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Abstract. We construct one-term Edgeworth expansions to distributions
of U statistics and Studentized U statistics, based on stratified samples
drawn without replacement. Replacing the cumulants defining the expan-
sions by consistent jackknife estimators we obtain Empirical Edgeworth ex-
pansions. The expansions provide second order approximations that improve
upon the normal approximation. Theoretical results are illustrated by a sim-
ulation study where we compare various approximations to the distribution
of the commonly used Gini’s mean difference estimator.
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1 INTRODUCTION

Stratified simple random sampling without replacement (STSRS for short)
is widely used in surveys. It generalizes sampling with replacement and
without replacement. In order to assess the precision of survey estimates it
is important to develop approximations to distributions of various classes of
estimators based on STSRS samples.

Here we study estimators which are U statistics. It is well known that,
generally, non-degenerate U-statistics are asymptotically normal, see [18].
An improvement upon the normal approximation is provided by an Edge-
worth expansion, see [14]. In this paper we construct the one-term Edge-
worth expansions for asymptotically linear U statistics and Studentized U
statistics.

In the case where the population parameters (cumulants) defining the
expansion are unknown it is convenient to use Empirical Edgeworth expan-
sions where unknown parameters are replaced by their estimators ([3], [16],
[17], [22]). We define the jackknife estimators and show their consistency.

Since general symmetric statistics can be approximated by U statistics
up to second order (e.g., via Hoeffding’s decomposition, see [2], [9]) our
results extend to general asymptotically linear symmetric statistic.

In a simulation study we compare the accuracy of the normal approx-
imation, Edgeworth expansion and empirical Edgeworth expansion for the
commonly used STSRS estimator of Gini’s mean difference. The simulation
demonstrates that the Empirical Edgeworth expansion outperforms the nor-
mal approximation, but tends to be less accurate than the true Edgeworth
expansion.

The outline of the paper is as follows. Results on Edgeworth expansions
and Empirical Edgeworth expansions are given in Sections 2 and 3. Results
of a simulation study are referred to in Section 4. Proofs and technical
details are given in the Appendix.

2 Edgeworth expansion

Consider the population X = {xi,...,xx} and assume that we want to
estimate the population parameter u = Zl§i<j§N t(x;,x;), where t is a
symmetric function (i.e., t(z,y) = t(y,x)). Suppose that the population
is divided in h non-intersecting strata X = X3 U ... U A&}. Here &} =
{zk1,...,zrN, } and Ni+...+Ni = N. From every &), we draw (without re-
placement) the simple random sample X, = {Xp1,..., Xgn s k=1,...,h,



so that the samples X1, ..., X} are independent. The statistic, based on the
stratified sample without replacement X = (Xy,...,Xy),

= a(X) = Z Z wjt(z,y) + Z Z Z wit(z,y), (1)

1<5<h {z,y} CX; 1<j<r<h zeX; yeX,

is an unbiased estimator of the parameter u. Here

wj = w;(X) = (JZJ) (T;J> 717 wjr = wr(X) = NjNp(nymy) ™' (2)

Note that in the case where t(z,y) = |t —y| and x;, : = 1,..., N, denote
real valued measurements, we obtain the estimator of Gini’s mean difference.
Our analysis of the distribution of 4 uses linearization by means of Ho-
effding’s ([18]) decomposition. We approximate u by a linear statistic L of

the form .
L=> Lp, L= gl)
k=1 zeXy

Choosing (first order influence) functions g; that minimize the expecta-
tion E|& — u — L|? and denoting the remaining quadratic part ) we obtain
Hoeffding’s decomposition

t=u+L+Q. (3)

Note that the linear part L and quadratic part @ in (3) are uncorrelated.
Explicit formulas for L and @ are given in (20) below.

We shall assume that the variance 0% of the linear part L is positive,
U% > 0. By the central limit theorem, for large n = n; + ... + np and
N, the distribution of L/oy, can be approximated by the standard normal
distribution, see [4], [15]. In the case where the linear part dominates the
statistic and we have o2/ o% ~ 1, the normal approximation applies to (& —
u)/o as well. Here 02 denotes the variance of .

Assuming that sample sizes n;, are large for every k, we construct the one-
term Edgeworth expansion for the distribution function Fy(z) = P{t—u <
ox} and for the distribution function Fg(z) = P{t—u < 2S5} of Studentized
U —statistic. S? denotes the classical (delete-one) jackknife estimator of the

variance o2,
"omp—1 o 1 &
k— N 2 _ .
2= ” vh, o vp = (X)) — ), k= - > a(Xpy)-
k=1 i=1 k=1

(4)



Here Xj); denotes the STSRS sample obtained from X by removing the
observation X} ;.

Theorem 2.1 The one-term Edgeworth expansions of Fy,(x) and Fs(x)
are functions Gy(x) and Gg(x),

O () ), )

o+ o'z? + 3k(2? + 1)
- ¥(x). (©

Gu(z) = @(z) -

Gs(z) = ®(z)+

Here ® denotes the standard normal distribution function and ®' denotes its
derivative. The moments o, o’ and k are given in (8) below.
Denote

77 = Npprak, Pk = Nk /Ny, gk = (N, — ng)/Ni (7)

and introduce the moments

h h
o = Z(QT _pr)'ﬂ?ara o = Z(l + QT)TEOZM (8)
r=1 r=1
H—ZT Krr + 2 Z TkT K-
1<k<r<h
Here
a, = Egi(X.1) Z gz
xGXk
rkk = BV (Xp1, Xi2) gk (Xk1) g6 (Xk2) = > dk(,y)ge(@)gr(y),
( ) {z,y}eXy
1
Rkr = E/l/)kT(Xk.17 Xr.l)gk(Xk‘l)gr(Xr.l) = Z wkr(xa y)gk(m)gr(y)-
N Nr C€ Xy, yEX,

Functions 9y (Xj.4, Xp.j) and ¢, (Xp.i, Xrj) (sometimes called the sec-
ond order influence functions) reflect the contribution of pairs of observa-
tions { X, Xi;} and {Xp;, X, ;}. Explicit expressions of g, and 1y, ¥y,
are given in (21) and (22) below.

Remark 2.1. Theorem 2.1 provides formal Edgeworth expansions in
the asymptotic framework where the number of strata remains bounded
and, for every k, sample sizes np diverge to infinity and J]%/U2 — 1. To
be more precise assume that we have a sequence of stratified populations



xv = Xl(y) U...u Xéy) of sizes NV = Nl(y) + ...+ N}(ly), and sequence
of STSRS samples X*) = (ng), . ,ng)) of sizes n) = ngy) +...+ ng').
Assume that for every k = 1,...,h the numbers n,; = min{n,(:),ngy) —

n,(:)} diverge to infinity and 0% /o? — 1 as v — oo. In this case one can
prove that the expansions (5), (6) provide approximations to the distribution
functions F, and Fs that improve upon the normal approximation if, in
addition, the linear part L satisfies a Cramér type condition and the kernel
t satisfies appropriate moment conditions. Pushing harder on the methods
used in this paper it is possible to establish O(n; ') bound for the remainder
sup,, |Fy(x)—Gy(z)| (under 446 moment conditions) and o(n*_l/Q) bound for
the remainder sup,, |Fg(x) — Gg(z)| (under 6 + 6 moment conditions) in the
particular case where ny; =~ Ny, 1 <k <r < h. Here ny = ny1 + ... 4+ Ny
denotes the ”actual sample size”. Rigorous proofs of such bounds in the
case of simple random sampling (h = 1) are given in [7], [10].

Remark 2.2. Normal approximation of U—statistics based on samples
without replacement was studied in [8], [21], [25]. One term Edgeworth
expansion for finite population U— statistics based on simple random sam-
ples without replacement was established in [20], see also [10]. A similar
result for Studentized U—statistic was shown in [7]. Theorem 2.1 extends
these results to stratified samples. The extension is non-trivial: a more com-
plex structure of Hoeffding’s decomposition for STSRS samples yields new
formulae for cumulants. In particular, the cumulant a 4+ 3k defining the
Edgeworth correction term of (5) includes the sum >, _, 272Kk, see (8),
reflecting the contribution of cross strata interactions.

One term Edgeworth expansions for a linear STSRS statistic were ob-
tained in [11], [12]. Theorem 2.1 extends these results to a more general
class of U statistics.

Remark 2.3. Edgeworth expansions also provide a theoretical tool
for analysis and design of resampling approximations like bootstrap and
empirical Edegworth expansions, see [1], [5], [12], [16], [17], [22], [24]. In the
next section we construct empirical Edgeworth expansions. The bootstrap
approximation of STSRS U —statistics will be studied elsewhere.

3 Empirical Edgeworth expansion

Empirical Edgeworth expansions of statistics of independent observations
were studied in [3], [5], [16], [17], [22]. Here we construct empirical Edge-
worth expansions that are suited to U —statistics based on STSRS samples.



Let us define the jackknife estimators & and K, of the moments aj and
Kkr. Substitution of these estimators in (8) give jackknife estimators &, &', &
of a,d/, k. Put

Z Wiii ViV, 1<k < hy(9)

1 &
~ o 3 ~ o
A = n E Vk;|za Rkk = (nk)
L) 2) 1<i<j<ny

A 1 ng Ny
Rkr = W ZZWkr|iij|i‘/;"|j’ 1 é k <r S h. (10)
klr 1 521
Here we denote
Vigi = U — (X)), (11)
- nE—1_ ng —1_ nE —2
Wiy = U — Bl k() + (X)), (12)
Wirlij = Ukr — Ug(p)ji — Ur(k)l; + G Kpr|ij) (13)
and, for 1 < k,r < h, k # r we write
u = @ 21§i<]§nk a(Xk\ij)7 Uk = ﬁ Z:L:kl 711;] a(Xkrﬁj)u

Ur(t)i = 7T Sot<jenp i CXulis)s  Tr)li = i g WX rfiz)- (14)

Here Xy;; denotes the STSRS sample obtained from X by removing the ob-
servations Xy ; and Xy ; from Xy; Xy, |;; denotes the STSRS sample obtained
from X by removing the observation X ; from Xj, and X, ; from X,.

Define &, &' and & by formulas (8), where aj and kj, are replaced by
their estimators &j and Ag.. One can show under appropriate moment
conditions, see Appendix below, that as ny — oo

o o & o A K

Therefore the empirical Edgeworth expansions

&+ 3k
Hu(x) = <I>(l‘)— 653 (I)/(l‘)(.1‘2—1), (16)
&+ &/'2? + 3k(2? + 1)

Hs(z) = ®(z)+ ' (z). (17)

653

match G, and Gg (in probability). In this case the empirical Edgeworth
expansions provide approximations which are second-order correct in prob-
ability.



4 Simulation study

In this section, we examine the performance of the Edgeworth expansion
(6) and the empirical Edgeworth expansion (17) by simulation.

Two stratified populations X N c R, r=1,2, are generated, each con-
sisting of three strata of sizes Ny = Ny = 500 and N3 = 200. For Gini’s
mean difference estimator 4 (defined in (1) and below) based on a stratified
sample without replacement with sizes n1 = ng = ng = 50, we evaluate ap-
proximation errors Ag) () = Fg(x) — @(x), Ag) (z) = Fs(x) — Gg(x), and
Agg(x) = Fs(z) — Hg(x). Here Fg denotes the distribution function of the
Studentized statistic (¢ — u)/S obtained by a Monte-Carlo simulation and
és, respectively, Hg denote the distribution functions which are obtained
from Gg and Hg via the transformation f(x) := sup, <, ((0V f(y)) A 1).

Table 1. Approximation accuracy

= 233 -1.65 -129 068 0.0 068 120 165 2.33

o(z)~ 00l 005 01 025 05 075 09 095 0.99
18AY (@)~ 776 129 138 9.63 3.68 7.87 107 897 3.60
18AY ()~ 220 205 20 169 1.08 041 -091 -1.96 -1.86
1A% (@)~ 294 341 357 301 199 172 065 -059 -1.22
100AP (@)~ 195 329 362 249 102 17.9 253 205 7.22
10AP (2) ~ 638 619 693 478 092 -226 -3.94 -6.23 -27
1°A)(z) ~ 133 206 231 172 824 101 1225 818 1.0l

Table 1 demonstrates that the Edgeworth expansion improves upon the
normal approximation (as expected). The empirical Edgeworth expansion
outperforms the normal approximation, but tends to be less accurate than
the true Edgeworth expansion.

Table 2 gives values of the ratios a/03, o//03 and /o which define
the Edgeworth expansion GGg. It also provides estimated values of the mean
square errors of their estimators a, = &/S%, o, = & /S% and k. = //S3, cf.
(15). The latter define the empirical Edgeworth expansion Hg.

Table 2. Moments and estimated MSE of jackknife estimators
ajo® o Jod k/o3 MSE(aw.) MSE(¢,) MSE(k4)

r=1 011 0.29 -0.023 0.0004 0.0028 0.00001

r=2 021 059 -0.023 0.0028 0.0223 0.00004

We conclude this section with a short description of the study popula-
tions X = XI(T) U XQ(T) U X?ET), r = 1,2. The elements of the first popu-



lation are realized values of independent normal variables: Xl(l) ~ N(2,1);
Xz(l) ~ N (3,4); Xg(l) ~ N(6,9). The second population combines symmetric
and skewed strata: X% = {1+ 0.004(i — 1),1 < i < Ny} (uniform distri-
bution on [1,3]); X% =2 —In(1 - 0,002(i — 1)),1 < i < Ny} (exponential
distribution); X:,f2) ~x*+3.

5 Proof of (5)

Before the proof we collect some useful facts about Hoeffding’s decomposi-
tion for STSRS samples, see [8], [9] for proofs and details.
5.1. Hoeffding decomposition. Let us consider a general U —statistic

U=UX)= > >  tlmmz)+ Y, D > telwsy), (18)

1<k<h {xi,xj}cxk 1<k<r<hz;€Xg y; €Xr
where t;, are symmetric functions. Hoeffding’s decomposition
U=EU+L+Q, (19)

decomposes U — EU into the sum of the linear part L and quadratic part @
which are centered and uncorrelated. Here

L= Z Ly, Q = Z Qk'ry (20)

1<k<h 1<k<r<h
Lk = Z gk(ﬂf), Qkk = Z ¢k($ay)7 ri = Z Z wk’l‘(xay)
z€X) {z,y}CXp X yeX,

The functions g, ¥ and 9., for k < r, are defined as follows. Denote
tr(z,y) = tp(z,y) —Etp(Xp.1, Xi2) and ty, (2, y) = ter (2, y) =Bt g (Xp1, Xr1).

We have
ge(x) = (e = Dtj() + > n;ty (), (21)
1<j<h, j#k
where N )
ti(x) = B (X1, Xp2) | Xp1 = 2),
N, —2

and, for k < r,

tip (@) = E(tk (X1, Xr1)| Xk = 2), to(@) = E(tkr (X1, Xr1)| Xr1 = 2).



Furthermore, we have for k < r
wk(l’vll) = tNk(.’L‘,y) - t;;(x) - t;;(y)7 wkr($7y) = fkT(x7y) - tar(x) - t:\k(y)
22

For r > k we denote ¢, (y, x) := Yir (2, ).
Note that for every k and r we have

Egr(Xk1) =0,  Et¢p(Xk1, Xk2) =0,  Eth(Xp1, Xp1) =0. (23)
Moreover, the following identities hold

E(Yr(Xk.is Xi.j)| Xpj) =0, i # 7, (24)
E(wkr(sza er)|er) = 07 E(wkr(Xku Xry)|Xkl) =0. (25)

It follows from (24) and (25) that the parts L and ) are uncorrelated
and the variances 012], aj% and aé of U, L and @) satisfy

of = 0% + cré. (26)

Let 02(Ly), 0%(Qr), and 0?(Q4,) denote the variance of Ly, Qrr, and Qp-.
Using (24) and (25) one can show (see Bloznelis (2003b)) that

o= Y L), o= > (Qur), (27)
1<k<h 1<k<r<h
N, () (4)
o?(Ly) = mﬂ?ff%, o (Qur) = Wo’ik,

where we denote
ot = Egi(Xk1),  oip = EVRu(Xpa, Xi2), ok = B¢, (Xp1, Xra). (28)
Remark 5.1. Note that every U—statistic defined by (18) can be writ-

ten in the form (1). Just denote t(z,u) := tj(:v,y)w;l, for {z,y} C &; and
t(z,y) = tjr(a;,y)wj_rl forxe Xj,ye X, j<r.

5.2. Proof of (5).
We shall show that

a+ 3k
60[3]

' (z)(2? - 1), (29)



is the one-term Edgeworth expansion of the probability distribution function
Fy = P{U — EU < oyz} of a general U—statistics given by (18). The
quantities «, k are defined by formula (8) applied to the kernels (21) and
(22).

We assume without loss of generality that EU = 0 and 012] =1. In
order to construct an Edgeworth expansion of Fyy we write an asymptotic
expansion to the characteristic function

fu(t) = Eexp{itU}

and apply Fourier inversion formula. We shall show that the function

9(t) = gL(t) + go(1), (30)
where
2 i 3 2 i 3
out) = exp(- 53 (14 850) g = ent-S1 2 3

is an one-term expansion of the function fi;(¢). An application of the inver-
sion formula (see, e.g. Chung (1974), page 159) gives the one-term asymp-
totic expansion
1 i : —itx -1
Gu(z) ==+ — lim V.P. e "g(t)tT dt.
2 <M

2 m™ M—o0

Here V.P. [, = limhw(f:o]z + f;oo) denotes Cauchy’s Principal Value.

Let us prove that g(t) is the one-term asymptotic expansion of fi(t).
For simplicity we consider the case of two strata only. It is convenient
to represent the characteristic function fy(¢) in the Edrds-Rényi (1959)
form, see (35) below. Using this representation we replace fy(t) by fr(t) +
271k (it)3 f1(t), see Lemma 8.1 below. Here f1,(t) = Eexp{itL} denotes the
characteristic function of the random variable L. Finally we replace fr(t)
by its asymptotic expansion gr,(t). To see that gz (¢) is indeed an asymptotic
expansion of fr(t) we split fr(t) = fr,(t)fL,(t) and, for every k = 1,2, we
replace fr, (t) = Eexp{itL;} by its one-term asymptotic expansion (see,
Robinson (1978), formula (13))

o?( Ly, it)3
frott) =~ expl2 71+ O gyt
Collecting the main terms and using the approximation 012] ~ a% we obtain
2 2 (it)?
fr(t) = exp{—t<o7/2}(1 + 5 a) =~ gr(t),

10



thus completing the proof of the fact that g(t) is the one-term expansion of
fu(t).

In the remaining part of the proof we construct the Edr6s-Rényi repre-
sentation for fy(¢) and prove Lemma 8.1. The proof of the lemma is given
in Section 8.

Write Y = X UY, where X = {x1,...,zn,} and YV = {y1,...,yn, }. Let
X* = (Xy,...,Xn) and Y* = (Y7,...,Yy,) denote random permutations
of the sequences {z;} and {y;}. We assume that X* and Y* are independent.
The random vector (X,Y), where X = {X1,..., Xy, }and Y = {Y1,..., Y, },
represents the STSI sample drawn from the population U.

We shall write gu, gy, Yu, ¥y, Yoy and 04, 0y, Ozzs Oyys Ony, K, Ky, Kgy iD-
stead of g1, g2, 1/)1, ’lﬂg, 1/J12 and 01,092,011,0922,012, K1, K2, K12. Similarly, we
write Ly, Ly, Qz, Qy, Qzy instead of Ly, Lo, Q11, Q22, Q12 and ps, gz, py, gy
instead of p1, q1,p2, go.

Let

U:{lll,...,I/Nl} and 77:{771)---7771\72}

be independent sequences of independent Bernoulli random variables with
probabilities

P{ri=1}=1-P{y; =0} =p,, P{n=1}=1-P{n; =0} =p,,

1 <i< Npand 1 < j < N,. After we write U in the form (19), i.e.,
U=1L;+ Ly+ Qs+ Qy + Quy, it is easy to see that the distribution of U
coincides with the conditional distribution of the sum

U'=Ly+ L, +Q +Q, + Qs (32)

given the events {v1 + ...+ vy, =n1} and {m + ...+ nn, = n2}. Here

N1 No N1 Nj
L= g:(Xivi, Lp=> g,V Qhy=>_> thuy(Xs, Yy vimy,
=1 j=1 i=1 j=1

Q= > wXiXpvw, Q=Y. (Y, Y )nm.

1<i<j<N; 1<i<j<Na

Denote w; = v; — p, and §; = n; — py and let L, Ly, Q, Qy, Qyy be

defined in the same way as Ly, Ly, Q, @y, Q3, but with v; and n; replaced

by w; and ; respectively. It follows from (24), (25) that almost surely

Lo =L}, Ly=L, Q.=Qi Q=0 Qu=0qQ,

11



In particular, from (32) we have U* = U, where
U=L+Q, where L =1L, +1L,, Q=0Q:+Qy +Qzy. (33)

Denote S, = Z]-V:ll w; and Sy = Z;V:zl &; and write

H=tU+ (Sl/Tl)Sx + (SQ/TQ)Sy, L =tL+ (Sl/Tl)Sm + (SQ/TQ)Sy. (34)

Note that the distribution of U coincides with the conditional distribu-
tion of U given the events {S; = 0} and {S, = 0}. Using this fact we can

write the characteristic function fi7(¢) in the following way, see Erdés and
Rényi (1959),

T T
Ju(t) = )\1/\2/ dsi / dssEexp{iH}. (35)
—TT1 —TT1

Here
At =2rmP{S, =0}, A;!=2mnP{S, =0}.

6 Proof of (6)

The proof goes along the same lines as that of Theorem 1 of Bloznelis
(2003a), who considered the case of the simple random sample drawn with-
out replacement.

We assume without loss of generality that o2 = 1, where o denotes the
variance of 4(X).

In order to fix notation let gg, v, and 1, denote the kernels of the
decomposition 4@ = u + L + @, see (3), defined by (21) and (22).

The proof consists of two steps. Firstly we replace S by the short stochas-
tic expansion 1 4 27'L*, where

h Nk
L= "1Ij, P=> el Xki). (36)
k=1 i=1

Here fi = fr1 + fr2 + fr.3 with

frea(@) = ax(gi(@) —ob), i = Bgi(Xia),
ng— 1N, —1

E(¢r( Xk, X Xpo2)| Xp1 =
ng — 2 Nj, — 2 (Y (Xk.15 Xi2) gk (X2) [ Xp1 = ),

h 2
n'r
fra3(x) =2 E Lirzryar E(pr(Xp.1, Xr1)gr(Xr1) | Xp1 = ).

n, — 1
r=1 r

Jro(x) = 2q1n

12



Secondly, we apply (29) to the probability
Pl{t—u < z(1+27'L*)} = P{U < x},

where
U=4—-u—2"'aL*
is a U—statistic of the form (18).
6.1. Step.1. Here we replace S by 14271 L*. It is convenient to represent

the difference 7y, — 4(Xy;) in the following way
Uy — W(Xpp;) = Z (i) + Wi (3) + My (7),
1

. ng
Zk:(z) = —1 Z gk(XkJ)(]I{z =j} — )
ng l<i< ng
<j<nyg
. Nk 2
Wi(i) = —— > k(X Xir) Tiegioyy — —),
k 1<j<r<nk k
ne Mg
M = nk_lzﬂ{r#k}zzwkr iju rs)(H{z =j} = nk)
s=1 j=1
Write vz = U, + 1, where
Nk ng 9
Ok =Y Zpli +2ZZk i)+ My(i), =Y (Wi(i) + M(i))*.
i=1 k=1
(37)
A calculation shows that
iZZ(i): ng nZkQQ(Xk ')—AHkl
i=1 * e — 1 S T
ok nz 2
Zp()Wie(1) = Hy,— —HioH,
Z k(1) Wi (i) (e — 1) (g — 2)( ka = - Ho k3)s
n?
Zye (1) M ( Hp s — —H H,
Z (1) M (i (nk—l) 5 (Hp.s k.2H.6)-
Here we denote
Hey= Y ge(Xei)ge(Xk ),
1<i<j<ng
ng
Hio =Y o6(Xei), Hes= > Ur(Xki X)),
i=1 1<i<j<ng

13



Hyy = Z Vr( Xty Xij) (6(Xi) + 9r(Xkj)),
1<i<j<nk

ny Nk

Hy5 = Zﬂ{r;ﬁk} S ke (X, Xr ) gk (X),

s=1i=1

ny Nk

Hkﬁ - Zﬂ{r;ék}zzwkr Xk ) 7‘8)

s=1i=1

Collecting these formulas and (37) in (4) we obtain

h ng
SP=14+> > fea(Xpi) + Q" +Q +R, (38)
k=1 11=1
h
=>Qrn Q= 20— Hia,
h
HkS

Q=) Qn Q= 201
k=1

Here R = Ry — Ry — R3 — R4 — Rs5, where

h
ne — 1
Ri=) a o R2—1—quwk,

k=1 k=1
h 1 h
RgZZqun _1f11€17 R4—4qu; 2Hk;.2Hk.3>
k=1 k=1
h 1
Rs = Q;an 1 Hr2His

Furthermore, using Hoeffding’s decomposition (see (19)) we approximate Q*
and Q* by the linear statistics

h ng
Q"= > fra(Xki) + By, (39)

k=11i=1

h  ng

k=1 1i=1

Under appropriate moment conditions one can show that the remainders R;,
1 < i < 7 are negligible, see Bloznelis (2003a). In order to show that the

14



remainder Rg is negligible it is convenient to write Q* in the form

Q=) Qi

k<r

& ng n
o = 2 rXin’r‘< X@ riTrXr')-
Qs ;:1;:1 Vrr (Xk.is Xr.5) ank_lgk( ki) + 4 nr—lg( )

Then we approximate @* by the linear part of decomposition (see (19)) and
obtain the approximation (40).

Finally, combining (38) and (39), (40) we obtain S? ~ 1 + L*. Further-
more, for small L* we can write S ~ /1 + L* ~ 1+ 271L*.

6.2. Step 2. Here we construct the one-term Edgeworth expansion to
the distribution function P{U < z}. We are going to apply (29). Firstly,
we write Hoeffding’s decomposition of U, U = L+ Q. Here L = L —2 ‘2 L*
denotes the linear part and () denotes the quadratic part, where L and @
are the same as in (3). Let 67 and 6% denote the variances of U and L and
let &, &y, &, R denote moments of various parts of U defined by (8).

Substituting &, &, 67 in (29) we obtain the one-term Edgeworth ex-
pansion G(z) of the probability P{U < yz}. A calculation shows that
ou =0+ R(o), @ = a+ R(a), & = o + R(ag), K = kK + R(K), Rk =
Kikr + R(Kgy), where R(0),. .., R(kk,) are negligible remainders. Therefore,
G(x) can be replaced by Gy(z) (= the one term Edgeworth expansion of
F,(x) =P{u—Eu < zo}, see (5)). It follows that G, (z/5y) is the one-term
Edgeworth expansion of P{U < z}. In the remaining part of the proof we
shall show that G, (z/6y) = Gs(z)+ R, where Gg is given by (6) and where
R is a negligible remainder.

Denote § = 5’% — 1 and expand using Taylor’s formula

Gul3-) = Gulo+a(z-—1)
—<%@pu%@m%;—m+31

1

= Gula)+ @' (@)a(z-~ 1)+ R+ Ry
U

= Gyu(z) — 27199 (z)x + Ry + Ry + Rs.

In the last step we used the approximation (via Taylor’s expansion) 5(}1 -1
—§/2. Here R;, i = 1,2,3 are negligible remainders. In order to evaluate
the factor ¢ we apply variance decomposition formula (see, (26)),

6 =61 +0h =0 +6L —0f =1+5] —of. (41)

15



Therefore, § = 62 — 0. From (27) we have

h

N . . _

§=> 7 (62-02),  where 62 = E(gr(Xp1)—2" o f(Xk1))>.
pt N —1

A calculation shows that
67 = o — 2Eg,(Xp1) fr(Xp1) + 7 ri, = 2B (Xg1),

where

h
Egr(Xk1) fe(Xk1) = argr + QZTEHM-

r=1

We obtain

h h
§=— 2oy, — 2 g — 4 272 R
= —x QrTj, Otk x Ty Kkk x T, Ty Kkr + Fl4.
k=1 k=1 1<k<r<h

Here Ry = Y 11, denotes the remainder. One can shown that Ry is negligible.
Substitution of this formula in (41) gives the desired result G, (z/oy) =
Gg(z) + R with negligible remainder R. The proof of (6) is complete.

7 Consistency of jackknife estimators

We sketch the proof of (15). Assume without loss of generality that o2 = 1.
Substitution of (3), (20) in (11), (12), (13) gives

Vii = 9k (Xki) + Ry
Wiz = Vk( Xk, Xkj) + Rpjijo
Wirlis = Ykr( Xk, Xoj) + Rigrjig

where
1
Ryi = ——— > gr(x)
K zeX)
2
+ Z ¢k(Xk.iaﬂf)—m Z Vi(z,y)
2€X),, T wayex,
1
+ > Z(¢ks(Xk.i,y)—n 7 > trs(,)),
1<s<h, s£k yeXs k rex/

k|

16



1
Ryij = o= Z V(2. y)

( 2 ) {‘rzy}cxkhj
- ng _2 Z kakza )_ _2 Z kakp )a
xEX;m xEX;m
Ryrjij = Z Z Vir (2, )
nE —1n, —
xGthyEX i
- n _1 Zwerer)_ni Zwerku )
k zeX, zeXx!

ki T|j

Here we denote X;dz = X \ {Xk;} and ka = Xp \ {Xki, Xk ;}. One can
show (under appropriate moment conditions on ¢y, ¥y, and gi) that the

remainder terms Ry;, Ryjij, Ry ij can be neglected. Therefore, we obtain
from (9) and (10) that

. 1
ay ~ n7k Z gk Kk = (nk) Z Yr(z, v) gk () gk (y),
xexk {I,y}CXk
e % s 303 @ p)n()on o)
Ny reXy yeX,

Finally, (15) follows by the law of large numbers. A rigorous proof in the
case of a simple random sample (h = 1) is given in [6].

8 Expansions

Denote, for r > 0,

Byr = 0, Elg.(X3)[", By, =0, "El|g,(V1)[",
Yo = BB (X, Xo)vh, (X1,Y1), = By (Y1, Ya) i, (X1, Y1),

Lemma 8.1. There exist (large) absolute constants C,c,cr > 0 such
that for 7_177_2’N11/2B;317N21/QB@1 > ¢ and we have, for |t| < T,

[fu(t) = fo(t) = 27 w(it)* FL ()] < CRIL+ [t7)(R1 + R2 + Ra).  (42)

Here
T = cr max{B,30,; Bysoy} (43)
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and

2 2 2 9
Ry = gé<1+ o (Qm)+r2r (@uy) | @ (Qy)+z (me)>’
T10% T20
Vx 1 Yy 1
’ 7'12( +J§7‘2)+7’22( Jra%ﬁ)

Ry = (BT 0(Qu) +0(Qu) + By’ (0(Qu) + 0(@y) ).

For typical examples of statistics we have R1 +Ra+R3 = o(|a] +|x|) as
a, k — 0. Note that the bound (42) is not sufficient to establish the validity
of the expansion (29). For this purpose one needs an improved version of
(42) where the factor [t|(1 + [¢|?) in the right were replaced by a function
which is integrable over the interval |t| > 0 with respect to the measure ﬁ:—t‘.

Before the proof of Lemma 8.1 we introduce some notation

8.1. Notation. In what follows ¢ and C with indices or without denote
generic absolute constants. For complex numbers a,b we write a < b if
la| < ¢|b|. Given a complex valued function z(¢, sy, s2) write

TT1 T2
J(z) = )\1>\2/ dsl/ dsaz(t, s1, 52).
—TT1 —TT2

For a number A > 0 and complex valued functions z; (¢, s1, s2) and z3(t, s1, S2)
write 21 < A if |J(21)] < A and write 21 ~ 2z if 21 — 29 < R, where
R = [t|(1 + [t]*)(R1 4+ Ra2 + R3).

For k = 1,2,... denote €, = {1,...,k} and Qo = {(4,7) : 1 <i<j<
k}. For sums

S:Zsi, T:Z Ztij’ V = Z Vi
1<i<k 1<i<k 1<j<r 1<i<j<k
and sets A C Q, B C Qf X Qp, D C Qo write for short
S(A)=>"s, TB)= > ty V(D)= > vy
i€A (i.j)EB (i,5)€D
For integers 1 < m; < N7 and 1 < mg < Ny put
AT = Qn,, A5 =Qn; \ Qg s A = Qp,, AY = Qn, \ Qs
Bi = Qumy X Qs By = Quy X (8, \ Qiny),s
Bs = (On; \ Qny) X Qs By = (Qn, \ Q) X (28, \ Qg )s
1 Qoypy D3 = Qg X (O \ D), D3 = Qo \ (DT UD3),
DV = Quupe DY = Oy x (O \ Qmg), DY = Qg \ (DY UDY).
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L = Li4+0Ly, Li=LF+LY  Ly=L%+1LY,

Ly = tLo(AD+2S:(AD), LY =tLy(4) + 28,4, k=12,
T1 T2

L, = Ly(A7) + Ly(A3), Ly:Ly(AzlJ)"‘Ly(Ag)a

Quy = Z Qay(Bi), Q: = Z Q. (D7), Q= Z Qy (D7)

1<i<4 1<:<3 1<4<3

and write H = Ly + F1 + F, where L1 = L1, + L1y,

Ly = L{+tQu(D5)+tQuy(B2),
Ly = LY +1tQy(DY) + tQuy(Bs),
F = tQu(DY) 4+ tQy(DY) + tQuy(B1),
F = Lo+ F,  F=1tQu(D5)+tQy(DY) +tQquy(Ba).

Note that the random variable I’ does not depend on w;, i < m; and &,
J < mo. Furthermore we have

Liz= Y aw, Ly= > by, (44)
1<i<my 1<j<ms

where
ai = tg.(Xi)+sim ] Htuf, by =tgy (V) + somy '+ 10! + tul,
Ulqc = Z w:p(Xian)wjv uzx = Z wmy i j 5]7

m1<j<Ni ma<j<N2
o= Y ()G ul = Y (X Y

mao<i<Na m1<i<Ny

Note that conditionally given all the random variables but {w;, i < mq} and
{&, j < ma} the random variable Ly, (respectively Ly, ) is a linear statistic
of random variables wy, ... ,wp,, (respectively &1,...,&m,)-

Given B C ,,, denote

JE(B) = exp{itLy(B) +itQu(B x (Qy, \ Un,))
+ itQuy(B X (g \ Qmy)) +i(s1/71)S2(B)},

) +i(s1/71)S:(B)},

i(s1/71)52(B)}

N
ik
=

[

Y exp{itLy(B) + itQuy(B x (2, \ Qmy)
JEB) = exp{itly(B) +itQu(B x (U, \ Un,)) +
J(B) = exp{itl.(B)+i(s1/m1)S:(B)}.
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Let J3, (B) (respectively J;/(B), J;(B) and J*(B)) denote the absolute value
of the conditional expectation of jgfy(B) (respectively j;(B), J%(B) and
J*(B)) given all the random variables but {w;, j € B}. Write

1 1 1
#ey(B) = 15 D (wi+uf)?, (B) = ] Y WP (B = Bl > ()
jeB jeB jEB

Given D C Q,,, denote

J4,(D) = exp{itLy(D) + itQy(D x (U, \ Dmy))

+ it Quy (U, \ Qg ) X D) +i(s2/72)Sz(D)},
JY(D) = exp{itLy(D) + itQuy (U, \ Qmy) X D) + i(s2/72)S.(D)},
JUD) = exp{itLy(D) +itQy(D x (Qn, \ Dny)) + i(s2/72)Sy(D)}
JY(D) = exp{itLy(D)+i(s2/m2)S:(D)}.

Let J#y(D) (vespectively Jy/(D), Ji#(D) and JY(D)) denote the absolute
value of the conditional expectation of Jz,(D) (respectively Ji/(D), J#(D)
and JY(D)) given all the random variables but {¢;, j € D}. Furthermore,
write

1 Yy Yy _ 1 Yy _ 1 Yy
(D) = 1y S, D)= S D) = 30

jeD jeD je€D

8.2. Proof of Lemma 8.1. Note that
fu(t) =T (Eexp{iH}),  and  fr(t) = J(Eexp{il}).
Therefore in order to prove the lemma we need to show that
Eexp{iH} ~ (14 27 k(it)*)E exp{iL}.
We shall prove this relation in two steps

Eexp{iH} ~ Eexp{iL}+ itEexp{iL}Q, (45)
itEexp{iL}Q ~ 27'k(it)*Eexp{iL}. (46)

8.2.1. Proof of (45). Introduce the integer valued functions m; =
m1(s1) and mg = mo(s2),

In(3 + s%) g % C'Ny In(3 + s3)

~ C'N ,
m a4 82 3+ 83

, (47)
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where C’ > 0 is a sufficiently large constant. Denote
ms = |m1/2], my = |ma/2].
Write
f1 = Eexp{iH}, fo=EJ, f3 =iBEJF, J =exp{i(L1 + F)}.

In order to prove (45) we shall show that

fl ~ f2 + f37 (48)
fo ~ Eexp{iL} 4+ iEexp{iL}(tQ — F), (49)
fz3 ~ iEexp{iL}F}. (50)
Let us prove (48). Expanding the exponent in powers of itQy,(B1) we

obtain

fi = fat+f5+ R, (51)
fi: = EJexp{i(tQ,(D7) +tQy(DY))},
fs o = itEJexp{i(tQ.(DY) +tQy(DY))}Qqy (B1),

Ry < ©BQY,(By).
A simple calculation shows that
J5 = fe + R2 + R3 + Ru, fo == itEJQqy(B1), (52)
where we denote
Ry = itEJQuy(B1)(exp{itQy (DY)} —1), R3 = itEJQguy(B1)(exp{itQ. (D7)} —1),

Ry = itBJQqy(B1) (exp{itQy (DY)} — 1)(exp{itQ. (D7)} — 1).

Expanding the exponent in fy in powers of itQ.(D{) we obtain
fa=fr+ fs + fo, (53)
where f7 := EJ exp{itQ, (D7)} and fs := itEJ exp{itQ,(D7)}Q, (DY) and
fo = (it)"BJ exp{itQu(D})}Qy(DY)0y,  10y| < 1.

The random variable 6, is a function of Q,(DY). Furthermore, expanding
in powers of itQ,(D{) we obtain

fr=fo +itEJQu(D]) + Rs,  Rs:= (it)*’EJQ2(DT)0,,  (54)
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where |6, <1 is a function of Q,(D7). Similarly, we get

fs = #tEJQyu(DY) + Rs,  |Re| < t*|Qu(D7)Qy(DY)|. (55)

Finally,
fo=R:+Rs,  Ry:=(it)’EJQ,(DY)6,,  |Rs| <|t|*|Q.(DT)|Qs(DY).
(56)

Combining (51)-(56) we obtain
fi=fo+f3+R, R:=Ri+...+ Rs. (57)
In order to prove (48) we show that
Ri <R, k=1,...,8. (58)

For k = 1,4,6,8 the proof is simple. We have

Ryl < *E|Q.(DN)[V2Qy (D)2 Quy(B1)]

< *E|Q.(DY)Qy(DY)| + *EQ7,(B1)

< (EQA(D))VA(EQ(DY))'? + *EQ2,(B),
|Rs| < [t*(BQ(DY))/*EQZ(DY),
|Rs| < t*(EQ:(DY))"*(BEQ;(DY))">.

Combining these inequalities, (47) and (120) we obtain (58) for k = 1,4, 6, 8.
Let us prove (58) for k = 2. Write B} = (Qm, \ Qmy) X Qpy,. By
symmetry, it suffices to show (58) for

Ry = B Quy (B (exp{itQ, (DY)} — 1) = (i) EJQuy (B)Q, (D)6,
where |65 < 1 is a function of Q,(D{). We have
RIQ < tQEJxmy(Qms)‘sz(Bi)Qy(Dzl/)‘

Invoking inequalities |J%, (Q23)] <1 and |ab| < a® + b? we write

Ry <t°Ry1 +t°Rys,  Ro1 :=EQ},(B}),  Raz:=EJ},(Qm;)Qs(DY).

(59)
Lemma 9.1 implies the bound t?Ry; < R. Let us prove that t?Roy < R.
Write

Ry =Ef.,  fo:=J%(Qn,)QA(DY) (60)
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and split

f* = f*Hac + f*ﬂ:m Hac =1- Han ]Iac = H{aygy(9m3)<gg}~ (61)

The number o > 0 is defined in (123) below. By Chebyshev’s inequality and
symmetry,

Efill, < (a/o)Esx, (Qm,)Qy(DY) = (a/02)E(v] + uf)*Qy (DY)
= (a/c) (Vi + V).
Here we denote
Vi = E({)’Q)(DY), Vo= E(u])’Q; (D).
By symmetry, (119) and (120) we have
Vi = (N1 —m1)patz0 5, BQ (DY) < 717 20%(Qq) (m2/N2)?0*(Qy).-

Similarly,

_ 2 2( Y 2.2 2 242 2
Vo = (No—m2)pyayEvz, (X1, Yn, )Qy (DY) < mymapyq,Evy, (X1, Y, )¥y (Y1, Y2).

Invoking the simple bound E¢Z, (X1, Y, )¢ (Y1, Y2) < 02,0, and (119) we
obtain
Vo < 11 2(ma2/N2)?0%(Quy)o?(Qy).-

Combining bounds for V; and V5 we obtain,

Ef.l, < (ma/No)’ri ?0,%0%(Qy)(0%(Quy) + 0*(Qx)) (62)
= 7'1_10;2‘72(@7;>(‘72(wa) + ‘72(@&:))-

In the last step we used the simple bound f]I{‘sﬂgml}dsl <.
Furthermore, combining (132) and (120) we obtain

Ef.L, < EQL(DY)ExJo(Q)L < 0%(Qy). (63)

Finally, collecting (62) and (63) in (60) we obtain the bound t?Rgs < R,
thus completing the proof of (58) for Re. The proof of (58) for Rs, R5, Rr
is almost the same. We arrive to (48).

Let us prove (50). We shall show that

itBJQuy(B1) ~ itEexp{iL}Q.y(B1), (64)
tBJQ.(D}) ~ itBexp{iL}Q.(DY), (65)
tBJQu (DY) ~ itEexp{iL}Q,(DY). (66)
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Write
J = Joexp{iF3},  Jo=exp{i(L+ F»)}, (67)
F3 = tQu(D3) +tQy(DY) + tQquy(B2) + tQquy(Bs).

In the proof of (64), (65), (66) we replace J by Jy and then replace Jy by
exp{iL}.

Let us prove (64). Denote Bi1 = (Qm; \ Qms) X (Qny \ Qmy). By
symmetry it suffices to show that

#tBJQuy(B11) ~ itEexp{iL}Qy, (Bi1). (68)

We shall prove that

itBJQuy(B11) ~ itEJoQuy(B11),  itEJoQuy(B11) ~ itEexp{iL}Qyuy(B11).
(69)
Write

F3 = Hsj +tQuy(B2), H3 = Hsy + tQuy(B3),
Hsy = Hss+tQy(DY), H3z = tQ,(D3).

Expanding in powers of itQy, (B2) we obtain

E']Qxy(Bll) - EJOeXp{iHSI}Qxy(BH)+itR1;
Ry = EJOeXp{inﬂ}Qa:y(Bll)sz(B2)917

where the random variable |6;] < 1 is a function of Qy(B2). Similarly,
expanding in powers of itQgy(Bs), itQ, (DY) and itQ, (D) we obtain

EJyexp{iH31}Quy(B11) = EJyexp{iH32}Quy(B11) + itRo,

Ry: = EJyexp{iH3}Quy(B11)Qyuy(B3)02,
EJoexp{iH32}Q.y(B11) = EJyexp{iH33}Qqy(B11) + itR3,

Rs: = EJp exp{ngg}@w(Bll)Qy(Dg)Qg,
EJoexp{iH33}Quy(B11) = EJoQuy(B11) + itRy,

Ry: = EJoQuy(B11)Qu(D3)bs.

In order to prove the first part of (69) we shall show that

Ry < R, kE=1,23 4. (70)
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Let us prove (70) for k = 1. We have

R < BJ(0m)|Quy(Bii)Quy(B)| = Ris + Riay  (71)
Ryy - EJ, (Qm,)|Qaey (B11)Qay (B2) Ly,
Rip: = Eng(QmJ|Q:py(Bll)Q‘”y(B2)|Ey'
Here ,
I, :=1-1, Iy = Heoat, (@) <03y

Random variables v} and u} are defined in (44) and the constant « is defined
n (123). We shall show that

t2R11 < R, t2R12 < R. (72)

Let us prove the second bound. Using the simple inequality J%,(Qm,) < 1
and Cauchy-Schwartz we obtain

R < RYPRY},  Rizi= EQ},(Bu)ly, Rui:=EQ;,(B). (73)

Lemma 9.1 implies R4 < (m1/N1)0?(Qyy). Furthermore, by Chebyshev’s
inequality and symmetry

Ris < 0,°EQ2,(B11)#Y,(Qm,) = 0, "EQ2, (B11)((v])* + (uf)?)
= U;2|Bllypr$pry(V1 + VQ) (74)

Here |Bi11| < mimg denotes the number of elements of the set Bj; and

Vit = Ewiy(Xmquz)(vllj)2 = (NQ - m2)pyqu'¢gy(Xm1 ’ Ym2)¢32; (Ylv YNz)
< 70?02, < 21y oM (Quy) o (Qy),
Voo = Eqﬂmy (X sz)( ) (N1 —mq )prwway (X, Ym2)wgzcy (X Y1)

< 7'10 L7 7'2 -~ 4(Qxy)
We obtain
Ri3 < (mama/N1No)75 %0, 207 (Quy) (07 (Qay) + 0°(Qy))-

Collecting the bounds for Ry3 and Ry4 in (73) we obtain t2Rys < R.
Let us prove the first bound of (72). We have

Ry1 < Ris5 + Rus, Ri5 :=EQ},(B11), Ris:=EJY,(Qm,)L,Q3,(Ba),
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where t?Ry5 < t2(m1ma/N1N2)o?(Qqy) < R. Furthermore, by symmetry,

No
Rig = mipeqBJIY, (U, ), D?, D= Y 4y (X1,Y))é5.  (75)

Jj=ma+1
We have, see (134),
T2 (@l < Wi, (76)
where
my my
W= H ug1) (tgy (Vi) + 52/72), Wi = H vy (0] + tu).
k=1 k=1

Invoking the bound, which can be shown in the same way as (135),
Woly <71, ry=exp{167'O(1)(ma/Na)opr35t*}, (77)
we obtain, by symmetry,

EJY,(Qm,)lyD* < mEW1D? = r1(Ny — ma)pyq, EW1¢2, (X1, Yn,). (78)

The conditional expectation of Wir; given Yy, is not greater than (3—1—3%)*10,
see (139). Therefore, we obtain

EJY,(Qm,)IyD* < (3+ s3) 7502,
Substituting this bound in (75) we obtain

Rig < (3+ s%)_lo(ml/Nl)TIQT;agy. (79)

This implies t?R16 < R thus completing the proof of (72). We have shown
(70) for k = 1. For k = 2,3,4 the proof is much the same.

Let us prove the second part of (69). Expanding the exponent of Jy in
powers of iFy we obtain

itEJoQuy(B11) = itBexp{iL}Quy(B11)+(it)’R, R := Eeap{iL}Q.,(B11)F:0F,

where the random variable |#r| < 1 is a function of F5. We shall show that
t?R < R.
We have |R| < R; + Ry + Rs3, where

Ry: = E{x(ﬂms){y(szl)‘@:cy(Bll)Qfﬁy(B‘l)”
Rg L= EJx(ng)Jy(Qm4)‘me(Bll)Qm(D§)’a
R3 L= ij(ﬂmg,)jy(Qm4)‘sz(Bll)Qy(Dg)|'
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We shall show that
t?Ry, < R, k=1,2,3. (80)

For k =1 we write
Ry < Ry1+Rao, Ry := EQ},(Bun), Ryy := BJ" (Qny) Y (U, ) Q2 (Ba).

Here we use simple inequalities J%(Qy,,) < 1 and JY(Q,,,) < 1. Clearly,
t?R11 < R. Furthermore, by symmetry,

Rip = (N1 — m1) (N2 — m2)patapy@y BT (s ) JY (R, 12, (XN Vi)
Invoking (132), (133) we obtain
Riy < 727302, (3 + £2) 7103 1 )10,

This implies t2R12 < R thus proving (80) for k = 1. The proof for k = 2,3
is much the same. The proof of (69) is complete. We arrived at (68).
Let us prove (65). We shall show that

iEJQq (DY) ~ itEJoQu (DY),  itBJoQq (DY) ~ itEexp{iL}Qqu(DF).

(81)
Write
Fy = Hj + t@y(Dg)v H3y := H3y + tQuy(Bs),
H3p: = Hig+1Quy(B2), H3s := tQy(D3).
Let us prove that

HEJQu(DF) ~ itE.Jo exp{iH, }Qu (D). (s2)
Expanding the exponent in J in powers of itQ,(D}) we obtain
EJQ.(D?) = EJyexp{iH};}Qu.(D?) + itRy + t*Ry,

Ri: = EJoexp{iH3}Qu(D})Qy(DY),  |Re| < E|Qu(DY)|Q5(DY).

We have, by symmetry and independence,
[B2| < E|Qu(DY)EQ(DY) < (EQ3(DY))*EQ; (D))
m
= (1} ot ety — i,
< (m1/Ni)(ma/N2)o(Qz)o(Qy)-
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Therefore, t3Ry < R.
Let us prove that t?R; < R. By symmetry, it suffices to show that
t?R; < R, where we denote

R} = BJoexp{iH;}Qu(DD)Qy(DL), D= (Qy \ Qo) % (2, \ Dony).
We have
|RT| < EJY(Q,)|Qu(DY)Qy(D;)| < (1+ sT)RY; + (1+ s7) " Riy,

where RY; := EJY(Q m4)Q2(D”") and R, := EQ}(D}). Here we applied the
simple inequality ab < a?c® 4+ b%c2 and the inequality Jg};’(Qm4) < 1. Since
R}y < (ma/N2)o?(Q,) we obtain t(1 + s3)"'Rj;, < R. We complete the
proof of (82) by showing that

2(1+ DR} < R. (83)
Write R}, = R5 + R3, where we denote
R; = EJg(szl)Qi(D:f)H; R3 EJ ( m4)Q?z(D%)ﬂ;
Iy = Lad@my<ozy L=1-1

and the constant « is defined in (123) below. Recall that the random variable
34 (Qy,) is introduced in the subsection 8.1. We shall show that

21+ s)Rf <R, k=23 (84)
We have, by Chebyshev’s inequality and symmetry,
Ry < 0,”EQA(D}) Q) = 0, BQ2(DY) (ul)?
= (7)) RO X2, (X )
< Uy_Q(ml/NﬂQTz_ZUz(Qz)UQ(chy)-

This implies (84) for £ = 3. In order to bound R} we apply (133) and use
symmetry,

(WQLl) 2 2 2

(34 s3) N2(3+ 2)10

We obtain (84), thus completing the proof of (82).
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Let us prove that
itEJy exp{iH3, }Qu (DY) ~ itEJyexp{iH35}Q4(D7). (85)
Expanding the exponent in powers of itQ,, (Bs) we obtain

EJyexp{iH};}Q. (DY) = EJyexp{iH}} Q. (DY) + itRy + t*Ry,
Ri: = EJyexp{iH3}Q:(D7)Quy(Bs),
|Re| < E|Qu(DY)|Q7,(Bs).

Invoking the inequality a < ¢ + a%c~2 we obtain

[Ro| < (1+ 1) BQZ, (Bs) + (1+ s1)EQ;(D7)Q;, (Bs).  (86)
By symmetry,
EQZ,(Bs) = ma(Ni— m1)peaPylyoay < (m2/N2)o?(Qzy),

m1
BQONQ, (B = (7 )malty — ke, BUACK: X U2, (X 1)

2

2
2 2 2 mymz 9 2
N12 N2 T T2 szaxy < o (Qx)a (Qxy)

< NZ N,

Collecting these bounds in (86) we obtain that t*Ry < R.
Let us show that t?R; < R. By symmetry, it suffices to show that
t?R} < R, where we denote

R} = EJyexp{iH3}Q:(D7)Quy(B3), By = (x5, \ Qny) X (Qny \ iy )-
We have

| Ry EJY(Qny)|Qz (D7) Quy(B3)]

<
< (14 SEJY(Qu, JQUDY) + (1 + 3)"EQ2, (BY).

In the last step we used the simple inequality ab < a?c? + b*c—2. Using the
simple bound,

EQ2,(B5) < (ma — ma)(N1 — m1)Patapy@yoay < (ma2/Na2)o*(Quy)

we obtain

£?(1+ s7)'EQZ,(BS) < R. (87)
Furthermore, invoking inequality (133) and using symmetry we obtain
Y 2 T 2 T 1 m% 2
EJY(Qn,)Qz (DY) < o EQ: (DY) < o (Qz)-

(3+s3) (3+ s3)10 N7
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This bound implies
t2(1+ s1)EJY (2, ) Q2 (DY) < R. (88)

Combining (87) and (88) we obtain t?R} < R thus completing the proof of
(85).
The proof of the formulas

itEJyexp{iH3}Qz (D7) ~ itEJyexp{iHa3}Qx(D7),
itEJyexp{iH33}Qx(DT) ~ itEJyQu(DY)

is similar to that of (85) but simpler. Combining these bounds and (82),
(85) we obtain the first formula of (81).

Let us prove the second formula of (81). Expanding the exponent in
powers of iF, we obtain

EJyQ. (DY) = Eexp{iL}Q,(D?) + iR, R := Eexp{iL}Q,(D¥)Fyfr,
where the random variable |#r| < 1 is a function of F». We have
|R| < EJY(Qn,)|Qu(DY) P < (1+87)Ri+ (1+87) 'Ry, (89)

where Ry := EJY(Q,,)Q2(DY) and Ry := EJY(Q, ) F3. By symmetry and
independence,

2
mi\ 2 2 2 my o 1
= EJY(Q,, — ).
B = () )it Br©,) < Q) Ty @0
Furthermore, we have Ry = t2(Ra1 + R + Ra3), where
Roi: = EJY(Qn,)Q%(DY) < 0%(Q)EJY(Q,) < 7 (@) (91)
2 ) 2 (1 +Sg)10’
2( Y A2 Uz(Qy)
Ryp: = EJy(QTm)Qy(D?)) < 72E¢yjy(9m2) < 2110’
(1+s3)
Rys: = EJY(Qu,)Q%,(Ba) < mErdEY2,J9(Q 7(Qn)
23 - = ( mQ)sz( 4) <77 sz)a:y ( m2) < (1—{—8%)10.

Here we used bounds (133). Collecting inequalities (90) and (91) in (89) we
obtain 2R < R thus proving the second formula of (81). We arrive at (65).
The proof of (66) is almost the same. The proof of (50) is complete.

Let us prove (49). Using the notation (67) write

Fy = H{+1Qu(D3),  Hi:= H;+1tQy(Dj),
Hy: = Hj+1Quy(Bs),  Hj :=tQuy(Bs)
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and denote, for £k = 1,2, 3,
fi =BEJy,  Jp=Joexp{ii}, and  fy=EJ. (92)
In order to prove (49) we shall show that

f2 ~ ff+f5*7 f; :itEeXP{i]L}Qx(D%),
i~ 54 fs £ = itBexp{il}Qy (DY),
f5 o~ fi+ £ fi = itEexp{il}Quy(By),
fio~ Ji+ R = itEexpliL}Quy(By),
fi ~ Eexp{iL} +iEexp{iL}Fs.

[NolNe]
B &

N N N /N /N
NolNe]
S Ot
NN NS NN

Ne)
J

Let us prove (93). Expanding the exponent in powers of itQ,(D%) we
obtain

fo= fi +#tBNQu(D3) + *R, R < BJYy(Qn, )QZ(D3).
We shall show that
t?R<R  and  itEJ;Q.(D%) ~ fi. (98)
In order to prove the first bound write R = Ry + Rs, where we denote
Ry = BJL(@Qu)L,GA(DY),  Rs = BJY(Qu,),G2(DY),
Iy = Lot @uy)<ozyy  y=1-1y
It follows from (133) and (119) by symmetry, that
Ry < (3+53) "EQ;(D3) < (3+53) " (m1/N1)o*(Qx). (99)

Therefore, we have t?R; < R. In order to show that t?Ry < R we apply
Chebyshev’s inequality and symmetry and use the inequality J¥,(Q,,) < 1.
We have

Ry < 0,°BQ%(D3)xY,(Qm,) = Ro1 + Raa,

Y
_ . 9 __om

Ry : = gy 2E@§(D2)(UZ1/)2 =0y 27’2 QﬁUQ(Qx)UQ(Qy),

Ryy 0 = UJZE@i(Dg)(UZ{f = U;2m1pquE(vf)2(ulll)2.

Invoking the bound (121) we obtain

Ry < (my/N1)75 20, % (11 % + 02(Q2)0” (Qay)).-
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Since t2Ry; < R and t?Ras < R we obtain t2Ry < R. This completes the
proof of the first bound of (98).

Let us prove the second part of (98). By symmetry, it suffices to show
that

tEJ Q. (DY) ~ fF,  fi:=itEexp{iL}Q,(D?), (100)

where DY = (Qn; \ Q) X (25, \ Qim, ). We shall prove (100). Expanding
in powers of itQ, (D)) we obtain

tEJ Q. (DY) = fi+ (it)’Ry +t3Ry,  fi := itEJ,Q,(D?), (101)

Let us show that 3Ry < R. Using inequalities a < 1 + a? and J;(Qm3) <1
we write

|Ra| < Ro1+Raa, Ro1 := EJ} (Qm,) Q5 (DY), Ryy == EQZ(DZ)Qy(DY).

We have Rgy < (mi1/Ny)(m2/N2)o?(Q.)o%(Qy). Therefore, t3Rey < R.

Furthermore, write
Roy = Ry + R, Ry = EJ;(ng)Hsz(Dg)a Ry, = EJ;(ng)Ey@z(Dlzj)a

where we denote I, = L4, (q,,,)<02} and I, = 1 —I,. Invoking (132) we
obtain

Ry < (3+ s1)TVEQL(DY) < (3+ s7) 0 (ma/N2)a?(Qy).

Therefore, we have t3 R}, < R. Furthermore, by Chebyshev’s inequality and
symmetry we write

Ry < 0. 7BQy(D3)s (Qmy) = 07 BQy(D5)(uf)?
2

= 07 mapya,E(v}) (uf)

K0 (ma/Na)r (73 "y + 0%(Qy)0*(Quy)).
In the last step we used (121). It follows that t3R%; < R. Finally, we have
[t1°[Re| < [t (Ryy + B3y + Raz) < R. (102)

Let us show that t?R; < R for Ry in (101). By symmetry, it suffices to
show that

t?R} <R for | = EJ,Q.(D¥)Q, (DY), (103)
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where DY = (Qny \ Qny) X (O, \ Qiny ). We have

o= BJ(Qu)QUDY).  Riyi= BJY(Qu,)QUDD).

IRl < EJy(Qms) JY (Qm,)|Qa(DI)Qy(DY)| < Ry + Ry,

Proceeding as in the proof of the bound t3Rs; < R above we obtain t?R}; <
R and t?R}, < R, thus proving (101).
It follows from (101), (102), (103) that

#tEJQu (DY) ~ f.

Let us show that

fe~fr, ff = itBJsQu(DY). (104)
Expanding the exponent in powers of itQ,,(B2) we obtain
fo=F7+PR  |R| <EJY(Qn,)|Qu(D2)Quy(B2)].
We have
|R| < R1+ Ry, Ry := BJY(Qm,)Q2(DY), Ry := EJY(Qn,)Q7, (Ba).

Proceeding as in the proof of the bound t3Ry; < R above we obtain the
bound 2R < R. In order to prove the bound t? Ry < R write, by symmetry,

Ry = m1(Na—m2)p.qupyq, BV < (m1/N1) i EV, V= BJY (Qny )17, (X1, Yiv,).
Split
V =Vi+Vs, Vii= BJY Q) 02, (X1, V), Va i= EJY(Qy ) Ly12, (X1, Yn,),

where we denote I, = I(,,(0,,,)<02} and I, =1-1,. It follows from (133)
that

Vi < (34 53) VB, (X1, Yiv,) < (3+ 55) 7107 275 20% (Quy)-
By Chebyshev’s inequality and symmetry,

Vo < O-y_2Ew32:y(X1’ YNQ)%ZzJ(sz) = Uy_2E¢3y(X17 YN2)(U?{)2
< 0, oy, < 0,70y 0! (Qay).

Since t2(my/N1)m272Vp < R for k = 1,2, we obtain Ry < R, thus com-
pleting the proof of (104).
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Let us show that
fi~ e S = itBaQu (DY), (105)
Expanding the exponent in powers of itQ,, (Bs) we obtain
fi = i+ (it)’Ri+ 'Ry,
Ri: = EJoQu(DI)Quy(Bs),  |Re| < EJ™(Qn,)|Qu(D2)|Q2,(Bs).
In order to prove (105) we shall show that
t?’Ri <R and  t3Ry < R. (106)
Let us prove the second bound. Using the inequality a < 1 + a? write
|Ro| < Roi+Roa,  Ror = EJ"(Qny)Q3,(Bs),  Rap:= EQ3(DI)Q3,(Bs).
By symmetry and (132), we have
Ro1 < (ma/No)ri 3 BI* Qg )02, (X, Y1) < (m2/Na) (3 + 1) 00% (Quy)-
Therefore, t3Ro; < R. Furthermore, by symmetry and (121), we have
Raa = (m1—m3)mapsaupyqyB(vf)(u})? < (mima/NiNo) (r 275+0%(Q2)0? (Quy))-

Therefore, t3Ry2 < R. We obtain the second bound of (106). In order to
prove the first bound it suffices to show that

t?R} <R for | = EJoQu(D¥)Quy(Bs),
where By = (5, \ Qmy) X (g \ Oy ). We have
R < BJ™(Quny) T ()| Qu(DE)Quy(Bo)| < Ry + Ry,
e = BJ(Qny) Q2 (B, 12 1= EJY(Q, ) Q3 (D).

Invoking (132) and (133) and using symmetry we obtain t?R}; < R and
t?R}, < R, thus completing the proof of (106).

Finally expanding the exponent in fg‘ in powers of ¢F5 and using sym-
metry we obtain

f = +tR, R S EJ®(Qy) JY (i, )| Qu( DY) Fl. (107)
We have |R| < [t|(R1 + R2 + R3 + Ra), where
Ry: = EJy(sz)Q?c(Df)v Ry = ij(ng)Jy(Qm2)Qi(D§)’
Ry: = BJ"(Qng)J"(0n)Q(DE),  Rai= BJ™ () T (Uny ) Qs (Ba).
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Invoking (132) and (133) and using symmetry we obtain t?R; < R for
k =1,2,3,4. This implies fé‘ ~ f5* and completes the proof of (100). We
arrive to (93). The proof of (94) is almost the same.

Let us prove (95). Expanding the exponent in powers of itQg,(B2) we
obtain

f3 = f3 + itBJsQuy(B2) + °R,  |R| < EJY(Qun,)Q2,(B2).

In view of the bound (which is shown in the proof of (104)) t?|R| < R, we
need to prove that itEJ3Q.y(B2) ~ f7. By symmetry, it suffices to show
that

itEJ3Quy(Bi) ~ fo,  fo = itEexp{iL}Quy(By), (108)
where By, = (2, \ Qms) X (2n, \ O, ). We shall show that

itBJ3Quy(Bs) ~ itEJoQuy(B.)  and  itEJoQuy(Bs) ~ fo.  (109)

In order to prove the first relation of (109) we expand the exponent in powers
Of ’it@wy(Bg),

itEJ3Quy(By) = itEJyQuy(Bs) + (it)* Ry + t* Ry,
Ri: = EJOQ:ry(B*)sz(BB)a
[Ra| < EJ*(Qny)|Quy(B.)|Q3, (Bs)

and show that t2R; < R and t3|Rs| < R. The proof of these bounds is
similar to that of (106). The proof of the second relation of (109) is similar
to that of the relation fi ~ fZ, see (107) above. We obtain (108) thus
completing the proof of (95). The proof of (96) and (97) is similar. The
proof of (45) is complete.

8.2.2. Proof of (46). We shall show that

tBexp{iL}Quy ~ TET3kLy(it) Eexp{il}, (110)
itEexp{iL}Q, ~ 2 '7ik,(it)*Eexp{il}, (111)
itBexp{iL}Q, ~ 27 'k, (it)’Eexp{iL}. (112)

Write
Ny Na
L=T+27, T =) tew, 7=z, (113)
k=1 j=1

ty = tg.(Xk) + s1/71, zj = tgy(Yj) + s2/mo.
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Let us prove (110). By symmetry,
itBEexp{iL}Quy = N1Nohy,  hy = itEexp{iL}1, (X1, Y1)wi.

Split L = L' 4 tyw + 21&1. Expanding the exponent exp{i[ﬂ’ +itywy +i21&1}
in powers of itjw; and iz1£; we obtain

hi = ha+ Ri+ Ry, (114)
ho: = itE exp{i]ff}wl, wy = —wxy(Xl,Yl)tlzlw%g%,
[Ra| < BT (U, )T () [witiw],
[Ro| < [tIEJ® (U, )T () [wr21&1].

Here )y = Qn, \ {1}. We have
hy = itE exp{il }wo, where wy = —piquzqgww(XhYl)tlzl.

Proceeding as in (114) we obtain

hy = h3+Rs+ Ry,  hy=itEexp{iL}ws, (115)
[Rs| < [t[EJ" (U, )Y (D) [watiw],
[Ra| < [HEJ"(Q,)JY Q) |w2z1& ]

Let E, ¢ denote the conditional expectation given all the random variables,
but {vg, k = 1,...,N1} and {&, r = 1,...,Na}. Note that (¢,s1,s2) —

E, ¢ exp{iLL} is a non-random function. Therefore, we have

h3(t) = EE,¢exp{iL}w; = E, ¢ exp{iL}Ews (116)
= Eexp{iL}ws,

where w3 := Ewy = (it)?pyqapyqykay- The last identity uses (25). From
(114), (115) and (116) we obtain

itE exp{iL}Quy = T2 T8 Ry (it)E exp{iL}+N; No R, R := Ri1+Ry+R3+Ra.

We complete the proof of (110) by showing that R < R.
Invoking (132) and (133) we obtain

R < [t|(3+ 1) 73 + 3) T E(Jwi| + [wa ) ([t:] + |21])- (117)
Using Cauchy-Schwartz we obtain for £ =1, 2,
Bluwgti| < ([t 4 [s1f* + [s2l* )Ny Ny ' 0 (Quy) B, (118)

a1 — 1/2
Elwgz| < (|t + 1> + |s2P) NN, IU(QIQ)Byi :
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These bounds in combination with (117) imply R < R. We arrived to (110).
The proof of (111) and (112) is almost the same. We show that

[itB exp{il}Qqy — 27 7tk (i) Bexp{iL}| < |t](1 + [t})r ' o(Qa) B,Y,
\ztEeXp{zL}Qy—Z TQ&y(zt)gEexp{ZLH <+ |t )Ty (Qy) 1/2'

The proof of (46) is complete. Lemma 8.1 is proved.

9 Moment inequalities

It follows from (27) that

2 2 2
o°(L o“(L o
2 < (2“), TR (2?’), 02, < (%”), (119)
1 ) 1
2 2
2 g (Qy) 2 g (Qxy)
A I

EQy%y(Bl) < %%UQ(sz)v (120)
2

EQUDY) < 30%(Q.),  EQYDY) < 220%(Q,).
1

D2w)? < (e + 02(Qa) 0 (Quy)), (121)
E(w])?(uf)® < 1275 %15 %y + 02(Qy) 0% (Quy))-

Proof of Lemma 9.1. Inequalities (120) follow from (119) and the iden-
tities

EQ},(B1) = mimeBwitios,,  EQi(DY) =2"'mi(m — 1)Ewiwio?,,

E@Z(D%) = 27 m2(m2_1)E£1§2 Oyy-

Let us prove the first bound of (121). The proof of the second bound is al-
most the same. Denote for brevity a; = ¥, (X1, X;)w; and bj = ¢,y (X;, Y1)w;
By independence, we have

Z a;) Z bj)? = ES| + ES; +4ES;, (122)
Z a?b?, Sy = Z(a?b? + ajzb?), S3 = Zaiajbibj.
i<j i<j
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Here ZZ denotes the sum over m; < 7 < N7 and Zl <j denotes the sum over
m1 <1 < j < Nj. By symmetry we have

ES; = (N — m1)Eajy, by, < TEY2(X1, Xy )¥2, (XN, Y1) < 7' 2.

Furthermore,

Ny —my
Bs: = (M) Bk, 1 < ABURON, X)e, (X, 1)
< 105,00, L1107y 20 (Q2)0” (Qay)-

Finally, by Cauchy-Schwartz,

ES; < Y (Ea?t? + Ealb?) = ES,.
1<j

Collecting the bounds for ES; and ESy = ES3 in (122) we obtain the first
bound of (121).

10 Auxiliary inequalities
Denote

Be(t) = Ee™1t, By(t) = Eei&t,
g T—1 327 4

2
= = YZEY 12
o - I a- sl (123)
O(d 27, 4
Uld,x} t) = 1- prx;)tQH{t|<d+7r}a V{d,x} t) =1+ pz‘]acj(w + 1)t2>
O(d 27, 4
uag(t) = 1- pry;)tQ]I{lt<d+7r}a vayy(6) = 1+ vyt (g + 1)t%.

In proofs we use the following result, see Lemma 5.2 in Bloznelis and
Gotze (2000), Bernoulli, 6, 729-760.

Lemma 10.1. For each d € (0,7) and t,s € R we have

\ﬂm(s + t)|2 < U{d z} (t)’l){d@}(s), |ﬂy(8 + t)’Z < Ufd,y} (t)v{d,y} (S) (124)

Denote

er = 8(NIPBP + 1) /(N1 —4), e, = 8(N;/* B2 + 1)/(Np — 4). (125)
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Lemma 10.2. Let ¢p > 2 and d € (0,7). Assume that |t| < T, where
T~! = ¢pBy3o,. For ¢ = min{crd, c%dQ} we have

) st

E(tg.(X1) + - L jtge(x0)|<ay = (0282 + Z5)(1 = 2/), (126)

?12
2
S S

B (19, (X1) + ) Lgu 05y 1<ay 2 (028 + 3)(1 == = 2/¢!). (127)
1

Here EM denotes the conditional expectation gwen X;,, Xi,, Xiy, Xi,, where
L ¢ {i1, ia, 43, i4}-
Proof of lemma 10.2. The proof is similar to the proof of Lemma 5.3
ibidem. Let us prove (126). Denote
I=Iipx<ay.  L=1-1  Zy=tg,(X1)+s1/n, A=EZL
For [t| < T we have
EZ i (xy)<ay = BZII=EZ{ - A
= o2 %0 — A

In the last identity we use Eg,(X1) = 0. Therefore, in order to prove (126)
it suffices to show that

A< (2/) (02 + 1 283). (128)

Introduce the set K C X, K = {x; : T|g(x;)| > d}. Write

2 2 s
A= NS (tgelay) £y 9)’ € W b K] (129)
1

ijK

where W = ij ci 92(z;). By Chebyshev’s inequality, for r > 0,
K| < 3 (T/a) |g.(a))" < (T/d) MiElgo(X0)|" = (T/d) Ny By,
;€K

(130)

In particular, we have
|K| <(T/d)’N1Bygoy,  |K|<(T/d)*Nios. (131)
Furthermore, by Minkovski’s inequality,

W< (Y gala)P)PIE VP < (NiE|g, (X1)]P) % K V2.
IjEK
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Invoking the first (respectively second) bound of (131) and the identity

TerBgsor = 1 we obtain

w S Nl(T/d) x30‘

N102/0Td

|K| < Ny /c&d*>B%;, < Ny /cad?.

In the last step we invoke the simple bound B,3 > 1. Substitution of these
bounds in (129) gives (128).
Let us prove (127). Assume without loss of generality that {i1,i2,i3,14} =

{2,3,4,5}. We have

EM (tg.(X1) +

where B = ijg(tgx(Xj)+31/Tl)2

the inequalities

5
B<2) (g

j=2

1) Ljtg, (x1)1<dy =

J)+s1/m0),

Ny —4
. Therefore, (127) follows from (126) and

5

1 B2 g (x0) <) —

1
——B
Ny —4

> g2 (x;) < 4PN B g2,

Jj=2

The last inequality follows by Minkovski inequality,

5

Zg < 4133 IR(XP2 < 4N (o

Jj=2

Proof of Lemma 10.2.is complete.

Z |g2(X

2/3

Let Ex (respectively Ey) denote the conditional expectation given all

the random variables but X* (respectively Y™*).

By E“’ 7'k (respectively

E%}“‘), we denote the conditional expectation given all the random vari-

ables but { X7, ...
Yii})-

s Xy P\ Xy

Xi, } (vespectively {Y7, ...

’YNQ}\{YZ'N---a

Lemma 10.3 Assume that |t| < T, where the number T is defined in
(43) and the constant cr in (43) is larger than 8. Assume that numbers
€z, €y (defined in (125)) are smaller than 1/4 . Assume that the constant C’
in (47) is larger than 103/©(1). Then for every B C Qun,, |B| > m1/4 and
D C Qp,, |D| > ma/4, and for every {ij} C Qn, \ B, and {k,l} C Qn, \ D

we have almost surely

Ef)]( ny (B)H{oc%%y (B)<o2}
EXJ; (B)Lase(B)<o2)

EY Y, (D) st (D)<o2)

EVJY (D)0 ()<o2)

<
<
<
<

e
e
)
)

EJJ*(B) < (3+s3)71°,

(
'Lj J$(
(
Iy (

yD<(3+s) o

)
B){s(5)

)

)

D)l



The integer valued functions my = mi(s1) and ma = ma(sa) are defined in

().
Remark. Inequalities (132) and (133) remain valid if we replace the
expectation EY (respectively E#) by Ex or E¥ (respectively Ey or EY).
Proof of Lemma 10.3. We shall prove the first inequality of (132) only.
Denote Zj = tg,(Xg) + 7, 's1. It follows from (124) that

ng(B) < Wil W12 = H u{l,a}}(Zk)v W22 = H U{l,x}(tvlf_‘_tui)'
keB keB
(134)

The inequality 1 4 z < e® implies almost surely

Woliaser, (B)<o2) < Lasez, (B)<o2) exp{27(1 + 4/0(1))|Blprq. 3, (B)t*}
Voo (3)<a) SXDA1671O(1)ass, (B)(| Bl /N )72
exp{1671O(1)(|B|/N1)o2rit*} =: 7. (135)

IN

IN

Therefore, we have almost surely
J:gtcy(B)H{oz%%y(B)<U%} < Wir. (136)
Hoeffding’s (1963) Theorem 4 implies Ez)j(Wl2 < (Egu{lw}(Zl))lBl. There-

fore,
E{Wy < (BYWHY? < (B g 0y(2)P2. (137)

For |s1/71| < 7 and |t| < T we obtain from (127) that
B 28 g, (X0 e /mlmery > BX g, (x0)1<1)
> (o3t +s1/m)(1 — &2 — 2/er),

where ¢, is defined in (125). Therefore, we have

Eug0)(Z1) < 1-27"'pquO(1) (038 + 7 /77) (1 — e = 2/er). (138)
The inequality 1 + z < e* combined with (137) and (138) implies

EY W) exp{—47"(1 — e — 2/c1)O(1)pags| Bl(07t* + 51 /77)}

exp{—47"(1 — e — 2/cr)O1)(|B|/N1)(o77{t* + s7)}
exp{=871O(1)(| B|/N1)(o7it” + s7)}. (139)
Combining this bound and (136) we obtain

BYJE (B) s, ()<o2) < exp{—167'0(1)(|B|/N1) (0272t + )}

exp{—64710(1)(m1/N1)(a37{t* + s1)}

0)m ,
exp{=5 w3, o 3+ s2)10°

ININ A

IN

IN
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The proof of the first inequality of (132) is complete. The proof of the
remaining inequalities of the lemma is much the same.
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