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Abstract

Let T denote a real function defined on random subsets of a given
family of finite sets. The random variable T is decomposed into the sum
of the linear, the quadratic, the cubic etc. parts which are mutually
uncorrelated. Applications of this decomposition to the asymptotics of
the probability distribution of T (as the sizes of random subsets and
of finite sets increase) are discussed.

1 Introduction

Let Xk = {xk,1, . . . , xk,Nk
}, k = 1, . . . , h, be non-intersecting finite sets.

Given an integer 0 < nk < Nk, let Xk denote a random subset of Xk of size nk

which is uniformly distributed over the class of nk-subsets of Xk. That is, for
arbitrary subset Ak ⊂ Xk of size |Ak| = nk we have P{Xk = Ak} =

(
Nk
nk

)−1
.

We assume that random subsets X1, . . . ,Xh are independent. Given a real
function t defined on h-tuples (A1, . . . ,Ah) of subsets, introduce the random
variable

T = t(X1, . . . ,Xh). (1)

The main object of the present study is the orthogonal decomposition of T :
we represent T by the sum of the linear, the quadratic, the cubic etc. parts
which are mutually uncorrelated,

T = ET + L + Q + . . . . (2)

Here
L =

∑

k

Lk, Lk =
∑

x∈Xk

gk(x)

denotes the linear part of T and Q =
∑

k≤r Qk,r denotes the quadratic part
of T,

Qk,r =
∑

x∈Xk

∑

y∈Xr

gk,r(x, y) for k < r, and Qk,k =
∑

{x,y}⊂Xk

gk,k(x, y).

The summands Lk, Qk,r are uncorrelated. The real functions gk and gk,r

as well as those defining higher order nonlinear parts of the decomposition
(2) are specified in (4) below.

The orthogonal decomposition provides a useful tool for the analysis of
distributional properties of T and its asymptotics as n = n1 + . . .+nh →∞.
Orthogonal decomposition of statistics which are functions of independent
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random variables were studied and applied in a number of papers (Hoeffd-
ing [11], Rubin and Vitale [17], Efron and Stein [8], van Zwet [19], Bentkus,
Götze and van Zwet [2], etc.) In a combinatorial context this type of de-
composition was used by Janson and Nowicki [14], Janson [13], de Jong
[7].

In the present paper we construct orthogonal decomposition in the case
where the underlying random variables (=elements of random subsets) are
dependent. Zhao and Chen [20] and Bloznelis and Götze [4] used orthog-
onal decomposition in their studies of the normal approximation and its
refinements for various statistics T = t(X1). However neither of these two
papers provide a proof of the orthogonality property, see identity (9) below,
which plays a crucial role for the decomposition. We give a combinatorial
proof of this identity in a more general situation of several random subsets
X1, . . . ,Xh. In the case where h = 1 the random variable T defined by (1)
reduces to that considered by Zhao and Chen [20] and Bloznelis and Götze
[4]. In the case where n1 = . . . = nh = 1 the underlying random variables
are independent, and we are in the situation considered by Hoeffding [11].

The model (1) has numerous applications. In statistics, see, e.g., Cochran
[6], Särndal, Swensson and Wretman [18], it is called the ”stratified sampling
without replacement” model. It is assumed there that a population X is bro-
ken up into non-overlapping subpopulations (strata) X1, . . . ,Xh and a statis-
tic T , based on stratified sample drawn without replacement (X1, . . . ,Xh),
is used to estimate some parameter of the population X .

Another example is a subgraph count statistic, see, e.g., Barbour, Ka-
roński and Ruciński [1], Janson [12]. Given an integer k let E denote the
set of edges of the complete graph Kk based on k vertices and let E be a
random subset of E of size |E| = n which is uniformly distributed among
all n-subsets of E. We paint E edges blue thus obtaining the random graph
G(k, n), see Bollobás [5]. The number of blue triangles T = T (E) is a random
variable of the form (1), where h = 1. Allowing several (independent) colors
we obtain random variable (1) with h > 1.

Let us outline the content of the paper. In Section 2 we consider two ex-
amples. In Section 3 we introduce the orthogonal decomposition and discuss
its main properties. Here we show the variance decomposition formula and
construct bounds for the remainders of the approximation of T by the first
few (say two or three) terms of the decomposition. Proofs are postponed
into Section 4.

Acknowledgement. I thank anonymous referee for valuable comments
and remarks.
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2 Examples

For two subgraph count statistics we construct orthogonal decompositions
and evaluate variances. Consider the complete graph based on k ≥ 3 ver-
tices. Let X = {x1, . . . , xN} denote the set of edges. Here N =

(
k
2

)
.

Example 1. Let X = {X1, . . . , Xn} ⊂ X be a random n-subset uniformly
distributed over the class of n-subsets of X . Here n < N . We paint edges
X1, . . . , Xn blue. The number of blue triangles

N =
∑

1≤i<j<k≤n

∆XiXjXk

is a U - statistic of degree three based on the random variables X1, . . . , Xn

taking values in X . Here ∆xyz = 1 if the edges x, y, z make up a triangle
and ∆xyz = 0 otherwise.

By symmetry, the mean value

EN =
(

n

3

)
E∆X1X2X3 , where E∆X1X2X3 =

k − 2(
N−1

2

) .

The orthogonal decomposition formula (3) gives N = EN + Q + K, where

Q =
∑

1≤i<j≤n

g2(Xi, Xj) respectively K =
∑

1≤i<j<k≤n

g3(Xi, Xj , Xk)

denotes the quadratic, respectively, the cubic part. Note that the linear part
L of the decomposition vanishes, cf (2). Here

g2(x, y) =
n− 2
N − 4

(lxy −ElX1X2), ElX1X2 = 2
k − 2
N − 1

,

g3(x, y, z) = ∆xyz −E∆X1X2X3 −
1

N − 4
(lxy + lyz + lxz − 3ElX1X2).

Here for x, y ∈ X we write lxy = 1 if x is adjacent to y and lxy =
0 otherwise. The random variables g2(Xi1 , Xi2) and g3(Xj1 , Xj2 , Xj3) are
uncorrelated for arbitrary indices i1 < i2 and j1 < j2 < j3.

Using (10) and (11), see below, we evaluate the variance

VarN = VarQ + VarK,

VarQ =

(
n
2

)(
N−n

2

)
(
N−2

2

) σ2
2, VarK =

(
n
3

)(
N−n

3

)
(
N−3

3

) σ2
3,

where σ2
2 = Eg2

2(X1, X2) and σ2
3 = Eg2

3(X1, X2, X3). A simple calculation
shows

σ2
2 = (

n− 2
N − 4

)2p1(1− p1),

σ2
3 = p0(1− p0)− 6

N − 4
p0(1− p1) +

1
(N − 4)2

(3− 6
N − 2

)p1(1− p1).
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Here we denote, for brevity, p1 = ElX1X2 and p0 = E∆X1X2X3 .
Using the asymptotic relation N ∼ k2/2, as k →∞, we obtain

E∆X1X2X3 ∼ 8/k3, σ2
2 ∼ (

n

N
)2

4
k
, σ2

3 ∼
8
k3

.

Here and below we write ak ∼ bk if ak/bk → 1 as k →∞. Denoting p = n/N
and q = 1− p, we have as k →∞

VarQ ∼ 2−1p4q2k3, VarK ∼ 6−1p3q3k3,

EN ∼ 6−1p3k3, VarN ∼ 6−1p3q3k3(3
p

q
+ 1).

Example 2. Given integers n1, n2, n3 < N , let Xi = {Xi,1, . . . , Xi,ni} be
random subsets of X , i = 1, 2, 3. We assume that, for every i, Xi is uniformly
distributed over the class of ni-subsets of X and the random subsets X1, X2,
X3 are independent. We paint edges X1 yellow, X2 green and X3 red. The
number of triangles having all edges of different colors

N =
n1∑

i=1

n2∑

j=1

n3∑

k=1

∆X1,iX2,jX3,k

is a U -statistic of degree three. Here ∆x y z = 1 if the edges x, y, z make up a
triangle and ∆x y z = 0 otherwise. Note that in this model two vertices can
be joined by at most three edges of different colors. Therefore, given three
vertices there can be at most six differently colored triangles based on these
vertices.

By symmetry, the mean value

EN = n1n2n3E∆X1,1X2,1X3,1 , where E∆X1,1X2,1X3,1 = 2(k−2)/N2 =: δ.

Before to write the orthogonal decomposition of N we introduce some
more notation. Introduce the function lxy : X × X → {0, 1}, where lxy = 1
if x 6= y and x and y are adjacent, otherwise put lxy = 0. Denote n12 := n3,
n13 := n2 and n23 := n1. Write

vi = ni(N − ni)/(N − 1), pi = ni/N, qi = 1− pi, pij = nij/N.

The orthogonal decomposition formula (3) shows N = EN + Q + K.
Here the quadratic part Q = Q12 + Q13 + Q23, where

Qij =
ni∑

r=1

nj∑

k=1

gij(Xi,r, Xj,k), gij(x, y) = nijN
−1(lxy −ElX1,1X2,1),
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where ElX1,1X2,1 = 2(k − 2)/N . The cubic part

K =
n1∑

i=1

n2∑

j=1

n3∑

k=1

h(X1,i, X2,j , X3,k),

where h(x, y, z) = ∆xyz −N−1(lxy + lxz + lyz) + 2δ.
The random variables g12(X1,i1 , X2,j1), g13(X1,i2 , X3,k1), g23(X2,j2 , X3,k2)

and h(X1,i3 , X2,j3 , X3,k3) are uncorrelated for every 1 ≤ i1, i2, i3 ≤ n1, 1 ≤
j1, j2, j3 ≤ n2 and 1 ≤ k1, k2, k3 ≤ n3. Furthermore, a calculation shows

σ2
ij := Eg2

ij(Xi,1, Xj,1) = p2
ijNδ(1−Nδ),

σ2
123 := Eh2(X1,1, X2,1, X3,1) = (1− 3/N)δ + 2δ2.

To show the variance we write (using (10), see below)
VarN =

∑
i<j VarQij +VarK. Denoting p = p1p2p3 and q = q1q2q3

we obtain from (11), see below, that

VarQ =
∑

1≤i<j≤3

VarQij =
∑

1≤i<j≤3

vivjσ
2
ij

=
N4

(N − 1)2
p q(

p1

q1
+

p2

q2
+

p3

q3
)Nδ(1−Nδ),

VarK = v1v2v3σ
2
123 =

N6

(N − 1)3
p q((1− 3/N)δ + 2δ2).

Using the asymptotic relation N ∼ k2/2 as k →∞, we obtain

VarQ ∼ k3p q(
p1

q1
+

p2

q2
+

p3

q3
), VarK ∼ k3p q,

EN ∼ p k3, VarN ∼ k3p q(
p1

q1
+

p2

q2
+

p3

q3
+ 1).

3 Orthogonal decomposition

We can assume without loss of generality that ET = 0.

3.1 Notation

Given k = 1, . . . , h, let X ∗
k = (Xk,1, . . . , Xk,Nk

) be a random permutation
of the ordered set (xk,1, . . . , xk,Nk

). We assume that random permutations
X ∗

1 , . . . ,X ∗
h are independent. Note that the group {Xk,1, . . . , Xk,nk

} of the
first nk values of the permutation X ∗

k represents the random subset Xk. In
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what follows we use the representation Xk = {Xk,1, . . . , Xk,nk
}, for 1 ≤ k ≤

h, and write

T = t({X1,1, . . . , X1,n1}, . . . , {Xh,1, . . . , Xh,nh
}).

Here we assume that t is invariant under permutations within every group
{Xk,1, . . . , Xk,nk

} of its arguments (the invariance property agrees with the
formula (1) where t is considered as a function defined on subsets.

For r = 1, 2, . . ., denote Ωr = {1, . . . , r}. Write n∗k = min{nk, Nk − nk}
and n∗ = n∗1 + . . . + n∗h. By a = (a1, . . . , ah) and b = (b1, . . . , bh) we denote
h-dimensional vectors with non-negative integer coordinates and write b ≤ a
if bk ≤ ak for every k = 1, . . . , h. Furthermore, write b < a if b ≤ a and
b 6= a. Clearly, n∗ ≤ n, where n = (n1, . . . , nh) and n∗ = (n∗1, . . . , n

∗
h). By

ek = (0, . . . , 0, 1, 0, . . . , 0) we denote the k-th coordinate vector and write
0 = (0, . . . , 0). Furthermore, write |a| = a1 + . . . + ah.

In what follows a will be used to mark the sizes of sets of a h-tuple
(A1, . . . , Ah), where Ak ⊂ Xk, for 1 ≤ k ≤ h, so that |Ak| = ak, for every k.
Similarly, (A1, . . . ,Ah) will denote a h-tuple of sets Ak = {Xk,i1 , . . . , Xk,iak

}
of random variables, 1 ≤ k ≤ h. Note that Ak represents a random subset
of Xk of size ak, which is uniformly distributed over the class of ak-subsets
of Xk.

Given a real random variable G, we denote by E(G|A1, . . . ,Ah) the con-
ditional expectation of G given the random variables {Xk,i : Xk,i ∈ Ak,
k = 1, . . . , h}. Furthermore, given a and a h-tuple (A1, . . . ,Ah) of subsets
Ak = {xk,j1 , . . . , xk,jak

} ⊂ Xk , 1 ≤ k ≤ h, denote

ϕa(A1, . . . ,Ah) := E(T |Xk,1 = xk,j1 , . . . , Xk,ak
= xk,jak

, 1 ≤ k ≤ h).

Note that,
ϕa(A1, . . . ,Ah) = E(T |A1, . . . ,Ah).

Finally, by Ek we shall denote the conditional expectation given all the
random variables but X ∗

k .

3.2 Decomposition

The orthogonal decomposition

T =
∑

a≤n

U(a) (3)

expands T into the sum of mutually uncorrelated U statistics

U(a) =
∑

|A1|=a1,A1⊂X1

. . .
∑

|Ah|=ah,Ah⊂Xh

ga(A1, . . . ,Ah).

Here
∑

a≤n denotes the sum over all vectors a = (a1, . . . , ah) such that
0 ≤ ak ≤ nk, for k = 1, . . . , h.
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Given a, the real function ga is defined on h-tuples (A1, . . . ,Ah) of sub-
sets Ak ⊂ Xk of sizes |Ak| = ak, k = 1, . . . , h. We define functions ga, a ≤ n,
using induction on increasing values of ak = 0, 1, . . . , nk, 1 ≤ k ≤ h. To this
aim we introduce auxiliary functions ψa, a ≤ n, which differ from ga by
multiplicative constants,

gn = ψn and gb = C(n, b)ψb, for b < n. (4)

The constants C(n, b) are specified in (7) below.
Define ψ0 ≡ 0 and, for 1 ≤ k ≤ h, put

ψek
({x}) = ϕek

({x}) = E(T |Xk,1 = x), x ∈ Xk.

Given a ≤ n we assume that the functions ψb, b < a are already defined and
put

ψa(A1, . . . ,Ah) = ϕa(A1, . . . ,Ah)

−
∑

b<a

C(a, b)
∑

|B1|=b1,B1⊂A1

. . .
∑

|Bh|=bh,Bh⊂Ah

ψb(B1, . . . ,Bh).

(5)

We choose the numbers C(a, b) so that almost surely

E(ψa(A1, . . . ,Ah) |B1, . . . ,Bh) = 0, (6)

for every h-tuple (B1, . . . ,Bh) satisfying |Bk| < ak, for some k. Here Bj =
{Xj,k1 , . . . , Xj,kbj

} denotes a collection of random variables of the permuta-
tion X ∗

j , 1 ≤ j ≤ h.
The fact that its is possible to choose such numbers C(a, b) is not obvious.

We show in Lemmas 4.2 and 4.3 below that (6) holds with the (unique choice
of) constants

C(a, b) =
h∏

k=1

Vk(ak, bk). (7)

Here, for ak + bk ≤ Nk, we put

Vk(ak, bk) =

(
Nk−bk

bk

)
(
Nk−ak

bk

) .

For ak +bk > Nk we put Vk(ak, bk) = 0 with one exception in the case where
Nk is odd (write Nk = 2rk + 1) and ak = bk = rk + 1. In this case we put
Vk(ak, ak) = 1.

The identity (3.3) applied to a = n gives (3). Indeed, for arbitrary
h-tuple (A1, . . . ,Ah) of subsets Ak ⊂ Xk with |Ak| = nk we obtain from
(3.3)

t(A1, . . . ,Ah) = ϕn(A1, . . . ,Ah)

=
∑

b≤n

∑

|B1|=b1,B1⊂A1

. . .
∑

|Bh|=bh,Bh⊂Ah

gb(B1, . . . ,Bh),
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3.3 Properties of kernels ga

Remark. For those b ≤ n, which fail to satisfy b ≤ n∗, we have gb ≡ 0.
To prove the remark fix such b. We have n∗k < bk ≤ nk, for some k.

Therefore, Nk − nk < bk. In the case where bk = nk we have 2bk > Nk and,
by Lemma 4.3, we obtain ψb ≡ 0. In view of (4) this implies gb ≡ 0. In the
case where bk < nk we have b < n. The inequality Nk − nk < bk < nk imply
C(n, b) = 0. In view of (4) we obtain gb ≡ 0, thus completing the proof of
the remark.

It follows from the remark that U(a) ≡ 0 for those a which fail to satisfy
a ≤ n∗. Therefore, the sum (3) reduces to the sum

T =
∑

a≤n∗
U(a).

Furthermore, one can represent T by the sum of uncorrelated U -statistics
Us of increasing order s = 1, 2, . . . , n∗,

T = U1 + U2 + . . . + Un∗ , Us =
∑

|a|=s, a≤n∗
U(a). (8)

Here U1 is called the linear part, U2 is called the quadratic part etc. (in (2)
we denote L = U1, Q = U2).

The fact that Us and Ut are uncorrelated for s 6= t and U(a) and U(b)
are uncorrelated for a 6= b follows from the identity

Ega(A1, . . . ,Ah)gb(B1, . . . ,Bh) = 0 for a 6= b.

Here Ak, Bk are arbitrary collections of random variables of the random
permutation X ∗

k such that |Ak| = ak and |Bk| = bk, 1 ≤ k ≤ h. This identity
is a consequence of the orthogonality property:

E(ga(A1, . . . ,Ah) |B1, . . . ,Bh) = 0 a.s., (9)

whenever |Ak| > |Bk| for some 1 ≤ k ≤ h. Note that (9) follows from (6).
Choosing B1 = ∅, . . ., Bh = ∅ we obtain from (9)

Ega(A1, . . . ,Ah) = 0, for a 6= 0.

3.4 Dual representation

An interesting consequence of (9) is the duality property of the U -statistic
U(a). Introduce the sets X′k = Xk \ Xk. For a ≤ n∗ the identity (9) implies
that almost surely U(a) = U ′(a), where

U ′(a) =
∑

|A1|=a1,A1⊂X′1
. . .

∑

|Ah|=ah,Ah⊂X′h
g′a(A1, . . . ,Ah), g′a ≡ (−1)|a|ga.
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Recall that |a| = a1 + . . . + ah. Furthermore, denoting

U ′
s =

∑

a≤n∗: |a|=s

U ′(a),

we obtain almost surely Us = U ′
s. From (8), we have

T = U1 + . . . + Un∗ = U ′
1 + . . . + U ′

n∗ .

Therefore, T can be considered as a statistic of the ”dual sample” X′1, . . . ,X′h.

3.5 Variance decomposition

As a consequence of (3), (8) and the fact that the contributing U -statistics
are uncorrelated we obtain the identity

VarT =
n∗∑

s=1

VarUs =
∑

a≤n∗
VarU(a). (10)

A calculation shows

VarU(a) = σ2
aC(a), C(a) =

h∏

k=1

(
nk
ak

)(
Nk−nk

ak

)
(
Nk−ak

ak

) . (11)

Here we denote σ2
0

= 0 and write for a > 0

σ2
a = Eg2

a(A1, . . . ,Ah).

Note that, by symmetry, the expectation in the right hand side is the same
for arbitrary (A1, . . . ,Ah), satisfying |Ak| = ak, 1 ≤ k ≤ h. The proof of
(11) is given in the Appendix below. Combining (10) and (11) we obtain
the variance decomposition

VarT =
n∗1∑

a1=1

. . .

n∗h∑

ah=1

C(a) σ2
a =

∑

a≤n∗
C(a)σ2

a.

3.6 Bounds for remainders

The partial sums

Us,∗ = U1 + . . . + Us, s < n∗, n∗ = n∗1 + . . . + n∗h

often provide satisfactory approximations to T . In order to control the
remainder Rs = T − Us,∗ we construct an upper bound for

ER2
s =

∑

a≤n∗, |a|>s

C(a)σ2
a.
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A motivation for such approximations comes from mathematical statis-
tics. A number of important statistics T are asymptotically linear, that is,
for large n the linear part dominates the statistic T . This implies the asymp-
totic normality of T , see Hoeffding [11], Hajek [10], Lehmann [16], Koroljuk
and Borovskikh [15] for results in the case of independent observations. Fur-
thermore, the approximation by the linear and the quadratic part is used to
obtain a higher order asymptotic results (one-term Edgeworth expansion),
see Bentkus, Götze and van Zwet [2].

In the model (1) of the present paper the sample sizes n1, . . . , nh are
bounded (nk < Nk, 1 ≤ k ≤ h). In order to speak of the asymptotic distri-
bution of T we introduce a sequence of collections of sets {X (r)

1 , . . . ,X (r)
hr
},

r = 1, 2, . . ., and a sequence of collections of random subsets {X(r)
1 , . . . ,X(r)

hr
},

r = 1, 2, . . .. Denote |X(r)
k | = n

(r)
k , 1 ≤ k ≤ hr, r = 1, 2, . . .. We assume

that X(r)
k is a random subset of X (r)

k of size n
(r)
k and suppose that given r,

the random subsets X(r)
1 , . . . ,X(r)

hr
are independent. Furthermore, we assume

that n(r) = n
(r)
1 + . . . + n

(r)
hr

→ ∞ and hr is bounded as r → ∞. We are

interested in the asymptotic distribution of T (r) = t(r)(X(r)
1 , . . . ,X(r)

hr
). In

what follows we skip the superscript (r).
In the simplest case of a linear statistic T = U1,∗, the asymptotic nor-

mality was proved by Erdős and Rény [9] and Bickel and Freedman [3]
under very mild Lindeberg type condition. For asymptotically linear statis-
tic (T ≈ U1,∗), by the central limit theorem, for large n, the distribution
of T can be approximated by the normal distribution. Furthermore, using
the approximation T ≈ Us,∗ one can construct asymptotic expansions to the
distribution of T . Bloznelis and Götze [4] showed the validity of one-term
asymptotic expansion in the case where h = 1.

Let us construct an upper bound for the remainder Rs of the approxi-
mation T = Us,∗+Rs. For this purpose we use moments of finite differences
of T . Given k = 1, . . . , h and j = 1, . . . , n∗k define the first order difference

δk|jT = t(X1, . . . ,Xh)− t(X1, . . . ,Xk−1,Xj
k,Xk+1, . . . ,Xh),

where we denote Xj
k = (Xk \ {Xk,j}) ∪ {Xk,nk+j}. The difference operation

δk|j can be applied to every function of random variables such that Xk,j is
among its arguments and Xk,nk+j is not. In particular, given i ∈ Ωn∗k \ {j}
an application of the difference δk|i to the statistic δk|jT results in random
variable δk|iδk|jT called the second order difference. For i ∈ Ωn∗k write
∆k|i = δk|iδk|i−1 . . . δk|1 and given a ≤ n∗ denote ∆a = ∆h|ah

. . .∆1|a1
.

Given a < n∗ introduce the random variable Tu(a) =
∑

a≤b≤n∗ U(b).
Theorem 3.1 For a ≤ n∗ we have

ET 2
u (a) ≤ na2−|a|E(∆aT )2, (12)
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where na = (n∗1)
a1 . . . (n∗h)ah. For s = 1, . . . , n∗ − 1 we have

ER2
s ≤

∑

a: |a|=s+1

na2−|a|E(∆aT )2. (13)

Informally one can consider Us,∗ as s-th order polynomial in variables
Xk,i. Thus, it seems natural to formulate results about the error of the
approximation T ≈ Us,∗ in terms of finite differences, like ∆aT , where
|a| = s + 1. Similar differences were introduced and used by van Zwet [19],
Bentkus, Götze and van Zwet [2] in the case of independent observations.
Often it is much easier to estimate moments E(∆aT )2 than to construct a
bound for ER2

s directly, cf. Bloznelis and Götze [4], where the case h = 1 is
considered.

Proof of Theorem 3.1. The inequality (13) follows from (12) and the
inequality

ER2
s =

∑

a≤n∗: |a|≥s+1

EU2(a) ≤
∑

a≤n∗: |a|=s+1

ET 2
u (a).

Let us prove (12). The simplest case, h = 1, is considered in Bloznelis
and Götze [4]. For convenience we recall some argument of the proof given
ibidem. Write for brevity a = a, n1 = n, n∗1 = n∗ and X1,j = Xj , for
1 ≤ j ≤ n. We have Rs = Tu(s + 1),

Us,∗ =
s∑

a=0

U(a), Rs =
n∗∑

a=s+1

U(a), U(a) =
∑

1≤i1<...<ia≤n

ga(Xi1 , . . . , Xia).

By (11), ER2
s =

∑n∗
a=s+1 σ2

aC(a).
For s = 0, we have ER2

0 =
∑n∗

a=1 σ2
aC(a) = VarT and

∆1T =
∑n∗

a=1 Ũ(a), where

Ũ(1) = g1(X1)−g1(Xn+1), Ũ(2) =
n∑

j=2

(g2(X1, Xj)−g2(Xn+1, Xj)), . . . .

Clearly, E(∆1T )2 =
∑n∗

a=1 σ2
aC̃1(a), for some constants C̃1(a) > 0. In order

to prove ER2
0 ≤ (n∗/2)E(∆1T )2 we show C(a) ≤ (n∗/2)C̃1(a), for a =

1, . . . , n∗.
Similarly, in order to prove

ER2
s ≤ (n∗/2)s+1E(∆s+1T )2 (14)

we evaluate the constants C̃s+1(a) of the expression

E(∆s+1T )2 =
n∗∑

a=s+1

σ2
aC̃s+1(a)

11



and show the inequalities C(a) ≤ (n∗/2)s+1C̃s+1(a). Detailed calculation is
given in Bloznelis and Götze [4].

Let us prove (12) for h > 1. Introduce random variables

Vk = ∆k|ak
. . .∆1|a1

Tu(a), k = 1, . . . , h,

and put V0 = Tu(a). Since (12) is valid for h = 1 we can apply this inequality
to the statistic Vk−1 conditionally given all the random variables but X ∗

k .
Recall that Ek denotes the conditional expectation given all the random
variables, but X ∗

k . We obtain from (14)

EkV
2
k−1 ≤ (n∗k/2)akEk(∆k|ak

Vk−1)
2 = (n∗k/2)akEkV

2
k .

Taking expected value we replace conditional expectations by the uncondi-
tional ones. Thus, we have

EV 2
k−1 ≤ (n∗k/2)akEV 2

k .

Choosing k = 1, . . . , h we obtain a chain of inequalities which implies

ETu(a)2 ≤ (n∗1/2)a1 . . . (n∗h/2)ahEV 2
h .

Finally, since Vh = ∆aTu(a) and the random variables ∆aTu(a) and ∆aT
coincide we obtain the inequality (12).

4 Appendix

We can assume without loss of generality that ET = 0. Otherwise the
argument below applies to the statistic T − ET . Furthermore, with a set
Ak = {Xk,j1 , . . . ,Xk,jak

} of random elements of the permutation X ∗
k we asso-

ciate the corresponding index set Ak = {j1, . . . , jak
} ⊂ ΩNk

. The conditional
expectation E(. . . |A1, . . . ,Ah) will be denoted by E(. . . |A1, . . . , Ah).

4.1 Proof of (6).

In the proof we use the following identity, see, e.g., Zhao and Chen [20],

min{s,k}∑

v=0

(−1)v

(
s

v

)(
k

v

)(
u

v

)−1

=
(

u− s

k

)(
u

k

)−1

, (15)

where the integers s, t, u ≥ 0 and u ≥ max{s; k}.
Given a ≤ n let fa denote a real function defined on h-tuples of sets

(A1, . . . ,Ah) such that Ak ⊂ Xk and |Ak| = ak, k = 1, . . . , h. Given
1 ≤ i ≤ h and Bi ⊂ ΩNi let Ei(fa(A1, . . . ,Ah) |Bi) denote the conditional
expectation

E(fa(A1, . . . ,Ah) |ΩN1 , . . . ,ΩNi−1 , Bi,ΩNi+1 , . . . ,ΩNh
).
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Lemma 4.1. Let j ∈ {1, . . . , h}.
i) Given a number bj ≤ aj assume that

Ej(fa(A1, . . . ,Ah) |Bj) = 0 (16)

for every Bj ⊂ Aj such that |Bj | = bj. Then (16) holds for every Bj ⊂ ΩNj

satisfying |Bj | = bj.
ii) Assume that (16) holds for every Bj ⊂ Aj such that |Bj | < aj. Then

(16) holds for every Bj ⊂ ΩNj satisfying |Bj | < aj. Furthermore, for any
Dj ⊂ ΩNj and w ∈ Aj \Dj we have

Ej(fa(A1, . . . ,Ah) |Dj)

=
−1

Nj − |Aj ∪Dj |+ 1

∑

y∈Dj\Aj

Ej(fa(A1, . . . ,A∗j (y), . . .Ah) |Dj).

(17)

Here we assume that Aj \ Dj is nonempty and denote A∗j (y) = A∗j ∪ {y},
where A∗j = {Xj,i : i ∈ A∗j} and A∗j = Aj \ {w} .

Proof of Lemma 4.1. Let us prove (i) in the case where j = 1. Given
a set B1 ⊂ ΩN1 with |B1| = b1 let Wt denote the class of subsets D ⊂ ΩN1

of size a1 such that |B1 \D| = t. In particular, W0 consists of sets D of size
a1 such that B1 ⊂ D. By W ∗

t we denote the class of subsets D of size a1

such that |B1 \D| ≤ t. That is, W ∗
t = W0 ∪ . . . ∪Wt. We show that if Wt

is nonempty for some t > 0 then
(A): for every D ∈ Wt the conditional expectation

E1(fa(D,A2, . . . ,Ah) |B1)

is a linear combination of conditional expectations

E1(fa(Dj ,A2, . . . ,Ah) |B1)

where Dj ∈ W ∗
t−1.

Here D = {X1,i, i ∈ D} and Dj = {X1,i, i ∈ Dj}.
Note that if the statement (A) is true then the validity of the identity (16)

(with j = 1) for every A1 ∈ W ∗
t−1 implies the validity of (16) for arbitrary

A1 ∈ Wt. Using the fact that (16) is valid for every A1 ∈ W0 (this, in
fact, is the condition of the lemma) we derive the identity (16) for arbitrary
A1 ∈ Wt using induction over increasing values of t = 1, 2, . . .. Hence, we
obtain (i).

In order to prove the statement (A) fix D ∈ Wt and subset B∗ ⊂ D
of size b1 such that B1 ∩D = B1 ∩ B∗. Let K1 denote the class of subsets
V ⊂ ΩN1\B∗ of size a1−b1; K2 denote the class of subsets V ⊂ ΩN1\(B∗∪B1)
of size a1− b1. Clearly, K2 ⊂ K1. Denote K3 = K1 \K2. That is, K3 consists

13



of those V ⊂ ΩN1 \ B∗ of size a1 − b1 which satisfy V ∩ (B1 \ B∗) 6= ∅. In
particular every union B∗ ∪ V , V ∈ K3, is an element of W ∗

t−1. Denote

Si =
∑

V ∈Ki

fa(AV ∪B∗ ,A2, . . . ,Ah), i = 1, 2, 3.

Here AV ∪B∗ denotes the set of random variables {X1,j , j ∈ V ∪ B∗} ⊂ X ∗
1 .

Clearly, S1 − S2 = S3. We have

S1(N1−|B∗|
a1−b1

) = E1(fa(D,A2, . . . ,Ah)|B∗),

S2(N1−|B1∪B∗|
a1−b1

) = E1(fa(D,A2, . . . ,Ah)|B1 ∪B∗).

Denote the latter (conditional) expectation by E . Since, by our assumption
(16), S1 = 0, we obtain S2 = −S3. Now the identity

E1(fa(D,A2, . . . ,Ah)|B1) = E1(E|B1) =
−1(N1−|B1∪B∗|

a1−b1

)E1(S3|B1)

(in the last step we replaced S2 by −S3) completes the proof of the statement
(A). Indeed, S3 is a linear combination of fa(Dj ,A2, . . . ,Ah), where Dj ∈
W ∗

t−1. Hence, (i) is proved.
Let us prove (ii). In order to prove (4.3), fix Dj and w ∈ Aj \Dj . We

have

Ej(fa(A1, . . . ,Ah) |Dj) = Ej(E|Dj), E := Ej(fa(A1, . . . ,Ah) |Dj ∪A∗j ).
(18)

Clearly,

E =
1

Nj − |Dj ∪A∗j |
∑

y∈X ∗j \(Dj∪A∗j )

fa(A1, . . . ,A∗j (y), . . . ,Ah). (19)

Write E1 = Ej(fa(A1, . . . ,Ah) |A∗j ). By (16), E1 = 0. Therefore,

(Nj − |A∗j |)E1 =
∑

y∈X ∗j \A∗j
fa(A1, . . . ,A∗j (y), . . . ,Ah) = 0. (20)

Combining (19) and (20) we obtain

E =
−1

Nj − |Dj ∪A∗j |
∑

y∈Dj\Aj

fa(A1, . . . ,A∗j (y), . . . ,Ah).

Substitution of this expression of E in (18) yields (4.3).

14



Let us prove (16) for Bj such that |Bj | < aj and t = |Bj \Aj | is a positive
number. For t = 1 the result follows from (4.3) applied to Dj = Bj . For
t > 1 an application of the identity (4.3) reduces the problem to the case of
t− 1. The desired result follows after t iterations of application of (4.3).

Lemma 4.2. Given a satisfying

2ak ≤ Nk + 1, 1 ≤ k ≤ h, (21)

assume that (6) holds for every ψb with b ≤ a. Then the coefficients C(a, b)
of (3.3) satisfy (7).

Proof of Lemma 4.2. We prove the lemma in the case where h = 2.
The proof for h = 3, 4, . . . is much the same.

Fix b = (b1, b2) such that b < a. Let B1, D1 ⊂ ΩN1 and B2, D2 ⊂ ΩN2 be
such that |B1| = |D1| = b1 and |B2| = |D2| = b2. Denote r = |B1 \D1| and
s = |B2 \D2|. Write ψ = ψb for short. We start with an auxiliary identity

E(ψ(D1,D2) |B1, B2) = Kb1,rKb2,sψ(B1,B2), Ku,t =
(−1)t

(
N1−u

t

) (22)

Write E1 = E1(ψ(D1,D2)|B1) and E2 = E2(ψ(B1,D2)|B2). If we had shown
that

E1 = Kb1,rψ(B1,D2), E2 = Kb2,sψ(B1,B2) (23)

then (22) would follow from the identities

E(ψ(D1,D2)|B1, B2) = E(E1|B1, B2) = Kb1,r E(ψ(B1,D2)|B1, B2)
= Kb1,rE(E2|B1, B2) = Kb1,rKb2,s ψ(B1,B2).

Therefore, in order to prove (22) it suffices to show (23). We shall prove the
first identity of (23) only. Note that for r = 0 this identity is obvious. In
what follows we consider the case where r > 0.

A subset of ΩN1 of size b1 is said to belong to the class Wt if it has
exactly b1− t common elements with the set B1. We claim that if H belongs
to Wt, t ≥ 1, then

E1(ψ(H,D2) |B1) =
−1

N1 − b1 − t + 1

t∑

i=1

E1(ψ(V(i),D2) |B1), (24)

where V (1), . . . , V (t) are distinct elements of Wt−1. Here we denote H =
{X1,j , j ∈ H} and V(i) = {X1,j , j ∈ V (i)}. Indeed, (24) follows from (4.3).

Starting with H = D1 we iterate (24) until obtain a sum of conditional
expectations E1(ψ(B1,D2)|B1) = ψ(B1,D2) in the right hand side. There-
fore, after r iteration steps we have, for some number K, E1(ψ(D1,D2)|B1) =
K ψ(B1,D2). A straightforward calculation shows that

K = (−1)r
r−1∏

i=0

r − i

N1 − b1 − r + 1 + i
=

(−1)r

(
N1−b1

r

) = Kb1,r.
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Now we derive (7). Fix (A1, A2) and (B1, B2) such that Bk ⊂ Ak ⊂ ΩNk

for k = 1, 2 and the (size) vectors a and b satisfy b < a. By (3.3), the
conditional expectation E(ψa(A1,A2) |B1, B2) equals

ϕb(B1,B2)−
∑

d<a

∑

|D1|=d1

∑

|D2|=d2

C(a, d)E(ψd(D1,D2) |B1, B2). (25)

Since E(ψd(D1,D2) |B1, B2) = 0 for any d < a which fails to satisfy d ≤ b
we can write (25) as follows

ϕb(B1,B2)− S, S =
∑

d≤b

∑

|D1|=d1

∑

|D2|=d2

C(a, d)E(ψd(D1,D2) |B1, B2).

Here and above
∑
|Dk|=dk

denotes the sum over all subsets Dk ⊂ Ak of
size dk. Let us collect the terms ϕb(B1,B2) in (25). Clearly, for d < b the
conditional expectation E(ψd(D1,D2) |B1, B2) has no such a term, cf. (3.3).
Split S = S1 + S2, where the sum S1 includes the summands of S with
indices d satisfying d < b. Furthermore,

S2 = C(a, b)
∑

|D1|=b1

∑

|D2|=b2

E(ψd(D1,D2) |B1, B2).

By (22), S2 = C(a, b) V ψb(B1,B2), where

V = V ∗
1 V ∗

2 , V ∗
k =

∑

|Dk|=bk,Dk⊂Ak

Kbk,|Bk\Dk|, k = 1, 2. (26)

In particular, V ∗
k = 1 for bk = ak. For bk < ak an application of the identity

(15) gives V ∗
k = V −1

k (ak, bk). Hence, the coefficient of ϕb(B1,B2) in (25) is
1−C(a, b)V with V −1 = V1(a1, b1)V2(a2, b2). In order to ensure (6) we make
this coefficient zero, that is, choose C(a, b) = V −1. We arrive to (7).

Lemma 4.3. Let a ≤ n. The function ψa defined by (3.3) satisfies (6).
If 2ak > Nk for some k then ψa ≡ 0 almost surely.

Proof of Lemma 4.3. We shall prove the lemma in the case where
h = 2. The proof for h = 3, 4, . . . is almost the same. We split the proof in
two steps.

Step 1. Here we prove (6) for a satisfying (21). The proof uses induction
over increasing values of a1, a2. For a = (0, 1) and a = (1, 0), the identity
(6) follows from ET = 0. Given a with a1 +a2 > 1 we assume that (6) holds
for every ψb with b < a (induction hypothesis) and derive (6) for ψa.

It suffices to show that for every numbers b1, b2 such that b1 < a1 and
b2 < a2 and arbitrary sets Bk, Ak ⊂ ΩNk

with |Ak| = ak, |Bk| = bk, k = 1, 2,
we have almost surely

E1(ψa(A1,A2) |B1) = 0, (27)
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E2(ψa(A1,A2) |B2) = 0.

We prove (27) only.
Given h = (h1, h2) and Hk ⊂ ΩNk

with |Hk| = hk, k = 1, 2 we write, for
d ≤ h,

UH1,H2(d) = C(h, d)
∑

|D1|=d1

∑

|D2|=d2

E1(ψd(D1,D2) |B1), (28)

where the sum
∑
|Dk|=dk

is taken over all subsets Dk ⊂ Hk of size |Dk| = dk.
In view of Lemma 4.1 it suffices to prove (27) for B1 satisfying B1 ⊂ A1.

Denote u = (b1, a2). Since, by induction hypothesis, E1(ψd(D1,D2) |B1) = 0
for d < a with d1 > b1, we obtain from (3.3) that

E1(ψa(A1,A2) |B1) = ϕu(B1,A2)− S, S =
∑

d≤u

UA1,A2(d), (29)

Split S = S1 + S2, where S1 = UA1,A2(u) and S2 =
∑

d<u UA1,A2(d). The
identity (23) combined with (15) gives S1 = V −1

1 (a1, b1)C(a, u)ψu(B1,A2),
cf (26). Note that, by induction hypothesis, (6) holds for every d < a and,
therefore, it holds for every d ≤ u (since u < a). Hence, conditions of
Lemma 4.2 are satisfied for d ≤ u and we are allowed to use (23) here.)
Since V −1

1 (a1, b1)C(a, u) = 1, we obtain S1 = ψu(B1,A2). Note that in
order to prove (27) it suffices to show that

S2 = ϕu(B1,A2)− ψu(B1,A2). (30)

Let us prove (30). It follows from (3.3) (applied to ψu) that (30) is
equivalent to the identity S2 =

∑
d<u UB1,A2(d), since

UB1,A2(d) = C(u, d)
∑

|D1|=d1,D1⊂B1

∑

|D2|=d2,D2⊂A2

ψd(D1,D2).

Therefore, in order to prove (30) it suffices to show that for every d < u

UA1,A2(d) = UB1,A2(d). (31)

Firstly we prove (31) for d such that d1 = b1 and d2 < a2. The identity (23)
combined with (15) (cf. (26)) gives

UA1,A2(d) = C(a, d)
∑

D2⊂A2,|D2|=d2

V −1
1 (a1, b1)ψu(B1,D2) = UB1,A2(d).

In the last step we applied the identity V −1
1 (a1, b1)C(a, d) = C(u, d).

Let us prove (31) for d such that d1 < b1. Given D2 ⊂ A2 denote

U =
∑

|D1|=d1,D1⊂A1

E1(ψd(D1,D2)|B1), U∗ =
∑

|D1|=d1,D1⊂B1

ψd(D1,D2).
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In order to prove (31) we show that

C(a, d)U = C(u, d)U∗. (32)

Given an integer t ≥ 0 let Qt denote the class of subsets D1 ⊂ A1 such
that |D1| = d1 and |D1 \ B1| = t. Clearly, 0 ≤ t ≤ t0 = min{d1, a1 − b1}.
Split

U = U0 + . . . + Ut0 , Ut =
∑

D1∈Qt

E1(ψd(D1,D2) |B1). (33)

We shall show below that, for t = 0, 1, . . . , t0,

Ut =

(
d1

d1−t

)(
a1−b1

t

)
(−1)t

(
N1−b1

t

) U∗. (34)

Collecting these expressions in (33) and then using (15) we obtain (32).
It remains to prove (34). For t = 0 (34) is obvious. Let t > 0. Given

D1 ⊂ Qt write D1 = K ∪L, where L = D1∩B1 and K = D1 \B1. Write for
convenience K = {k1, . . . , kt}. Furthermore, given a subset {w1, . . . , ws} ⊂
B1 \D1 denote

D1(w1, . . . , ws) = L ∪ {w1, . . . , ws} ∪ {ks+1, . . . , kt},
D1(w1, . . . , ws) = {X1,j : j ∈ D1(w1, . . . , ws)}.

An application of (4.3) (with w = k1) gives

E1(ψd(D1,D2) |B1) =
−1
m0

∑

w1∈B1\D1

E1(ψd(D1(w1),D2) |B1),

where m0 = N1 − |B1 ∪ D1| + 1. Iterated applications of (4.3) (with w =
k1, k2, . . . , kt respectively) yields

E1(ψd(D1,D2) |B1) =
t∏

s=1

−1
ms−1

∗∑
E1(ψd(D1(w1, . . . , wt),D2) |B1), (35)

where ms = N1 − |B1 ∪D1(w1, . . . , ws)|+ 1 and where
∑∗ denotes the sum

∑

w1∈B1\D1

∑

w2∈B1\D1(w1)

. . .
∑

wt∈B1\D1(w1,...,wt−1)

.

Clearly, D1(w1, . . . , wt) ⊂ B1. Therefore,

E1(ψd(D1(w1, . . . , wt),D2) |B1) = ψd(D1(w1, . . . , wt),D2).

A simple calculation shows that
∗∑

ψd(D1(w1, . . . , wt),D2) = t!U∗
t (L),
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U∗
t (L) =

∑

M⊂B1\L, |M |=t

ψd(DM∪L,D2),

where DM∪L = {X1,j : j ∈ M ∪ L}. Therefore, we obtain from (35)

E1(ψd(D1,D2) |B1) =
( t∏

s=1

−1
ms−1

)
t! U∗

t (L) =
(−1)t

(
N1−b1

t

)U∗
t (L).

Finally, using this formula we derive (34):

Ut =
∑

L⊂B1, |L|=d1−t

∑

K⊂A1\B1, |K|=t

E1(ψd(DL∪K ,D2)|B1)

=
∑

L⊂B1, |L|=d1−t

(−1)t

(
a1−b1

t

)
(
N1−b1

t

)U∗
t (L)

= (−1)t

(
d1

d1−t

)(
a1−b1

t

)
(
N1−b1

t

) U∗.

In the last step we use the fact that given D1 ⊂ B1 of size d1 there are
(

d1

d1−t

)
different ways to write D1 = L ∪M , where |L| = d1 − t and |M | = t. We
arrive to (34) thus completing the proof of (32).

Step 2. Here we prove (6) for ψa where a fails to satisfy (21). Given
such a vector a denote

Aa = {d : d < a and C(a, d) 6= 0}.
By (3.3), we have

ψa(A1,A2) = ϕa(A1,A2)−
∑

d∈Aa

C(a, d)
∑

|D1|=d1

∑

|D2|=d2

ψd(D1,D2), (36)

where
∑
|Dk|=dk

denotes the sum over all subsets Dk ⊂ Ak of size |Dk| = dk.
We shall show that almost surely

ψa(A1,A2) = 0. (37)

Clearly, (37) implies (6).
Since a fails to satisfy (21) there exists a nonempty subset Za ⊂ {1, 2}

defined by k ∈ Za ⇔ 2ak > Nk + 1. In order to prove (37) we show that
given k ∈ Za and arbitrary Aj ∈ ΩNj with |Aj | = aj , j = 1, 2, we have
almost surely

Ek(ψa(A1,A2) |Bk) = 0, (38)

for every set Bk ⊂ ΩNk
of size |Bk| = Nk−ak. Indeed, write B′

k = ΩNk
\Ak.

Since Ek(ψa(A1,A2)|B′
k) = ψa(A1,A2) we obtain from (38)

0 = Ek(ψa(A1,A2) |B′
k) = ψa(A1,A2). (39)
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Note that in view of Lemma 4.1 (i) it suffices to prove (38) for Bk ⊂ Ak

(observe that the inequality 2ak > Nk + 1 implies ak > |Bk| = Nk − ak).
Firstly we prove (38) in the case where Za has only one element, say

Za = {1}. Since 2 /∈ Za we have 2a2 ≤ N2 + 1. Therefore, given a subset
B1 ⊂ A1 of size b1 = N1 − a1 the vector u = (b1, a2) satisfies (21). In
particular, the argument used to prove (27) in Step 1 can be used to derive
(38) for k = 1 in the case where B1 ⊂ A1. Hence, (38) follows. We conclude
that (37) holds for a satisfying |Za| = 1.

Now assume that Za = {1, 2}. We prove (38) for k = 1 for arbitrary
B1 ⊂ A1 of size b1 = N1 − a1. Write u = (b1, a2) and note that Aa = Au.
From (36) we obtain

E1(ψa(A1,A2) |B1) = ϕu(B1,A2)−
∑

d∈Au

UA1,A2(d). (40)

Here we use the notation (28). Using (31) we can replace UA1,A2(d) by
UB1,A2(d). After this replacement the right hand side of (40) coincides with
the expression (36) applied to ψu(B1,A2). But ψu(B1,A2) = 0 almost surely,
by (37). Therefore, the right-hand side of (40) is zero almost surely. We
obtain (38). Note that the use of (37) is legitimate since |Zu| = 1 and we
have already proved the validity of (37) for this case.

Finally we complete the proof of the lemma by showing that almost
surely ψa ≡ 0, provided 2ak > Nk for some k. We have Nk − ak < ak. By
(6), (38) holds for every Bk of size Nk−ak. Given Ak choose Bk = ΩNk

\Ak.
Now (39) provides desired result. The lemma is proved.

4.2 Proof of the variance decomposition formula (11).

Lemma 4.4. For every a ≤ n∗ the identity (11) holds.
Proof of Lemma 4.4. For a ≤ n∗ denote Mj =

∏j
i=1 V −1

i (ni, ai). Fix
a h-tuple (D1, . . . , Dh) where Dk ⊂ Ωnk

with |Dk| = ak, 1 ≤ k ≤ h, and
denote g∗ = ga(D1, . . . ,Dh).

We have, by symmetry,

EU2(a) = LEU(a) g∗.

Here L =
∏h

k=1

(
nk
ak

)
denotes the number of different summands in U(a).

Since LMh = C(a), we obtain (11) form the identity

EU(a) g∗ = σ2
a Mh. (41)

Let us prove (41). Write G0 = U(a) g∗ and Gh = Mhσ2
a . For j =

1, . . . , h− 1 introduce the random variables

Gj = Mj

∑

|Aj+1|=aj+1

. . .
∑

|Ah|=ah

E1 . . .Ejga(D1, . . . ,Dj ,Aj+1, . . . ,Ah) g∗.
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Here the sum
∑
|Ak|=ak

is taken over all subsets Ak ⊂ Ωnk
, j + 1 ≤ k ≤ h.

We shall show that

EjGj−1 = Gj , for j = 1, . . . , h. (42)

These identities imply (41). Indeed, we have

EG0 = Eh . . .E1G0 = Eh . . .E2G1 = . . . = EhGh−1 = Gh.

It remains to prove (42). For this purpose it suffices to show that given
Aj+1, . . . , Ah,

∑

|Aj |=aj

Ejga(D1, . . . ,Dj−1,Aj , . . . ,Ah) g∗ (43)

= V −1
j (nj , aj)Ejga(D1, . . . ,Dj ,Aj+1, . . . ,Ah) g∗.

Proceeding as in proof of (23) we obtain, for every Aj ⊂ Ωnj with |Aj | = aj

Ej(ga(D1, . . . ,Dj−1,Aj , . . . ,Ah)|Dj)

= Kaj ,|Dj\Aj |ga(D1, . . . ,Dj ,Aj+1, . . . ,Ah).

Therefore, the left-hand side of (43) equals

S Ejga(D1, . . . ,Dj ,Aj+1, . . . ,Ah) g∗, where S =
∑

|Aj |=aj

Kaj ,|Dj\Aj |.

Since there are
(
nj−aj

v

)(
aj

aj−v

)
different possibilities to choose Aj ⊂ Ωnj of

size aj such that |Dj \Aj | = v, we have

S =
∑

v

(
nj − aj

v

)(
aj

aj − v

)
Kaj ,v = V −1

j (nj , aj).

In the last step we applied (15). We arrive to (43) thus completing the proof
of (42).
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