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Abstract. We construct one-term Edgeworth expansions to distributions
of U statistics and Studentized U statistics, based on stratified samples
drawn without replacement. Replacing the cumulants defining the expan-
sions by consistent jackknife estimators we obtain Empirical Edgeworth ex-
pansions. The expansions provide second order approximations that improve
upon the normal approximation. Theoretical results are illustrated by a sim-
ulation study where we compare various approximations to the distribution
of the commonly used Gini’s mean difference estimator.
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1 INTRODUCTION

Stratified simple random sampling without replacement (STSRS for short)
is widely used in surveys. It generalizes sampling with replacement and
without replacement. In order to assess the precision of survey estimates it
is important to develop approximations to distributions of various classes of
estimators based on STSRS samples.

Here we study estimators which are U statistics. It is well known that,
generally, non-degenerate U -statistics are asymptotically normal, see [18].
An improvement upon the normal approximation is provided by an Edge-
worth expansion, see [14]. In this paper we construct the one-term Edge-
worth expansions for asymptotically linear U statistics and Studentized U
statistics.

In the case where the population parameters (cumulants) defining the
expansion are unknown it is convenient to use Empirical Edgeworth expan-
sions where unknown parameters are replaced by their estimators ([3], [16],
[17], [22]). We define the jackknife estimators and show their consistency.

Since general symmetric statistics can be approximated by U statistics
up to second order (e.g., via Hoeffding’s decomposition, see [2], [9]) our
results extend to general asymptotically linear symmetric statistic.

In a simulation study we compare the accuracy of the normal approx-
imation, Edgeworth expansion and empirical Edgeworth expansion for the
commonly used STSRS estimator of Gini’s mean difference. The simulation
demonstrates that the Empirical Edgeworth expansion outperforms the nor-
mal approximation, but tends to be less accurate than the true Edgeworth
expansion.

The outline of the paper is as follows. Results on Edgeworth expansions
and Empirical Edgeworth expansions are given in Sections 2 and 3. Results
of a simulation study are referred to in Section 4. Proofs and technical
details are given in the Appendix.

2 Edgeworth expansion

Consider the population X = {x1, . . . , xN} and assume that we want to
estimate the population parameter u =

∑
1≤i<j≤N t(xi, xj), where t is a

symmetric function (i.e., t(x, y) = t(y, x)). Suppose that the population
is divided in h non-intersecting strata X = X1 ∪ . . . ∪ Xh. Here Xk =
{xk.1, . . . , xk.Nk

} and N1+. . .+Nk = N . From every Xk we draw (without re-
placement) the simple random sample Xk = {Xk.1, . . . , Xk.nk

}, k = 1, . . . , h,
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so that the samples X1, . . . ,Xh are independent. The statistic, based on the
stratified sample without replacement X = (X1, . . . ,Xh),

û = û(X) =
∑

1≤j≤h

∑

{x,y}⊂Xj

wjt(x, y) +
∑

1≤j<r≤h

∑

x∈Xj

∑

y∈Xr

wjrt(x, y), (1)

is an unbiased estimator of the parameter u. Here

wj = wj(X) =
(

Nj

2

)(
nj

2

)−1

, wjr = wjr(X) = NjNr(njnr)−1. (2)

Note that in the case where t(x, y) = |x−y| and xi, i = 1, . . . , N , denote
real valued measurements, we obtain the estimator of Gini’s mean difference.

Our analysis of the distribution of û uses linearization by means of Ho-
effding’s ([18]) decomposition. We approximate û by a linear statistic L of
the form

L =
h∑

k=1

Lk, Lk =
∑

x∈Xk

gk(x).

Choosing (first order influence) functions gk that minimize the expecta-
tion E|û− u− L|2 and denoting the remaining quadratic part Q we obtain
Hoeffding’s decomposition

û = u + L + Q. (3)

Note that the linear part L and quadratic part Q in (3) are uncorrelated.
Explicit formulas for L and Q are given in (20) below.

We shall assume that the variance σ2
L of the linear part L is positive,

σ2
L > 0. By the central limit theorem, for large n = n1 + . . . + nh and

N , the distribution of L/σL can be approximated by the standard normal
distribution, see [4], [15]. In the case where the linear part dominates the
statistic and we have σ2/σ2

L ≈ 1, the normal approximation applies to (û−
u)/σ as well. Here σ2 denotes the variance of û.

Assuming that sample sizes nk are large for every k, we construct the one-
term Edgeworth expansion for the distribution function Fu(x) = P{û−u ≤
σx} and for the distribution function FS(x) = P{û−u ≤ xS} of Studentized
U−statistic. S2 denotes the classical (delete-one) jackknife estimator of the
variance σ2,

S2 =
h∑

k=1

qk
nk − 1

nk
v2
k, v2

k =
nk∑

i=1

(û(Xk|i)− uk)
2, uk =

1
nk

nk∑

k=1

û(Xk|i).

(4)
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Here Xk|i denotes the STSRS sample obtained from X by removing the
observation Xk.i.

Theorem 2.1 The one-term Edgeworth expansions of Fu(x) and FS(x)
are functions Gu(x) and GS(x),

Gu(x) = Φ(x)− α + 3κ

6σ3
Φ′(x)(x2 − 1), (5)

GS(x) = Φ(x) +
α + α′x2 + 3κ(x2 + 1)

6σ3
Φ′(x). (6)

Here Φ denotes the standard normal distribution function and Φ′ denotes its
derivative. The moments α, α′ and κ are given in (8) below.

Denote

τ2
k = Nkpkqk, pk = nk/Nk, qk = (Nk − nk)/Nk (7)

and introduce the moments

α =
h∑

r=1

(qr − pr)τ2
r αr, α′ =

h∑

r=1

(1 + qr)τ2
r αr, (8)

κ =
h∑

r=1

τ4
r κrr + 2

∑

1≤k<r≤h

τ2
k τ2

r κkr.

Here

αk = Eg3
k(Xk.1) =

1
Nk

∑

x∈Xk

g3
k(x),

κkk = Eψk(Xk.1, Xk.2)gk(Xk.1)gk(Xk.2) =
1(

Nk
2

)
∑

{x,y}∈Xk

ψk(x, y)gk(x)gk(y),

κkr = Eψkr(Xk.1, Xr.1)gk(Xk.1)gr(Xr.1) =
1

NkNr

∑

x∈Xk, y∈Xr

ψkr(x, y)gk(x)gr(y).

Functions ψk(Xk.i, Xk.j) and ψkr(Xk.i, Xr.j) (sometimes called the sec-
ond order influence functions) reflect the contribution of pairs of observa-
tions {Xk.i, Xk.j} and {Xk.i, Xr.j}. Explicit expressions of gk and ψk, ψkr

are given in (21) and (22) below.
Remark 2.1. Theorem 2.1 provides formal Edgeworth expansions in

the asymptotic framework where the number of strata remains bounded
and, for every k, sample sizes nk diverge to infinity and σ2

L/σ2 → 1. To
be more precise assume that we have a sequence of stratified populations
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X (ν) = X (ν)
1 ∪ . . . ∪ X (ν)

h of sizes N (ν) = N
(ν)
1 + . . . + N

(ν)
h , and sequence

of STSRS samples X(ν) = (X(ν)
1 , . . . ,X(ν)

h ) of sizes n(ν) = n
(ν)
1 + . . . + n

(ν)
h .

Assume that for every k = 1, . . . , h the numbers n∗k = min{n(ν)
k , N

(ν)
k −

n
(ν)
k } diverge to infinity and σ2

L/σ2 → 1 as ν → ∞. In this case one can
prove that the expansions (5), (6) provide approximations to the distribution
functions Fu and FS that improve upon the normal approximation if, in
addition, the linear part L satisfies a Cramér type condition and the kernel
t satisfies appropriate moment conditions. Pushing harder on the methods
used in this paper it is possible to establish O(n−1∗ ) bound for the remainder
supx |Fu(x)−Gu(x)| (under 4+δ moment conditions) and o(n−1/2

∗ ) bound for
the remainder supx |FS(x)−GS(x)| (under 6 + δ moment conditions) in the
particular case where n∗k ≈ n∗r, 1 ≤ k < r ≤ h. Here n∗ = n∗1 + . . . + n∗h
denotes the ”actual sample size”. Rigorous proofs of such bounds in the
case of simple random sampling (h = 1) are given in [7], [10].

Remark 2.2. Normal approximation of U−statistics based on samples
without replacement was studied in [8], [21], [25]. One term Edgeworth
expansion for finite population U− statistics based on simple random sam-
ples without replacement was established in [20], see also [10]. A similar
result for Studentized U−statistic was shown in [7]. Theorem 2.1 extends
these results to stratified samples. The extension is non-trivial: a more com-
plex structure of Hoeffding’s decomposition for STSRS samples yields new
formulae for cumulants. In particular, the cumulant α + 3κ defining the
Edgeworth correction term of (5) includes the sum

∑
r<k τ2

r τ2
kκkr, see (8),

reflecting the contribution of cross strata interactions.
One term Edgeworth expansions for a linear STSRS statistic were ob-

tained in [11], [12]. Theorem 2.1 extends these results to a more general
class of U statistics.

Remark 2.3. Edgeworth expansions also provide a theoretical tool
for analysis and design of resampling approximations like bootstrap and
empirical Edegworth expansions, see [1], [5], [12], [16], [17], [22], [24]. In the
next section we construct empirical Edgeworth expansions. The bootstrap
approximation of STSRS U−statistics will be studied elsewhere.

3 Empirical Edgeworth expansion

Empirical Edgeworth expansions of statistics of independent observations
were studied in [3], [5], [16], [17], [22]. Here we construct empirical Edge-
worth expansions that are suited to U−statistics based on STSRS samples.
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Let us define the jackknife estimators α̂k and κ̂kr of the moments αk and
κkr. Substitution of these estimators in (8) give jackknife estimators α̂, α̂′, κ̂
of α, α′, κ. Put

α̂k =
1
nk

nk∑

i=1

V 3
k|i, κ̂kk =

1(
nk
2

)
∑

1≤i<j≤nk

Wk|ijVk|iVk|j , 1 ≤ k ≤ h,(9)

κ̂kr =
1

nknr

nk∑

i=1

nr∑

j=1

Wkr|ijVk|iVr|j , 1 ≤ k < r ≤ h. (10)

Here we denote

Vk|i = uk − û(Xk|i), (11)

Wk|ij = ũk − nk − 1
nk

uk(k)|i −
nk − 1

nk
uk(k)|j +

nk − 2
nk

û(Xk|ij), (12)

Wkr|ij = ũkr − uk(r)|i − ur(k)|j + û(Xkr|ij) (13)

and, for 1 ≤ k, r ≤ h, k 6= r we write

ũk = 1

(nk
2 )

∑
1≤i<j≤nk

û(Xk|ij), ũkr = 1
nknr

∑nk
i=1

∑nr
1=j û(Xkr|ij),

uk(k)|i = 1
nk−1

∑
1≤j≤nk,j 6=i û(Xk|ij), uk(r)|i = 1

nr

∑nr
j=1 û(Xkr|ij).(14)

Here Xk|ij denotes the STSRS sample obtained from X by removing the ob-
servations Xk.i and Xk.j from Xk; Xkr|ij denotes the STSRS sample obtained
from X by removing the observation Xk.i from Xk and Xr.j from Xr.

Define α̂, α̂′ and κ̂ by formulas (8), where αk and κkr are replaced by
their estimators α̂k and κ̂kr. One can show under appropriate moment
conditions, see Appendix below, that as nk →∞

α̂

S3
− α

σ3
= oP (1),

α̂′

S3
− α′

σ3
= oP (1),

κ̂

S3
− κ

σ3
= oP (1). (15)

Therefore the empirical Edgeworth expansions

Hu(x) = Φ(x)− α̂ + 3κ̂

6S3
Φ′(x)(x2 − 1), (16)

HS(x) = Φ(x) +
α̂ + α̂′x2 + 3κ̂(x2 + 1)

6S3
Φ′(x). (17)

match Gu and GS (in probability). In this case the empirical Edgeworth
expansions provide approximations which are second-order correct in prob-
ability.
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4 Simulation study

In this section, we examine the performance of the Edgeworth expansion
(6) and the empirical Edgeworth expansion (17) by simulation.

Two stratified populations X (r) ⊂ R, r = 1, 2, are generated, each con-
sisting of three strata of sizes N1 = N2 = 500 and N3 = 200. For Gini’s
mean difference estimator û (defined in (1) and below) based on a stratified
sample without replacement with sizes n1 = n2 = n3 = 50, we evaluate ap-
proximation errors ∆(r)

Φ (x) = FS(x)− Φ(x), ∆(r)
E (x) = FS(x)− G̃S(x), and

∆(r)
EE(x) = FS(x)− H̃S(x). Here FS denotes the distribution function of the

Studentized statistic (û − u)/S obtained by a Monte-Carlo simulation and
G̃S , respectively, H̃S denote the distribution functions which are obtained
from GS and HS via the transformation f̃(x) := supy≤x((0 ∨ f(y)) ∧ 1).

Table 1. Approximation accuracy
x = -2.33 -1.65 -1.29 -0.68 0.0 0.68 1.29 1.65 2.33

Φ(x) ≈ 0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
103 ∆(1)

Φ (x) ≈ 7.76 12.9 13.8 9.63 3.68 7.87 10.7 8.97 3.60
103∆(1)

E (x) ≈ 2.29 2.05 2.0 1.69 1.08 0.41 -0.91 -1.96 -1.86
103∆(1)

EE(x) ≈ 2.94 3.41 3.57 3.01 1.99 1.72 0.65 -0.59 -1.22
103 ∆(2)

Φ (x) ≈ 19.5 32.9 36.2 24.9 10.2 17.9 25.3 20.5 7.22
103∆(2)

E (x) ≈ 6.38 6.19 6.93 4.78 0.92 -2.26 -3.94 -6.23 -2.7
103∆(2)

EE(x) ≈ 13.3 20.6 23.1 17.2 8.24 10.1 12.25 8.18 1.01

Table 1 demonstrates that the Edgeworth expansion improves upon the
normal approximation (as expected). The empirical Edgeworth expansion
outperforms the normal approximation, but tends to be less accurate than
the true Edgeworth expansion.

Table 2 gives values of the ratios α/σ3, α′/σ3 and κ/σ3 which define
the Edgeworth expansion GS . It also provides estimated values of the mean
square errors of their estimators α∗ = α̂/S3, α′∗ = α̂′/S3 and κ∗ = κ̂/S3, cf.
(15). The latter define the empirical Edgeworth expansion HS .

Table 2. Moments and estimated MSE of jackknife estimators
α/σ3 α′/σ3 κ/σ3 MSE(α∗) MSE(α′∗) MSE(κ∗)

r = 1 0.11 0.29 -0.023 0.0004 0.0028 0.00001
r = 2 0.21 0.59 -0.023 0.0028 0.0223 0.00004

We conclude this section with a short description of the study popula-
tions X (r) = X (r)

1 ∪ X (r)
2 ∪ X (r)

3 , r = 1, 2. The elements of the first popu-
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lation are realized values of independent normal variables: X (1)
1 ∼ N (2, 1);

X (1)
2 ∼ N (3, 4); X (1)

3 ∼ N (6, 9). The second population combines symmetric
and skewed strata: X (2)

1 = {1 + 0.004(i − 1), 1 ≤ i ≤ N1} (uniform distri-
bution on [1, 3]); X (2)

2 = 2− ln(1− 0, 002(i− 1)), 1 ≤ i ≤ N2} (exponential
distribution); X (2)

3 ∼ χ2 + 3.

5 Proof of (5)

Before the proof we collect some useful facts about Hoeffding’s decomposi-
tion for STSRS samples, see [8], [9] for proofs and details.

5.1. Hoeffding decomposition. Let us consider a general U−statistic

U = U(X) =
∑

1≤k≤h

∑

{xi,xj}⊂Xk

tk(xi, xj)+
∑

1≤k<r≤h

∑

xi∈Xk

∑

yj∈Xr

tkr(xi, yj), (18)

where tk are symmetric functions. Hoeffding’s decomposition

U = EU + L + Q, (19)

decomposes U −EU into the sum of the linear part L and quadratic part Q
which are centered and uncorrelated. Here

L =
∑

1≤k≤h

Lk, Q =
∑

1≤k≤r≤h

Qkr, (20)

Lk =
∑

x∈Xk

gk(x), Qkk =
∑

{x,y}⊂Xk

ψk(x, y), Qkr =
∑

x∈Xk

∑

y∈Xr

ψkr(x, y).

The functions gk, ψk and ψkr, for k < r, are defined as follows. Denote
t̃k(x, y) = tk(x, y)−Etk(Xk.1, Xk.2) and t̃kr(x, y) = tkr(x, y)−Etkr(Xk.1, Xr.1).
We have

gk(x) = (nk − 1)t∗k(x) +
∑

1≤j≤h, j 6=k

njt
∗
k|j(x), (21)

where
t∗k(x) =

Nk − 1
Nk − 2

E(t̃k(Xk.1, Xk.2)|Xk.1 = x),

and, for k < r,

t∗k|r(x) = E(t̃kr(Xk.1, Xr.1)|Xk.1 = x), t∗r|k(x) = E(t̃kr(Xk.1, Xr.1)|Xr.1 = x).
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Furthermore, we have for k < r

ψk(x, y) = t̃k(x, y)− t∗k(x)− t∗k(y), ψkr(x, y) = t̃kr(x, y)− t∗k|r(x)− t∗r|k(y).
(22)

For r > k we denote ψrk(y, x) := ψkr(x, y).
Note that for every k and r we have

Egk(Xk.1) = 0, Eψk(Xk.1, Xk.2) = 0, Eψkr(Xk.1, Xr.1) = 0. (23)

Moreover, the following identities hold

E(ψk(Xk.i, Xk.j)|Xk.j) = 0, i 6= j, (24)
E(ψkr(Xk.i, Xr.j)|Xr.j) = 0, E(ψkr(Xk.i, Xr.j)|Xk.i) = 0. (25)

It follows from (24) and (25) that the parts L and Q are uncorrelated
and the variances σ2

U , σ2
L and σ2

Q of U,L and Q satisfy

σ2
U = σ2

L + σ2
Q. (26)

Let σ2(Lk), σ2(Qkk), and σ2(Qkr) denote the variance of Lk, Qkk, and Qkr.
Using (24) and (25) one can show (see Bloznelis (2003b)) that

σ2
L =

∑

1≤k≤h

σ2(Lk), σ2
Q =

∑

1≤k≤r≤h

σ2(Qkr), (27)

σ2(Lk) =
Nk

Nk − 1
τ2
kσ2

k, σ2(Qkk) =

(
Nk−nk

2

)(
nk
2

)
(
Nk−2

2

) σ2
kk,

σ2(Qkr) =
Nk

Nk − 1
Nr

Nr − 1
τ2
k τ2

r σ2
kr,

where we denote

σ2
k = Eg2

k(Xk.1), σ2
kk = Eψ2

kk(Xk.1, Xk.2), σ2
kr = Eψ2

kr(Xk.1, Xr.1). (28)

Remark 5.1. Note that every U−statistic defined by (18) can be writ-
ten in the form (1). Just denote t(x, u) := tj(x, y)w−1

j , for {x, y} ⊂ Xj and
t(x, y) = tjr(x, y)w−1

jr for x ∈ Xj , y ∈ Xr, j < r.

5.2. Proof of (5).
We shall show that

GU (x) = Φ(x)− α + 3κ

6σ3
U

Φ′(x)(x2 − 1), (29)
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is the one-term Edgeworth expansion of the probability distribution function
FU = P{U − EU ≤ σUx} of a general U−statistics given by (18). The
quantities α, κ are defined by formula (8) applied to the kernels (21) and
(22).

We assume without loss of generality that EU = 0 and σ2
U = 1. In

order to construct an Edgeworth expansion of FU we write an asymptotic
expansion to the characteristic function

fU (t) = E exp{itU}
and apply Fourier inversion formula. We shall show that the function

g(t) = gL(t) + gQ(t), (30)

where

gL(t) = exp{− t2

2
}
(
1 +

(it)3

6
α
)
, gQ(t) = exp{− t2

2
}(it)3

2
κ (31)

is an one-term expansion of the function fU (t). An application of the inver-
sion formula (see, e.g. Chung (1974), page 159) gives the one-term asymp-
totic expansion

Gu(x) =
1
2

+
i

2π
lim

M→∞
V.P.

∫

|t|≤M
e−itxg(t)t−1dt.

Here V.P.
∫
R = limh↓0(

∫ −h
−∞+

∫ +∞
h ) denotes Cauchy’s Principal Value.

Let us prove that g(t) is the one-term asymptotic expansion of fU (t).
For simplicity we consider the case of two strata only. It is convenient
to represent the characteristic function fU (t) in the Edrős-Rényi (1959)
form, see (35) below. Using this representation we replace fU (t) by fL(t) +
2−1κ(it)3fL(t), see Lemma 8.1 below. Here fL(t) = E exp{itL} denotes the
characteristic function of the random variable L. Finally we replace fL(t)
by its asymptotic expansion gL(t). To see that gL(t) is indeed an asymptotic
expansion of fL(t) we split fL(t) = fL1(t)fL2(t) and, for every k = 1, 2, we
replace fLk

(t) = E exp{itLk} by its one-term asymptotic expansion (see,
Robinson (1978), formula (13))

fLk
(t) ≈ exp{−t2

σ2(Lk)
2

}(1 +
(it)3

6
(qk − pk)τ2

kαk).

Collecting the main terms and using the approximation σ2
U ≈ σ2

L we obtain

fL(t) ≈ exp{−t2σ2
L/2}(1 +

(it)3

6
α) ≈ gL(t),
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thus completing the proof of the fact that g(t) is the one-term expansion of
fU (t).

In the remaining part of the proof we construct the Edrős-Rényi repre-
sentation for fU (t) and prove Lemma 8.1. The proof of the lemma is given
in Section 8.

Write U = X ∪ Y, where X = {x1, . . . , xN1} and Y = {y1, . . . , yN2}. Let
X∗ = (X1, . . . , XN1) and Y ∗ = (Y1, . . . , YN2) denote random permutations
of the sequences {xi} and {yj}. We assume that X∗ and Y ∗ are independent.
The random vector (X,Y), where X = {X1, . . . , Xn1} and Y = {Y1, . . . , Yn2},
represents the STSI sample drawn from the population U .

We shall write gx, gy, ψx, ψy, ψxy and σx, σy, σxx, σyy, σxy, κx, κy, κxy in-
stead of g1, g2, ψ1, ψ2, ψ12 and σ1, σ2, σ11, σ22, σ12, κ1, κ2, κ12. Similarly, we
write Lx, Ly, Qx, Qy, Qxy instead of L1, L2, Q11, Q22, Q12 and px, qx, py, qy

instead of p1, q1, p2, q2.
Let

ν = {ν1, . . . , νN1} and η = {η1, . . . , ηN2}
be independent sequences of independent Bernoulli random variables with
probabilities

P{νi = 1} = 1−P{νi = 0} = px, P{ηj = 1} = 1−P{ηj = 0} = py,

1 ≤ i ≤ N1 and 1 ≤ j ≤ N2. After we write U in the form (19), i.e.,
U = Lx + Ly + Qx + Qy + Qxy, it is easy to see that the distribution of U
coincides with the conditional distribution of the sum

U∗ = L∗x + L∗y + Q∗
x + Q∗

y + Q∗
xy, (32)

given the events {ν1 + . . . + νN1 = n1} and {η1 + . . . + ηN2 = n2}. Here

L∗x =
N1∑

i=1

gx(Xi)νi, L∗y =
N2∑

j=1

gy(Yj)ηj , Q∗
xy =

N1∑

i=1

N2∑

j=1

ψxy(Xi, Yj)νiηj ,

Q∗
x =

∑

1≤i<j≤N1

ψx(Xi, Xj)νiνj , Q∗
y =

∑

1≤i<j≤N2

ψy(Yi, Yj)ηiηj .

Denote ωi = νi − px and ξj = ηj − py and let Lx,Ly,Qx,Qy,Qxy be
defined in the same way as L∗x, L∗y, Q∗

x, Q∗
y, Q

∗
xy but with νi and ηj replaced

by ωi and ξj respectively. It follows from (24), (25) that almost surely

Lx = L∗x, Ly = L∗y, Qx = Q∗
x, Qy = Q∗

y, Qxy = Q∗
xy.
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In particular, from (32) we have U∗ = U, where

U = L+Q, where L = Lx + Ly, Q = Qx +Qy +Qxy. (33)

Denote Sx =
∑N1

i=1 wi and Sy =
∑N2

j=1 ξj and write

H = tU+ (s1/τ1)Sx + (s2/τ2)Sy, L̃ = tL+ (s1/τ1)Sx + (s2/τ2)Sy. (34)

Note that the distribution of U coincides with the conditional distribu-
tion of U given the events {Sx = 0} and {Sy = 0}. Using this fact we can
write the characteristic function fU (t) in the following way, see Erdős and
Rényi (1959),

fU (t) = λ1λ2

∫ πτ1

−πτ1

ds1

∫ πτ1

−πτ1

ds2E exp{iH}. (35)

Here
λ−1

1 = 2πτ1P{Sx = 0}, λ−1
2 = 2πτ2P{Sy = 0}.

6 Proof of (6)

The proof goes along the same lines as that of Theorem 1 of Bloznelis
(2003a), who considered the case of the simple random sample drawn with-
out replacement.

We assume without loss of generality that σ2 = 1, where σ2 denotes the
variance of û(X).

In order to fix notation let gk, ψk and ψkr denote the kernels of the
decomposition û = u + L + Q, see (3), defined by (21) and (22).

The proof consists of two steps. Firstly we replace S by the short stochas-
tic expansion 1 + 2−1L∗, where

L∗ =
h∑

k=1

L∗k, L∗k =
nk∑

i=1

fk(Xk.i). (36)

Here fk = fk.1 + fk.2 + fk.3 with

fk.1(x) = qk(g2
k(x)− σ2

k), σ2
k = Eg2

k(Xk.1),

fk.2(x) = 2qknk
nk − 1
nk − 2

Nk − 1
Nk − 2

E(ψk(Xk.1, Xk.2)gk(Xk.2)|Xk.1 = x),

fk.3(x) = 2
h∑

r=1

I{r 6=k}qr
n2

r

nr − 1
E(ψkr(Xk.1, Xr.1)gr(Xr.1)|Xk.1 = x).

12



Secondly, we apply (29) to the probability

P{û− u ≤ x(1 + 2−1L∗)} = P{Ũ ≤ x},
where

Ũ = û− u− 2−1xL∗

is a U−statistic of the form (18).
6.1. Step.1. Here we replace S by 1+2−1L∗. It is convenient to represent

the difference uk − û(Xk|i) in the following way

uk − û(Xk|i) = Zk(i) + Wk(i) + Mk(i),

Zk(i) =
nk

nk − 1

∑

1≤j≤nk

gk(Xk.j)(I{i=j} −
1
nk

),

Wk(i) =
nk

nk − 2

∑

1≤j<r≤nk

ψk(Xk.j , Xk.r)(I{i∈{j,r}} −
2
nk

),

Mk(i) =
nk

nk − 1

h∑

r=1

I{r 6=k}
nr∑

s=1

nk∑

j=1

ψkr(Xk.j , Xr.s)(I{i=j} −
1
nk

).

Write v2
k = ṽk + rk, where

ṽk =
nk∑

i=1

Z2
k(i) + 2

nk∑

i=1

Zk(i)(Wk(i) + Mk(i)), rk =
nk∑

k=1

(Wk(i) + Mk(i))
2.

(37)
A calculation shows that

nk∑

i=1

Z2
k(i) =

nk

nk − 1

nk∑

i=1

g2
k(Xk.i)− 2nk

(nk − 1)2
Hk.1,

nk∑

i=1

Zk(i)Wk(i) =
n2

k

(nk − 1)(nk − 2)
(Hk.4 − 2

nk
Hk.2Hk.3),

nk∑

i=1

Zk(i)Mk(i) =
n2

k

(nk − 1)2
(Hk.5 − 1

nk
Hk.2Hk.6).

Here we denote

Hk.1 =
∑

1≤i<j≤nk

gk(Xk.i)gk(Xk.j),

Hk.2 =
nk∑

i=1

gk(Xk.i), Hk.3 =
∑

1≤i<j≤nk

ψk(Xk.i, Xk.j),

13



Hk.4 =
∑

1≤i<j≤nk

ψk(Xk.i, Xk.j)(gk(Xk.i) + gk(Xk.j)),

Hk.5 =
h∑

r=1

I{r 6=k}
nr∑

s=1

nk∑

i=1

ψkr(Xk.i, Xr.s)gk(Xk.i),

Hk.6 =
h∑

r=1

I{r 6=k}
nr∑

s=1

nk∑

i=1

ψkr(Xk.i, Xr.s).

Collecting these formulas and (37) in (4) we obtain

S2 = 1 +
h∑

k=1

nk∑

i=1

fk.1(Xk.i) + Q∗ + Q? + R, (38)

Q∗ =
h∑

k=1

Q∗
k, Q∗

k = 2qk
nk

nk − 2
Hk.4,

Q? =
h∑

k=1

Q?
k, Q?

k = 2qk
nk

nk − 1
Hk.5.

Here R = R1 −R2 −R3 −R4 −R5, where

R1 =
h∑

k=1

qk
nk − 1

nk
rk, R2 = 1−

h∑

k=1

qknkσ
2
k,

R3 = 2
h∑

k=1

qk
1

nk − 1
Hk.1, R4 = 4

h∑

k=1

qk
1

nk − 2
Hk.2Hk.3,

R5 = 2
h∑

k=1

qk
1

nk − 1
Hk.2Hk.6.

Furthermore, using Hoeffding’s decomposition (see (19)) we approximate Q∗

and Q? by the linear statistics

Q∗ =
h∑

k=1

nk∑

i=1

fk.2(Xk.i) + R7, (39)

Q? =
h∑

k=1

nk∑

i=1

fk.3(Xk.i) + R8. (40)

Under appropriate moment conditions one can show that the remainders Ri,
1 ≤ i ≤ 7 are negligible, see Bloznelis (2003a). In order to show that the

14



remainder R8 is negligible it is convenient to write Q? in the form

Q? =
∑

k<r

Q?
kr,

Q?
kr =

nk∑

i=1

nr∑

j=1

2ψkr(Xk.i, Xr.j)
(
qk

nk

nk − 1
gk(Xk.i) + qr

nr

nr − 1
gr(Xr.j)

)
.

Then we approximate Q? by the linear part of decomposition (see (19)) and
obtain the approximation (40).

Finally, combining (38) and (39), (40) we obtain S2 ≈ 1 + L∗. Further-
more, for small L∗ we can write S ≈ √

1 + L∗ ≈ 1 + 2−1L∗.
6.2. Step 2. Here we construct the one-term Edgeworth expansion to

the distribution function P{Ũ ≤ x}. We are going to apply (29). Firstly,
we write Hoeffding’s decomposition of Ũ , Ũ = L̃+Q. Here L̃ = L− 2−1xL∗

denotes the linear part and Q denotes the quadratic part, where L and Q
are the same as in (3). Let σ̃2

U and σ̃2
L denote the variances of Ũ and L̃ and

let α̃, α̃r, κ̃, κ̃rk denote moments of various parts of Ũ defined by (8).
Substituting α̃, κ̃, σ̃2

U in (29) we obtain the one-term Edgeworth ex-
pansion G̃(x) of the probability P{Ũ ≤ σ̃Ux}. A calculation shows that
σ̃U = σ + R(σ), α̃ = α + R(α), α̃k = αk + R(αk), κ̃ = κ + R(κ), κ̃kr =
κkr + R(κkr), where R(σ), . . . , R(κkr) are negligible remainders. Therefore,
G̃(x) can be replaced by Gu(x) (= the one term Edgeworth expansion of
Fu(x) = P{û−Eû ≤ xσ}, see (5)). It follows that Gu(x/σ̃U ) is the one-term
Edgeworth expansion of P{Ũ ≤ x}. In the remaining part of the proof we
shall show that Gu(x/σ̃U ) = GS(x)+R, where GS is given by (6) and where
R is a negligible remainder.

Denote δ = σ̃2
U − 1 and expand using Taylor’s formula

Gu(
x

σ̃U
) = Gu(x + x(

1
σ̃U

− 1))

= Gu(x) + G′
u(x)x(

1
σ̃U

− 1) + R1

= Gu(x) + Φ′(x)x(
1

σ̃U
− 1) + R1 + R2

= Gu(x)− 2−1δΦ′(x)x + R1 + R2 + R3.

In the last step we used the approximation (via Taylor’s expansion) σ̃−1
U −1 ≈

−δ/2. Here Ri, i = 1, 2, 3 are negligible remainders. In order to evaluate
the factor δ we apply variance decomposition formula (see, (26)),

σ̃2
U = σ̃2

L + σ2
Q = σ2

U + σ̃2
L − σ2

L = 1 + σ̃2
L − σ2

L. (41)
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Therefore, δ = σ̃2
L − σ2

L. From (27) we have

δ =
h∑

k=1

τ2
k

Nk

Nk − 1
(σ̃2

k−σ2
k), where σ̃2

k = E(gk(Xk.1)−2−1xfk(Xk.1))
2.

A calculation shows that

σ̃2
k = σ2

k − xEgk(Xk.1)fk(Xk.1) + rk, rk = x2Ef2
k (Xk.1),

where

Egk(Xk.1)fk(Xk.1) = αkqk + 2
h∑

r=1

τ2
r κkr.

We obtain

δ = −x
h∑

k=1

qkτ
2
kαk − 2x

h∑

k=1

τ4
kκkk − 4x

∑

1≤k<r≤h

τ2
k τ2

r κkr + R4.

Here R4 =
∑

rk denotes the remainder. One can shown that R4 is negligible.
Substitution of this formula in (41) gives the desired result Gu(x/σ̃U ) =
GS(x) + R with negligible remainder R. The proof of (6) is complete.

7 Consistency of jackknife estimators

We sketch the proof of (15). Assume without loss of generality that σ2 = 1.
Substitution of (3), (20) in (11), (12), (13) gives

Vk|i = gk(Xk.i) + Rk|i,
Wk|ij = ψk(Xk.i, Xk.j) + Rk|ij ,
Wkr|ij = ψkr(Xk.i, Xr.j) + Rkr|ij ,

where

Rk|i = − 1
nk − 1

∑

x∈X′
k|i

gk(x)

+
∑

x∈X′
k|i

ψk(Xk.i, x)− 2
nk − 2

∑

{x,y}⊂X′
k|i

ψk(x, y)

+
∑

1≤s≤h, s 6=k

∑

y∈Xs

(ψks(Xk.i, y)− 1
nk − 1

∑

x∈X′
k|i

ψks(x, y)),
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Rk|ij =
1(

nk−2
2

)
∑

{x,y}⊂X′
k|ij

ψk(x, y)

− 1
nk − 2

∑

x∈X′
k|ij

ψk(Xk.i, x)− 1
nk − 2

∑

x∈X′
k|ij

ψk(Xk.j , x),

Rkr|ij =
1

nk − 1
1

nr − 1

∑

x∈X′
k|i

∑

y∈X′
r|j

ψkr(x, y)

− 1
nk − 1

∑

x∈X′
k|i

ψkr(x,Xr.j)− 1
nr − 1

∑

x∈X′
r|j

ψkr(Xk.i, x).

Here we denote X′k|i = Xk \ {Xk.i} and X′k|ij = Xk \ {Xk.i, Xk.j}. One can
show (under appropriate moment conditions on ψk, ψkr and gk) that the
remainder terms Rk|i, Rk|ij , Rkr|ij can be neglected. Therefore, we obtain
from (9) and (10) that

α̂k ≈ 1
nk

∑

x∈Xk

g3
k(x), κ̂kk ≈ 1(

nk
2

)
∑

{x,y}⊂Xk

ψk(x, y)gk(x)gk(y),

κ̂kr ≈ 1
nk

1
nr

∑

x∈Xk

∑

y∈Xr

ψkr(x, y)gk(x)gr(y).

Finally, (15) follows by the law of large numbers. A rigorous proof in the
case of a simple random sample (h = 1) is given in [6].

8 Expansions

Denote, for r > 0,

Bxr = σ−r
x E|gx(X1)|r, Byr = σ−r

y E|gy(Y1)|r,
γx = τ6

1 τ2
2Eψ2

x(X1, X2)ψ2
xy(X1, Y1), γy = τ6

2 τ2
1Eψ2

y(Y1, Y2)ψ2
xy(X1, Y1).

Lemma 8.1. There exist (large) absolute constants C, c, cT > 0 such
that for τ1, τ2, N

1/2
1 B−1

x3 , N
1/2
2 B−1

y3 > c and we have, for |t| ≤ T ,

|fU (t)− fL(t)− 2−1κ(it)3fL(t)| ≤ C|t|(1 + |t|3)(R1 +R2 +R3). (42)

Here
T−1 = cT max{Bx3σx; By3σy} (43)
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and

R1 = σ2
Q

(
1 +

σ2(Qx) + σ2(Qxy)
τ1σ2

x

+
σ2(Qy) + σ2(Qxy)

τ2σ2
y

)
,

R2 =
(γx

τ2
1

(1 +
1

σ2
yτ2

) +
γy

τ2
2

(1 +
1

σ2
xτ1

)
)
,

R3 =
(
B

1/2
x4 τ−1

1 (σ(Qxy) + σ(Qx)) + B
1/2
y4 τ−1

2 (σ(Qxy) + σ(Qy))
)
.

For typical examples of statistics we have R1 +R2 +R3 = o(|α|+ |κ|) as
α, κ → 0. Note that the bound (42) is not sufficient to establish the validity
of the expansion (29). For this purpose one needs an improved version of
(42) where the factor |t|(1 + |t|3) in the right were replaced by a function
which is integrable over the interval |t| > 0 with respect to the measure dt

|t| .
Before the proof of Lemma 8.1 we introduce some notation
8.1. Notation. In what follows c and C with indices or without denote

generic absolute constants. For complex numbers a, b we write a ¿ b if
|a| ≤ c|b|. Given a complex valued function z(t, s1, s2) write

J (z) = λ1λ2

∫ πτ1

−πτ1

ds1

∫ πτ2

−πτ2

ds2z(t, s1, s2).

For a number A > 0 and complex valued functions z1(t, s1, s2) and z2(t, s1, s2)
write z1 ≺ A if |J (z1)| ¿ A and write z1 ∼ z2 if z1 − z2 ≺ R, where
R = |t|(1 + |t|3)(R1 +R2 +R3).

For k = 1, 2, . . . denote Ωk = {1, . . . , k} and Ωk|2 = {(i, j) : 1 ≤ i < j ≤
k}. For sums

S =
∑

1≤i≤k

si, T =
∑

1≤i≤k

∑

1≤j≤r

tij , V =
∑

1≤i<j≤k

vij

and sets A ⊂ Ωk, B ⊂ Ωk × Ωr, D ⊂ Ωk|2 write for short

S(A) =
∑

i∈A

si, T (B) =
∑

(i,j)∈B

tij , V (D) =
∑

(i,j)∈D

vij .

For integers 1 < m1 < N1 and 1 < m2 < N2 put

Ax
1 = Ωm1 , Ax

2 = ΩN1 \ Ωm1 , Ay
1 = Ωm2 , Ay

2 = ΩN2 \ Ωm2 ,

B1 = Ωm1 × Ωm2 , B2 = Ωm1 × (ΩN2 \ Ωm2),
B3 = (ΩN1 \ Ωm1)× Ωm2 , B4 = (ΩN1 \ Ωm1)× (ΩN2 \ Ωm2),
Dx

1 = Ωm1|2, Dx
2 = Ωm1 × (ΩN1 \ Ωm1), Dx

3 = ΩN1|2 \ (Dx
1 ∪Dx

2 ),
Dy

1 = Ωm2|2, Dy
2 = Ωm2 × (ΩN2 \ Ωm2), Dy

3 = ΩN2|2 \ (Dy
1 ∪Dy

2).
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Split

L̃ = L̃1 + L̃2, L̃1 = L̃x
1 + L̃y

1, L̃2 = L̃x
2 + L̃y

2,

L̃x
k = tLx(Ax

k) +
s1

τ1
Sx(Ax

k), L̃y
k = tLy(A

y
k) +

s2

τ2
Sy(A

y
k), k = 1, 2,

Lx = Lx(Ax
1) + Lx(Ax

2), Ly = Ly(A
y
1) + Ly(A

y
2),

Qxy =
∑

1≤i≤4

Qxy(Bi), Qx =
∑

1≤i≤3

Qx(Dx
i ), Qy =

∑

1≤i≤3

Qy(D
y
i )

and write H = L1 + F1 + F , where L1 = L1x + L1y,

L1x = L̃x
1 + tQx(Dx

2 ) + tQxy(B2),
L1y = L̃y

1 + tQy(D
y
2) + tQxy(B3),

F1 = tQx(Dx
1 ) + tQy(D

y
1) + tQxy(B1),

F = L̃2 + F2, F2 = tQx(Dx
3 ) + tQy(D

y
3) + tQxy(B4).

Note that the random variable F does not depend on ωi, i ≤ m1 and ξj ,
j ≤ m2. Furthermore we have

L1x =
∑

1≤i≤m1

aiωi, L1y =
∑

1≤j≤m2

bjξj , (44)

where

ai = tgx(Xi) + s1τ
−1
1 + tvx

i + tux
i , bj = tgy(Yj) + s2τ

−1
2 + tvy

j + tuy
j ,

vx
i =

∑

m1<j≤N1

ψx(Xi, Xj)ωj , ux
i =

∑

m2<j≤N2

ψxy(Xi, Yj)ξj ,

vy
j =

∑

m2<i≤N2

ψy(Yj , Yi)ξi, uy
j =

∑

m1<i≤N1

ψxy(Xi, Yj)ωi.

Note that conditionally given all the random variables but {ωi, i ≤ m1} and
{ξj , j ≤ m2} the random variable L1x (respectively L1y) is a linear statistic
of random variables ω1, . . . , ωm1 (respectively ξ1, . . . , ξm2).

Given B ⊂ Ωm1 denote

J̃x
xy(B) = exp{itLx(B) + itQx(B × (ΩN1 \ Ωm1))

+ itQxy(B × (ΩN2 \ Ωm2)) + i(s1/τ1)Sx(B)},
J̃x

y (B) = exp{itLx(B) + itQxy(B × (ΩN2 \ Ωm2)) + i(s1/τ1)Sx(B)},
J̃x

x (B) = exp{itLx(B) + itQx(B × (ΩN1 \ Ωm1)) + i(s1/τ1)Sx(B)}
J̃x(B) = exp{itLx(B) + i(s1/τ1)Sx(B)}.
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Let Jx
xy(B) (respectively Jx

y (B), Jx
x (B) and Jx(B)) denote the absolute value

of the conditional expectation of J̃x
xy(B) (respectively J̃x

y (B), J̃x
x (B) and

J̃x(B)) given all the random variables but {ωj , j ∈ B}. Write

κx
xy(B) =

1
|B|

∑

j∈B

(vx
j +ux

j )2, κx
x(B) =

1
|B|

∑

j∈B

(vx
j )2, κx

y (B) =
1
|B|

∑

j∈B

(ux
j )2.

Given D ⊂ Ωm2 denote

J̃y
xy(D) = exp{itLy(D) + itQy(D × (ΩN2 \ Ωm2))

+ itQxy((ΩN1 \ Ωm1)×D) + i(s2/τ2)Sx(D)},
J̃y

x(D) = exp{itLy(D) + itQxy((ΩN1 \ Ωm1)×D) + i(s2/τ2)Sx(D)},
J̃y

y (D) = exp{itLy(D) + itQy(D × (ΩN2 \ Ωm2)) + i(s2/τ2)Sy(D)}
J̃y(D) = exp{itLy(D) + i(s2/τ2)Sx(D)}.

Let Jy
xy(D) (respectively Jy

y (D), Jy
x(D) and Jy(D)) denote the absolute

value of the conditional expectation of J̃y
xy(D) (respectively J̃y

y (D), J̃y
x(D)

and J̃y(D)) given all the random variables but {ξj , j ∈ D}. Furthermore,
write

κy
xy(D) =

1
|D|

∑

j∈D

(vy
j +uy

j )
2, κy

x(D) =
1
|D|

∑

j∈D

(uy
j )

2, κy
y(D) =

1
|D|

∑

j∈D

(vy
j )2.

8.2. Proof of Lemma 8.1. Note that

fU (t) = J (E exp{iH}), and fL(t) = J (E exp{iL̃}).

Therefore in order to prove the lemma we need to show that

E exp{iH} ∼ (1 + 2−1κ(it)3)E exp{iL̃}.

We shall prove this relation in two steps

E exp{iH} ∼ E exp{iL̃}+ itE exp{iL̃}Q, (45)
itE exp{iL̃}Q ∼ 2−1κ(it)3E exp{iL̃}. (46)

8.2.1. Proof of (45). Introduce the integer valued functions m1 =
m1(s1) and m2 = m2(s2),

m1 ≈ C ′N1
ln(3 + s2

1)
3 + s2

1

, m2 ≈ C ′N2
ln(3 + s2

2)
3 + s2

2

, (47)
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where C ′ > 0 is a sufficiently large constant. Denote

m3 = bm1/2c, m4 = bm2/2c.

Write

f1 = E exp{iH}, f2 = EJ, f3 = iEJF1, J = exp{i(L1 + F )}.

In order to prove (45) we shall show that

f1 ∼ f2 + f3, (48)
f2 ∼ E exp{iL̃}+ iE exp{iL̃}(tQ− F1), (49)
f3 ∼ iE exp{iL̃}F1. (50)

Let us prove (48). Expanding the exponent in powers of itQxy(B1) we
obtain

f1 = f4 + f5 + R1, (51)
f4 : = EJ exp{i(tQx(Dx

1 ) + tQy(D
y
1))},

f5 : = itEJ exp{i(tQx(Dx
1 ) + tQy(D

y
1))}Qxy(B1),

|R1| ≤ t2EQ2
xy(B1).

A simple calculation shows that

f5 = f6 + R2 + R3 + R4, f6 := itEJQxy(B1), (52)

where we denote

R2 = itEJQxy(B1)(exp{itQy(D
y
1)}−1), R3 = itEJQxy(B1)(exp{itQx(Dx

1 )}−1),

R4 = itEJQxy(B1)(exp{itQy(D
y
1)} − 1)(exp{itQx(Dx

1 )} − 1).

Expanding the exponent in f4 in powers of itQx(Dx
1 ) we obtain

f4 = f7 + f8 + f9, (53)

where f7 := EJ exp{itQx(Dx
1 )} and f8 := itEJ exp{itQx(Dx

1 )}Qy(D
y
1) and

f9 := (it)2EJ exp{itQx(Dx
1 )}Q2

y(D
y
1)θy, |θy| ≤ 1.

The random variable θy is a function of Qy(D
y
1). Furthermore, expanding

in powers of itQx(Dx
1 ) we obtain

f7 = f2 + itEJQx(Dx
1 ) + R5, R5 := (it)2EJQ2

x(Dx
1 )θx, (54)
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where |θx| ≤ 1 is a function of Qx(Dx
1 ). Similarly, we get

f8 = itEJQy(D
y
1) + R6, |R6| ≤ t2|Qx(Dx

1 )Qy(D
y
1)|. (55)

Finally,

f9 = R7 +R8, R7 := (it)2EJQ2
y(D

y
1)θy, |R8| ≤ |t|3|Qx(Dx

1 )|Q2
y(D

y
1).

(56)
Combining (51)-(56) we obtain

f1 = f2 + f3 + R, R := R1 + . . . + R8. (57)

In order to prove (48) we show that

Rk ≺ R, k = 1, . . . , 8. (58)

For k = 1, 4, 6, 8 the proof is simple. We have

|R4| ≤ t2E|Qx(Dx
1 )|1/2|Qy(D

y
1)|1/2|Qxy(B1)|

≤ t2E|Qx(Dx
1 )Qy(D

y
1)|+ t2EQ2

xy(B1)

≤ t2(EQ2
x(Dx

1 ))1/2(EQ2
y(D

y
1))1/2 + t2EQ2

xy(B1),

|R8| ≤ |t|3(EQ2
x(Dx

1 ))1/2EQ2
y(D

y
1),

|R6| ≤ t2(EQ2
x(Dx

1 ))1/2(EQ2
y(D

y
1))1/2.

Combining these inequalities, (47) and (120) we obtain (58) for k = 1, 4, 6, 8.
Let us prove (58) for k = 2. Write B′

1 = (Ωm1 \ Ωm3) × Ωm2 . By
symmetry, it suffices to show (58) for

R′
2 := itEJQxy(B′

1)(exp{itQy(D
y
1)} − 1) = (it)2EJQxy(B′

1)Qy(D
y
1)θ∗y,

where |θ∗y| ≤ 1 is a function of Qy(D
y
1). We have

R′
2 ≤ t2EJx

xy(Ωm3)|Qxy(B′
1)Qy(D

y
1)|.

Invoking inequalities |Jx
xy(Ω3)| ≤ 1 and |ab| ≤ a2 + b2 we write

R′
2 ≤ t2R21 + t2R22, R21 := EQ2

xy(B
′
1), R22 := EJx

xy(Ωm3)Q2
y(D

y
1).

(59)
Lemma 9.1 implies the bound t2R21 ≺ R. Let us prove that t2R22 ≺ R.
Write

R22 = Ef∗, f∗ := Jx
xy(Ωm3)Q2

y(D
y
1) (60)
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and split

f∗ = f∗Ix + f∗Ix, Ix := 1− Ix, Ix := I{α{x
xy(Ωm3 )<σ2

x}. (61)

The number α > 0 is defined in (123) below. By Chebyshev’s inequality and
symmetry,

Ef∗Ix ≤ (α/σ2
x)Eκx

xy(Ωm3)Q2
y(D

y
1) = (α/σ2

x)E(vx
1 + ux

1)2Q2
y(D

y
1)

= (α/σ2
x)(V1 + V2).

Here we denote

V1 = E(vx
1 )2Q2

y(D
y
1), V2 = E(ux

1)2Q2
y(D

y
1).

By symmetry, (119) and (120) we have

V1 = (N1 −m1)pxqxσ2
xxEQ2

y(D
y
1) ¿ τ−2

1 σ2(Qx)(m2/N2)2σ2(Qy).

Similarly,

V2 = (N2−m2)pyqyEψ2
xy(X1, YN2)Q2

y(D
y
1) ≤ τ2

2 m2
2p

2
yq

2
yEψ2

xy(X1, YN2)ψ
2
y(Y1, Y2).

Invoking the simple bound Eψ2
xy(X1, YN2)ψ

2
y(Y1, Y2) ≤ σ2

xyσ
2
yy and (119) we

obtain
V2 ¿ τ−2

1 (m2/N2)2σ2(Qxy)σ2(Qy).

Combining bounds for V1 and V2 we obtain,

Ef∗Ix ¿ (m2/N2)2τ−2
1 σ−2

x σ2(Qy)(σ2(Qxy) + σ2(Qx)) (62)
≺ τ−1

1 σ−2
x σ2(Qy)(σ2(Qxy) + σ2(Qx)).

In the last step we used the simple bound
∫
I{|s1|≤πτ1}ds1 ≤ τ1.

Furthermore, combining (132) and (120) we obtain

Ef∗Ix ≤ EQ2
y(D

y
1)EXJx(Ω3)Ix ≺ σ2(Qy). (63)

Finally, collecting (62) and (63) in (60) we obtain the bound t2R22 ≺ R,
thus completing the proof of (58) for R2. The proof of (58) for R3, R5, R7

is almost the same. We arrive to (48).
Let us prove (50). We shall show that

itEJQxy(B1) ∼ itEexp{iL̃}Qxy(B1), (64)
itEJQx(Dx

1 ) ∼ itEexp{iL̃}Qx(Dx
1 ), (65)

itEJQy(D
y
1) ∼ itEexp{iL̃}Qy(D

y
1). (66)
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Write

J = J0 exp{iF3}, J0 = exp{i(L̃+ F2)}, (67)
F3 = tQx(Dx

2 ) + tQy(D
y
2) + tQxy(B2) + tQxy(B3).

In the proof of (64), (65), (66) we replace J by J0 and then replace J0 by
exp{iL̃}.

Let us prove (64). Denote B11 = (Ωm1 \ Ωm3) × (Ωm2 \ Ωm4). By
symmetry it suffices to show that

itEJQxy(B11) ∼ itEexp{iL̃}Qxy(B11). (68)

We shall prove that

itEJQxy(B11) ∼ itEJ0Qxy(B11), itEJ0Qxy(B11) ∼ itEexp{iL̃}Qxy(B11).
(69)

Write

F3 = H31 + tQxy(B2), H31 = H32 + tQxy(B3),
H32 = H33 + tQy(D

y
2), H33 = tQx(Dx

2 ).

Expanding in powers of itQxy(B2) we obtain

EJQxy(B11) = EJ0 exp{iH31}Qxy(B11) + itR1,

R1 : = EJ0 exp{iH31}Qxy(B11)Qxy(B2)θ1,

where the random variable |θ1| ≤ 1 is a function of Qxy(B2). Similarly,
expanding in powers of itQxy(B3), itQx(Dx

1 ) and itQy(D
y
1) we obtain

EJ0 exp{iH31}Qxy(B11) = EJ0 exp{iH32}Qxy(B11) + itR2,

R2 : = EJ0 exp{iH32}Qxy(B11)Qxy(B3)θ2,

EJ0 exp{iH32}Qxy(B11) = EJ0 exp{iH33}Qxy(B11) + itR3,

R3 : = EJ0 exp{iH33}Qxy(B11)Qy(D
y
2)θ3,

EJ0 exp{iH33}Qxy(B11) = EJ0Qxy(B11) + itR4,

R4 : = EJ0Qxy(B11)Qx(Dx
2 )θ4.

In order to prove the first part of (69) we shall show that

t2Rk ≺ R, k = 1, 2, 3, 4. (70)
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Let us prove (70) for k = 1. We have

R1 ≤ EJy
xy(Ωm4)|Qxy(B11)Qxy(B2)| = R11 + R12, (71)

R11 : = EJy
xy(Ωm4)|Qxy(B11)Qxy(B2)|Iy,

R12 : = EJy
xy(Ωm4)|Qxy(B11)Qxy(B2)|Iy.

Here
Iy := 1− Iy, Iy := I{α{y

xy(Ωm4 )<σ2
y}.

Random variables vy
i and uy

i are defined in (44) and the constant α is defined
in (123). We shall show that

t2R11 ≺ R, t2R12 ≺ R. (72)

Let us prove the second bound. Using the simple inequality Jy
xy(Ωm4) ≤ 1

and Cauchy-Schwartz we obtain

R12 ≤ R
1/2
13 R

1/2
14 , R13 := EQ2

xy(B11)Iy, R14 := EQ2
xy(B2). (73)

Lemma 9.1 implies R14 ¿ (m1/N1)σ2(Qxy). Furthermore, by Chebyshev’s
inequality and symmetry

R13 ¿ σ−2
y EQ2

xy(B11)κy
xy(Ωm4) = σ−2

y EQ2
xy(B11)((v

y
1)2 + (uy

1)
2)

= σ−2
y |B11|pxqxpyqy(V1 + V2). (74)

Here |B11| < m1m2 denotes the number of elements of the set B11 and

V1 : = Eψ2
xy(Xm1 , Ym2)(v

y
1)2 = (N2 −m2)pyqyEψ2

xy(Xm1 , Ym2)ψ
2
y(Y1, YN2)

¿ τ2
2 σ2

xyσ
2
yy ¿ τ−2

1 τ−4
2 σ2(Qxy)σ2(Qy),

V2 : = Eψ2
xy(Xm1 , Ym2)(u

y
1)

2 = (N1 −m1)pxqxEψ2
xy(Xm1 , Ym2)ψ

2
xy(XN1 , Y1)

¿ τ2
1 σ4

xy ¿ τ−2
1 τ−4

2 σ4(Qxy).

We obtain

R13 ¿ (m1m2/N1N2)τ−2
2 σ−2

y σ2(Qxy)(σ2(Qxy) + σ2(Qy)).

Collecting the bounds for R13 and R14 in (73) we obtain t2R12 ≺ R.
Let us prove the first bound of (72). We have

R11 ≤ R15 + R16, R15 := EQ2
xy(B11), R16 := EJy

xy(Ωm4)IyQ2
xy(B2),

25



where t2R15 ¿ t2(m1m2/N1N2)σ2(Qxy) ≺ R. Furthermore, by symmetry,

R16 = m1pxqxEJy
xy(Ωm4)IyD2, D :=

N2∑

j=m2+1

ψxy(X1, Yj)ξj . (75)

We have, see (134),
Jy

xy(Ωm4)Iy ≤ W1W2Iy, (76)

where

W 2
1 :=

m4∏

k=1

u{1,y}(tgy(Yk) + s2/τ2), W 2
2 :=

m4∏

k=1

v{1,y}(tv
y
k + tuy

k).

Invoking the bound, which can be shown in the same way as (135),

W2Iy ≤ r1, r1 := exp{16−1Θ(1)(m4/N2)σ2
yτ

2
2 t2}, (77)

we obtain, by symmetry,

EJy
xy(Ωm4)IyD2 ≤ r1EW1D

2 = r1(N2 −m2)pyqyEW1ψ
2
xy(X1, YN2). (78)

The conditional expectation of W1r1 given YN2 is not greater than (3+s2
2)
−10,

see (139). Therefore, we obtain

EJy
xy(Ωm4)IyD2 ≤ (3 + s2

2)
−10τ2

2 σ2
xy.

Substituting this bound in (75) we obtain

R16 ≤ (3 + s2
2)
−10(m1/N1)τ2

1 τ2
2 σ2

xy. (79)

This implies t2R16 ≺ R thus completing the proof of (72). We have shown
(70) for k = 1. For k = 2, 3, 4 the proof is much the same.

Let us prove the second part of (69). Expanding the exponent of J0 in
powers of iF2 we obtain

itEJ0Qxy(B11) = itEexp{iL̃}Qxy(B11)+(it)2R, R := Eexp{iL̃}Qxy(B11)F2θF ,

where the random variable |θF | ≤ 1 is a function of F2. We shall show that
t2R ≺ R.

We have |R| ≤ R1 + R2 + R3, where

R1 : = EJ̃x(Ωm3)J̃
y(Ωm4)|Qxy(B11)Qxy(B4)|,

R2 : = EJ̃x(Ωm3)J̃
y(Ωm4)|Qxy(B11)Qx(Dx

3 )|,
R3 : = EJ̃x(Ωm3)J̃

y(Ωm4)|Qxy(B11)Qy(D
y
3)|.

26



We shall show that
t2Rk ≺ R, k = 1, 2, 3. (80)

For k = 1 we write

R1 ≤ R11+R12, R11 := EQ2
xy(B11), R12 := EJ̃x(Ωm3)J̃

y(Ωm4)Q2
xy(B4).

Here we use simple inequalities J̃x(Ωm3) ≤ 1 and J̃y(Ωm4) ≤ 1. Clearly,
t2R11 ≺ R. Furthermore, by symmetry,

R12 = (N1 −m1)(N2 −m2)pxqxpyqyEJ̃x(Ωm3)J̃
y(Ωm4)ψ

2
xy(XN1 , YN2).

Invoking (132), (133) we obtain

R12 ¿ τ2
1 τ2

2 σ2
xy(3 + s2

1)
−10(3 + s2

2)
−10.

This implies t2R12 ≺ R thus proving (80) for k = 1. The proof for k = 2, 3
is much the same. The proof of (69) is complete. We arrived at (68).

Let us prove (65). We shall show that

itEJQx(Dx
1 ) ∼ itEJ0Qx(Dx

1 ), itEJ0Qx(Dx
1 ) ∼ itEexp{iL̃}Qx(Dx

1 ).
(81)

Write

F3 = H∗
31 + tQy(D

y
2), H∗

31 := H∗
32 + tQxy(B3),

H∗
32 : = H∗

33 + tQxy(B2), H∗
33 := tQx(Dx

2 ).

Let us prove that

itEJQx(Dx
1 ) ∼ itEJ0 exp{iH∗

31}Qx(Dx
1 ). (82)

Expanding the exponent in J in powers of itQy(D
y
2) we obtain

EJQx(Dx
1 ) = EJ0 exp{iH∗

31}Qx(Dx
1 ) + itR1 + t2R2,

R1 : = EJ0 exp{iH∗
31}Qx(Dx

1 )Qy(D
y
2), |R2| ≤ E|Qx(Dx

1 )|Q2
y(D

y
2).

We have, by symmetry and independence,

|R2| ≤ E|Qx(Dx
1 )|EQ2

y(D
y
2) ≤ (EQ2

x(Dx
1 ))1/2EQ2

y(D
y
2)

= (
(

m1

2

)
p2

xq2
xσ2

xx)1/2m2(N2 −m2)p2
yq

2
yσ

2
yy

¿ (m1/N1)(m2/N2)σ(Qx)σ2(Qy).
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Therefore, t3R2 ≺ R.
Let us prove that t2R1 ≺ R. By symmetry, it suffices to show that

t2R∗
1 ≺ R, where we denote

R∗
1 = EJ0 exp{iH∗

31}Qx(Dx
1 )Qy(D∗

y), D∗
y = (Ωm2 \Ωm4)× (ΩN2 \Ωm2).

We have

|R∗
1| ≤ EJy

x(Ωm4)|Qx(Dx
1 )Qy(D∗

y)| ≤ (1 + s2
1)R

∗
11 + (1 + s2

1)
−1R∗

12,

where R∗
11 := EJy

x(Ωm4)Q2
x(Dx

1 ) and R∗
12 := EQ2

y(D
∗
y). Here we applied the

simple inequality ab ≤ a2c2 + b2c−2 and the inequality Jy
x(Ωm4) ≤ 1. Since

R∗
12 ¿ (m2/N2)σ2(Qy) we obtain t2(1 + s2

1)
−1R∗

12 ≺ R. We complete the
proof of (82) by showing that

t2(1 + s2
1)R

∗
11 ≺ R. (83)

Write R∗
11 = R∗

2 + R∗
3, where we denote

R∗
2 = EJy

x(Ωm4)Q2
x(Dx

1 )I∗y, R∗
3 = EJy

x(Ωm4)Q2
x(Dx

1 )I∗y,

I∗y = I{α{y
x(Ωm4 )<σ2

y}, I∗y = 1− I∗y

and the constant α is defined in (123) below. Recall that the random variable
κy

x(Ωm4) is introduced in the subsection 8.1. We shall show that

t2(1 + s2
1)R

∗
k ≺ R, k = 2, 3. (84)

We have, by Chebyshev’s inequality and symmetry,

R∗
3 ¿ σ−2

y EQ2
x(Dx

1 )κy
x(Ωm4) = σ−2

y EQ2
x(Dx

1 )(uy
1)

2

= σ−2
y

(
m1

2

)
(N1 −m1)p3

xq3
xEψ2

x(X1, X2)ψ2
xy(XN1 , Y1)

¿ σ−2
y (m1/N1)2τ−2

2 σ2(Qx)σ2(Qxy).

This implies (84) for k = 3. In order to bound R∗
2 we apply (133) and use

symmetry,

R∗
2 ¿

1
(3 + s2

2)10
EQ2

x(Dx
1 ) =

(
m1

2

)

(3 + s2
2)10

p2
xq2

xσ2
xx ¿

m2
1

N2
1

1
(3 + s2

2)10
σ2(Qx).

We obtain (84), thus completing the proof of (82).
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Let us prove that

itEJ0 exp{iH∗
31}Qx(Dx

1 ) ∼ itEJ0 exp{iH∗
32}Qx(Dx

1 ). (85)

Expanding the exponent in powers of itQxy(B3) we obtain

EJ0 exp{iH∗
31}Qx(Dx

1 ) = EJ0 exp{iH∗
32}Qx(Dx

1 ) + itR1 + t2R2,

R1 : = EJ0 exp{iH∗
32}Qx(Dx

1 )Qxy(B3),
|R2| ≤ E|Qx(Dx

1 )|Q2
xy(B3).

Invoking the inequality a ≤ c2 + a2c−2 we obtain

|R2| ≤ (1 + s2
1)
−1EQ2

xy(B3) + (1 + s2
1)EQ2

x(Dx
1 )Q2

xy(B3). (86)

By symmetry,

EQ2
xy(B3) = m2(N1 −m1)pxqxpyqyσ

2
xy ¿ (m2/N2)σ2(Qxy),

EQ2
x(Dx

1 )Q2
xy(B3) =

(
m1

2

)
m2(N1 −m1)p3

xq3
xpyqyEψ2

x(X1, X2)ψ2
xy(XN1 , Y1)

¿ m2
1

N2
1

m2

N2
τ6
1 τ2

2 σ2
xxσ2

xy ¿
m2

1

N2
1

m2

N2
σ2(Qx)σ2(Qxy).

Collecting these bounds in (86) we obtain that t3R2 ≺ R.
Let us show that t2R1 ≺ R. By symmetry, it suffices to show that

t2R∗
1 ≺ R, where we denote

R∗
1 = EJ0 exp{iH∗

32}Qx(Dx
1 )Qxy(B′

3), B′
3 = (ΩN1 \Ωm1)× (Ωm2 \Ωm4).

We have

|R∗
1| ≤ EJy(Ωm4)|Qx(Dx

1 )Qxy(B′
3)|

≤ (1 + s2
1)EJy(Ωm4)Q2

x(Dx
1 ) + (1 + s2

1)
−1EQ2

xy(B
′
3).

In the last step we used the simple inequality ab ≤ a2c2 + b2c−2. Using the
simple bound,

EQ2
xy(B

′
3) ≤ (m2 −m4)(N1 −m1)pxqxpyqyσ

2
xy ≤ (m2/N2)σ2(Qxy)

we obtain
t2(1 + s2

1)
−1EQ2

xy(B
′
3) ≺ R. (87)

Furthermore, invoking inequality (133) and using symmetry we obtain

EJy(Ωm4)Q2
x(Dx

1 ) ¿ 1
(3 + s2

2)10
EQ2

x(Dx
1 ) ¿ 1

(3 + s2
2)10

m2
1

N2
1

σ2(Qx).
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This bound implies

t2(1 + s2
1)EJy(Ωm4)Q2

x(Dx
1 ) ≺ R. (88)

Combining (87) and (88) we obtain t2R∗
1 ≺ R thus completing the proof of

(85).
The proof of the formulas

itEJ0 exp{iH∗
32}Qx(Dx

1 ) ∼ itEJ0 exp{iH∗
33}Qx(Dx

1 ),
itEJ0 exp{iH∗

33}Qx(Dx
1 ) ∼ itEJ0Qx(Dx

1 )

is similar to that of (85) but simpler. Combining these bounds and (82),
(85) we obtain the first formula of (81).

Let us prove the second formula of (81). Expanding the exponent in
powers of iF2 we obtain

EJ0Qx(Dx
1 ) = E exp{iL̃}Qx(Dx

1 ) + iR, R := E exp{iL̃}Qx(Dx
1 )F2θF ,

where the random variable |θF | ≤ 1 is a function of F2. We have

|R| ≤ EJy(Ωm2)|Qx(Dx
1 )F2| ≤ (1 + s2

1)R1 + (1 + s2
1)
−1R2, (89)

where R1 := EJy(Ωm2)Q2
x(Dx

1 ) and R2 := EJy(Ωm2)F
2
2 . By symmetry and

independence,

R1 =
(

m1

2

)
p2

xq2
xσ2

xxEJy(Ωm2) ¿
m2

1

N2
1

σ2(Qx)
1

(1 + s2
2)10

. (90)

Furthermore, we have R2 = t2(R21 + R22 + R23), where

R21 : = EJy(Ωm2)Q2
x(Dx

3 ) ¿ σ2(Qx)EJy(Ωm2) ¿
σ2(Qx)

(1 + s2
2)10

, (91)

R22 : = EJy(Ωm2)Q2
y(D

y
3) ¿ τ4

2Eψ2
yJ

y(Ωm2) ¿
σ2(Qy)

(1 + s2
2)10

,

R23 : = EJy(Ωm2)Q2
xy(B4) ¿ τ2

1 τ2
2Eψ2

xyJ
y(Ωm2) ¿

σ2(Qxy)
(1 + s2

2)10
.

Here we used bounds (133). Collecting inequalities (90) and (91) in (89) we
obtain t2R ≺ R thus proving the second formula of (81). We arrive at (65).
The proof of (66) is almost the same. The proof of (50) is complete.

Let us prove (49). Using the notation (67) write

F3 = H∗
1 + tQx(Dx

2 ), H∗
1 := H∗

2 + tQy(D
y
2),

H∗
2 : = H∗

3 + tQxy(B2), H∗
3 := tQxy(B3)
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and denote, for k = 1, 2, 3,

f∗k = EJk, Jk = J0 exp{iH∗
k}, and f∗4 = EJ0. (92)

In order to prove (49) we shall show that

f2 ∼ f∗1 + f∗5 , f∗5 := itE exp{iL̃}Qx(Dx
2 ), (93)

f∗1 ∼ f∗2 + f∗6 , f∗6 := itE exp{iL̃}Qy(D
y
2), (94)

f∗2 ∼ f∗3 + f∗7 , f∗7 := itE exp{iL̃}Qxy(B2), (95)
f∗3 ∼ f∗4 + f∗8 , f∗8 := itE exp{iL̃}Qxy(B3), (96)
f∗4 ∼ E exp{iL̃}+ iE exp{iL̃}F2. (97)

Let us prove (93). Expanding the exponent in powers of itQx(Dx
2 ) we

obtain

f2 = f∗1 + itEJ1Qx(Dx
2 ) + t2R, |R| ≤ EJy

xy(Ωm2)Q2
x(Dx

2 ).

We shall show that

t2R ≺ R and itEJ1Qx(Dx
2 ) ∼ f∗5 . (98)

In order to prove the first bound write R = R1 + R2, where we denote

R1 = EJy
xy(Ωm2)IyQ2

x(Dx
2 ), R2 = EJy

xy(Ωm2)IyQ2
x(Dx

2 ),

Iy = I{α{y
xy(Ωm2 )<σ2

y}, Iy = 1− Iy.

It follows from (133) and (119) by symmetry, that

R1 ¿ (3 + s2
2)
−10EQ2

x(Dx
2 ) ¿ (3 + s2

2)
−10(m1/N1)σ2(Qx). (99)

Therefore, we have t2R1 ≺ R. In order to show that t2R2 ≺ R we apply
Chebyshev’s inequality and symmetry and use the inequality Jy

xy(Ωm2) ≤ 1.
We have

R2 ¿ σ−2
y EQ2

x(Dx
2 )κy

xy(Ωm2) = R21 + R22,

R21 : = σ−2
y EQ2

x(Dx
2 )(vy

1)2 = σ−2
y τ−2

2

m1

N1
σ2(Qx)σ2(Qy),

R22 : = σ−2
y EQ2

x(Dx
2 )(uy

1)
2 = σ−2

y m1pxqxE(vx
1 )2(uy

1)
2.

Invoking the bound (121) we obtain

R22 ¿ (m1/N1)τ−2
2 σ−2

y (τ−2
1 γx + σ2(Qx)σ2(Qxy)).
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Since t2R21 ≺ R and t2R22 ≺ R we obtain t2R2 ≺ R. This completes the
proof of the first bound of (98).

Let us prove the second part of (98). By symmetry, it suffices to show
that

itEJ1Qx(Dx
∗ ) ∼ f̃∗5 , f̃∗5 := itE exp{iL̃}Qx(Dx

∗ ), (100)

where Dx∗ = (Ωm1 \ Ωm3)× (ΩN1 \ Ωm1). We shall prove (100). Expanding
in powers of itQy(D

y
2) we obtain

itEJ1Qx(Dx
∗ ) = f̃∗6 + (it)2R1 + t3R2, f̃∗6 := itEJ2Qx(Dx

∗ ), (101)
R1 : = EJ2Qx(Dx

∗ )Qy(D
y
2), |R2| ≤ EJx

y (Ωm3)|Qx(Dx
∗ )|Q2

y(D
y
2).

Let us show that t3R2 ≺ R. Using inequalities a ≤ 1 + a2 and Jx
y (Ωm3) ≤ 1

we write

|R2| ≤ R21+R22, R21 := EJx
y (Ωm3)Q2

y(D
y
2), R22 := EQ2

x(Dx
∗ )Qy(D

y
2).

We have R22 ¿ (m1/N1)(m2/N2)σ2(Qx)σ2(Qy). Therefore, t3R22 ≺ R.
Furthermore, write

R21 = R′
21+R∗

21, R′
21 := EJx

y (Ωm3)IyQ2
y(D

y
2), R∗

21 := EJx
y (Ωm3)IyQ2

y(D
y
2),

where we denote Iy = I{α{x
y (Ωm3 )<σ2

x} and Iy = 1 − Iy. Invoking (132) we
obtain

R′
21 ¿ (3 + s2

1)
−10EQ2

y(D
y
2) ¿ (3 + s2

1)
−10(m2/N2)σ2(Qy).

Therefore, we have t3R′
21 ≺ R. Furthermore, by Chebyshev’s inequality and

symmetry we write

R∗
21 ¿ σ−2

x EQ2
y(D

y
2)κx

y (Ωm3) = σ−2
x EQ2

y(D
y
2)(ux

1)2

= σ−2
x m2pyqyE(vy

1)2(ux
1)2

¿ σ−2
x (m2/N2)τ−2

1 (τ−2
2 γy + σ2(Qy)σ2(Qxy)).

In the last step we used (121). It follows that t3R∗
21 ≺ R. Finally, we have

|t|3|R2| ≤ |t|3(R′
21 + R∗

21 + R22) ≺ R. (102)

Let us show that t2R1 ≺ R for R1 in (101). By symmetry, it suffices to
show that

t2R′
1 ≺ R for R′

1 := EJ2Qx(Dx
∗ )Qy(Dy

∗), (103)
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where Dy
∗ = (Ωm2 \ Ωm4)× (ΩN2 \ Ωm2). We have

|R′
1| ≤ EJx

y (Ωm3)J
y
x(Ωm4)|Qx(Dx

∗ )Qy(Dy
∗)| ≤ R′

11 + R′
12,

R′
11 : = EJx

y (Ωm3)Q2
y(D

y
∗), R′

12 := EJy
x(Ωm4)Q2

x(Dx
∗ ).

Proceeding as in the proof of the bound t3R21 ≺ R above we obtain t2R′
11 ≺

R and t2R′
12 ≺ R, thus proving (101).

It follows from (101), (102), (103) that

itEJ1Qx(Dx
∗ ) ∼ f̃∗6 .

Let us show that

f̃∗6 ∼ f̃∗7 , f̃∗7 := itEJ3Qx(Dx
∗ ). (104)

Expanding the exponent in powers of itQxy(B2) we obtain

f̃∗6 = f̃∗7 + t2R, |R| ≤ EJy
x(Ωm2)|Qx(Dx

∗ )Qxy(B2)|.

We have

|R| ≤ R1 +R2, R1 := EJy
x(Ωm2)Q2

x(Dx
∗ ), R2 := EJy

x(Ωm2)Q2
xy(B2).

Proceeding as in the proof of the bound t3R21 ≺ R above we obtain the
bound t2R1 ≺ R. In order to prove the bound t2R2 ≺ R write, by symmetry,

R2 = m1(N2−m2)pxqxpyqyEV ≤ (m1/N1)τ2
1 τ2

2EV, V := EJy
x(Ωm2)ψ

2
xy(X1, YN2).

Split

V = V1+V2, V1 := EJy
x(Ωm2)Iyψ2

xy(X1, YN2), V2 := EJy
x(Ωm2)Iyψ2

xy(X1, YN2),

where we denote Iy = I{α{y
x(Ωm2 )<σ2

y} and Iy = 1− Iy. It follows from (133)
that

V1 ¿ (3 + s2
2)
−10Eψ2

xy(X1, YN2) ¿ (3 + s2
2)
−10τ−2

1 τ−2
2 σ2(Qxy).

By Chebyshev’s inequality and symmetry,

V2 ¿ σ−2
y Eψ2

xy(X1, YN2)κy
x(Ωm2) = σ−2

y Eψ2
xy(X1, YN2)(u

y
1)

2

¿ σ−2
y τ2

1 σ4
xy ¿ σ−2

y τ−2
1 τ−4

2 σ4(Qxy).

Since t2(m1/N1)τ2
1 τ2

2 Vk ≺ R for k = 1, 2, we obtain t2R2 ≺ R, thus com-
pleting the proof of (104).

33



Let us show that

f̃∗7 ∼ f̃∗8 , f̃∗8 := itEJ0Qx(Dx
∗ ). (105)

Expanding the exponent in powers of itQxy(B3) we obtain

f̃∗7 = f̃∗8 + (it)2R1 + t3R2,

R1 : = EJ0Qx(Dx
∗ )Qxy(B3), |R2| ≤ EJx(Ωm3)|Qx(Dx

∗ )|Q2
xy(B3).

In order to prove (105) we shall show that

t2R1 ≺ R and t3R2 ≺ R. (106)

Let us prove the second bound. Using the inequality a ≤ 1 + a2 write

|R2| ≤ R21+R22, R21 := EJx(Ωm3)Q2
xy(B3), R22 := EQ2

x(Dx
∗ )Q2

xy(B3).

By symmetry and (132), we have

R21 ≤ (m2/N2)τ2
1 τ2

2EJx(Ωm3)ψ
2
xy(XN1 , Y1) ¿ (m2/N2)(3 + s2

1)
−10σ2(Qxy).

Therefore, t3R21 ≺ R. Furthermore, by symmetry and (121), we have

R22 = (m1−m3)m2pxqxpyqyE(vx
1 )2(uy

1)
2 ¿ (m1m2/N1N2)(τ−2

1 γx+σ2(Qx)σ2(Qxy)).

Therefore, t3R22 ≺ R. We obtain the second bound of (106). In order to
prove the first bound it suffices to show that

t2R′
1 ≺ R for R′

1 := EJ0Qx(Dx
∗ )Qxy(B∗),

where B∗ = (ΩN1 \ Ωm1)× (Ωm2 \ Ωm4). We have

|R′
1| ≤ EJx(Ωm3)J

y(Ωm4)|Qx(Dx
∗ )Qxy(B∗)| ≤ R′

11 + R′
12,

R′
11 : = EJx(Ωm3)Q2

xy(B∗), R′
12 := EJy(Ωm4)Q2

x(Dx
∗ ).

Invoking (132) and (133) and using symmetry we obtain t2R′
11 ≺ R and

t2R′
12 ≺ R, thus completing the proof of (106).
Finally expanding the exponent in f̃∗8 in powers of iF2 and using sym-

metry we obtain

f̃∗8 = f̃∗5 + tR, |R| ≤ EJx(Ωm1)J
y(Ωm2)|Qx(Dx

∗ )F2|. (107)

We have |R| ¿ |t|(R1 + R2 + R3 + R4), where

R1 : = EJy(Ωm2)Q2
x(Dx

∗ ), R2 := EJx(Ωm3)J
y(Ωm2)Q2

x(Dx
3 ),

R3 : = EJx(Ωm3)J
y(Ωm2)Q2

y(D
y
3), R4 := EJx(Ωm3)J

y(Ωm2)Q2
xy(B4).
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Invoking (132) and (133) and using symmetry we obtain t2Rk ≺ R for
k = 1, 2, 3, 4. This implies f̃∗8 ∼ f̃∗5 and completes the proof of (100). We
arrive to (93). The proof of (94) is almost the same.

Let us prove (95). Expanding the exponent in powers of itQxy(B2) we
obtain

f∗2 = f∗3 + itEJ3Qxy(B2) + t2R, |R| ≤ EJy
x(Ωm2)Q2

xy(B2).

In view of the bound (which is shown in the proof of (104)) t2|R| ≺ R, we
need to prove that itEJ3Qxy(B2) ∼ f∗7 . By symmetry, it suffices to show
that

itEJ3Qxy(B∗) ∼ f̃∗9 , f̃∗9 := itE exp{iL̃}Qxy(B∗), (108)

where B∗ = (Ωm1 \ Ωm3)× (ΩN2 \ Ωm2). We shall show that

itEJ3Qxy(B∗) ∼ itEJ0Qxy(B∗) and itEJ0Qxy(B∗) ∼ f̃∗9 . (109)

In order to prove the first relation of (109) we expand the exponent in powers
of itQxy(B3),

itEJ3Qxy(B∗) = itEJ0Qxy(B∗) + (it)2R1 + t3R2,

R1 : = EJ0Qxy(B∗)Qxy(B3),
|R2| ≤ EJx(Ωm3)|Qxy(B∗)|Q2

xy(B3)

and show that t2R1 ≺ R and t3|R2| ≺ R. The proof of these bounds is
similar to that of (106). The proof of the second relation of (109) is similar
to that of the relation f̃∗8 ∼ f̃∗5 , see (107) above. We obtain (108) thus
completing the proof of (95). The proof of (96) and (97) is similar. The
proof of (45) is complete.

8.2.2. Proof of (46). We shall show that

itE exp{iL̃}Qxy ∼ τ2
1 τ2

2 κxy(it)3E exp{iL̃}, (110)
itE exp{iL̃}Qx ∼ 2−1τ4

1 κx(it)3E exp{iL̃}, (111)
itE exp{iL̃}Qy ∼ 2−1τ4

2 κy(it)3E exp{iL̃}. (112)

Write

L̃ = T+ Z, T =
N1∑

k=1

tkwk, Z =
N2∑

j=1

zjξj , (113)

tk = tgx(Xk) + s1/τ1, zj = tgy(Yj) + s2/τ2.
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Let us prove (110). By symmetry,

itE exp{iL̃}Qxy = N1N2h1, h1 = itE exp{iL̃}ψxy(X1, Y1)ω1ξ1.

Split L̃ = L̃′+ t1ω1 + z1ξ1. Expanding the exponent exp{iL̃′+ it1ω1 + iz1ξ1}
in powers of it1ω1 and iz1ξ1 we obtain

h1 = h2 + R1 + R2, (114)
h2 : = itE exp{iL̃′}w1, w1 := −ψxy(X1, Y1)t1z1ω

2
1ξ

2
1 ,

|R1| ≤ |t|EJx(Ω′N1
)Jy(Ω′N2

)|w1t1ω1|,
|R2| ≤ |t|EJx(Ω′N1

)Jy(Ω′N2
)|w1z1ξ1|.

Here Ω′Nk
= ΩNk

\ {1}. We have

h2 = itE exp{iL̃′}w2, where w2 := −p2
xq2

xp2
yq

2
yψxy(X1, Y1)t1z1.

Proceeding as in (114) we obtain

h2 = h3 + R3 + R4, h3 = itE exp{iL̃}w2, (115)
|R3| ≤ |t|EJx(Ω′N1

)Jy(Ω′N2
)|w2t1ω1|,

|R4| ≤ |t|EJx(Ω′N1
)Jy(Ω′N2

)|w2z1ξ1|.
Let Eν,ξ denote the conditional expectation given all the random variables,
but {νk, k = 1, . . . , N1} and {ξr, r = 1, . . . , N2}. Note that (t, s1, s2) →
Eν,ξ exp{iL̃} is a non-random function. Therefore, we have

h3(t) = EEν,ξ exp{iL̃}w2 = Eν,ξ exp{iL̃}Ew2 (116)
= E exp{iL̃}w3,

where w3 := Ew2 = (it)2pxqxpyqyκxy. The last identity uses (25). From
(114), (115) and (116) we obtain

itE exp{iL̃}Qxy = τ2
1 τ2

2 κxy(it)3E exp{iL̃}+N1N2R, R := R1+R2+R3+R4.

We complete the proof of (110) by showing that R ≺ R.
Invoking (132) and (133) we obtain

|R| ¿ |t|(3 + s2
1)
−10(3 + s2

2)
−10E(|w1|+ |w2|)(|t1|+ |z1|). (117)

Using Cauchy-Schwartz we obtain for k = 1, 2,

E|wkt1| ¿ (|t|3 + |s1|3 + |s2|3)N−1
1 N−1

2 τ−1
1 σ(Qxy)B

1/2
x4 , (118)

E|wkz1| ¿ (|t|3 + |s1|3 + |s2|3)N−1
1 N−1

2 τ−1
2 σ(Qxy)B

1/2
y4 .
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These bounds in combination with (117) imply R ≺ R. We arrived to (110).
The proof of (111) and (112) is almost the same. We show that

|itE exp{iL̃}Qx − 2−1τ4
1 κx(it)3E exp{iL̃}| ≺ |t|(1 + |t|3)τ−1

1 σ(Qx)B1/2
x4 ,

|itE exp{iL̃}Qy − 2−1τ4
2 κy(it)3E exp{iL̃}| ≺ |t|(1 + |t|3)τ−1

2 σ(Qy)B
1/2
y4 .

The proof of (46) is complete. Lemma 8.1 is proved.

9 Moment inequalities

It follows from (27) that

σ2
x ¿ σ2(Lx)

τ2
1

, σ2
y ¿

σ2(Ly)
τ2
2

, σ2
xx ¿

σ2(Qx)
τ4
1

, (119)

σ2
yy ¿ σ2(Qy)

τ4
2

, σ2
xy ¿

σ2(Qxy)
τ2
1 τ2

2

.

Lemma 9.1. We have

EQ2
xy(B1) ¿ m1

N1

m2

N2
σ2(Qxy), (120)

EQ2
x(Dx

1 ) ¿ m2
1

N2
1

σ2(Qx), EQ2
y(D

y
1) ¿ m2

2

N2
2

σ2(Qy),

E(vx
1 )2(uy

1)
2 ¿ τ−2

1 τ−2
2 (τ−2

1 γx + σ2(Qx)σ2(Qxy)), (121)
E(vy

1)2(ux
1)2 ¿ τ−2

1 τ−2
2 (τ−2

2 γy + σ2(Qy)σ2(Qxy)).

Proof of Lemma 9.1. Inequalities (120) follow from (119) and the iden-
tities

EQ2
xy(B1) = m1m2Eω2

1ξ
2
1σ

2
xy, EQ2

x(Dx
1 ) = 2−1m1(m1 − 1)Eω2

1ω
2
2σ

2
xx,

EQ2
y(D

y
1) = 2−1m2(m2 − 1)Eξ2

1ξ
2
2σ

2
yy.

Let us prove the first bound of (121). The proof of the second bound is al-
most the same. Denote for brevity ai = ψx(X1, Xi)ωi and bj = ψxy(Xj , Y1)ωj .
By independence, we have

E(
∑

i

ai)2(
∑

j

bj)2 = ES1 + ES2 + 4ES3, (122)

S1 =
∑

i

a2
i b

2
i , S2 =

∑

i<j

(a2
i b

2
j + a2

jb
2
i ), S3 =

∑

i<j

aiajbibj .
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Here
∑

i denotes the sum over m1 < i ≤ N1 and
∑

i<j denotes the sum over
m1 < i < j ≤ N1. By symmetry we have

ES1 = (N1 −m1)Ea2
N1

b2
N1
¿ τ2

1Eψ2
x(X1, XN1)ψ

2
xy(XN1 , Y1) ≤ τ−4

1 τ−2
2 γx.

Furthermore,

ES2 =
(

N1 −m1

2

)
Ea2

N1
b2
N1−1 ≤ τ4

1Eψ2
x(X1, XN1)ψ

2
xy(XN1+1, Y1)

¿ τ4
1 σ2

xxσ2
xy ¿ τ−2

1 τ−2
2 σ2(Qx)σ2(Qxy).

Finally, by Cauchy-Schwartz,

ES3 ≤
∑

i<j

(Ea2
i b

2
j + Ea2

jb
2
i ) = ES2.

Collecting the bounds for ES1 and ES2 = ES3 in (122) we obtain the first
bound of (121).

10 Auxiliary inequalities

Denote

βx(t) = Eeiω1t, βy(t) = Eeiξ1t,

Θ(t) = (
2
π

π − t

π + t
)2, α =

32π

Θ(1)
(1 +

4
Θ(1)

), (123)

u{d,x}(t) = 1− pxqx
Θ(d)

2
t2I{|t|<d+π}, v{d,x}(t) = 1 + pxqx

2π

d
(

4
Θ(d)

+ 1)t2,

u{d,y}(t) = 1− pyqy
Θ(d)

2
t2I{|t|<d+π}, v{d,y}(t) = 1 + pyqy

2π

d
(

4
Θ(d)

+ 1)t2.

In proofs we use the following result, see Lemma 5.2 in Bloznelis and
Götze (2000), Bernoulli, 6, 729-760.

Lemma 10.1. For each d ∈ (0, π) and t, s ∈ R we have

|βx(s + t)|2 ≤ u{d,x}(t)v{d,x}(s), |βy(s + t)|2 ≤ u{d,y}(t)v{d,y}(s). (124)

Denote

εx = 8(N2/3
1 B

2/3
x3 + 1)/(N1 − 4), εy = 8(N2/3

2 B
2/3
y3 + 1)/(N2 − 4). (125)
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Lemma 10.2. Let cT > 2 and d ∈ (0, π). Assume that |t| ≤ T , where
T−1 = cT Bx3σx. For c′ = min{cT d, c2

T d2} we have

E(tgx(X1) +
s1

τ1
)2I{|tgx(X1)|<d} ≥ (σ2

xt2 +
s2
1

τ2
1

)(1− 2/c′), (126)

E[4](tgx(X1) +
s1

τ1
)2I{|tgx(X1)|<d} ≥ (σ2

xt2 +
s2
1

τ2
1

)(1− ε− 2/c′). (127)

Here E[4] denotes the conditional expectation given Xi1, Xi2, Xi3, Xi4, where
1 /∈ {i1, i2, i3, i4}.

Proof of lemma 10.2. The proof is similar to the proof of Lemma 5.3
ibidem. Let us prove (126). Denote

I = I{T |gx(X1)|<d}, I = 1− I, Z1 = tgx(X1) + s1/τ1, A = EZ2
1 I.

For |t| ≤ T we have

EZ2
1 I{|tgx(X1)|<d} ≥ EZ2

1 I = EZ2
1 −A

= σ2
xt2 + τ−2

1 s2
1 −A.

In the last identity we use Egx(X1) = 0. Therefore, in order to prove (126)
it suffices to show that

A ≤ (2/c′)(σ2
xt2 + τ−2

1 s2
1). (128)

Introduce the set K ⊂ X , K = {xj : T |gx(xj)| ≥ d}. Write

A = N−1
1

∑

xj∈K

(tgx(xj) + τ−1
1 s1)2 ≤ 2

N1
t2W +

2
N1

s2
1

τ2
1

|K|, (129)

where W =
∑

xj∈K g2
x(xj). By Chebyshev’s inequality, for r > 0,

|K| ≤
∑

xj∈K

(T/d)r|gx(xj)|r ≤ (T/d)rN1E|gx(X1)|r = (T/d)rN1Bxrσ
r
x.

(130)
In particular, we have

|K| ≤ (T/d)3N1Bx3σ
3
x, |K| ≤ (T/d)2N1σ

2
x. (131)

Furthermore, by Minkovski’s inequality,

W ≤ (
∑

xj∈K

|gx(xj)|3)2/3|K|1/3 ≤ (N1E|gx(X1)|3)2/3|K|1/3.
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Invoking the first (respectively second) bound of (131) and the identity
TcT Bx3σx = 1 we obtain

W ≤ N1(T/d)Bx3σ
3
x = N1σ

2
x/cT d, |K| ≤ N1/c2

T d2B2
x3 ≤ N1/c2

T d2.

In the last step we invoke the simple bound Bx3 ≥ 1. Substitution of these
bounds in (129) gives (128).

Let us prove (127). Assume without loss of generality that {i1, i2, i3, i4} =
{2, 3, 4, 5}. We have

E[4](tgx(X1) +
s1

τ1
)2I{|tgx(X1)|<d} =

N1

N1 − 4
EZ2

1 I{|tgx(X1)|<d} −
1

N1 − 4
B,

where B =
∑5

j=2(tgx(Xj)+s1/τ1)2. Therefore, (127) follows from (126) and
the inequalities

B ≤ 2
5∑

j=2

(t2g2
x(Xj) + s2

1/τ2
1 ),

5∑

j=2

g2
x(Xj) ≤ 41/3N

2/3
1 B

2/3
3x σ2

x.

The last inequality follows by Minkovski inequality,

5∑

j=2

g2
x(Xj) ≤ 41/3(

5∑

j=2

|g2
x(Xj)|3/2)2/3 ≤ 41/3N

2/3
1 (

1
N1

N1∑

j=1

|gx(Xj)|3)2/3.

Proof of Lemma 10.2.is complete.

Let EX (respectively EY ) denote the conditional expectation given all
the random variables but X∗ (respectively Y ∗). By Ei1,...,ik

X (respectively
Ei1,...,ik

Y ), we denote the conditional expectation given all the random vari-
ables but {X1, . . . , XN1}\{Xi1 , . . . , Xik} (respectively {Y1, . . . , YN2}\{Yi1 , . . . ,
Yik}).

Lemma 10.3 Assume that |t| ≤ T , where the number T is defined in
(43) and the constant cT in (43) is larger than 8. Assume that numbers
εx, εy (defined in (125)) are smaller than 1/4 . Assume that the constant C ′

in (47) is larger than 103/Θ(1). Then for every B ⊂ Ωm1, |B| ≥ m1/4 and
D ⊂ Ωm2, |D| ≥ m2/4, and for every {ij} ⊂ ΩN1 \B, and {k, l} ⊂ ΩN2 \D
we have almost surely

Eij
XJx

xy(B)I{α{x
xy(B)<σ2

x} ¿ (3 + s2
1)
−10, Eij

XJx(B) ¿ (3 + s2
1)
−10, (132)

Eij
XJx

x (B)I{α{x
x(B)<σ2

x} ¿ (3 + s2
1)
−10, Eij

XJx
y (B)I{α{x

y (B)<σ2
x} ¿ (3 + s2

1)
−10,

Ekl
Y Jy

xy(D)I{α{y
xy(D)<σ2

y} ¿ (3 + s2
2)
−10, Ekl

Y Jy(D) ¿ (3 + s2
2)
−10, (133)

Ekl
Y Jy

x(D)I{α{y
x(D)<σ2

y} ¿ (3 + s2
2)
−10, Ekl

Y Jy
y (D)I{α{y

y (D)<σ2
y} ¿ (3 + s2

2)
−10.
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The integer valued functions m1 = m1(s1) and m2 = m2(s2) are defined in
(47).

Remark. Inequalities (132) and (133) remain valid if we replace the
expectation Eij

X (respectively Ekl
Y ) by EX or Ei

X (respectively EY or Ek
Y ).

Proof of Lemma 10.3. We shall prove the first inequality of (132) only.
Denote Zk = tgx(Xk) + τ−1

1 s1. It follows from (124) that

Jx
xy(B) ≤ W1W2, W 2

1 :=
∏

k∈B

u{1,x}(Zk), W 2
2 :=

∏

k∈B

v{1,x}(tvx
k+tux

k).

(134)
The inequality 1 + z ≤ ez implies almost surely

W2I{α{x
xy(B)<σ2

x} ≤ I{α{x
xy(B)<σ2

x} exp{2π(1 + 4/Θ(1))|B|pxqxκx
xy(B)t2}

≤ I{α{x
xy(B)<σ2

x} exp{16−1Θ(1)ακx
xy(B)(|B|/N1)τ2

1 t2}
≤ exp{16−1Θ(1)(|B|/N1)σ2

xτ2
1 t2} =: r. (135)

Therefore, we have almost surely

Jx
xy(B)I{α{x

xy(B)<σ2
x} ≤ W1r. (136)

Hoeffding’s (1963) Theorem 4 implies Eij
XW 2

1 ≤ (Eij
Xu{1,x}(Z1))

|B|. There-
fore,

Eij
XW1 ≤ (Eij

XW 2
1 )1/2 ≤ (Eij

Xu{1,x}(Z1))
|B|/2. (137)

For |s1/τ1| ≤ π and |t| ≤ T we obtain from (127) that

Eij
XZ2

1 I{|tgx(X1)+s1/τ1|<π+1} ≥ Eij
XZ2

1 I{|tgx(X1)|<1}
≥ (σ2

xt2 + s2
1/τ2

1 )(1− εx − 2/cT ),

where εx is defined in (125). Therefore, we have

Eij
Xu{1,x}(Z1) ≤ 1− 2−1pxqxΘ(1)(σ2

xt2 + s2
1/τ2

1 )(1− εx − 2/cT ). (138)

The inequality 1 + z ≤ ez combined with (137) and (138) implies

Eij
XW1 ≤ exp{−4−1(1− εx − 2/cT )Θ(1)pxqx|B|(σ2

xt2 + s2
1/τ2

1 )}
≤ exp{−4−1(1− εx − 2/cT )Θ(1)(|B|/N1)(σ2

xτ2
1 t2 + s2

1)}
≤ exp{−8−1Θ(1)(|B|/N1)(σ2

xτ2
1 t2 + s2

1)}. (139)

Combining this bound and (136) we obtain

Eij
XJx

xy(B)I{α{x
xy(B)<σ2

x} ≤ exp{−16−1Θ(1)(|B|/N1)(σ2
xτ2

1 t2 + s2
1)}

≤ exp{−64−1Θ(1)(m1/N1)(σ2
xτ2

1 t2 + s2
1)}

≤ exp{−Θ(1)
64

m1

N1
s2
1} ¿

1
(3 + s2

1)10
.
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The proof of the first inequality of (132) is complete. The proof of the
remaining inequalities of the lemma is much the same.
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