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Abstract. Given k and n, consider a graph with k vertices and n ”blue” edges. We
assume that the set of ”blue” edges {X1, . . . , Xn} is uniformly distributed among

n-subsets of N =
�k
2

�
pairs of vertices. Given a graph G, the number NG of blue

copies of G is a U-statistic based on random sample X1, . . . , Xn. We show how the
combinatorial Hoeffding decomposition of the random variable NG can be applied
to establish the asymptotic normality of NG as k, n → ∞. Several examples are
considered.

1. Introduction. Given a complete graph based on k vertices let X = {x1, . . . ,
xN} denote the set of edges. Let X = {X1, . . . , Xn} ⊂ X be a random n-subset
uniformly distributed over the class of n-subsets of X . Here n < N . We paint
edges X1, . . . , Xn blue. The graph based on k vertices and (random) blue edges
is denoted by G(k, n). Given a graph G let NG denote the number of copies of G
in G(k, n). We are interested when the random variable (NG − E NG)/σ(NG) is
asymptotically standard normal as k, n → ∞. Here σ2(NG) denotes the variance
of NG.
Another random graph model assumes that edges become blue independently with

probability t ∈ (0, 1). Let ν1, . . . , νN be independent Bernoulli random variables
with success probability t, i.e., P{νi = 1} = 1 − P{νi = 0} = t for every i. We
paint the edge xi blue if νi = 1. The graph based on k vertices and (random) blue
edges is denoted by G′(k, t) and called Bernoulli random graph. Given a graph
G let N ′

G = N ′
G(k, t) denote the number of copies of G in G′(k, t). Note that the
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conditional distribution of N ′
G given the event ν1 + · · · + νN = n coincides with

the distribution of NG. Therefore, the problems of the asymptotic normality of
distributions of NG and N ′

G are closely related.
The asymptotic normality for N ′

G as k →∞ was studied by several authors using
different methods (method of moments, Stein’s method, projection method and
martingale limit theorems). An overview of the results and methods is given in
the book of Janson, Luczak and Rucinski (2000). Let us mention that the first
complete description of the conditions that are necessary and sufficient for the
asymptotic normality of N ′

G was given by Rucinski (1988).
The asymptotic normality of NG is shown in Janson (1990). He consider the ran-

dom graph process {G(k, t), t ∈ [0, 1]}, where for every t the random graph G(k, t)
is defined as above, but with νi = νi(t) = I{ui≤t}. Here u1, u2, . . . denote inde-
pendent random variables uniformly distributed in [0, 1]. For every k = 1, 2, . . . ,
the collection of random variables {N ′

G(k, t), t ∈ [0, 1]} can be viewed as a random
process with sample paths in the Skorokhod space D[0, 1]. Using a martingale
convergence theorem Janson (1990) proved a functional limit theorem for the se-
quence of random processes {N ′

G(k, ·)} and then derived the asymptotic normality
of N ′

G(k, tn), where the random times tn = min{t : ν1(t)+ · · ·+νN (t) = n}. Since
the distributions of N ′

G(k, tn) and NG coincide, this implies the asymptotic nor-
mality of NG.
The present paper proposes another approach to the asymptotic normality of NG.
Using this approach we show the asymptotic normality for the simplest sub-

graph count statistic: the number T = NP2 of 2−stars (G = P2). Denote
n∗ = min{n,N − n}.
Proposition. Assume that σ2(T ) → ∞ as k, n∗ → ∞. Then the distribution of
(T −E T )/σ(T ) is asymptotically standard normal.

By σ2(T ) we denote the variance of the random variable T . The proof combines
projection’s method and Stein’s method. By means of Hoeffding’s decomposition,
the random variable NG is expanded into a sum of mutually uncorrelated U sta-
tistics of random variables X1, . . . , Xn. The decomposition enables us to write
the characteristic function f(t) of (properly standardized) random variable NG in
Erdős-Rényi form, see Erdős and Rényi (1959). Finally, we show that

(1) f ′(t) + tf(t) → 0

as k, n → ∞. This implies the asymptotic normality, see Stein (1970) and
Tikhomirov (1976, 2001).
The remaining part of the paper is organized as follows. In Section 2 we con-

struct Hoeffding’s decomposition for three examples of subgraph count statistics:
the number of 2−stars (G = P2), the number of triangles (G = K3) and the num-
ber of 4−cycles (G = C4). In section 3 we write Erdős-Rényi representation for
characteristic function f and prove Proposition 1.
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2. Decomposition. Let (X1, . . . , XN ) denote the random permutation of
the sequence x1, . . . , xN . A real function t(xi1 , . . . , xin

) defined on n− subsets
{xi1 , . . . , xin

} ⊂ X defines the random variable T = t(X1, . . . , Xn). Hoeffding’s
decomposition expands the random variable T in the series of U− statistics

(2) T = E T + U1 + · · ·+ Un∗ , n∗ = min{n, N − n}.

Here Ur =
∑

1≤i1<···<ir≤n gr(Xi1 , . . . , Xir ). The function gr is defined on r−
subsets of X and satisfies E gr(Xi1 , . . . , Xir ) = 0. Furthermore, for every s < r
and every 1 ≤ i1 < · · · < ir ≤ N and 1 ≤ j1 < · · · < js ≤ N we have almost surely

(3) E
(
gr(Xi1 , . . . , Xir )

∣∣Xj1 , . . . , Xjs

)
= 0.

The kernels gr(xi1 , . . . , xir ) are linear combinations of conditional expectations
E (T |X1 = y1, . . . , Xj = yj) for 1 ≤ j ≤ r and {y1, . . . , yj} ⊂ {xi1 , . . . , xir}. Basic
facts about the decomposition and formulas defining gr can be found in Bloznelis
and Götze (2001) and Bloznelis (2003), see also Zhao and Chen (1990). Note that
(3) implies that random variables Ur are mutually uncorrelated. This yields the
variance decomposition

σ2(T ) = σ2(U1) + · · ·+ σ2(Un∗).

Furthermore using (3) it is easy to show, see Bloznelis and Götze (2001), that

(4) σ2(Ur) =
�n

r

��N−n
r

�
�N−r

r

� σ2
r ∼

Nr

r!
(pq)rσ2

r ,

as k, n∗ →∞. Here

p = n

N
, q = N − n

N
, σ2

r = E g2
r(Xi1 , . . . , Xir ).

2.1. Let T denote the number of blue copies of 2−star P2. Given two edges
x, y ∈ X let Lxy be the indicator of the event that x and y are incident. We have
T =

∑
1≤i<j≤n LX1X2 . Hoeffding’s decomposition

(5) T = E T + U1 + U2, U1 ≡ 0, U2 =
∑

1≤i<j≤n

(
LXiXj − pL

)
.

Here pL := E LXiXj = 2(k − 2)/(N − 1) and σ2
2 = pL(1− pL).

The variance

(6) σ2(T ) = σ2(U2) =
�n
2

��N−n
2

�
�N−2

2

� σ2
2 ∼

(pq)2

2
k3 as k, n∗ →∞.



4

2.2. Let T denote the number of blue copies of the triangle K3. Given three edges
x, y, z ∈ X , let a(x, y, z) be the indicator of the event that x, y and z make up a
triangle. We have T =

∑
1≤i1<i2<i3≤n a(Xi1 , Xi2 , Xi3). Hoeffding’s decomposition

T = E T + U1 + U2 + U3,(7)

g1 ≡ 0, g2(x, y) = n− 2

N − 4

(
Lxy − pL

)
,

g3(x, y, z) = a(x, y, z)− pa − 1

N − 1

(
Lxy + Lxz + Lyz − 3pL

)
.

Here pa := E a(X1, X2, X3) =
�k
3

�
�N

3

� . Using (3), (4) we obtain as k, n∗ →∞

(8) σ2(U2) ∼ p4q2

2
k3, σ2(U3) ∼ (pq)3

6
k3, σ2(T ) ∼ (pq)3

6
(3 p

q
+ 1)k3.

2.3. Let T denote the number of blue copies of the cycle C4. Given edges
x, y, z, w ∈ X , let b(x, y, z) be the indicator of the event that x, y and z make up
a path and let d(x, y, z, w) be the indicator of the event that x, y, z and w make
up a cycle. We have T =

∑
1≤i1<i2<i3<i4≤n d(Xi1 , Xi2 , Xi3 , Xi4). Hoeffding’s

decomposition

T = E T + U1 + U2 + U3 + U4,

g1 ≡ 0, g2(x, y) =
(

n− 2
2

)
N − 2

N − 4

N − 3

N − 5
Q{x,y},

g3(x, y, z) = (n− 3) N − 3

N − 6
Q{x,y,z},

g4(x, y, z, w) = d(x, y, z, w)− pd − N − 3

N − 6

∑

A⊂{x,y,z,w},|A|=3

QA

− N − 2

N − 4

N − 3

N − 5

∑

A⊂{x,y,z,w},|A|=2

QA.

Here we denote

Q{xy} = k − 5�N−2
2

�
(
Lxy − pL

)
,

Q{xyz} = 1

N − 3

(
b(x, y, z)− pb

)− N − 2

N − 4

∑

A⊂{x,y,z},|A|=2

QA.

Furthermore,

pd := E d(X1, X2, X3, X4) = 3
�k
4

�
�N

4

� , pb = E b(X1, X2, X3) = 12
�k
4

�
�N

3

� .
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Using (3), (4) we obtain as k, n∗ →∞

(9) σ2(U2) ∼ p6q2

2
k5, σ2(U3) ∼ p5q3

2
k4, σ2(U4) ∼ p4q4

8
k4.

2.3. Examples suggest that the linear part of the decomposition of NG vanishes,
i.e. U1 ≡ 0 almost surely. This can be easily shown for arbitrary G. Furthermore,
different U− statistics contributing to the Hoeffding’s decomposition (2) may have
the same stochastic order even in the case where the parameter p = p(k) is bounded
away from 0 and 1, i.e., for some ε > 0,

(10) ε < p(k) < 1− ε as k, n∗ →∞.

Thus, we have σ2(Uj) = Θ(k3) for j = 2, 3 in (8) and σ2(Uj) = Θ(k4) for j = 3, 4
in (9). Similarly, Hoeffding’s decomposition of the number NK4 of blue copies of
the complete graph K4, is the sum ENK4 + U2 + · · ·+ U6, where σ2(Ui) = Θ(k5)
for i = 2, 3, and σ2(Ui) ∼ Θ(k4) for i = 4, 5, 6 provided that (10) holds. We do
not present formulas of various parts of the decomposition of NK4 here because
the notation becomes awkward.
One may expect that, for a large class of graphs G, the leading U− statistics

of the decomposition (U−statistics having largest variances) of NG correspond to
the components P2 and K3, i.e., they are U2 and (in the case where K3 ⊂ G) U3.
3. Asymptotic normality. Recall that ν1, . . . , νN denotes a sequence of in-

dependent Bernoulli random variables with success probability p = P{νi = 1} =
1−P{νi = 0}. We shall assume that this sequence and the random permutation
(X1, . . . , XN ) are independent.
3.1. Let us write the characteristic function of the distribution of T in the Erdős-

Rényi form using the decomposition (2). Denote

U?
k =

∑

1≤i1<···<ik≤N

gk(Xi1 , . . . , Xik
)νi1 . . . νik

.

Replacing the factors νi by wi = (νi − p) in the formula of U?
k we obtain the

random variable U∗
k . Note that (3) implies U?

k = U∗
k almost surely. Denote

S = w1 + · · ·+ wN .
The distribution of T −E T coincides with the conditional distribution of the sum

U?
1 + · · ·+ U?

n∗ = U∗
1 + · · ·+ U∗

n∗ =: T ∗

given the event {S = 0}. Therefore, the characteristic function

(11) E exp{it(T −E T )} = 1

2πP{S = 0}

∫ π

−π

E exp{itT ∗ + isS}ds.
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This way of representing the characteristic function of a linear statistic, like U1,
was used by Erdős and Rényi (1959).
3.2. Here we prove Proposition 1. Denote f(t) = E exp{it(T − E T )/σ(T )}. In

view of (6) it suffices to show that the relation p2q2k3 →∞ implies for every t ∈ R
that f ′(t) + tf(t) → 0 as k, n∗ →∞.
It follows from (5), (11) that

f(t) = 1

λ

∫ π

−π

E eiJds, J = tH + sS, λ = 2πP{S = 0},

H =
∑

1≤i<j≤N

hij , hij = gijwiwj , gij = 1

σ(T )
(LXiXj − pL).

Furthermore, by symmetry, we obtain

(13) f ′(t) = i

λ

∫ π

−π

E HeiJds = i

�N
2

�

λ

∫ π

−π

E h12e
iJds.

Split S = S∗ + S0 and H = h12 + H∗ + H0 where S∗ = w1 + w2 and

S0 =
∑

3≤j≤N

wj , H∗ =
∑

3≤j≤N

(h1j + h2j), H0 =
∑

3≤i<j≤N

hij .

Expanding eiJ in powers of ith12, itH∗ and isS∗ we show that

(14)
�N

2

�

λ

∣∣∣
∫ π

−π

E h12(eiJ − ith12e
iJ0)ds

∣∣∣ → 0,

where J0 = tH0 + sS0. Therefore, we replace E h12e
iJ by itp2q2E g2

12e
iJ0 in the

right integral (13).
Similarly, expanding eiJ in powers of ith12, itH∗ and isS∗ we show that

(15)
�N

2

�

λ

∣∣∣p2q2

∫ π

−π

E g2
12(e

iJ0 − eiJ)ds
∣∣∣ → 0.

Using (14) and (15) we replace E h12e
iJ by itp2q2E g2

12e
iJ in the right integral (13).

Furthermore, by symmetry, we can replace
(
N
2

)
E g2

12e
iJ by E a2eiJ = a2E eiJ , since

the number a2 :=
∑

1≤i<j≤N g2
ij is non-random. Finally, invoking (4) we obtain

a2p2q2 =
E (LX1X2 − pL)2

σ2(T )

(
N

2

)
p2q2 = 1 + O(1/Npq).
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Since O(1/Npqλ) = O(1/
√

Npq) we can replace p2q2a2E eiJ by E eiJ . We have
shown that

i

�N
2

�

λ

∫ π

−π

E h12e
iJds = − t

λ

∫ π

−π

E eiJds + o(1)

thus completing the proof.
The proof of (14) and (15) is rather technical and laborious. We do not present it

here and refer to an extended version of the paper (Bloznelis 2004). Let us mention
that in the proof of (14) and (15) we apply techniques developed in Bloznelis and
Gözte (2002) for the analysis of the accuracy of the normal approximation of U−
statistics based on samples drawn without replacement, see also Bentkus, Götze
and van Zwet (1997), Helmers and van Zwet (1982).
3.3. Note that the orthogonal decomposition (projection method) was used by

Janson and Nowicki (1991) to prove limit theorems for subgraph count statistics of
Bernoulli random graphs. The present paper can be considered as an attempt to
extend these techniques to subgraph count statistics in the random graph model
G(k, n). In contrast to Bernoulli graph case the subgraph count statistics studied
here have decompositions with vanishing linear part. Therefore, known results
on the central limit theorem for asymptotically linear statistics based on samples
drawn without replacement (see e.g., Bloznelis and Götze (2002), Zhao and Chen
(1990)) are not applicable. We show that Erdős-Rényi (1959) representation (11)
combined with Stein method (1) can be used to establish the asymptotic normality.
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