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Abstract. Using the ANOVA decomposition, we obtain an explicit formula
for the bias of the jackknife variance estimator in stratified samples drawn
without replacement. For a wide class of asymptotically linear statistics, we
show the consistency of the jackknife variance estimator and establish the
asymptotic normality of their Studentized versions.

1. Introduction

1.1. In this note, we provide exact finite sample theoretical results for the
jackknife variance estimator of nonlinear finite population statistics based
on samples drawn without replacement. For simplicity, we consider stratified
samples where, from each stratum, a sample is drawn without replacement
and independently across the strata (STSI samples).
Our analysis is based on an orthogonal decomposition of statistics which

can be considered as a kind of linearization technique. The orthogonal de-
composition (also called the ANOVA decomposition or the Hoeffding decom-
position) of statistics was introduced by Hoeffding (1948). Efron and Stein
(1981) applied the decomposition to study the jackknife variance estimator
in the case of independent observations. Here we adapt the orthogonal de-
composition technique to STSI samples and extend the results of Efron and
Stein (1981) to samples drawn without replacement. In particular, we prove
the Efron–Stein inequality for STSI samples.
It seems that the orthogonal decomposition for STSI samples was not known

in the literature before. We believe that it can provide a convenient alterna-
tive to the commonly used Taylor linearization method (see, e.g., Rao and
Wu (1988), Shao (1996), and Chen and Sitter (1999)) in the cases where
this method is not applicable, e.g., for U - and L-statistics. Note that the
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influence functions used by Shao (1994) to study L-statistics are related to
the linear part of the orthogonal decomposition.
Although the present paper focuses on the variance estimation, the orthogo-

nal decomposition has other important applications, for example, second or-
der approximations to the distributions of nonlinear statistics (see Helmers
(1991), Bentkus, Götze, and van Zwet (1997), and Putter and van Zwet
(1998), where i.i.d. samples were considered).
1.2. Let X = {x1, . . . , xN} be a population of N units which divided

into h nonoverlapping subpopulations X = X1 ∪ · · · ∪ Xh, where Xk =
{xk 1, . . . , xk Nk

}. Therefore, N1 + · · ·+ Nh = N . Given nk < Nk, the simple
random sample Xk = {Xk 1, . . . , Xk nk

} is drawn without replacement from
the stratum Xk. We assume that the samples X1, . . . ,Xh are independent.
Let

T = t(X1, . . . ,Xh)

be a real-valued statistic based on STSI sample X = (X1, . . . ,Xh), and let

σ2
T = Var T

denote its variance. We shall write T = t(X) for brevity. The only condition
we impose on t is that the value of t is invariant under permutations of
observations within every sample Xk, k = 1, . . . , h. This is a very mild
condition in view of the sampling model considered. We call the statistic T
(kernel t) symmetric.
We consider the jackknife estimator v2(T ) of σ2

T based on values of t on
samples obtained by deleting observations from the enlarged STSI sample
X′ = (X′1, . . . , X′h). Here X′k = {Xk 1, . . . , Xk nk+1} denotes the sample of
size nk + 1 drawn without replacement from Xk (the additional observation
Xk nk+1 is drawn from Xk \ Xk and added to Xk to form X′k). For j =
1, . . . , nk, let Tk|j = t(Xk|j) denote the value of t on the sample Xk|j which is
obtained from X by replacing the observation Xk j by Xk nk+1. Furthermore,
put Xk|nk+1 = X and write Tk|nk+1 = t(X). The jackknife variance estimator
is defined by

(1.1) v2(T ) =
h∑

k=1

(1− fk)
nk+1∑

j=1

(
T k − Tk|j

)2
, fk = nk/Nk,

where T k = 1

nk + 1

∑nk+1
j=1 Tk|j .

Note that formula (1.1) involves values of T based on samples of the same
size as X. This allows us to consider a general class of kernels t but requires
one additional observation from every stratum. For i.i.d. samples, jackknife
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estimators involving few (one or two) additional observations were considered
by Beran (1984) and Putter and van Zwet (1998).
Let us outline the content of the paper. In Section 2, we introduce an

orthogonal decomposition for STSI samples. In Section 3, we give an exact
formula for the bias of v2(T ) in terms of the decomposition components and
derive the Efron–Stein inequality

(1.2) E v2(T ) ≥ σ2
T ,

which shows that the jackknife variance estimator tends to be biased upwards.
Note that the equality in (1.2) holds if and only if the statistic T is linear (=
a statistic of the form T =

∑
k

∑
i ψk(Xk i)). Section 4 contains large sample

asymptotic results: the consistency of v2(T ) and asymptotic normality of
(T − E T )v−1(T ), where the use of the orthogonal decomposition allows us
to treat a very wide class of statistics. The general results of the paper are
illustrated by an example of U -statistic.

2. Orthogonal decomposition

The orthogonal decomposition of statistics based on stratified samples drawn
with replacement was introduced by Lehman (1951, 1963) and Dwass (1956).
Here we consider stratified samples drawn without replacement. In this case,
calculations become much more complex. For convenience, we start with a
simple example of a U -statistic.
2.1. Example. Assume that H : X × X → R is a symmetric function (i.e.,

H(xi, xj) = H(xj , xi)). In order to estimate the mean value

a = 1�N
2

�
∑

1≤i<j≤N

H(xi, xj),

we use the STSI estimator

â =
∑

1≤k≤r≤h

wk râk r,(2.1)

âk k = 1�nk
2

�
∑

1≤i<j≤nk

H(Xk i, Xk j),

âk r = 1

nknr

nk∑

i=1

nr∑

j=1

H(Xk i, Xr j), k < r,

with weights wk k =
(
Nk

2

)(
N
2

)−1
and wk r = NkNr

(
N
2

)−1
for k 6= r.
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It is easy to see that â is an unbiased estimator of the parameter a. Clearly,
â is a U -statistic. We decompose

(2.2) â = a + L + Q,

where the linear part

L =
h∑

k=1

nk∑

i=1

gk(Xk i)

and the quadratic part

Q =
∑

1≤k≤r≤h

Qk r,

Qk k =
∑

1≤i<j≤nk

gk k(Xk i, Xk j), Qk r =
nk∑

i=1

nr∑

j=1

gk r(Xk i, Xr j), k < r,

are uncorrelated. The kernels g are defined as follows. For k 6= r, x, y ∈ Xk

and z ∈ Xr, put

gk(x) = wk k�nk
2

� Nk − 1

Nk − 2
(nk − 1)sk k(x) +

h∑
r=1

I{r 6=k}
wk r

nk
sk r(x),

(2.3)

gk k(x, y) = wk k�nk
2

�
(
hk k(x, y)− Nk − 1

Nk − 2
(sk k(x) + sk k(y))

)
,

gk r(x, z) = wk r

nknr

(
hk r(x, z)− sk r(x)− sr k(z))

)
.

Here we denote

hkk(x, y) = H(x, y)−E H(Xk1, Xk2),

hkr(x, z) = H(x, z)−E H(Xk1, Xr1),

skk(x) = E (hkk(Xk1, Xk2)
∣∣Xk1 = x),

skr(x) = E (hkr(Xk1, Xr1)
∣∣Xk1 = x).

Note that the random variables

gk(Xk i), gk k(Xk i, Xk j), and gk r(Xk i, Xr m)

are centered. A straightforward calculation shows that identity (2.2) holds.
Moreover, the random variables gk(Xk i) from the linear part are uncorrelated
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with the random variables gp q(Xp j , Xq m), p ≤ q, from the quadratic part
for k, p, q ∈ {1, . . . , h}, 1 ≤ i ≤ nk, 1 ≤ j ≤ np, and 1 ≤ m ≤ nq (for p = q,
we require j 6= m). In particular, the linear part L and the quadratic part
Q in (2.2) are uncorrelated. We call (2.2) the orthogonal decomposition.
One can show that L provides the best (in the sense of quadratic mean)
approximation to â by a linear statistic. This implies the uniqueness of the
orthogonal decomposition (2.2).
In order to introduce the orthogonal decomposition of a general symmetric

statistic T , we need some additional notation.
2.2. Notation. Given k, let (Xk 1, . . . , Xk Nk

) be a random permutation of
the ordered set of elements of Xk. We assume that random permutations are
independent across the strata so that, for every k, the first nk elements of
(Xk 1, . . . , Xk Nk

) represent a subsample Xk.
By a = (a1, . . . , ah) we denote h-vectors with nonnegative integer coordi-

nates and put |a| = a1 + · · · + ah. We write b ≤ a if bk ≤ ak for every
k = 1, . . . , h, and b < a if, in addition, b 6= a. Introduce the vector

n∗ = (n∗1, . . . , n
∗
h), where n∗k = min{nk, Nk − nk}.

Furthermore, 0 = (0, . . . , 0), and ek denotes the h-vector with all coordinates
zero, except the kth coordinate 1.
Given an index vector a = (a1, . . . , ah) satisfying a ≤ n∗, consider a sym-

metric kernel ga defined on h-tuples of subsets (A1, . . . ,Ah), where

A1 = {x1 i1 , . . . , x1 ia1
} ⊂ X1, . . . , Ah = {xh j1 , . . . , xh jah

} ⊂ Xh

are subsets of sizes a1, . . . , ah, respectively. Furthermore, for a h-tuple of
subsets (A1, . . . ,Ah) of elements of the random permutations, say

A1 = {X1 i1 , . . . , X1 ia1
}, . . . , Ah = {Xh j1 , . . . , Xh jah

},
the kernel ga defines the random variable ga(A1, . . . ,Ah). Finally, the kernel
ga defines the U -statistic

(2.4) Ua =
∑

A1⊂X1, |A1|=a1

· · ·
∑

Ah⊂Xh, |Ah|=ah

ga

(
A1, . . . ,Ah

)
.

2.3. Decomposition. Orthogonal decomposition expands T into the sum of
centered U -statistics of increasing order

T = E T +
∑

a: |a|=1

Ua +
∑

a: |a|=2

Ua + . . .(2.5)

= E T +
∑

0<a≤n∗

Ua .
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For a linear statistic T , we have Ua ≡ 0 for |a| > 1. Similarly, if T is a
U -statistic of degree two, we have Ua ≡ 0 for |a| > 2 (cf. (2.2)).
The crucial property of decomposition (2.5) is that the contributing U sta-

tistics are mutually uncorrelated, that is, E UaUb = 0 for a 6= b.
The kernels ga defining Ua by means of (2.4) are constructed in Appendix.

They are linear combinations of conditional expectations of T . Here we only
mention that every random variable ga(A1, . . . ,Ah) is centered and

(2.6) E ga(A1, . . . ,Ah)gb(B1, . . . ,Bh) = 0,

for every b 6= a and every h-tuple (B1, . . . ,Bh), where Bk ⊂ {Xk1, . . . , XkNk
}

is a subset of size bk, k = 1, . . . , h. Note that (2.6) implies the orthogonality
property E UaUb = 0 for a 6= b. Identity (2.6) is a consequence of formula
(5.3) in Appendix.
A straightforward consequence of decomposition (2.5) is the variance for-

mula

(2.7) σ2
T =

∑

a≤n∗
Var Ua =

∑

a≤n∗
c(a)σ2

a, c(a) =
h∏

k=1

�nk
ak

��Nk−nk
ak

�
�Nk−ak

ak

� ,

where
σ2

a = Var ga

({X1 1, . . . , X1 a1}, . . . , {Xh 1, . . . , Xh ah
}),

and we write σ2
0

= 0. Identity (2.7) follows from (2.5) by orthogonality and
from the following formula shown in Appendix:

(2.8) Var Ua = c(a)σ2
a.

Remark. The sum of the linear and quadratic terms

U = E T +
∑

a: |a|=1

Ua +
∑

a: |a|=2

Ua

often provides a sufficiently precise approximation to T . Bentkus, Götze,
and van Zwet (1997) used this fact to construct second order approximations
for a general symmetric statistics based on i.i.d. samples. The case of simple
random samples was considered by Bloznelis and Götze (2001). Furthermore,
for i.i.d. samples, Putter and van Zwet (1998) used the approximation T ≈
U to construct an empirical Edgeworth expansion which provides a second
order approximation to the distribution of T in probability. Their results
were extended to simple random samples by Bloznelis (2001a). In view of
the importance of STSI samples for practical inference (Cochran (1977) and
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Särndal, Swensson, and Wretman (1997)), it is desirable to develop similar
approximations in this case as well.
We complete this section by providing explicit formulas for the kernels ga,
|a| ≤ 2 (defining U), which are obtained from a general result (5.2) below,

gek
(x) = Nk − 1

Nk − nk
ϕek

(x),

(2.9)

g2ek
(x, y) = Nk − 2

Nk − nk

Nk − 3

Nk − nk − 1

(
ϕ2ek

(x, y)− Nk − 1

Nk − 2
(ϕek

(x) + ϕek
(y))

)
,

gek+er (x, z) = Nk − 1

Nk − nk

Nr − 1

Nr − nr

(
ϕek+er (x, z)− ϕek

(x)− ϕer (z)
)
,

where x, y ∈ Xk, z ∈ Xr, and

ϕek
(x) = E

(
T −E T

∣∣ Xk 1 = x
)
,

ϕ2ek
(x, y) = E

(
T −E T

∣∣ Xk 1 = x, Xk,2 = y
)
,

ϕek+er (x, z) = E
(
T −E T

∣∣ Xk 1 = x, Xr 1 = z
)
.

Note that decomposition (2.5) applied to statistic (2.1) results in decom-
position (2.2). Indeed, comparison of formulas (2.9) and (2.3) shows that
gek

= gk and gek+er = gkr for 1 ≤ k ≤ r ≤ h.

3. Bias

3.1. The main result of this section, Theorem 3.1, provides an exact formula
for the bias of the jackknife variance estimator (1.1).

Theorem 3.1. We have

(3.1) E v2(T ) = σ2
T +

∑

a≤n∗, |a|≥2

(d(a)− 1) c(a)σ2
a,

where d(a) =
∑h

k=1 dk(a) and dk(a) = ak(Nk + 1− ak)/Nk. The coefficients
c(a) are defined by (2.7).

Remark 3.1. It is easy to see that d(a) > 1 for |a| ≥ 2. Hence, the
sum

∑
(. . . ) on the right side of (3.1) is always nonnegative. Therefore,

(3.1) implies the Efron–Stein inequality (1.2). Furthermore, the sum on the
right side in (3.1) equals zero if and only if σ2

a = 0 for |a| ≥ 2. That is,
E v2(T ) = σ2

T if and only if T is a linear statistic.
Remark 3.2. Let us look at identity (3.1) in the case of simple random

samples (h = 1). Let X = {X1, . . . , Xn} be a simple random sample drawn
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without replacement from X = {x1, . . . , xN}. Decomposition (2.5) reduces
to

T = t(X1, . . . , Xn) = E T +
n∗∑

j=1

∑

A∈X, |A|=j

gj(A),

where n∗ = min{n, N − n}. Similarly, identity (3.1) reduces to

E v2(T ) = σ2
T +

n∗∑

j=2

d(j)
�n

j

��N−n
j

�
�N−j

j

� σ2
j , d(j) = (j − 1) N − j

N
,

where we denote σ2
j = E g2

j (X1, . . . , Xj).
Example (continued). It follows from (3.1) that

E v2(â) = σ2
â +

h∑

k=1

Nk − 2

Nk

�nk
2

��Nk−nk
2

�
�Nk−2

2

� σ2
kk

+
∑

1≤k<r≤h

nk(Nk − nk)

Nk − 1

nr(Nr − nr)

Nr − 1
σ2

kr,

where σ2
k r = E g2

k r(Xk 1, Xr 2).
3.2. Proof of Theorem 3.1 We can assume without loss of generality that

E T = 0. Denote, for brevity, v2
k(T ) =

∑nk+1
j=1 (T k − Tk|j)2.

In order to prove (3.1) it suffices to show that, for every k,

(3.2) (1− fk)E v2
k(T ) =

∑

a≤n∗
dk(a)c(a)σ2

a.

Indeed, since σ2
0

= 0 and d(a) = 0 for |a| = 1, identity (3.2) and (2.7) imply
(3.1).
Let us show (3.2). Write v2

k(T ) in the form

nk+1∑

j=1

T 2
k|j − (nk + 1)−1H2

k , Hk = Tk|1 + · · ·+ Tk|nk+1.

By symmetry we have

(3.3) E v2
k(T ) = (nk + 1)E T 2

k|nk+1 − (nk + 1)−1E H2
k .

In order to evaluate E H2
k , we expand Tk|j by means of (2.5) for every j =

1, . . . , nk + 1 and obtain

Hk =
∑

a≤n∗
(nk + 1− ak)Ua|k,
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where Ua|k is defined in the same way as Ua but with the kth sum∑
Ak⊂Xk, |Ak|=ak

replaced by
∑
Ak⊂X′k, |Ak|=ak

in (2.4). Since, by (2.6), the
random variables Ua|k, a ≤ n∗, are uncorrelated, we have

E H2
k =

∑

a≤n∗
(nk + 1− ak)2E U2

a|k.

Furthermore, by (2.8), E U2
a|k = ck(a)σ2

a, where ck(a) is defined in the same
way as c(a) but with nk replaced by nk + 1. Finally, invoking, in (3.3), the
formula for E H2

k and the formula (2.7) for E T 2
k|nk+1 = Var T , we obtain

(3.2).

4. Consistency

4.1. Consider a sequence of stratified populations X (ν) = X1(ν) ∪ · · · ∪
Xh(ν), where ν = 1, 2, . . . . We assume that the total sample size n =
n1 + · · · + nh tends to ∞ in any way, e.g., many small samples, or a few
large samples, or some combination thereof. No condition is imposed on the
number of strata h (it can be bounded or increase) and on the strata sizes
Nk. More precisely, we suppose that h, Nk, nk, and the kernel t all depend
on an index ν such that n(ν) = n1(ν) + · · · + nh(ν) → ∞ as ν → ∞. The
index ν will be suppressed in the sequel. We say that the estimator v2(T ) is
consistent if v2(T )/σ2

T → 1 in probability. Here and in what follows, limits
are taken as ν →∞.
Write T = E T + L + R, where

L =
∑

a: |a|=1

Ua =
h∑

k=1

nh∑

i=1

gek
(Xki)

denotes the linear part of decomposition (2.5), and R =
∑

a: |a|≥2 Ua denotes
the remainder. We consider statistics with dominant linear part as ν → ∞.
More precisely, we assume that
(4.1) σ2

L/σ2
T → 1, where σ2

L = Var L.

Note that, in the case where (4.1) is violated, the estimator v2(T ) can be
inconsistent. This can be seen, e.g., from formula (3.1). Indeed, the jackknife
variance estimator such as (1.1) targets the linear part L and estimates its
variance σ2

L consistently under the very mild Lindeberg-type condition (4.3)
(see Bickel and Freedman (1984)). However, such estimator becomes incon-
sistent when applied to the nonlinear parts of decomposition (2.5). Therefore,
we need σ2

R/σ2
T → 0 in order to make the influence of the nonlinear part R

negligible. But this is equivalent to (4.1), since

(4.2) σ2
L + σ2

R = σ2
T

by the fact that L and R are uncorrelated.
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Theorem 4.1. Assume that

(4.3) ∀ε > 0, σ−2
L

h∑

k=1

n∗kE g2
ek

(Xk 1)I{g2
ek

(Xk 1)≥εσ2
L} → 0.

Here n∗k = min{Nk, Nk − nk}. Suppose that

(4.4) ∆2/σ2
L → 0, where ∆2 =

∑

a≤n∗, |a|≥2

d(a)c(a)σ2
a,

where the numbers d(a) are the same as in Theorem 3.1. Then

i) v2(T )/σ2
T → 1 in probability

and

ii) (T −E T )v−1(T ) → N(0, 1) in law.

Theorem 4.1 provides an extension of a result of Bickel and Freedman (1984)
to nonlinear symmetric statistics. Here, in addition to the Lindeberg-type
condition (4.3), we impose condition (4.4) which controls the nonlinear part
R and is a bit stronger than (4.1). In order to inspect the optimality of
(4.4), we compare (3.1) and (4.4). Firstly, note that (4.4) is equivalent to
∆2/σ2

T → 0.
A simple calculation shows that d(a) − 1 ≥ d(a)/4 for |a| ≥ 2. There-

fore, d(a)/4 ≤ d(a) − 1 ≤ d(a). This and the identity (see (2.7)) σ2
R =∑

a≤n∗, |a|≥2 c(a)σ2
a imply that

(4.5) ∆2/4 ≤ ∆2 − σ2
R ≤ ∆2 and σ2

R ≤ 3∆2/4.

It follows from (4.2) and (4.5) that

∆2/σ2
L ≥ (∆2 − σ2

R)/(σ2
L + σ2

R) ≥ 4−1∆2/(σ2
L + 3∆2/4).

Finally, identity (3.1) written in the form E v2(T ) − σ2
T = ∆2 − σ2

R implies
that

(4.6) ∆2

σ2
L

≥ E
( v2(T )

σ2
T

− 1
) ≥ 1

4

1

σ2
L/∆2 + 3/4

.

We obtain the following corollary.
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Corollary 4.2. Condition (4.4) is necessary and sufficient for the asymptotic
unbiasedness of v2(T )/σ2

T . Similarly, the condition ∆2 = o(1) is necessary
and sufficient for E v2(T )− σ2

T = o(1).

The corollary follows from (4.5) and (4.6).
Remark 4.1. For simple random samples, using the notation of Remark 3.2,

we have σ2
L = σ2

1n(N − n)/(N − 1) and

∆2 = n

n∗∑

j=2

cjσ
2
j , cj = N + 1− j

N

�n−1
j−1

��N−n
j

�
�N−j

j

� .

Therefore, (4.4) reduces to σ−2
1

N − 1

N − n

∑n∗

j=2 cjσ
2
j = o(1). Furthermore,

letting N → ∞ and keeping the sample size n fixed, we approach the
i.i.d. situation. In this case, we have cj =

(
n−1
j−1

)
, and (4.4) reduces to

σ−2
1

∑n
j=2

(
n−1
j−1

)
σ2

j = o(1) as n → ∞. This condition appears in van Zwet
(1990), who considered the i.i.d. case. The consistency of the jackknife vari-
ance estimator of U -statistics, based on simple random samples, was studied
by Krewski (1978).
Example (continued). For the U -statistic â from (2.1) we have σ2

R ≤ ∆2 ≤
2σ2

R since d(a) ≤ 2 for |a| ≤ 2. Therefore, (4.4) is equivalent to σ2
R/σ2

L → 0,
and the latter is equivalent to (4.1), which is a very mild condition.
Although condition (4.4) is precise and suitable for U -statistics, it can be

hardly verifiable for other classes of statistics. Van Zwet (1984) and Bloznelis
and Götze (2001) introduce a kind of smoothness conditions which allow one
to control the sums like (4.4). In Corollary 4.3 below, we replace (4.4) by a
more restrictive but simpler smoothness condition (4.7).
Before formulating the corollary, we introduce some notation. Given k =

1, . . . , h and j = 1, 2, define the difference

δk|jT = t(X1, . . . ,Xh)− t(X1, . . . ,Xk−1,Xj
k,Xk+1, . . . ,Xh),

where we denote Xj
k = (Xk \ {Xk,j}) ∪ {Xk,nk+j}. Thus, in order to de-

fine δk|j , we need nk + j observations drawn without replacement from Xk.
Application of the difference operation δk|2 to the statistic δk|1T results in
random variable δk|2δk|1T . For i = 1, 2, write Dk|i = δk|iδk|i−1 . . . δk|0, where
δk|0T = T . Finally, given a ≤ n∗, denote Da = Dh|ah

. . .D1|a1 . Write
na = (n∗1)

a1 . . . (n∗h)ah and denote

∆̃2 =
∑

a: |a|=2

naE (DaT )2.
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Corollary 4.3. We have ∆2 ≤ ∆̃2. Theorem 4.1 remains valid with (4.4)
replaced by

(4.7) ∆̃2/σ2
L → 0.

Condition (4.7) applies easily to smooth functions of linear statistics and
smooth functions of U -statistics. In particular, for X ⊂ Rd and
T = g(X1 ·, . . . , Xh ·) (here, the dot is the averaging operator), the second-
order continuous differentiability of g in a neighborhood of the point (E X1 1,
. . . , E Xh 1) is sufficient to verify (4.7).
4.2. Here we prove Theorem 4.1 and Corollary 4.3. Without loss of gener-

ality, we assume that E T = 0. For r = 1, 2, . . . , write Ωr = {1, . . . , r}.
Proof of Theorem 4.1. Let us prove i). Given k ∈ Ωh and j ∈ Ωnk+1, write
T k − Tk|j in the form

T k − Tk|j =
n∗k∑

i=1

Vk|j(i), Vk|j(i) =
∑

A⊂X′k, |A|=i

(
IXk j∈A −

i

nk + 1

)
Tk(A),

where, given A ⊂ Xk with |A| ≤ n∗k, we denote

(4.8) Tk(A) =
∑

a≤n∗, ak=|A|

∑

a|k
ga(A1, . . . ,Ak−1,A,Ak+1, . . . ,Ah).

Here the first sum runs over all a ≤ n∗ satisfying ak = |A|. Furthermore, by∑
a|k we denote the multiple sum as in (2.4) but with the kth sum omitted.

Split Vk|j(1) = sk|j + tk|j , where

sk|j =
∑

x∈X′k

(
IXk j=x − 1

nk + 1

)
gek

(x),

and where tk|j = Vk|j(1)− sk|j denotes the remainder. Write

T k − Tk|j = sk|j + rk|j , rk|j = tk|j +
n∗k∑

i=2

Vk|j(i).

Finally, from (1.1) we obtain that v2(T ) = S2 + Q2 + 2Z, where

S2 =
h∑

k=1

(1− fk)S2
k, S2

k =
nk+1∑

j=1

s2
k|j ,

Q2 =
h∑

k=1

(1− fk)Q2
k, Q2

k =
nk+1∑

j=1

r2
k|j ,

Z =
h∑

k=1

(1− fk)
nk+1∑

j=1

sk|jrk|j .
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Note that S2 = v2(L). In view of Theorem 3 of Bickel and Freedman
(1984), (4.3) implies that S2/σ2

L → 1 in probability. Furthermore, since
(4.4) implies (4.1), we obtain S2/σ2

T → 1 in probability. It remains to show
that Q2 and Z can be neglected. We have |Z| ≤ S Q by Cauchy–Schwartz.
Therefore, it suffices to show that E Q2/σ2

T → 0. For this purpose, we show
that E Q2 = ∆2 and apply (4.4).
Let us prove E Q2 = ∆2. By symmetry we have

(4.9) E Q2 =
∑

k

(1− fk)(nk + 1)E r2
k|nk+1.

Since tk|nk+1 and Vk|nk+1(i), i = 2, . . . , n∗k, are uncorrelated, we have

(4.10) E r2
k|nk+1 = E t2k|nk+1 +

n∗k∑

i=2

E V 2
k|nk+1(i).

Finally, combining (4.10) and the formulas

(4.11) E V 2
k|nk+1(i) = d′k(i)κ2

k(i), i ≥ 2,

(4.12) E t2k|nk+1 = d′k(1)κ2
k(1),

where

κ2
k(i) :=

∑

a≤n∗, ak=i, |a|≥2

c(a)σ2
a, d′k(i) = i

nk + 1

Nk − i + 1

Nk − nk
,

from (4.9) we obtain the identity E Q2 = ∆2, thus, completing the proof of
part i). The proof of (4.11) and (4.12) is technical and is given in Appendix.
Let us prove ii). The asymptotic normality of L/σL is shown by Bickel and

Freedman (1984). In view of (4.1), we can replace σL and L by σT and T ,
thus, obtaining the asymptotic normality of T/σT . Indeed, E (T −L)2/σ2

T =
σ2

R/σ2
T → 0. The statement i) completes the proof.

Proof of Corollary 4.3. Write [x]i = x(x− 1) . . . (x− i + 1) and denote

vk(i, j) = 2i [j]i[Nk − j + 1]i

[nk]i[Nk − nk]i
.

It follows from the identities

(4.13) E (Dek+erT )2 =
∑

a≤n∗
vk(1, ak)vr(1, ar)c(a)σ2

a, k 6= r,
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and

(4.14) E (D2ek
T )2 =

∑

a≤n∗
vk(2, ak)c(a)σ2

a

that

(4.15)
∑

1≤i≤j≤h

n∗i n
∗
jE (Dei+ej

T )2 =
∑

a≤n∗,|a|≥2

(u(a) + v(a))c(a)σ2
a.

Here we denote

v(a) =
h∑

i=1

(n∗i )
2vi(2, ai), u(a) =

h∑

i=1

ui(a),

ui(a) =
∑

1≤j≤h, j 6=i

n∗i n
∗
jvi(1, ai)vj(1, aj).

The corollary follows from (4.15) and from the inequality

v(a) + u(a) ≥ d(a), for |a| ≥ 2.

To prove this inequality note that, given a, we have dk(a) ≤ (n∗k)2vk(2, ak)
for ak ≥ 2. Finally, for ak = 1, we have dk(a) = 1 ≤ uk(a), where the last
inequality follows from |a| ≥ 2. Auxiliary identities (4.13) and (4.14) are
shown in Appendix.

5. Appendix

Without loss of generality, we can assume that E T = 0. Otherwise, the
argument below applies to the statistic T −E T .
5.1. Here we sketch the construction of decomposition (2.5). The details

involving tedious combinatorial calculation are given in the accompanying
paper of Bloznelis (2001b).
By ϕa and ψa we denote the real functions defined on h-tuples (A1, . . . ,Ah)

of subsets Ak ⊂ Xk such that |Ak| = ak. Given b and an h-tuple (B1, . . . ,Bh),
where, for every k, Bk = {xk ik(1), . . . , xk ik(bk)} ⊂ Xk is a subset of size bk,
write

ϕb(B1, . . . ,Bh) = E
(
T

∣∣ Xk r = xk ik(r), 1 ≤ r ≤ bk, 1 ≤ k ≤ h
)
.

Let ψa be the linear combination of conditional expectations ϕb, b ≤ a,
defined as follows. Put ψ0 ≡ 0 and ψek

= ϕek
for every k. The functions ψa,
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|a| > 1, are defined by induction over increasing values of ak, k = 1, . . . , h.
We put

(5.1) ψa(A1, . . . ,Ah) = ϕa(A1, . . . ,Ah)

−
∑

b<a

h∏

k=1

Vk(ak, bk)
∑

|B1|=b1

· · ·
∑

|Bh|=bh

ψb(B1, . . . ,Bh),

where the sum
∑
|Bk|=bk

runs over all subsets Bk ⊂ Ak of size bk. Here

Vk(ak, bk) =
�Nk−bk

bk

�
�Nk−ak

bk

� for ak + bk ≤ Nk.

For ak + bk > Nk, we put Vk(ak, bk) = 0 with one exception: in the case
where Nk is odd (that is, Nk = 2rk + 1 for some integer rk), we put Vk(rk +
1, rk + 1) = 1.
The identity (5.1) applied to a = n gives (2.5). Indeed, denoting

(5.2) gn = ψn and gb = ψb

h∏

k=1

Vk(nk, bk) for b < n,

from (5.1) we obtain that

t(A1, . . . ,Ah) = ϕn(A1, . . . ,Ah) =
∑

b≤n

∑

|B1|=b1

· · ·
∑

|Bh|=bh

gb(B1, . . . ,Bh)

for an arbitrary h-tuple (A1, . . . ,Ah) of subsetsAk ⊂ Xk such that |Ak| = nk.
One can show that ga ≡ 0 for a ≤ n that fail to satisfy the inequality a ≤ n∗.
Therefore, the sum in (2.5) effectively extends over a satisfying a ≤ n∗ only.
The most important property of the kernels ga is their orthogonality: for all
Ak, Bk ⊂ Xk, where |Ak| = ak, k ∈ Ωh, we have

(5.3) E
(
ga(A1, . . . ,Ah)

∣∣B1, . . . ,Bh

)
= 0 almost surely

provided that |Bj | < aj for some j. Clearly, (5.3) implies (2.6).
5.2. Here we prove (2.8), (4.11), (4.12), (4.13), and (4.14).
For integers s, t, u ≥ 0 such that u ≥ max{s; t}, the identity

(5.4)
∑

ν

�s
ν

�� t
ν+i

�
� u
ν+i

� (−1)ν =
�u−i−s

t−i

�
�u

t

� i = 0, 1
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is obtained from the formula (12.15) of Chapter 2 of Feller (1970) by replacing(
t

ν+i

)(
u

ν+i

)−1 by
(
u−ν−i

u−t

)(
u
t

)−1 on the left side. For i = 0, this identity has
been used by Zhao and Chen (1990).
By E k we denote the conditional expectation given {X1, . . . , Xk−1,Xk+1,

. . . ,Xh}. Recall the notation Ωr = {1, . . . , r} for r = 1, 2, . . . .
Proof of (2.8). Given a ≤ n, write A0

k = {Xk 1, . . . , Xk ak
} for k ∈ Ωh.

Introduce the random variables

U[k](a) =
∑

a||k
ga(A0

1, . . . ,A0
k−1,Ak, . . . ,Ah)

and write U[h+1](a) = ga(A0
1, . . . ,A0

h). Here by
∑

a||k we denote the multiple
sum ∑

Ak⊂Xk, |Ak|=ak

∑

Ak+1⊂Xk+1, |Ak+1|=ak+1

· · ·
∑

Ah⊂Xh, |Ah|=ah

.

In order to prove (2.8) it suffices to show that, for every k ∈ Ωh,

(5.5) E kU2
[k](a) = c[k](a)E kU2

[k+1](a), c[k](a) =
�nk

ak

��Nk−nk
ak

�
�Nk−ak

ak

� .

Indeed, (5.5) implies E U2
[k](a) = c[k](a)E U2

[k+1](a), and, therefore,

E U2
[1](a) = c[1](a)E U2

[2](a) = · · · = c[1](a) . . . c[h](a)E U2
[h+1](a).

Since Ua = U[1](a) and E U2
[h+1](a) = σ2

a, we obtain (2.8).
Let us prove (5.5). Write U[k](a) in the form

(5.6) U[k](a) =
∑

Ak⊂Xk, |Ak|=ak

G(Ak),

where, for every Ak ⊂ Xk such that |Ak| = ak, we write

G(Ak) =
∑

a||k+1

ga(A0
1, . . . ,A0

k−1,Ak,Ak+1 . . . ,Ah).

From (5.3) it follows that, for Ak,Bk ⊂ Xk such that |Bk| < ak, we have

(5.7) E k(G(Ak) |Bk) = 0 almost surely.
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Using this identity it is easy to show (cf. Lemma 1 in Bloznelis and Götze
(2001)) that for any Ak,A′k ⊂ Xk such that |Ak| = |A′k| = ak and |Ak∩A′k| =
j, we have

(5.8) E kG(Ak)G(A′k) = (−1)ak−j

�Nk−ak
ak−j

� E kG2(Ak).

This identity with (5.6) and (5.4) gives

(5.9) E G(A0
k)U[k](a) =

�Nk−nk
ak

�
�Nk−ak

ak

� E kG2(A0
k).

Note that G(A0
k) = U[k+1](a). Finally, by symmetry from (5.9) it follows

that

E kU2
[k](a) =

(
nk

ak

)
E G(A0

k)U[k](a) = c[k](a)E kU2
[k+1](a).

Proof of (4.11) and (4.12). Let us prove (4.11). Introduce the random
variables

H =
∑

A⊂Xk, |A|=i

Tk(A), K =
∑

B⊂Xk, |B|=i−1

Tk(B′),

where Tk is defined by (4.8) and B′ = B ∪ {Xk, nk+1}. From the simple
identity

(5.10) Vk|nk+1(i) = uK − v H, u = 1− v, v = i

nk + 1
,

it follows that E V 2
k|nk+1(i) = u2E K2−2uvE K H +v2E H2. Finally, invok-

ing the identities

(5.11) E K2 = v

u

Nk − 2i + 1

Nk − nk
E H2, E K H = − i

Nk − nk
E H2,

and E H2 = κ2
k(i), we obtain (4.11). The identity E H2 = κ2

k(i) follows from
(2.8) and the fact that random variables Ua, a ≤ n∗, are uncorrelated.
Let us prove (5.11). For this purpose, we show (5.11) in the case where E

is replaced by E k (i.e., we show (5.11) for conditional expectations). Note
that (5.3) implies (5.7) for the kernel Tk as well. Therefore, (5.8) remains
valid with G replaced by Tk. That is,

(5.12) E kTk(Ak)Tk(A′k) = (−1)ak−j

�Nk−ak
ak−j

� E kT 2(Ak)
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for any Ak,A′k ⊂ X′k such that |Ak| = |A′k| = ak and |Ak ∩ A′k| = j.
In order to show the first identity of (5.11), we write, by symmetry, E kK2 =(
nk

i−1

)
E kTk(A0

k)K. In the right side we obtain a sum of conditional expecta-
tions like (5.12). Therefore, combining (5.12) and identity (5.4), we obtain
the first identity of (5.11) for the conditional expectation E k. The proof of
the second identity of (5.11) is similar.
Let us prove (4.12). Given A ⊂ Xk, define T ′k(A) by formula (4.8), where

the first sum runs over a that satisfy a ≤ n∗, ak = |A| and, in addition,
|a| ≥ 2. Since tk|nk+1 is obtained from Vk|nk+1(1) by excluding the sum
sk|nk+1, we can write a representation of tk|nk+1 similar to that of Vk|nk+1(1)
in (5.10) above. More precisely, we replace the sums K and H in (5.10) by
similar sums with Tk is replaced by T ′k. The remaining part of the proof of
(4.12) is similar to that of (4.11).
Proof of (4.13) and (4.14). We shall prove (4.14) only. Proof of (4.13) is

similar. We show (4.14) for k = 1. For this purpose, we write (2.5) in the
form

T =
n1∑

j=0

Ũj , Ũj =
∑

A⊂X1, |A|=j

T1(A),

where T1 is given by (4.8). Since, for j = 0, 1, we have D2e1Ũj = 0, from the
identity DaT =

∑
j DaŨj it follows, by orthogonality, that E 1(D2e1T )2 =∑n1

j=2 E 1(D2e1Ũj)2. Finally, invoking the identity (see Lemma 2 of Bloznelis
and Götze (2001)) E 1(D2e1Ũj)2 = v1(2, j)E 1Ũ

2
j , we obtain

E (D2e1T )2 =
n1∑

j=2

v1(2, j)E Ũ2
j =

∑

a≤n∗, a1≥2

v1(2, a1)c(a)σ2
a.
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