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Abstract

Assume we want to estimate the Gini difference
∑

i,j |xi−xj | of the
finite population X = {x1, . . . , xN} and suppose that the information
available is a stratified sample. The commonly used estimator has the
form of a U−statistic. We evaluate the variance σ2

U of the estimator
and study the normal approximation of its distribution. Furthermore,
we study the bias and consistency of the jackknife estimator of vari-
ance S2 and the normal approximation in the case where estimator is
standardized by S.

The work is supported by Lithuanian State Science and Studies Foundation
Grant T-04051.

1 Introduction

Consider the population X = {x1, . . . , xN} and assume that we want to
estimate the population parameter u =

∑
1≤i<j≤N t(xi, xj). Suppose that

the population is divided in h non-intersecting strata X = X1 ∪ . . . ∪ Xh,
where Xk = {xk.1, . . . , xk.Nk

} and N1+. . .+Nk = N . From every Xk we draw
(without replacement) the simple random sample Xk = {Xk.1, . . . , Xk.nk

},
k = 1, . . . , h, so that samples X1, . . . ,Xh are independent. The sample X =
(X1, . . . ,Xh) is called stratified sample without replacement (STSI sample
for short). We assume that the function t is symmetric (i.e., t(x, y) =
t(y, x)).The statistic

û = û(X) =
∑

1≤j≤h

∑

{x,y}⊂Xj

wjt(x, y) +
∑

1≤j<r≤h

∑

x∈Xj

∑

y∈Xr

wjrt(x, y), (1)

where

wj = wj(X) =
(

Nj

2

)(
nj

2

)−1

, wjr = wjr(X) = NjNr(njnr)−1 (2)

is an unbiased estimator of the parameter u. In the particular case t(x, y) =
|x − y| the parameter u is the Gini difference and the statistic û(X) is its
unbiased estimator.
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Statistics of the form (1) are called U−statistics. This class of statistics con-
tains many important estimators. For instance, the commonly used STSI
estimator of the population total can be written in the form (1). Let us con-
sider (real valued) measurements g(x1), . . . , g(xN ) of the population units
x1, . . . , xN and let a =

∑N
i=1 g(xi) be the population total. The STSI esti-

mator

â =
h∑

k=1

Nk

nk

∑

x∈Xk

g(x) (3)

can be written in the form (1) if we take t(xi, xj) = (N−1)−1(g(xi)+g(xj)).
Therefore, the theory given below applies to the estimator of the population
total as well.

2 Some analysis of U−statistics

2.1 Decomposition

It is convenient to decompose the statistic û into the sum of the linear
and quadratic part (L and Q below) which are uncorrelated (see Hoeffding
(1948))

û = u + L + Q, L =
∑

1≤r≤h

Lr, Q =
∑

1≤r≤s≤h

Qrs, (4)

Lr =
∑

x∈Xr

gr(x), Qrr =
∑

{x,y}⊂Xr

ψr(x, y), Qrs =
∑

x∈Xr

∑

y∈Xs

ψrs(x, y).

The functions (we call them kernels) gr and ψr, ψrs are given in Appendix.
Remark. For estimator (3) we have â = a + L, where

L =
h∑

r=1

Lr, Lr =
∑

x∈Xr

Nr

nr
(g(x)− ar), ar =

1
Nr

∑

x∈Xr

g(x).

In this case the quadratic part is not present.
Statistics that have no quadratic part are called linear statistics.

2.2 Variance formula

The linear and quadratic part help to write the variance formula. We have

σ2
U = σ2

L + σ2
Q, (5)

where σ2
U , σ2

L and σ2
Q denotes the variances of û, L and Q. Let σ2(Lk),

σ2(Qkk) and σ2(Qkr) denote the variance of Lk, Qkk and Qkr. One can
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show that

σ2
L =

∑

1≤k≤h

σ2(Lk), σ2
Q =

∑

1≤k≤r≤h

σ2(Qkr), (6)

σ2(Lk) =
Nk

Nk − 1
τ2
kσ2

k, σ2(Qkk) =

(
Nk−nk

2

)(
nk
2

)
(
Nk−2

2

) σ2
kk,

σ2(Qkr) =
Nk

Nk − 1
Nr

Nr − 1
τ2
k τ2

r σ2
kr.

Here we denote

σ2
k = Eg2

k(Xk.1), σ2
kk = Eψ2

k(Xk.1, Xk.2), σ2
kr = Eψ2

kr(Xk.1, Xr.1) (7)

and
τ2
k = Nkpkqk, pk = nk/Nk, qk = (Nk − n)k)/Nk.

3 Normal approximation

We shall assume that the linear part L has positive variance, σ2
L > 0. By

the central limit theorem, for large n = n1 + . . .+nh and N , the distribution
of L/σL can be approximated by the standard normal distribution,

P{L ≤ xσL} ≈ Φ(x), Φ(x) =
∫ x

−∞

1√
2π

e−u2/2du.

Let σ2
U denote the variance of û. If the linear part dominates the statistic

and we have σ2
U/σ2

L ≈ 1, the normal approximation applies to û/σU as well,

P{û− u ≤ xσU} ≈ Φ(x). (8)

The normal approximation is used for construction of confidence intervals.

3.1 Improvement by an Edgeworth expansion

An improvement over the normal approximation is provided by an Edge-
worth expansion, see Cramér (1946). Edgeworth expansions include cor-
recting terms, which capture the asymmetry and some other factors that
cause the deviation of the distribution function from Φ(x). The one-term
Edgeworth expansion includes only one correcting term

P{L ≤ xσL} ≈ Φ(x)− α

6σ3
L

Φ′(x)(x2 − 1), (9)

P{û− u ≤ xσU} ≈ Φ(x)− α + 3κ

6σ3
U

Φ′(x)(x2 − 1). (10)

Here the parameter α reflects the asymetry of the linear statistic L and is
determined by L. The parameter κ reflects the influence of the quadratic
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part. Both parameters are the population mean values of some functionals
(”measurements”).
Since often the variances σ2

L and σ2
U and moments α and κ are not known

the approximations above have little use for practice. One would like to
have improved approximations like (9) and (10) that does not use unknown
population parameters. One way is to replace the true parameters σ2

L, σ2
U

etc by their estimators. Another way is the bootstrap.

3.2 Jackknife variance estimator

The classical jackknife estimator S2 of the variance σ2
U is defined as follows

S2 = S2(û) =
h∑

k=1

qk
nk − 1

nk
v2
k, (11)

v2
k =

nk∑

i=1

(û(Xk|i)− uk)
2, uk =

1
nk

nk∑

i=1

û(Xk|i).

Here Xk|i denotes the STSI sample obtained from X by removing the ob-
servation Xk.i. In order to get û(Xk|i) we replace Xk by Xk \ {Xk.i} in
(1) and adjust the weights (2). We put wj(Xk|i) = wj(X) for j 6= k and
wk(Xk|i) = wk(X)nk/(nk − 2). Similarly, wjr(Xk|i) = wjr(X) for k /∈ {j, r}
and wjr(Xk|i) = wjr(X)nk/(nk − 1) for k ∈ {j, r}. Note that û(Xk|i) is an
unbiased estimator of u, i.e., Eû(Xk|i) = u.
It is well known that S2(â) is an unbiased estimator of the variance of â.
More generally, S2(û) is an unbiased estimator of σ2

U if û is a linear statistic.
For U−statistics which have the quadratic part the estimator S2(û) is biased
upwards. The bias can be evaluated and expressed in terms of the quantities
σ2

kk and σ2
kr.

Lemma. The following identity is true

ES2 = σ2
U + D. (12)

Here

D =
∑

1≤r<k≤h

σ2(Qrk) +
∑

1≤k≤h

(ck − 1)σ2(Qkk),

ck = 2
Nk − 1

Nk

Nk − nk

Nk − nk − 1
nk − 1
nk − 2

Clearly, ck ≥ 2, for every k = 1, . . . , h. Therefore, we have D ≥ 0. Note that
D > 0 whenever at least one of the quantities σ2

kr > 0, for 1 ≤ k ≤ r ≤ h,
i.e. whenever σ2

Q > 0 in (5).
The inequality ES2 ≥ σ2

U tells us that the jackknife variance estimator tends
to be biased upwards. For statistics based on independent and identically
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distributed observations this fact was shown by Efron and Stein (Ann. Stat.
1981). For STSI samples similar result was shown by Bloznelis (Statistics
2003), but he considered a different version of the jackknife variance estima-
tor.

3.3 Normal approximation of Studentized statistics

Often the variance σ2
U is unknown. By the law of large numbers we have

S2 ≈ σ2
U . Replacing σU by S in (8) we obtain

P{û− u ≤ xS} ≈ Φ(x), (13)

Hence, the normal approximation applies to the so called Studentized statis-
tic (û− u)S−1.
An improvement over the normal approximation (13) is provided by an
Edgeworth expansion. Write the one-term Edgeworth expansion

P{û− u ≤ xS} ≈ Φ(x) +
α + α′x2 + 3κ(x2 + 1)

6σ3
U

Φ′(x). (14)

Here α, α′ and κ are the population mean values of some functionals (α, κ
are the same as in (10)).

4 Resampling approximations

Replacing the quantities α, α′ and κ by their estimators α̂, α̂′ and κ̂ in (9),
(10) and (14) we obtain empirical approximations which do not assume the
knowledge of population parameters α, α′ and κ. The simplest estimators
are constructed using the jackknife type procedure as in Bloznelis (2003).
The bootstrap method provides approximations of the probabilities P{û −
u ≤ xσU} and P{û− u ≤ xS} by corresponding empirical analogues which
are obtained by simulating STSI samples from appropriately chosen empiri-
cal populations. Here it is important to mach the parameters of expansions
(10), (14) with their empirical analogues, see Babu and Singh (1985), Rao
and Wu (1988), Chen and Sitter (1993), Booth and Presnell (1994).

5 Appendix

5.1 Some more formulas for Hoeffding decomposition

Here we give formulas defining the kernels gk, ψk and ψkr introduced in (4)
above. Write t̃k(x, y) = tk(x, y)−Etk(Xk.1, Xk.2) and t̃kr(x, y) = tkr(x, y)−
Etkr(Xk.1, Xr.1). We have

gk(x) = (nk − 1)t∗k(x) +
∑

1≤j≤h, j 6=k

njt
∗
k|j(x), (15)
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where
t∗k(x) =

Nk − 1
Nk − 2

E(t̃k(Xk.1, Xk.2)|Xk.1 = x),

t∗k|r(x) = E(t̃kr(Xk.1, Xr.1)|Xk.1 = x), t∗r|k(x) = E(t̃kr(Xk.1, Xr.1)|Xr.1 = x).

Furthermore, we have

ψk(x, y) = t̃k(x, y)− t∗k(x)− t∗k(y), ψkr = t̃kr(x, y)− t∗k|r(x)− t∗r|k(y). (16)

Note that for every k and r we have

Egk(Xk.1) = 0, Eψk(Xk.1, Xk.2) = 0, Eψkr(Xk.1, Xr.1) = 0. (17)

Moreover, for every k and r we have

E(ψk(Xk.i, Xk.j)|Xk.j) = 0, i 6= j, (18)
E(ψkr(Xk.i, Xr.j)|Xr.j) = 0, E(ψkr(Xk.i, Xr.j)|Xk.i) = 0. (19)

It follows from (18) and (19) that the parts L and Q are uncorrelated.

5.2 Proof of the Lemma

We can assume without of generality that u = 0.
We have ES2 =

∑
k

nk−1
nk

qkEv2
k. In order to prove (12) we show that

nk − 1
nk

qkEv2
k = σ2(Lk) +

∑

1≤r≤h

I{r 6=k}σ2(Qrk) + ckσ
2(Qkk), (20)

where ck is given in (12) above.
Let us prove (20). Denote (for short) ûk|i = û(Xk|i). It follows from the
identity v2

k =
∑

i û
2
k|i − nku

2
k, by symmetry, that

Ev2
k = nkEû2

k|i − nkEu2
k. (21)

Let us evaluate the expectations Eû2
k|i and Eu2

k.
5.2.1. Since Eûk|i = u = 0, we have Eû2

k|i = σ2(ûk|i), where σ2(ûk|i) denotes
the variance of ûk|i. In order to evaluate σ2(ûk|i) we are going to apply (5).
Let us write the decomposition (4) for ûk|i. We have ûk|i = L̃(i)+Q̃(i), where
L̃(i) =

∑h
r=1 L̃r and Q̃(i) =

∑
1≤r≤s≤h Q̃rs denote the linear and quadratic

part respectively. It is easy to see that

L̃r = Lr, Q̃rs = Qrs, k /∈ {r, s}. (22)
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Furthermore, denote Xi
k = Xk \ {Xk.i}. A calculation shows that

L̃k =
∑

x∈Xi
k

g̃k(x), g̃k(x) =
nk

nk − 1
gk(x), (23)

Q̃kk =
∑

{x,y}⊂Xi
k

ψ̃k(x, y), ψ̃k =
nk

nk − 2
ψk(x),

Q̃kr =
∑

x∈Xi
k

∑

y∈Xr

ψ̃kr(x, y), ψ̃kr =
nk

nk − 1
ψkr(x), r 6= k.

Let σ2(L̃(i)) and σ2(Q̃(i)) denote variances of L̃(i) and Q̃(i). (5) implies

Eû2
k|i = σ2(ûk|i) = σ2(L̃(i)) + σ2(Q̃(i)). (24)

Invoking formulas (6) and using (22) we obtain

σ2(L̃(i)) + σ2(Q̃(i)) = A + B, A = σ2(L̃k) +
∑

1≤r≤h

σ2(Q̃kr), (25)

B =
∑

1≤r≤h

I{r 6=k}σ2(Lr) +
∑

1≤r≤s≤h

I{k/∈{r,s}}σ2(Qrs),

It follows from (23) that

σ2(L̃k) =
Nk

Nk − 1
τ̃2
k σ̃2

k, σ2(Q̃kk) =

(
Nk−nk+1

2

)(
nk−1

2

)
(
Nk−2

2

) σ̃2
kk, (26)

σ2(Q̃kr) =
Nk

Nk − 1
Nr

Nr − 1
τ̃2
k τ2

r σ̃2
kr.

Here we denote τ̃2
k = (nk−1)(Nk−nk+1)

Nk
and σ̃2

k, σ̃2
kk, σ̃2

kr are defined by (7),
but with g, ψ replaced by g̃, ψ̃. It follows from (23) that

σ̃2
k =

n2
k

(nk − 1)2
σ2

k, σ̃2
kk =

n2
k

(nk − 2)2
σ2

kk, σ̃2
kr =

n2
k

(nk − 1)2
σ2

kr. (27)

Substitution of (26) and (27) in (25) gives the explicit formula for A.
5.2.2. Let us show that

Eu2
k = Eû2 =

∑

1≤r≤h

σ2(Lr) +
∑

1≤r≤s≤h

σ2(Qrs), (28)

= B + A′, A′ = σ2(Lk) +
∑

1≤r≤h

σ2(Qkr).

The second and third identities follow from (5) and (6), and the fact that
Eû = u = 0. In order to prove the first identity of (28) we show that the
random variables uk and û coincide. For this purpose we substitute the
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decompositions û(Xk|i) = L̃(i) +Q̃(i) in the formula uk = n−1
k

∑
i û(Xk|i) and

using (22), (23) verify the identity uk = L + Q. Here L and Q denote the
linear and the quadratic part of the decomposition û = L + Q.
5.2.3. Finally we obtain from (24), (25), (27) and (28) that

nk(Eû2
k|i − Eû2) = nk(A−A′) = dkσ

2(Lk) +
∑

1≤r≤h

dkrσ
2(Qkr),

Here dk = nk
nk−1

1
qk

, dkk = 2 Nk−1
Nk−nk−1

nk
nk−2 and dkr = nk

nk−1
1
qk

, for r 6= k.
This identity together with (21) shows (20).
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