In the proof we use the fact that values of moments a0, b0, s0, α0, κ0 (respec-
tively ã, b̃, s̃, α̃, κ̃) remain unchanged if we replace t by v0 (respectively v by
ṽ) in the expressions defining these moments. We shall assume that given X
the collections of random variables {X∗

1 , X∗
2 , X∗

3} and Y = {Y1, . . . , Yl} are
conditionally independent.

Proof of Theorem 1. We can assume without loss of generality that
s2 = 1.

In order to prove that E∗IA = OP (n−1) we show that for all ε > 0

P{|s̃2 − 1| > ε} = O(n−1). (26)

For this purpose we write write s̃2 − 1 = s̄2 − ũ2 − 1 where

s̄2 = Ẽh̄2(X̃1), h̄(x) = Ẽ
(
ṽ(X̃1, X̃2)

∣∣X̃1 = x
)
. (27)

Combining Chebyshev’s inequality with moment bounds (56) and (57) we
obtain (26).

Let us prove that

E∗(α− α̃) IA = OP (n−1/2). (28)

Firstly, we replace α̃ by α = a/s̃3, where a = Ẽh̄3(X̃1). Write

E∗(α− α̃) IA = E∗(α− α) IA + r,

where r = E∗(α − α̃)IA. We prove that r = OP (n−1/2). It suffices to show
that E|r| = O(n−1/2). The latter bound follows from the inequalities

|α− α̃|IA ≤ c|a− ã|IA ≤ c|ũ3|+ c|ũ|

and the moment inequalities of Lemma 3.2.
Secondly, we show that

E∗(α− α) IA = OP (n−1/2). (29)
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Note that |α − a| ≤ c|a(s̃2 − 1)|, for |s̃2 − 1| < 1/10, and α = a for s2 = 1.
We obtain

(α− α) IA = (a− a)IA + R1 = (a− a) + R1 + R2,

where |R1| ≤ c|a(s̃2− 1)| and R2 = (a− a) IA. In order to prove the bounds
E∗Ri = OP (n−1/2) we show that E|Ri| = O(n−1/2), i = 1, 2. We apply
Cauchy-Schwartz to E|R1|

E|a(s̃2 − 1)| = E|a(s̄2 − ũ2 − 1)|
≤ c(Ea2)1/2(E(s̄2 − 1)2)1/2 + c(Ea2)1/2(Eũ4)1/2

= O(n−1/2)

In the last step we apply (55), (56), (57). Similarly, by (26), (55), we have

E|R2| ≤ |a|P(Ā) + (Ea2)1/2P1/2(Ā) = O(n−1/2).

In order to prove (29) it remains to show that E∗a−a = OP (n−1/2). For
this purpose we write a− a = a− a0 + a0 − a, where

a0 = E∗h3
∗(X

∗
1 ), h∗(x) = E∗(v0(X∗

1 , X∗
2 )|X∗

1 = x), (30)

and combine the bounds

E∗a− a0 = OP (n−1/2), a0 − a = OP (n−1/2). (31)

The second bound follows from (44). Let us prove the first bound of (31).
For this purpose it is convenient to write the function h̄ in the form

h̄(x) =
1

N − 1
(
kSx + S̄x + t0δ

′) = δnh∗(x) +
1

N − 1
∆̄x, (32)

for x ∈ X, where we denote δn = N
N−1

n−1
n ,

Sx =
∑

y∈X
v0(x, y), S̄x =

∑

y∈Y
v0(x, y),

∆̄x = ∆x + t0δ
′, ∆x = S̄x − l

n
Sx

and where δ′ = I{x/∈Y} − k(n− l)/N satisfies |δ′| ≤ 1. We have

a =
1
N

(
k

∑

x∈X
h̄3(x) +

∑

x∈Y
h̄3(x)

)
=

1
N

(
I1 + I2),
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where

I1 =
(
k +

l

n

) ∑

x∈X
h̄3(x), I2 =

∑

x∈Y
h̄3(x)− l

n

∑

x∈X
h̄3(x).

In order to prove (31) we shall show that

E∗N−1I1 − a0 = OP (n−1/2), E∗N−1I2 = OP (n−1/2). (33)

Let us prove the first bound. It follows from (32) that

N−1I1 = δ3
na0 + R, |R| ≤ c

3∑

i=1

N−iri, (34)

where ri = E∗|h3−i∗ (X∗
1 )∆̄i

X∗
1
|. Combining of (58), (55) and Hoelder’s in-

equality gives Eri = O(li/2). Therefore, we have R = OP (N−1/2) and (33)
follows from (34).

Let us show the second bound of (33). It follows from (32) that I2 =
δ3
nR1 + R2, where

R1 =
∑

x∈Y

(
h3
∗(x)−E∗h3

∗(Y1)
)
, |R2| ≤ c

3∑

i=1

N−i(r′i + r′′i ),

r′i =
∑

x∈X
|h3−i
∗ (x)∆̄i

x|, r′′i =
l

n

∑

x∈X
|h3−i
∗ (x)∆̄i

x|.

It follows, by symmetry and Hoelder’s inequality that

Er′i ≤ nE|h3−i
∗ (X∗

1 )∆̄i
X∗

1
| ≤ n

(
Eh6−2i

∗ (X∗
1 )

)1/2(E∆̄2i
X∗

1

)1/2 ≤ cn li/2.

In the last step we applied (55) and (58). The same bound holds for Er′′i as
well. We obtain the bound N−1E∗R2 = OP (N−1/2). Furthermore, we have,
see (61), E∗R2

1 ≤ lE∗
(
h3∗(Y1) − E∗h3∗(Y1)

)2. Therefore, by (55), ER2
1 ≤ cl.

We obtain N−1E∗R1 = OP (N−1/2) thus showing (33). The proof of (28) is
complete.

Let us prove the bound E∗(κ − κ̃) IA = OP (n−3/2). In view of the
assumption s2 = 1 it suffices to show that

E∗(b− b̃/s̃3) IA = OP (n−1/2). (35)

Before the proof of (35) we introduce some notation. For h̄ and h∗
defined (27) and (30) write

b′ = Ẽv′(X̃1, X̃2), v′(x, y) = ṽ(x, y)h∗(x)h∗(y),
b′′ = E∗v0(X∗

1 , X∗
2 )h∗(X∗

1 )h∗(X∗
2 ), b̄ = Ẽṽ(X̃1, X̃2)h̄(X̃1)h̄(X̃2).
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The proof of (35) is similar to that of (28). Combining the bound, see
(56), (57), E(s̃2 − 1)2 = O(n−1) and the bound, see (26), P(Ā) = O(n−1)
we show that

E∗(b− b̃/s̃3)IA = E∗(b− b̃) + OP (n−1/2). (36)

Furthermore, invoking (56) and the identity Ẽ(h̃(X̃2)|X̃1) = −1
N−1 h̃(X̃1) we

obtain
E∗b̃ = E∗b̄ + OP (n−1/2). (37)

Next we replace b̄ by b′, that is, we show that

E∗b̄ = E∗b′ + OP (n−1/2). (38)

Note that (38) follows from the identity, see (32),

b̄ = δ2
nb′ +

2δn

N − 1
R1 +

1
(N − 1)2

R2,

and the bounds E∗Ri = OP (l1/2), i = 1, 2. Here

R1 = Ẽṽ(X̃1, X̃2)h∗(X̃2)∆̄X̃1
, R2 = Ẽṽ(X̃1, X̃2)∆̄X̃1

∆̄X̃2
.

We shall show the bound E∗R1 = OP (l1/2) only. To this aim we prove that
EE∗|R1| ≤ cl1/2. Combining Cauchy-Schwartz

|R1| ≤ (AB)1/2, A = Ẽṽ2(X̃1, X̃2)(h∗(X̃2))2, B = Ẽ∆̄2
X̃1

with the simple bound EE∗A = O(1) and inequalities

B =
1
N

∑

x∈X̃
∆̄2

x ≤ N−1(k + 1)nE∗∆̄2
X∗

1

and, see (58), EE∗∆̄2
X∗

1
≤ cl we obtain the inequality EE∗R1 ≤ cl1/2.

Finally, (35) follows from (36), (37), (38) and the following bounds

b′′ −E∗b′ = OP (n−1/2), b− b′′ = OP (n−1/2). (39)

The second bound of (39) follows from (44). Let us prove the first bound.
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We have

b′ =
1(
N
2

)
(
k2

∑

{x,y}⊂X
v′(x, y) +

(
k

2

) ∑

x∈X
v′(x, x) + +k

∑

x∈X

∑

y∈Y
v′(x, y) +

∑

{x,y}⊂Y
v′(x, y)

)

=
1(
N
2

)
(
N ′I1 + kI2 +

((k

2

)
+

kl

n

)
I3 + I4

)
,

I1 =
∑

{x,y}⊂X
v′(x, y), I2 =

∑

x∈X

∑

y∈Y
v′(x, y)− l

n

∑

x∈X

∑

y∈X
v′(x, y),

I3 =
∑

x∈X
v′(x, x), I4 =

∑

{x,y}⊂Y
v′(x, y)−

(
l
2

)
(
n
2

)
∑

{x,y}⊂X
v′(x, y).

Here N ′ = k2 + 2k l
n + (l

2)
(n
2)

satisfies 1 ≥ (n
2)

(N
2 )

N ′ ≥ 1− 2
n . Therefore, the first

bound of (39) follows from the bounds

1(
n
2

)E∗I1 = b′′ + OP (n−1/2),
k2

N2
E∗I3 = OP (n−1/2), (40)

k

N2
E∗I2 = OP (n−1/2),

1
N2

E∗I4 = OP (n−1/2). (41)

The first bound of (40) follows from the identity

1(
n
2

)E∗I1 = E∗v′(X∗
1 , X∗

2 ) = b′′ + (t0 − t̃)E∗h∗(X∗
1 )h∗(X∗

2 )

and the inequality |t̃ − t0| ≤ cn−1. The second bound of (40) follows from
the identity EE∗I3 = −nt̃Eh2∗(X∗

1 ).
In order to prove (41) we show that

EE∗I2 = O(nl1/2), EE∗I4 = O(l3/2). (42)

Given X let Z1, . . . , Zl be the simple random sample drawn without re-
placement from the population {zi =

∑
x∈X v′(x, Xi), Xi ∈ X}. We have

I2 =
∑l

i=1(Zi − E∗Zi) and, see (62), E∗I2
2 ≤ clE∗(Z1 − E∗Z1)2. The first

bound of (42) follows from the inequalities

(EE∗I2)2 ≤ EE∗I2
2 ≤ lEE∗(Z1 −E∗Z1)2 = O(n2l).

Let us prove the second bound of (42). Given X the random variable I4 is a
centered U−statistic based on the simple random sample Y1, . . . , Yl. An ap-
plication of (62) gives E∗I2

4 ≤ cl3E∗(v′(Y1, Y2)−E∗v′(Y1, Y2))2. Finally, the

13



inequalities (EE∗I4)2 ≤ EE∗I2
4 = O(l3) show (42). The proof of Theorem 1

is complete.

Lemma 3.1. Assume that (8) holds. Then as n, (N − n) →∞ we have

s−2s2
0 − 1 = OP (n−1/2), u0 = OP (n−1/2), (43)

α0 − α = OP (n−1/2), κ0 − κ = OP (n−3/2).

Proof of Lemma 3.1. Stochastic bounds (43) follow by the law of large
numbers. We can assume without loss of generality that s2 = 1. In order to
prove (43) it suffices to show that

s2
0 − 1 = OP (n−1/2), u0 = OP (n−1/2), (44)

a0 − a = OP (n−1/2), b0 − b = OP (n−1/2).

We give the proof of (44) for s2
0 and u0 only. The proof for a0 and

b0 is much the same. The first two bounds of (44) follow by Chebyshev’s
inequality from the moment inequalities

Eu0 = 0, Varu0 ≤ cn−1Et2(X1, X2), (45)∣∣Es2
0 − 1

∣∣ ≤ cn−1Et2(X1, X2), Var s2
0 ≤ cn−1Et4(X1, X2). (46)

We prove (45), (46). The identity Eu0 = 0 is obvious. The second bound
of (45) follows from Lemma 3.3 (i). Let us prove (46). For x ∈ X write

h0(x) =
1

n− 1
Sx − u0, Sx =

∑

y∈X\{x}
v0(x, y).

We have

s2
0 = E∗

( 1
n− 1

SX∗
1
− u0

)2 = E∗
( 1
n− 1

SX∗
1

)2 − u2
0

=
1

n(n− 1)2
∑

x∈X
S2

x − u2
0. (47)

A calculation shows that
∑

x∈X
S2

x = 2
∑

{x,y}⊂X
v2
0(x, y) + 2

∑

x∈X

∑

{y,z}⊂X\{x}
v0(x, y)v0(x, z)

= 2
(

n

2

)
E∗v2

0(X
∗
1 , X∗

2 ) + 2n

(
n− 1

2

)
E∗v0(X∗

1 , X∗
2 )v0(X∗

1 , X∗
3 ).(48)
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From (47) and (48) we obtain

s2
0 =

1
n− 1

E∗v2
0(X

∗
1 , X∗

2 ) +
n− 2
n− 1

E∗v0(X∗
1 , X∗

2 )v0(X∗
1 , X∗

3 )− u2
0. (49)

Therefore, we have, by symmetry, that

Es2
0 =

1
n− 1

Ev2
0(X1, X2) +

n− 2
n− 1

Ev0(X1, X2)v0(X1, X3)−Eu2
0. (50)

The proof of the following identity is similar to that of (49),

s2 =
1

N − 1
Ev2

0(X1, X2) +
N − 2
N − 1

Ev0(X1, X2)v0(X1, X3). (51)

It follows from (50) and (51) that

s2 −Es2
0 = Eu2

0 + R, where |R| ≤ cn−1Et2(X1, X2).

Finally, invoking (45) we obtain the first bound of (46).
Let us prove the second bound of (46). Denote ϕ2(x, y) = v2

0(x, y) −
Ev2

0(X1, X2) and

ϕ3(x, y, z) = v0(x, y)v0(x, z) + v0(y, x)v0(y, z) + v0(z, x)v0(z, y)
−3Ev0(X1, X2)v0(X1, X3),

ϕ4(x, y, z, w) = v0(x, y)v0(z, w) + v0(x, z)v0(y, w) + v0(y, z)v0(x,w)
−3Ev0(X1, X2)v0(X3, X4).

It follows from (49) and (50) that

s2
0 −Es2

0 =
1

n− 1
T2 +

1
9

n− 2
n− 1

T3 − T ′, (52)

where

T2 =
1(
n
2

)
∑

{x,y}⊂X
ϕ2(x, y), T3 =

1(
n
3

)
∑

{x,y,z}⊂X
ϕ3(x, y, z).

and T ′ = u2
0 −Eu2

0. A calculation shows that

T ′ =
1(
n
2

)T2 +
4
3

n− 2
n(n− 1)

T3 +
1
3

(n− 2)(n− 3)
n(n− 1)

T4, (53)

T4 =
1(
n
4

)
∑

{x,y,z,w}⊂X
ϕ4(x, y, z, w).
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It follows from (52) and (53) that

Var s2
0 ≤ cn−2ET 2

2 + cET 2
3 + cET 2

4 . (54)

Lemma 3.3 (i) shows that ET 2
i ≤ cn−1Eϕ2

i (X1, . . . , Xi). Since Eϕ2
i (X1, . . . , Xi)

≤ cEt4(X1, X2) we obtain bound (46) from (54). Proof of Lemma 3.1 is
complete.

Lemma 3.2. Assume that (8) holds with the constant C0 > 0. Suppose
that s2 = 1. Then there exists a number c > 0 depending only on C0 such
that

Eh̄6(X̃1) < c, Eh6
∗(X

∗
1 ) < c, (55)

Eũ2 ≤ c n−1, Eũ4 ≤ c n−1. (56)
|Es̄2 − 1| ≤ c n−1, Var s̄2 ≤ c n−1. (57)

For i ≥ 3 there exists a constant ci such that for any x ∈ X we have

E∗|∆x|i ≤ ci l
i/2E∗

(|v0(X∗
1 , X∗

2 )|i∣∣X∗
1 = x

)
. (58)

Recall that ũ, s̄2, h̄, h∗ and ∆x are defined in (25), (27), (30) and (32).

Proof. Bounds (55) follow from (8).
Let us prove (56). We shall show the first bound only. The proof of the

second bound is much the same. A calculation shows that

ũ =
1(
N
2

)
∑

{x,y}⊂X̃
ṽ(x, y) =

k2

(
N
2

)T1 +
2k + 1(

N
2

) T2 +
k(
N
2

)T3,

T1 =
∑

{x,y}⊂X
v0(x, y), T2 =

∑

{x,y}⊂Y
v0(x, y), T3 =

∑

x∈X\Y

∑

y∈Y
v0(x, y).

Moment inequalities of Lemma 3.3 imply the bounds ET 2
i ≤ cn3Ev2

0(X1, X2),
i = 1, 2, 3. We obtain

Eũ2 ≤ c(k4 + (2k + 1)2 + k2)
n3

N4
Ev2

0(X1, X2) ≤ c
1
n
Ev2

0(X1, X2)

thus showing the first bound of (56).
Let us prove (57). Using the notation (32) we write

s̄2 = (N − 1)−2
(
(t0δ′)2 + 2t0δ

′ẼS + ẼS2
)
,
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where S = kSX̃1
+ S̄X̃1

. We have ES = 0. A calculation shows that

ES2 = N2
(
Ev0(X1, X2)v0(X1, X3)+r

)
, where |r| ≤ c

n
Ev2

0(X1, X2).

Combining this bound with (51) we obtain Es̄2 = 1 + O(n−1).
In order to prove that Var s̄2 = O(n−1) we show that Var (N−2ẼS2) =

O(n−1) and Var (N−2ẼS) = O(n−1). We sketch the proof of the first
bound. The proof of the second bound is much simpler. Write

N(ẼS2) = k
∑

x∈X

(
kSx + S̄x

)2 +
∑

x∈Y

(
kSx + S̄x

)2

= k3
∑

x∈X
S2

x + 2k2
∑

x∈X
SxS̄x + k

∑

x∈X
S̄2

x

+k2
∑

x∈Y
S2

x + 2k
∑

x∈Y
SxS̄x +

∑

x∈Y
S̄2

x. (59)

Given nonintersecting sets A,B ⊂ [n] denote

U1(A,B) =
∑

x∈A

∑

y∈B

t2(x, y), Ui(A,B) =
∑

{x,y}⊂A

∑

z∈B

ϕi(x, y; z),

ϕ2(x, y; z) = t(x, y)
(
t(x, z) + t(y, z)

)
, ϕ3(x, y; z) = t(x, z)t(y, z).

Write S̃x =
∑

y∈Z v(x, y), where Z = X \Y. We split Sx = S̃x + S̄x in every
(but not the first and last) summand of (59). It follows from the identities

∑

x∈Z
S̃xS̄x = U2(Z,Y),

∑

x∈Y
S̃xS̄x = U2(Y,Z),

∑

x∈Y
S̃2

x = U1(Y,Z) + 2U3(Z,Y),
∑

x∈Z
S̄2

x = U1(Z,Y) + 2U3(Y,Z)

that

N(ẼS2) = k3
∑

x∈X
S2

x + (3k2 + 3k + 1)
∑

x∈Y
S̄2

x (60)

+(2k2 + k)U1(Z,Y) + k2U1(Y,Z)
+2k2U2(Z,Y) + (4k2 + 2k)U2(Y,Z)
+(4k2 + 2k)U3(Y,Z) + 2k2U3(Z,Y).

Finally, we construct upper bounds for the variances of various summands
of (60) separately. To the first two summands we apply (54). To the next
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two summands we apply Lemma 3.3(ii). To the remaining summands we
apply Lemma 3.3 (iii).

Let us show (58). We shall apply the finite-population version of Rosen-
thal’s inequality. Let Z1, . . . , Zk (respectively Z ′1, . . . , Z

′
k) denote a sample

drawn without replacement (respectively with replacement) from the finite
population {z1, . . . , zK}. A result of Hoeffding [19] implies that E(Z1 + · · ·+
Zk)i ≤ E(Z ′1 + · · ·+Z ′k)

i for i ≥ 2. Assume that EZ ′1 = 0. Then Rosenthal’s
inequality implies E(Z ′1 + · · · + Z ′k)

i ≤ cik
i/2E|Z ′1|i. Since Z1 and Z ′1 have

the same (uniform) distribution, we obtain the inequality

E(Z1 + · · ·+ Zk)i ≤ cik
i/2E|Z1|i. (61)

We apply this inequality to random variables Zi = v0(x, Yi) − E∗v0(x, Yi),
Yi ∈ Y and obtain

E∗|∆x|i ≤ cil
i/2E∗|Z1|i ≤ c̄il

i/2E∗
(|v0(X∗

1 , X∗
2 )|i∣∣X∗

1 = x
)
.

We have shown (58) thus completing the proof of Lemma 3.2.
Auxiliary moment inequalities are collected in Lemma 3.3.
Lemma 3.3. Let N > n ≥ k ≥ 1. Assume that ϕk is a real symmetric

function defined on X k. Suppose that Eϕk(X1, . . . , Xk) = 0.
(i) There exists a constant ck > 0 depending on k only such that

E
( ∑

{y1,...,yk}⊂X
ϕk(y1, . . . , yk)

)2 ≤ ckn
2k−1

(
1− n

N

)
Eϕ2

k(X1, . . . , Xk). (62)

(ii) Let A, B ⊂ {1, . . . , n} are non-empty non-intersecting subsets. For
positive integers r + t = k let

T =
∑

{i1,...,ir}⊂A

∑

{j1,...,jt}⊂B

ϕk(Xi1 , . . . , Xir , Xj1 . . . , Xjt).

There exists a constant cr,t > 0 depending on r and t such that

ET 2 ≤ cr,t|A|2r|B|2t
( 1
|A| +

1
|B|

)
Eϕ2

k(X1, . . . , Xk). (63)

(iii) Let ϕ be a real function defined on X 3 such that ϕ(x, y; z) = ϕ(y, x; z).
Assume that Eϕ(X1, X2; X3) = 0. For non-intersecting subsets A,B ⊂ [n]
the random variable T =

∑
i∈B

∑
{j,k}⊂A ϕ(Xj , Xk; Xi) satisfies

ET 2 ≤ c|A|3|B|(|A|+ |B|)Eϕ2(X1, X2; X3). (64)

Proofs of these moment inequalities are technical and routine. They can be
found in the extended version of the paper [8].
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4 Proof of Lemma 3.3

Proof. We prove (62) for k = 3. The proof an arbitrary k is similar.
Denote M = Eϕ2(X1, X2, X3). Let us write Hoeffding’s decomposition of
T =

∑
{x,y,z}⊂X ϕ3(x, y, z), see, e.g., Bloznelis and Götze (2001),

T =
(

n− 1
2

) ∑

x∈X
g1(x)+

(
n− 2

1

) ∑

{x,y}∈X
g2(x, y)+

∑

{x,y,z}∈X
g3(x, y, z), (65)

where

g1(x) =
N − 1
N − 3

hϕ(x), hϕ(x) = E(ϕ3(X1, X2, X3)|X1 = x),

g2(x, y) =
N − 2
N − 4

(
E

(
ϕ3(X1, X2, X3)|X1 = x,X2 = y

)

−N − 1
N − 2

(
hϕ(x) + hϕ(y)

))
,

g3(x1, x2, x3) = ϕ3(x1, x2, x3)−
3∑

i=1

g1(xi)−
∑

1≤i<j≤3

g2(xi, xj).

It follows from formula (2.6) of Bloznelis and Götze (2001) that

ET 2 =
(

n− 1
2

)2
(
n
1

)(
N−n

1

)
(
N−1

1

) v2
1 +

(
n− 2

1

)2
(
n
2

)(
N−n

2

)
(
N−2

2

) v2
2 +

(
n
3

)(
N−n

3

)
(
N−3

3

) v2
3,

where we denote v2
i = Eg2

i (X1, . . . , Xi). The simple inequalities v2
i ≤

ciEϕ2
3(X1, X2, X3), for i = 1, 2, 3, complete the proof of (62).

Proof of (63). Let us prove (63) for r = t = 1. Denote M = Eϕ2(X1, X2).
Write Hoeffding’s decomposition ϕ(X1, X2) = g1(X1)+g1(X2)+g2(X1, X2).
Here

g1(x) =
N − 1
N − 2

E(ϕ2(X1, X2)|X1 = x), g2(x, y) = ϕ2(x, y)− g1(x)− g2(y).

We have T = T1 + T2, where the random variables

T1 = |B|
∑

i∈A

g1(Xi) + |A|
∑

j∈B

g1(Xj), T2 =
∑

i∈A

∑

j∈B

g2(Xi, Xj)
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are uncorrelated. Therefore, ET 2 = ET 2
1 +ET 2

2 . A simple calculation shows
that

ET 2
1 =

(
|A|2 |B|(N − |B|)

N − 1
+ |B|2 |A|(N − |A|)

N − 1

)
Eg2

1(X1)

+|A|2|B|2Eg1(X1)g1(X2)

≤ c|A|2|B|2
( 1
|A| +

1
|B|

)
Eϕ2

2(X1, X2).

In order to evaluate ET 2
2 write,

T 2
2 =

∑

i∈A

∑

j∈B

g2(Xi, Xj)
(
g2(Xi, Xj) + Si + Sj + Sij

)
, (66)

Si =
∑

r∈A\{i}
g2(Xr, Xj), Sj =

∑

r∈B\{j}
g2(Xi, Xr),

Sij =
∑

r∈A\{i}

∑

t∈B\{j}
g2(Xr, Xt). (67)

We have, by symmetry,

ET 2
2 = |A||B|

(
σ2.0 + (|A|+ |B| − 2)σ2.1 + (|A| − 1)(|B| − 1)σ2.2

)
,

σ2.0 = Eg2
2(X1, X2), σ2.1 = Eg2(X1, X2)g2(X1, X3),

σ2.2 = Eg2(X1, X2)g2(X3, X4).

Invoking the identities

σ2.1 = − 1
N − 2

σ2.0, σ2.2 =
1

N − 2
1

N − 3
σ2.0,

and using the inequality σ2.0 ≤ cEϕ2
2(X1, X2) we obtain

ET 2
2 ≤ c|A||B|Eϕ2

2(X1, X2).

This bound in combination with the bound for ET 2
1 gives (63).

Let us prove (63) for arbitrary r and t. A function g : X s → R is
called symmetric if it is invariant under permutation of its s arguments.
For a symmetric function g and a subset D = {i1, . . . , is} ⊂ [n] we write
g(D) = g(Xi1 , . . . , Xis). Let Ar (respectively Bt) denote r-subset of A
(respectively t-subset of B). Using these notation we can write

T =
∑

Ar⊂A

∑

Bt⊂B

ϕk(Ar ∪Bt).
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Given subset D ⊂ A of size r + t we write Hoeffding’s decomposition of
ϕk(D), see, e.g., Bloznelis and Götze (2001),

ϕk(D) =
k∑

s=1

∑

Ds⊂D

gs(Ds).

Here Ds denotes a subset of D of size s. The function gs(Ds) is a lin-
ear combination of the conditional expectations E(ϕk(D)|Xi1 . . . , Xiu), for
{i1, . . . , iu} ⊂ Ds and u = 1, 2, . . . s, such that

Egs(Ds)gu(Du) = 0, for u 6= s. (68)

We have

Eg2
s(Ds) ≤ c(k, s)σ2

ϕ, where σ2
ϕ := Eϕ2

k(X1, . . . , Xk). (69)

We replace ϕk(Ar ∪Bt) by its Hoeffding’s decomposition and obtain

T =
∑

Ar⊂A

∑

Bt⊂B

k∑

s=1

∑
u+v=s

∑

Au⊂Ar

∑

Bv⊂Bt

gs(Au ∪Bt) =
k∑

s=1

Ts,

Ts =
∑

u+v=s

(|A| − u

r − u

)(|B| − v

t− v

) ∑

Au⊂A

∑

Bv⊂B

gs(Au ∪Bv).

Here the sum
∑

u+v=s is taken over all ordered pairs (u, v) of non-negative
integers satisfying u + v = s. Furthermore, for v = 0 (respectively u = 0)
we put

∑
Au

∑
Bv

=
∑

Au
(respectively

∑
Au

∑
Bv

=
∑

Bv
). Using the key

property (68) of Hoeffding’s decomposition we obtain ET 2 =
∑

s ET 2
s . In

what follows we construct upper bounds for ET 2
s

ET 2
s ≤ cr,t|A|2r|B|2t

( 1
|A| +

1
|B|

)
σ2

ϕ. (70)

These bounds imply (63).
For s = 1 we have

T1 =
(|B|

t

)(|A| − 1
r − 1

) ∑

i∈A

g1(Xi) +
(|A|

r

)(|B| − 1
t− 1

) ∑

j∈B

g1(Xj).

Invoking the simple inequality (b1 + · · · + bm)2 ≤ m(b2
1 + · · · + b2

m) (take
m = 2) and using the inequalities E(

∑
i∈A g1(Xi))2 ≤ |A|Eg2

1(A1) ≤ |A|σ2
ϕ

we obtain (70).
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For s > 1 write

ET 2
s ≤ 2(s + 1)

∑
u+v=s

(|A| − u

r − u

)2(|B| − v

t− v

)2

ET 2
uv, (71)

Tuv =
∑

Au⊂A

∑

Bv⊂B

gs(Au ∪Bv).

Furthermore, by symmetry, we have

ET 2
uv =

(|A|
u

)(|B|
v

)
Egs(A0

u ∪B0
v)Tuv (72)

where A0
u and B0

v are fixed subsets of A and B of sizes u and v respectively.
A simple calculation shows that

Egs(A0
u ∪B0

v)Tuv =
u∑

i=0

v∑

j=0

∑

Au⊂A
|Au∩A0

u|=i

∑

Bv⊂B
|Bv∩B0

v |=j

Egs(A0
u ∪B0

v)gs(Au ∪Bv)

=
u∑

i=0

v∑

j=0

(|A| − u

u− i

)(|B| − v

v − j

)(
u

i

)(
v

j

)
as,i+j .

Here for |{i1, . . . , is} ∩ {j1, . . . , js}| = u we denote

as,u = Egs(Xi1 , . . . , Xis)gs(Xj1 , . . . , Xjs).

Invoking the identity, see (5.9) in Bloznelis and Götze (2001),

as,u =
(−1)s−u

(
N−s
s−u

) Eg2
s(As),

we obtain

Egs(A0
u ∪B0

v)Tuv ≤ cr,t

u∑

i=0

v∑

j=0

|A|u−i|B|v−j

N s−(i+j)
σ2

ϕ ≤ cr,tσ
2
ϕ.

In the last step we used the fact that |A|, |B| < N and s + v = s. It follows
from (72) that

ET 2
uv ≤ cr,t|A|u|B|vσ2

ϕ.

Finally, the substitution of this inequality in (71) gives the bound (70).
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Proof of (64). Introduce the conditional Hoeffding’s decomposition of
Ti =

∑
{j,k}⊂A ϕ(Xj , Xk; Xi) given Xi, for i /∈ A. Let Ei(· · · ) = E(· · · |Xi)

denote the conditional expectation given Xi. Denote

m(Xi) = Eiϕ(Xj , Xk; Xi), ϕ(x, y; z) = ϕ(x, y; z)−m(z)

g1(x; z) =
N − 2
N − 3

E(ϕ(Xj , Xk, Xi)
∣∣Xi = z, Xj = x

)

and write
ϕ(x, y; z) = g1(x; z) + g1(y; z) + g2(x, y; z).

A simple calculation shows that, for distinct i, j, k and arbitrary r 6= i,

E
(
g2(Xj , Xk; Xi)

∣∣Xr, Xi

)
= 0. (73)

It follows from (73) that

Eig2(Xj , Xk; Xi)g1(Xr;Xi) = 0. (74)

We have the conditional decomposition

Ti =
(|A|

2

)
m(Xi) + T i, T i = (|A| − 1)U1 + U2, (75)

U1 =
∑

j∈A

g1(Xj ; Xi), U2 =
∑

{j,k}⊂A

g2(Xj , Xk; Xi).

It follows from (73), (74) and the variance formula (2.6) of Bloznelis and
Götze (2001) that

EiT
2
i = (|A| − 1)2EiU

2
1 + EiU

2
2 ≤ c|A|3Eiϕ

2(X1, X2;X3). (76)

From (75) we obtain

T =
(|A|

2

) ∑

i∈B

m(Xi) +
∑

i∈B

T i =: A1 + A2.

Using the simple inequality (b1 + · · ·+ bs)2 ≤ s(b2
1 + · · ·+ b2

s) we obtain, by
symmetry,

ET 2 ≤ 2EA2
1 + 2EA2

2, EA2
2 ≤ |B|2ET

2
1 = |B|2E(E1 T

2
1).

Note that EA2
1 ≤ |A|4|B|E2m(X1). This inequality combined with bound

(76) and the simple inequalities

EEiϕ
2(X1, X2;X3) ≤ Eϕ2(X1, X2; X3), E2m(X1) ≤ Eϕ2(X1, X2;X3)
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implies (64).
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