
EDGEWORTH EXPANSIONS FOR STUDENTIZED VERSIONS

OF SYMMETRIC FINITE POPULATION STATISTICS

M. Bloznelis

Abstract. We show the validity of the one-term Edgeworth expansion for Studen-
tized asymptotically linear statistics based on samples drawn without replacement
from finite populations. Replacing the moments defining the expansion by their
estimators, we obtain an empirical Edgeworth expansion. We show the validity of
the empirical Edgeworth expansion in probability.

1. Introduction and Results

Here we give complete proofs of the results announced in the First Baltic-Nordic
conference on survey sampling and presented in [5].
1. Let T = t(X1, . . . , Xn) be a real-valued statistic based on the sample X1, . . . ,

Xn drawn without replacement from a finite population X = {x1, . . . , xN}. Write

p = n/N, q = 1− p, n∗ = min{n, N − n}.

Let σ2
T denote the variance of T and let

S2 = S2(T ) = q

n+1∑

j=1

(
T(j) − T

)2
, T = 1

n + 1

n+1∑

j=1

T(j),

denote the jackknife estimator of variance based on sample X1, . . . , Xn+1 (of
size n + 1) drawn without replacement from X . Here T(j) = t(X1, . . . , Xj−1,
Xj+1, . . . , Xn+1).
In the simplest case of a linear statistic L = g(X1)+· · ·+g(Xn) (here g : X → R),

the asymptotic normality as n∗ → ∞ of (L− E L)/S(L) follows from the central
limit theorem combined with the law of large numbers. Edgeworth expansions
were constructed by Babu and Singh [1], see also Sugden, Smith and Jones [15].
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Many important statistics are asymptotically linear as n increases. Consequently,
their Studentized versions (T−E T )/S are asymptotically standard normal. In or-
der to treat general asymptotically linear statistics, we use linearization by means
of the orthogonal decomposition. This kind of the decomposition of statistics was
first used by Hoeffding [10] in the case of independent and identically distributed
observations. The orthogonal decomposition of symmetric statistics based on sam-
ples drawn without replacement was studied by Bloznelis and Götze [7], see also
Zhao and Chen [16].
We shall assume, in what follows, that T is symmetric. That is, the kernel

t is invariant under permutations of its arguments, i.e., t(y1, . . . , yn) = t(yπ(1),
. . . , yπ(n)) for any permutation π of indices 1, 2, . . . , n. Note that the sample
mean, sample variance, sample quantiles, U -statistics, L-statistics, and many other
statistics are symmetric. Given a symmetric statistic T , it is decomposed into the
sum of centered and uncorrelated U−statistics of increasing order

(1.1) T = E T +
∑

1≤i≤n

g1(Xi) +
∑

1≤i<j≤n

g2(Xi, Xj) + . . . .

The first sum

(1.2) L =
∑

1≤i≤n

g1(Xi), g1(Xi) = N − 1

N − n
E (T −E T |Xi),

is called the linear part of T . The second sum Q =
∑

i<j g2(Xi, Xj) is called the
quadratic part. Here, for i 6= j,

(1.3) g2(Xi, Xj) = N − 3

N − n− 1

(
N − 2

N − n
E (T −E T

∣∣Xi, Xj)− g1(Xi)− g1(Xj)
)
.

The random variables g1(Xk) and g2(Xi, Xj) are centered and uncorrelated for
arbitrary 1 ≤ i, j, k ≤ n, i 6= j. For a detailed description of the decomposition we
refer to [7].
We shall assume that the linear part does not vanish, i.e., σ2

1 > 0, where σ2
1 =

Var g1(X1). Note that the variance of the linear part equals

Var L = τ2σ2
1N/(N − 1), where τ2 = Npq.

Furthermore, n∗/2 ≤ τ2 ≤ n∗.
If, for large n, the linear part dominates the statistic, we call T asymptotically

linear. In this case, Bloznelis and Götze [8] showed that the one-term Edgeworth
expansion

(1.4) G(x) = Φ(x)− (q − p)α + 3κ

6τ
Φ′(x)(x2 − 1)
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approximates the distribution function F (x) = P{T −E T ≤ σT x} up to the error
o(n−1/2

∗ ). The moments

(1.5) α = σ−3
1 E g3

1(X1), κ = σ−3
1 τ2E g2(X1, X2)g1(X1)g1(X2)

refer to the linear and the quadratic part of the decomposition.
We shall show in Theorem 2 below that the one-term Edgeworth expansion

(1.6) H(x) = Φ(x) + (q − p + (q + 1)x2)α + 3(x2 + 1)κ

6τ
Φ′(x)

approximates the distribution function of the Studentized statistic

FS(x) = P{T −E T ≤ S(T )x}

up to the error o(n−1/2
∗ ).

Note that in order to write expansion (1.6), one does not need to evaluate all
terms of decomposition (1.1), but the moments (1.5) only. Furthermore, these
moments can be estimated.
Let us define the jackknife estimators. In what follows, {X1, . . . , Xm}, for m =

n, n + 1, n + 2, denote simple random samples drawn without replacement from
X . It is convenient to represent the sample {X1, . . . , Xm} by the set of the first m
variables of the random permutation (X1, . . . , XN ) of the ordered set (x1, . . . , xN ).
For 1 ≤ k ≤ n + 1, 1 ≤ i, j, r ≤ n + 2, i 6= j, denote

Vk = T − T(k), Ṽr = T̃ − T (r), Wij = T̃ − T (i) − T (j) + T(i,j),

where

T (r) = 1

n + 1

∑

1≤j≤n+2, j 6=r

T(r,j), T̃ = 1�n+2
2

�
∑

1≤i<j≤n+2

T(i,j).

Here T(i,j) denotes the value of t at the sample {X1, . . . , Xn+2} \ {Xi, Xj}. Write

(1.7) α̂J =
√

n

σ̂3
J

n+1∑

k=1

V 3
k , κ̂ = q

2
√

n

σ̂3
J

∑

1≤i<j≤n+2

Wij ṼiṼj ,

where σ̂2
J =

∑n+1
k=1 V 2

k .
Bloznelis [4] showed that α̂, κ̂, and S2(T ) (= qσ̂2

J) are consistent estimators of
α, κ, and σ2

T as n → ∞. Using this fact, we show in Theorem 3 below that the
empirical Edgeworth expansion

(1.8) Ĥ(x) = Φ(x) + (q − p + (q + 1)x2)α̂ + 3(x2 + 1)κ̂

6τ
Φ′(x)
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approximates FS(x) up to the error o(n−1/2
∗ ) in probability.

One-term Edgeworth expansions for Studentized U -statistics based on indepen-
dent and identically distributed observations were constructed by Helmers [9]. Ex-
pansions for Studentized versions of general symmetric statistics were obtained
by Putter and van Zwet [14], see also Putter [13], Bentkus, Götze and van Zwet
[3]. Empirical Edgeworth expansions that use jackknife estimators were studied
by Beran [3]. Putter and van Zwet [14] constructed such expansions for general
symmetric statistics and their Studentized versions.
One-term Edgeworth expansion for U -statistics of degree two based on samples

drawn without replacement was constructed by Kokic and Weber [12]. Bloznelis
and Götze [8] established the validity of the one-term Edgeworth expansion for
general symmetric finite population statistics. The corresponding empirical Edge-
worth expansions were constructed by Bloznelis [4]. Since often the variance of
the underlying statistic (estimator) is unknown, it is important, for practical pur-
poses, to have such approximations for Studentized versions of statistics too. This
question is addressed in the present paper.
2. Results. In order to formulate asymptotic results for finite population

statistics, we introduce a sequence of populations Xν = {xν 1. . . . , xν Nν}, ν =
1, 2, . . . , and a sequence of symmetric statistics Tν = tν(Xν 1, . . . , Xν nν ). Here
{Xν 1, . . . , Xν nν} denotes a sample drawn without replacement from Xν . The
orthogonal decomposition expands Tν into the sum of uncorellated centered U -
statistics (see [7])

(1.9) Tν = E Tν +Uν 1+· · ·+Uν nν∗ , Uν k =
∑

1≤i1<···<ik≤nν

gν k(Xν i1 , . . . Xν ik
).

Here nν ∗ = min{Nν−nν , nν}. Let Lν = Uν 1 and Qν = Uν 2 denote the linear and
the quadratic part, respectively. Furthermore, let us denote σ2

ν 1 = Var g2
ν 1(Xν 1),

(1.10) βν s = σ−s
ν 1E |gν 1(Xν 1)|s, γν s = σ−s

ν 1τ2s
ν E |gν 2(Xν 1, Xν 2)|s,

where s > 0 and τν = Nνpνqν , pν = nν/Nν , qν = 1 − pν . Let αν , κν , and
α̂ν , κ̂ν denote the moments defined by (1.5) and their jackknife estimators (1.7),
respectively. Furthermore, let S2

ν = S2
ν(Tν) denote the jackknife estimator of the

variance σ2
ν T of Tν . Write Ψν(t) = E exp{itσ−1

ν 1gν 1(Xν 1)}.
We shall assume that nν ∗ tends to infinity as ν →∞ and construct bounds for

∆ν = sup
x
|Fν S(x)−Hν(x)| and ∆̂ν = sup

x
|Fν S(x)− Ĥν(x)|.

Here Fν S(x) = P{(Tν −E Tν)/Sν(Tν) ≤ x}. The functions Hν(x) and Ĥν(x) are
defined by (1.6) and (1.8), but with αν , κν and α̂ν , κ̂ν instead of α, κ etc.
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Firstly, we consider a special case of U -statistics. We write Tν = Uν , where

(1.11) Uν =
∑

1≤i<j≤nν

hν(Xν i, Xν j).

In this case, decomposition (1.9) reduces to Uν = E Uν + Lν + Qν . The kernels
defining the linear and quadratic parts are obtained from (1.2) and (1.3):

gν 1(x) = (nν − 1) Nν − 1

Nν − 2
E

(
hν(Xν 1, Xν 2)−E hν(Xν 1, Xν 2)

∣∣∣Xν 1 = x
)
,

gν 2(x, y) = hν(x, y)−E hν(Xν 1, Xν 2)− (nν − 1)−1(gν 1(x) + gν 1(y)).

Theorem 1. Let Tν be a U -statistic of the form (1.11). Assume that nν ∗ → ∞
as ν → ∞. Assume that there exist absolute constants s > 6, C1 > 0, a positive
continuous function φ on (0,+∞), and sequences {ξν} ↑ ∞ and {ην} ↑ ∞ such
that for ν = 1, 2, . . . ,

βν s ≤ C1, γν s ≤ C1,(1.12)

|Ψ(t)| ≤ 1− φ(|t|), for 0 < |t| ≤ ην ,(1.13)

nν ≤ Nν − ξνN2/3
ν .(1.14)

Then there exists a sequence {ψν} ↓ 0 depending only on C1, φ, {ξν}, and {ην}
such that, for every ν = 1, 2 . . . ,

∆ν ≤ ψντ−1
ν ,(1.15)

P
{
∆̂ν > ψντ−1

ν

} ≤ ψν .(1.16)

Remark 1. Under the moment condition (1.12), the nonlattice condition (1.13)
and (1.14), inequality (1.15) (respectively, (1.16)) establishes the bound as nν∗ →
∞

(1.17) ∆ν = o(n−1/2
ν∗ ) (respectively, ∆̂ν = oP (n−1/2

ν∗ )).

The latter bound holds in probability. Here nν∗ plays the same role as the sample
size does in the i.i.d. situation, see [8].
Remark 2. Let us note that the nonlattice condition (1.13) is the weakest possible

smoothness condition. Condition (1.14) is very mild. The moment condition (1.12)
is far from the optimal one. Here one would expect the uniform integrability of βν 3

and γν 5/3, for ν = 1, 2, . . . , instead of (1.12). In the proof, no effort was made to
obtain result (1.17) under the optimal moment conditions. A modification of our
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proof involving truncation would probably reduce the moment condition (1.12) to
βν s < C1 and γν t < C1, for s > 3 and t > 2, cf. [6].
Let us consider a general symmetric statistic Tν . Using (1.9), we write

(1.18) Tν = Uν + Rν ,

where Uν = E Tν + Lν + Qν is a finite population U -statistic of degree two and
where the remainder Rν =

∑
j≥3 Uν j . For a typical standardized asymptotically

linear statistic σ−1
νT Tν admitting one-term expansion we have as nν∗ →∞

(1.19) σ−1
νT Rν = oP (n−1/2

ν∗ ) and Sν(Tν)/Sν(Uν) = 1 + oP (n−1/2
ν∗ )

in probability. Consequently, one-term expansions for (Tν− E Tν)/Sν(Tν) and
(Uν −E Uν)/Sν(Uν) are, in fact, the same.
Bloznelis and Götze [7] introduced simple conditions that ensure the validity of

approximations like (1.19). These conditions are formulated in terms of moments
of differences. Recall that (Xν 1, . . . , Xν Nν ) denotes a random permutation of the
ordered population (xν 1, . . . , xν Nν ). For j < nν ∗, define

DjTν = tν(Xν1, . . . , Xνn)− tν(Xν1, . . . , Xνj−1, Xνj+1, . . . , Xνn, Xνn+j).

Higher order differences are defined recursively: DijTν = Dj
(
DiTν

)
, for i 6= j;

DijkTν = Dk
(
Dj(DiTν)

)
, for i 6= j 6= k; . . . . Write

δν j = δν j(Tν) = E
(
n

(j−1)
ν∗ DjTν

)2
, DjTν := D12...jTν .

Let us note that for U -statistics, and statistics which are smooth functions of
sample means, the moments δν j can be easily estimated, see [7]. In particular, for
a typical asymptotically standard normal statistic one can expect δν j = O(n−1

∗ ),
1 ≤ j ≤ k, for some k ≥ 2.

Theorem 2. The statement (1.15) holds true for a sequence of general symmetric
statistics {Tν} if, in addition to (1.12), (1.13), and (1.14), we assume that

(1.20) δν 3 ≤ ενn
−2/3
ν ∗ σ2

ν T ,

for some decreasing sequence {εν} ↓ 0 as ν →∞.

Theorem 3. The statement (1.16) holds true for a sequence of general symmetric
statistics {Tν} if, in addition to (1.12), (1.13), and (1.14), we assume that

δν 2 ≤ ενn−1/3
ν σ2

ν T , δν 3 ≤ ενn
−2/3
ν ∗ σ2

ν T ,

for some decreasing sequence {εν} ↓ 0 as ν →∞.

Theorems 2 and 3 establish bounds (1.17) for general symmetric statistics.
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2. Proofs

This section is organized as follows. Firstly, we prove Theorem 1. Then we prove
Theorem 2. Theorem 3 is a simple consequence of Theorem 2 and the consistency
results for S2

ν(Tν), α̂ν , and κ̂ν established in Lemmas 2.1-2.3 (see [4]) Bloznelis
(2001). Auxiliary results (Lemmas 1-5) are formulated at the end of the section.
In the proofs we shall use the variance decomposition (see formula (2.6) [7])

(2.1) Var Tν =
nν∗∑

k=1

Var Uν k, Var Uνk =
�nν

k

��Nν−nν
k

�
�Nν−k

k

� σ2
ν k.

Here we denote σ2
ν k = Var gνk(Xν 1, . . . , Xν k).

A sequence of random variables {Mν , ν = 1, 2, . . . } is said to satisfy the condition
(2.2) if, for ν = 1, 2, . . . ,

(2.2) P{|Mν | > ψ̃ντ−1
ν } ≤ ψ̃ντ−1

ν ,

for some nonrandom sequence {ψ̃ν} ↓ 0 which depends only on C1 and {ξν} in the
proof of Theorem 1 (respectively, C1, {ξν}, and {εν} in the proof of Theorem 2).
In order to simplify the notation, we shall write o(ns

ν∗) to denote the sequence
ψ̃νns

ν∗, where {ψ̃ν} ↓ 0 is a sequence depending only on the constant C1, the
function φ, and the sequences {ξν} and {ην} (and also the sequence {εν} in the
proof of Theorem 2). Furthermore, we shall drop the subscript ν whenever this
does not cause an ambiguity. By c we denote a constant which depends only on
C1. Write, for brevity, Yνi = gν1(Xνi) and Yνij = gν2(Xνi, Xνj).
Proof of Theorem 1. Let us denote σ2

νU = Var Uν and assume without loss of
generality that E Uν = 0 and Var Uν = 1 for ν = 1, 2, . . . .
Note that (1.16) follows from (1.15) and the following consistency results estab-

lished in Lemmas 2.1-3 of [4]: as ν →∞

|S2
ν − σ2

νU | = oP (1), |α̂ν − αν | = oP (1), and |κ̂ν − κν | = oP (1).

Let us mention that Lemma 2.2 (ibidem), which establishes the consistency result
for α̂ν , assumes, in addition, that δ2(Uν) = o(n−1/3

ν ). For U statistics of degree
two (and such that Var U = 1) this relation is implied by the second inequality of
(1.12), see Lemma 4.
Let us prove (1.15). It follows from (2.1) that σ2

Uq = Var L + Var Q,

(2.3) Var L =
�n
1

��N−n
1

�
�N−1

1

� σ2
1 , Var Q =

�n
2

��N−n
2

�
�N−2

2

� σ2
2 .
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By assumption that σ2
U = 1, we have Var L ≤ 1. Therefore, (2.3) implies σ2

1 ≤
τ−2. Invoking Hölder’s inequality γ2 ≤ γ

1/3
6 , we obtain from (1.12)

(2.4) σ2
2 = γ2σ

2
1τ−4 ≤ C

1/3
1 σ2

1τ−4 ≤ cτ−6.

The identities σ2
U = 1 and (2.3) combined with (2.4) show that

(2.5) 1− cτ−2 ≤ Var L ≤ 1 and τ−2 ≥ σ2
1 ≥ τ−2 − cτ−4.

We split the remaining part of the proof into three parts.
Step 1. In this step, we show that, for every ν = 1, 2, . . . ,

(2.6) S2
ν = 1 + LS + Mν , LS =

nν+1∑

j=1

f(Xνi),

f(Xνi) = qν(1− 1

nν + 1
)(Y 2

νi − σ2
ν1) + 2qνnν

Nν − 1

Nν − 2
E (YνjYνij |Xνi).

Here the sequence of random variables {Mν} satisfies (2.2).
To show (2.6) and (2.2), fix k and split Vk = U − U(k) = Zk + Wk, where

Zk =
n+1∑

j=1

Yj

(
I{j=k} − 1

n + 1

)
, Wk =

∑

1≤i<j≤n+1

Yij

(
I{k∈{i,j}} − 2

n + 1

)
,

and write

(2.7) S2 (= S2
ν) = q

∑

k

V 2
k = q

∑

k

Z2
k + 2q

∑

k

ZkWk + q
∑

k

W 2
k .

A calculation shows

∑

k

Z2
k =

(
1− 1

n + 1

) n+1∑

k=1

Y 2
k −

2

n + 1

∑

1≤i<j≤n+1

YiYj ,

∑

k

ZkWk =
∑

1≤i<j≤n+1

(Yi + Yj)Yij − 2

n + 1
H1H2,

∑

k

W 2
k = 2

∑

1≤i<j≤n+1

Y 2
ij + 2H3 − 8

n + 1
H2

2 + 4

(n + 1)2
H2

2 .

Here H1 =
∑

1≤k≤n+1 Yk and H2 =
∑

1≤i<j≤n+1 Yij , and

H3 =
∑

1≤i≤n+1

∑

1≤j<k≤n+1

YijYikI{i/∈{j,k}}.



STUDENTIZED STATISTIC 9

Finally, from (2.7) we obtain (2.6) with Mν = m1 + q(m2 + · · ·+ m8). Here

m1 = nqσ2
1 − 1, m2 = − 2

n + 1

∑

1≤i<j≤n+1

YiYj ,

m3 = − 4

n + 1
H1H2, m4 = 2(H − LH),

where

H =
∑

1≤i<j≤n+1

(Yi + Yj)Yij and LH =
∑

1≤i≤n+1

n
N − 1

N − 2
E (YjYij |Xi),

and

m5 = 2
∑

1≤i<j≤n+1

Y 2
ij , m6 = 2H3, m7 = − 8

n + 1
H2

2 , m8 = 4

(n + 1)2
H2

2 .

In order to prove that {Mν} satisfies (2.2) we show that

E H2
1 < 2, E H2

2 ≤ cτ−2, |E H3| ≤ cq−2τ−2,

|m1| ≤ cτ−2, |E m2| ≤ τ−2 E m5 ≤ cq−2τ−2,(2.8)

Var m2 ≤ cn−2, Var m5 ≤ cq−2τ−6,

Var (H − LH) ≤ cτ−4, Var H3 ≤ cq−2τ−4.(2.9)

It is easy to show that bounds (2.8) and (2.9) imply (2.2), provided that qντν →∞
as ν →∞. The latter condition is equivalent to (1.14).
The bounds for expectations (2.8) are simple consequences of (2.1), (2.3), (2.4),

and (2.5). In order to bound variances (2.9), we decompose the random variables
m2, m5, H − LH (which are U-statistics of degree two), and H3 (which is a U-
statistic of degree three) by means of (1.9) and use identity (2.1), see Lemma 5
below.
Step 2. Set L̃S =

∑n
i=1 f(Xi) and write S̃2 = 1 + L̃S for L̃S > −1. Put S̃2 = 2

for L̃S ≤ −1. Let us denote ∆̃ = supx ∆̃(x), where ∆̃(x) = |P{U/S̃ ≤ x}−H(x)|.
Using Chebyshev’s inequality, we obtain

P{|S̃ − 1| > 1/2} ≤ P{|L̃S | > 1/2} ≤ 4E L̃2
S

= 4τ2N(N − 1)−1E f2(X1)

≤ c n−1
∗ .(2.10)

In particular, we have S̃2 > 0 with probability 1 − o(n−1/2
∗ ). Now, (2.6) and the

identity σ2
U = 1 imply

(2.11) Sν/S̃ =
√

1 + (Mν + f(Xn+1))/S̃2 = 1 + M̃ν .
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By the Lagrange mean-value theorem, from (2.10) and the fact that {Mν} satisfies
(2.2) we obtain that {M̃ν} satisfies (2.2). Since xH ′(x) is bounded, this implies

∆ = sup
x
|P{ U

S̃
≤ x

Sν

S̃
} −H(x)| ≤ ∆̃ + o(n−1/2

∗ ).

In what follows, we construct the bound ∆̃ = o(n−1/2
∗ ).

The bound sup{∆̃(x) : |x| ≥ log n∗} = o(n−1/2
∗ ) is a consequence of the following

result (see Theorem 2 of [7], or Theorem 2.1 of [4])

(2.12) sup
x
|P{ U

σU
≤ x} −G(x)| = o(n−1/2

∗ )

and the fact that |G(x)| and |H(x)| decay exponentially as |x| → ∞. Here we also
use σ2

U = 1 and (2.10).
Let |x| < log n∗. For |L̃S | ≤ 4/5 we use the inequalities A ≤ (1 + L̃S)1/2 ≤ B,

where A = 1+ L̃S/2− L̃2
S/4 and B = 1+ L̃S/2. Since, by (2.10), P{|L̃S | > 4/5} =

o(n−1/2
∗ ), we obtain ∆̃(x) ≤ max{∆A, ∆B}+ o(n−1/2

∗ ), where

∆A = sup
|x|≤log n∗

|P{U ≤ Ax} −H(x)|, ∆B = sup
|x|≤log n∗

|P{U ≤ Bx} −H(x)|.

Using Chebyshev’s inequality one can show, see Lemma 2 below, that

(2.13) P{|A−B| > n
−8/15
∗ } ≤ cn

−8/15
∗ .

Since xH ′(x) is bounded, (2.13) implies ∆A ≤ ∆B + o(n−1/2
∗ ).

Step 3. Here we show that ∆B = o(n−1/2
∗ ). Write P{U ≤ Bx} = P{Ux ≤ x},

where Ux = U − 2−1xL̃S is a U -statistic. We are going to apply (2.12) to Ux.
Decompose Ux by means of (1.9), Ux = Lx + Qx, where

Lx =
n∑

i=1

ϕ(Xi), ϕ(Xi) = Yi − 2−1xf(Xi),

is the linear part and Qx =
∑

1≤i<j≤n Yij is the quadratic part. By means of
(2.1), we decompose the variance σ2

x := Var Ux as follows:

σ2
x = Var Lx + Var Qx = σ2

U + (Var Lx −Var L)

= 1 + τ2 N

N − 1
(σ2

x1 − σ2
1).(2.14)

Here L denotes the linear part of U and σ2
x 1 := E ϕ2(X1). We have

(2.15) σ2
x 1 − σ2

1 = −xE Yif(Xi) + 4−1x2E f2(Xi) = −qσ3
1α3x− 2σ3

1κx + R.
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Using (1.12), (2.5), and the inequality |x| ≤ log n∗, we bound the remainder
R = o(n−3/2

∗ ). This bound, in combination with (2.14) and (2.5), yields

(2.16) σ2
x = 1− τ−1(qα3 + 2κ)x + o(n−1/2

∗ )

uniformly in |x| ≤ log n∗.
Let αx, κx, and βs,x, γs,x denote moments (1.5) and (1.10) corresponding to the

statistic Ux. Let Gx denote expansion (1.4) of Ux (replace α, κ by αx, κx in (1.4)).
It follows from (1.12) and (2.15) that αx = α + o(1) and κx = κ + o(1) uniformly
in |x| ≤ log n∗ as n∗ →∞. This yields

(2.17) sup
|x|≤log n∗

sup
y∈R

|Gx(y)−G(y)| = o(n−1/2
∗ ).

Furthermore, Theorem 2.1 of [4] shows that

(2.18) sup
y∈R

|P{Ux ≤ yσx} −Gx(y)| = o(n−1/2
∗ )

uniformly in |x| ≤ log n∗, provided that for some δ and ν0 > 0:
(i) the moments β3+δ,x and γ2+δ,x are uniformly bounded for |x| ≤ log n∗ and

ν ≥ ν0;
(ii) for some sequence {η̃ν} ↑ ∞ and positive continuous function φ̃ on (0,+∞),

the characteristic function Ψx(t) = E exp{itσ−1
x 1ϕ(Xi)} satisfies |Ψx(t)| ≤ 1−φ̃(|t|)

for 0 < |t| ≤ η̃ν and |x| ≤ log n∗ for every ν ≥ ν0.
Note that condition (i), for δ = (s− 6)/2 > 0, is implied by (1.12).
In order to verify (ii) for some {η̃ν} (with η̃ν ≤ ην), we show that

(2.19) sup
|x|≤log n∗

|Ψx(t)−Ψ(t)| ≤ c|t|n−1/2
∗ log n∗.

This inequality and (1.13) imply (ii). To show (2.19), write |Ψx(t)−Ψ(t)| ≤ A+B,

A = E | exp{itσ−1
x 1ϕ(X1)} − exp{itσ−1

1 ϕ(X1)}| ≤ |t| |σ−1
x 1 − σ−1

1 |E |ϕ(X1)|,
B = E | exp{itσ−1

1 ϕ(X1)} − exp{itσ−1
1 Y1}| ≤ |t|σ−1

1 E |ϕ(X1)− Y1|.

Using the inequality E |ϕ(X1)| ≤ σx 1 and (2.15), we obtain

A ≤ |t||1− σx 1/σ1| ≤ c|t|(|x|+ o(1))n−1/2
∗ ≤ c|t|n−1/2

∗ log n∗.

Invoking the simple bound E |ϕ(X1)−Y1| = 2−1|x|E |f(X1)| ≤ c|x|n−1
∗ , we obtain

B ≤ c|t|n−1/2
∗ log n∗, thus completing the proof of (2.19).
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Finally, using (2.16) we expand

G
( x

σx

)
= G

(
x + x( 1

σx
− 1)

)

= G(x) + Φ′(x)x( 1

σx
− 1) + o(n−1/2

∗ )

= G(x) + Φ′(x) x2

2

qα + 2κ

τ
+ o(n−1/2

∗ )

= H(x) + o(n−1/2
∗ )

uniformly in |x| ≤ log n∗. Therefore, sup|x|≤log n∗ |G(x/σx) − H(x)| = o(n−1/2
∗ ).

This bound, in combination with (2.17) and (2.18), shows that ∆B = o(n−1/2
∗ ).

The following chain of inequalities completes the proof of Theorem 1

(2.20) ∆ ≤ ∆̃ + o(n−1/2
∗ ) ≤ ∆B + o(n−1/2

∗ ) = o(n−1/2
∗ ).

Theorem 1 is proved.
Proof of Theorem 2. We assume, without loss of generality, that E Tν = 0 and

E U2
ν = 1, where Uν denotes the U -statistic from decomposition (1.18).

The proof is similar to that of Theorem 1. The only difference occurs in the
first step of the proof. Here, using (1.18), we replace the probability distribution
function FS(x) by F̃S(x) := P{Uν ≤ Sν(Tν)x} and then replace Sν(Tν) by S̃. In
particular, we show that

(2.21) sup
x∈R

|FS(x)−H(x)| ≤ sup
x∈R

|F̃S(x)−H(x)|+ o(n−1/2
∗ ).

This bound in combination with the bound

(2.22) sup
x∈R

|F̃S(x)−H(x)| = o(n−1/2
∗ ).

proves the theorem.
In order to prove (2.22) we show that

(2.23) S2
ν(Tν) = 1 + LS + Mν + M ′

ν ,

where the random variables LS , Mν are defined by (2.6). The random variable
M ′

ν is defined in (2.30) below. In order to derive (2.22) from (2.23), we show in
Lemma 1 below that {M ′

ν} satisfies (2.2). Using this fact and proceeding as in the
proof of (2.11), we obtain from (2.23) that

(2.24) Sν(Tν)/S̃ = 1 + M̃ν ,
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where {M̃ν} satisfies (2.2). Therefore, the same argument as that used in Step 2
of the proof of Theorem 1 shows that supx |F̃S(x)−H(x)| ≤ ∆̃+o(n−1/2

∗ ). Finally,
invoking the bound (see (2.20)) ∆̃ = o(n−1/2

∗ ), we obtain (2.22).
It remains to prove (2.21) and (2.23). It follows from (1.18), by the orthogonality,

that σ2
νT = E U2

ν + E R2
ν . In view of the identity E U2

ν = 1, we obtain

(2.25) 1 = E U2
ν ≤ σ2

νT = 1 + E R2
ν .

Invoking the bound, see Theorem 1 of [7], E R2
ν ≤ n−1

ν∗ δν3, we obtain from (1.20)
that

(2.26) E R2
ν ≤ ενn

−5/3
ν∗ σ2

νT .

In particular, for a sufficiently large integer ν0 (depending only on the sequence
{εν} ↓ 0) we have E R2

ν < σ2
νT /2 for ν > ν0. In what follows, we assume that

ν > ν0. Then (2.25) and (2.26) imply

(2.27) 1 ≤ σ2
νT ≤ 2, E R2

ν = o(n−5/3
ν∗ ), and E R2

ν/σ2
νT = o(n−5/3

ν∗ ).

Write Ωk = {1, 2, . . . , k} for k = 1, 2, . . . . By Aj we shall denote subsets of
ΩN of size |Aj | = j. Furthermore, given Aj = {i1, . . . , ij} ⊂ ΩN , denote TAj =
gj(Xi1 , . . . , Xij ). Recall that (X1, . . . , XN ) denotes a random permutation of the
ordered population X . Decomposition (1.9) can be written in the form

(2.28) T = E T +
n∗∑

j=1

∑

Aj⊂Ωn

TAj ,

where the second sum is taken over all j−subsets Aj of Ωn.
Let us prove (2.23). Using (2.28) we can decompose

Vk = T − T(k) = Zk + Wk + R̃k,

where Zk and Wk are defined in Step 1 of the proof of Theorem 1 and where

(2.29) R̃k =
n∗∑

j=3

κk,j , κk,j =
∑

Aj⊂Ωn+1

TAj

(
I{k∈Aj} −

j

n + 1

)
.

Then
V 2

k = Z2
k + W 2

k + R̃2
k + 2ZkWk + 2ZkR̃k + 2WkR̃k.
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This identity, in combination with (2.7) and (2.6), shows (2.23) with

(2.30) M ′
ν = q

n+1∑

k=1

R̃2
k + 2q

n+1∑

k=1

ZkR̃k + 2q

n+1∑

k=1

WkR̃k =: q(Jν1 + 2Jν2 + 2Jν3).

Let us prove (2.21). Write FS(x) = P{UνS−1
ν (Tν) + Qν ≤ x}, where Qν =

RνS−1
ν (Tν). Since H ′(x) is bounded, inequality (2.21) would follow if we show

that P{|Qν | > 4τ
−8/7
ν } = o(τ−1

ν ). This bound is a consequence of the bounds

P{|Sν(Tν)− 1| > 3/4} = o(τ−1
ν ), and P{|Rν | > τ−8/7

ν } = o(τ−1
ν ).

The first bound follows from (2.10) and (2.24). The second bound follows from
(2.27) via Chebyshev’s inequality. Theorem 2 is proved.

Lemma 1. Under conditions of Theorem 2, the sequence {M ′
ν} defined in (2.30)

satisfies (2.2).

Proof of Lemma 1. In view of (2.30), it suffices to show (2.2) for the sequences
{qJνi, ν = 1, 2, . . . }, i = 1, 2, 3.
In order to verify (2.2) for the sequence {qJν1}, we show that

(2.31) E |qJν1| = o(τ−10/3
ν ).

By symmetry,

(2.32) Jν1 = (n + 1)E R̃2
n+1.

It follows from (2.29), by the orthogonality, that

(2.33) E R̃2
n+1 = Eκ2

n+1,3 + · · ·+ Eκ2
n+1,n∗ .

Proceeding as in the proof of the inequality (4.33) of [4], we obtain

Eκ2
n+1,j ≤ 2bjd

′
jE U2

j ,

where bj = j/(n + 1) and d′j = (N − j + 1)/(N − n). Invoking the identity (see
(3.11) of [4])

E U2
j = 2−3h3,jE U2

j (D3T ), h3,j = [n]3[N − n]3/[j]3[N − j + 1]3,

(here [x]3 := x(x−1)(x−2)) and using the simple bound bjd
′
jh3,j ≤ n2

∗, we obtain

(2.34) Eκ2
n+1,j ≤ τ4E U2

j (D3T ).
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Here Uj(D3T ) denotes the j-th summand of the orthogonal decomposition (1.9)
for D3T . In particular, we have (see (3.8) in [4])

E (D3T )2 = E
(
U3(D3T )

)2 + · · ·+ E
(
Un∗(D3T )

)2
.

This identity, in combination with (2.33) and (2.34), shows that E R̃2
n+1 ≤

τ4E (D3T )2. Since E (D3T )2 = n−4
∗ δν3, we have, under condition (1.20) and in

view of (2.27),

(2.35) E R̃2
n+1 ≤ εντ−16/3

ν .

This bound in combination with (2.32) implies (2.31).
In order to verify (2.2) for the sequence {qJν2}, we split

Jν2 = J2,1 − J2,2, J2,1 =
n+1∑

k=1

YkR̃k, J2,2 = Y

n+1∑

k=1

R̃k,

where we denote Y = (Y1 + · · ·+ Yn+1)/(n + 1). We shall show that

(2.36) E |J2,2| ≤ 2ε1/2
ν τ−8/3

ν , E |qJ2,1|3/2 ≤ cε3/4
ν τ−5/2

ν .

These bounds imply (2.2) for {qJν2} via Chebyshev’s inequality.
Let us prove the first bound. By symmetry and Cauchy-Schwarz,

E |J2,2| = (n + 1)E |Y R̃n+1| ≤ (n + 1)(E Y
2
)1/2(E R̃2

n+1)
1/2.

The first bound of (2.36) follows from (2.35) and the simple bound

E Y
2

= N − n− 1

(n + 1)(N − 1)
E Y 2

1 ≤ τ2

n(n + 1)
E Y 2

1 ≤ 1

n(n + 1)

(use (2.5) in the last step).
Let us prove the second bound of (2.36). Put s = 3/2. Hölder’s inequality applied

to a sequence of positive numbers a1, . . . , ak shows that (
∑

ai)s ≤ ks−1
∑

as
i .

Using this inequality and the symmetry, we obtain

E |J2,1|s ≤ (n + 1)s−1
∑

|YkR̃k|s = (n + 1)sE |Yn+1R̃n+1|s.

Letting K1 = τνYn+1 and K2 = τ
16/3
ν ε−1

ν R̃2
n+1, we obtain

E |J2,1|s = (n + 1)sτ−s
ν τ−8s/3

ν εs/2
ν E |K1K

1/2
2 |s.
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Finally, (2.36) follows from the bound E |K1K
1/2
2 |s ≤ c. This bound follows

from (1.12) and (2.35) via the inequality ab ≤ au + bv (here a, b, u, v > 0 and
u−1 + v−1 = 1). We apply this inequality to a = |K1|s, b = |Ks/2

2 |, and v = 4/3.
In order to verify (2.2) for the sequence {qJν3}, we write, by Cauchy-Schwarz,

q|Jν3| ≤ (qJ̃ν3)1/2(qJν1)1/2, J̃ν3 =
∑

W 2
k ,

and show that {qJ̃ν3} satisfies (2.2). In view of (2.31) this implies (2.2) for {qJν3}.
Using the identity J̃ν3 = m5 + m6 + m7 + m8 and the fact that qmj satisfies (2.2)
for j = 5, 6, 7, 8, see Step 1 of the proof of Theorem 1, we conclude that {qJ̃ν3}
satisfies (2.2). Lemma 1 is proved

Lemma 2. Assume that (1.12) holds and σ2
U = 1. Then there exists a constant

c depending only on C1 such that (2.13) holds for every ν = 1, 2, . . . .

Proof. Write L̃ =
∑n∗

i=1 f(Xi). It follows from E f(X1) = 0 that L̃S =
−∑N

k=n+1 f(Xk) and, therefore, the distributions of |L̃S | and |L̃| are the same.
Split L̃ = L1 + L2, where Lj =

∑n∗
i=1 fj(Xi), for j = 1, 2, and where

f1(Xi) = q
(
1− 1

n + 1

)
(Y 2

i − σ2
1), f2(Xi) = 2qn

N − 1

N − 2
E (YjYij |Xi).

We have, by Chebyshev’s inequality,

P{|A−B| > n
−8/15
∗ } = P{|L̃| > 2n

−4/15
∗ }

≤ P{|L1| > n
−3/10
∗ }+ P{|L2| > n

−4/15
∗ }

≤ n
9/10
∗ E |L1|3 + n

48/75
∗ E |L2|12/5.

We complete the proof of (2.13) by showing the bounds

(2.37) E |L1|3 ≤ cn
−3/2
∗ , E |L2|12/5 ≤ cn

−6/5
∗ .

For this purpose we replace the sums L1 and L2 by the corresponding sums of i.i.d.
random variables using Theorem 4 of Hoeffding [11] and then apply Rosenthal’s
inequality. Given i = 1, 2, let z1, . . . , zn∗ be independent copies of fi(X1). By
Theorem 4 of [11], for every t ≥ 1 we have E |Li|t ≤ E |z1 + · · ·+zn∗ |t. Rosenthal’s
inequality shows

(2.38) E |z1 + · · ·+ zn∗ |t ≤ cn∗E |fi(X1)|t + c
(
n∗E f2

i (X1)
)t/2

.
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For i = 1 we choose t = 3 and obtain the first bound of (2.37) using the first
condition of (1.12). For i = 2 we choose t = 12/5 and obtain the second bound of
(2.37). In this case the application of (1.12) is not straightforward. We have

E |f2(Xi)|t ≤ cnt
∗E |YjYij |t ≤ cn−t

∗ E atbt,

where a = |σ−1
1 Y1| and b = |σ−1

1 τ2Y12|. The inequality atbt = (b4)t/4(a6)1−t/4 ≤
b4+a6 combined with (1.12) shows E atbt ≤ 2C1, thus proving E |f2(Xi)|t ≤ cn−t

∗ .
The bound E f2

2 (Xi) ≤ cn−2
∗ is simpler. Substitution to (2.38) shows the second

bound of (2.37), thus proving (2.13).

Lemma 3. There exists an absolute constant c0 such that for every n and N we
have

E
( ∑

1≤i<j≤n∗

Yij

)4 ≤ c0n
4
∗E Y 4

12,(2.39)

E
( ∑

1≤j≤n∗

Yj n+1

)4 ≤ c0n
2
∗E Y 4

12.(2.40)

Proof of Lemma 3. For random variables X and Y , write X ' Y if E X = E Y .
Let H =

∑
1≤i<j≤n∗ Yij and y = E Y 4

12. For two real numbers A and B we write
A ≺ B if |A| ≤ c1|B|. Here c1 is a sufficiently large absolute constant.

The bound (2.39) follows from the identities

H4 '
(

n∗
2

)
Y12H

3, Y12H
3 ' H1 + 2

(
n∗ − 2

1

)
H2 +

(
n∗ − 2

2

)
H3,

H1 = Y 2
12H

2, H2 = Y12Y13H
2, H3 = Y12Y34H

2,

and the bounds E H1 ≺ n2
∗y, E H2 ≺ n∗y, and E H3 ≺ y.

Let us show that E H1 ≺ n2
∗y. Write, by symmetry,

H1 ' Y 3
12H + 2

(
n∗ − 2

1

)
Y 2

12Y13H +
(

n∗ − 2
2

)
Y 2

12Y34H,
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where

Y 3
12H ' Y 4

12 + 2
(

n∗ − 2
1

)
Y 3

12Y13 +
(

n∗ − 2
2

)
Y 3

12Y34,

Y 2
12Y13H ' Y 3

12Y13 + Y 2
12Y

2
13 + Y 2

12Y13Y23

+
(

n∗ − 3
1

)(
Y 2

12Y13Y14 + Y 2
12Y13Y24 + Y 2

12Y13Y34

)

+
(

n∗ − 3
2

)
Y 2

12Y13Y45,

Y 2
12Y34H ' Y 3

12Y34 + Y 2
12Y

2
34

+ Y 2
12Y34Y13 + Y 2

12Y34Y14 + Y 2
12Y34Y23 + Y 2

12Y34Y24

+ 2
(

n∗ − 4
1

)
Y 2

12Y34Y15 + 2
(

n∗ − 4
1

)
Y 2

12Y34Y35 +
(

n∗ − 4
2

)
Y 2

12Y34Y56.

In a product like
∏

= Y12Y
2
23Y24Y56Y

3
46 we call the indices 1 and 5 free (respective

factors Y12 and Y56 have the power 1 and these indices are not present in other
multipliers). Using the identity E (Y12|X2) = 0, we write

E (Y12|X2, X3, . . . , X6) = 1

N − 5

∑

j∈ΩN\{2,...,6}
Yj2

= 1

N − 5

∑

j∈ΩN\{2}
Yj2 − 1

N − 5

6∑

j=3

Yj2

= − 1

N − 5

6∑

j=3

Yj2.

Therefore, the expectation E p splits into a sum of expectations of similar products,
but with the additional factor −(N−5)−1 = O(N−1). In this way the ”free” index
1 produces the factor O(N−1). We call this procedure ”free index argument”.
Using this argument, we obtain

E Y 3
12H ≺ y, E Y 2

12Y13H ≺ y, E Y 2
12Y34H ≺ y.

Therefore, E H1 ≺ n2
∗y.

The proof of H2 ≺ n∗y and E H3 ≺ y is similar.
Let us prove (2.40). Write Yi n+1 = Zi, for 1 ≤ i ≤ n∗, and S = Z1 + · · · + Zn∗ .

By symmetry,

S4 ' n∗Z1S
3, Z1S

3 = Z2
1S2 + (n∗ − 1)Z1Z2S

2.
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In order to prove (2.40), we show that

(2.41) E Z2
1S2 ≺ n∗y, E Z1Z2S

2 ≺ y.

Write, by symmetry,

Z2
1S2 ' Z3

1S + (n∗ − 1)Z2
1Z2S

and

Z3
1S ' Z4

1 + (n∗ − 1)Z3
1Z2, Z2

1Z2S = Z2
1Z2(Z1 + Z2) + (n∗ − 2)Z2

1Z2Z3.

The ”free” index argument shows that E Z3
1S ≺ y and E Z2

1Z2S ≺ y. This implies
the first bound of (2.41).
To prove the second bound of (2.41), write, by symmetry,

Z1Z2S
2 ' Z2

1Z2S + Z1Z
2
2S + (n∗ − 2)Z1Z2Z3S.

We have already shown that the expectations of the first two terms ≺ y. In order
to show that E Z1Z2Z3S ≺ n−1

∗ y, we write, by symmetry,

Z1Z2Z3S ' Z1Z2Z3(Z1 + Z2 + Z3) + (n∗ − 3)Z1Z2Z3Z4

and invoke ”free” index argument. We obtain E Z1Z2S
2 ≺ y, thus showing the

second bound of (2.41). The lemma is proved.

Lemma 4. Assume that {Uν} is a sequence of U statistics of degree two. Assume
that for some s > 3 and c1 > 0 we have for ν = 1, 2, . . .

Var Uν = 1 βν s < c1, γν 4 < c1.

Then there exists a sequence {ψν} ↓ 0 such that P{|α̂ν − αν | > ψν} < ψν as
nν∗ →∞.

Note that the condition βν s < c1 for some s > 3, can be reduced to the uniform
integrability condition for βν 3, see condition (2.13) of [4].
Proof of Lemma 4. The proof if almost the same as that of Lemma 2.2 of [4]. The

only difference appears in the proof of the relation R3 = oP (1) (in probability),
where

R3 = n−1
n+1∑

k=1

r3
kσ−3

1 , rk =
∑

1≤i<j≤n+1

(
Ik∈{i,j} − 2

n + 1

)
Yij .

Therefore, we shall only show that conditions of Lemma 4 imply E |R3| = o(1).
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By symmetry,
E |R3| ≤ (n + 1)n−1σ−3

1 E |rn+1|3.
In view of the relation (which follows from Var Uν = 1 and γν4 < c1) σ2

1 =
τ−2 + O(τ−4), see (2.5), it suffices to show that E |rn+1|3 = o(τ−3). For this
purpose, we show E r4

n+1 = o(τ−4).
Write

rn+1 = rA − 2(n + 1)−1rB ,(2.42)

rA =
n∑

j=1

Yj n+1, rB =
∑

1≤i<j≤n+1

Yij .

We shall show, for an absolute constant c0 > 0,

(2.43) E r4
A ≤ c0n

−4
∗ γ4, E r4

B ≤ c0n
−2
∗ γ4.

If n = n∗, these bounds follow from Lemma 3. For n > n∗ (i.e., n∗ = N − n) we
use E (Yij |Xj) = 0 and E Yij = 0 to show that

rA = −
N∑

j=n+2

Yj n+1 and rB =
∑

n+2≤i<j≤N

Yij .

Now (2.43) follows from Lemma 3 again. Finally, combining (2.42) and (2.43), we
obtain E r4

n+1 ≤ cn−4
∗ γ4, thus completing the proof.

Lemma 5. For random variables defined in Step 1 of the proof of Theorem 1, we
have

E H2
1 = n + 1

n

N − n− 1

N − n
Var L ≤ 2Var L,(2.44)

E H2
2 = n + 1

n− 1

N − n− 2

N − n
Var Q ≤ 3Var Q.(2.45)

Assume that σ2
U = 1. Assume that (1.12) holds. Then there exists a constant

c > 0 depending only on C1 such that

E H2
1 ≤ 2, E H2

2 ≤ cτ−2,(2.46)

E m5 ≤ cq−2τ−2 Var m5 ≤ cq−2τ−6,(2.47)

|E m2| ≤ τ−2, Var m2 ≤ cn−2,(2.48)

E (H − LH)2 ≤ cτ−4,(2.49)

|E H3| ≤ cq−2τ−2, Var H3 ≤ cq−2τ−4.(2.50)
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Proof of Lemma 5. Note that (2.44), (2.45), and (2.46) are immediate conse-
quences of (2.1), (2.3), and (2.4). The first bound of (2.47) follows from (2.4).
Before proving the remaining inequalities, we introduce some notation. Given

a centered U -statistics W based on the sample X1, . . . , Xn+1 drawn without re-
placement form the population X , we decompose by (1.9) W = LW + QW , where

(2.51) LW =
∑

1≤i≤n+1

Wi, QW =
∑

1≤i<j≤n+1

Wij

denote the linear and quadratic parts. It follows from (2.1) and (2.3) that

(2.52) E W 2 = E L2
W + E Q2

W ≤ c0τ
2E W 2

1 + c0τ
4E W 2

12.

In order to prove the second bound of (2.47), write

m5 = n(n + 1)σ2
2 + 2W, W =

∑

1≤i<j≤n+1

(Y 2
ij − σ2

2).

Clearly, Var m5 = 4E W 2. A simple calculation shows that the summands of the
linear and quadratic parts, see (1.11) and (2.51), are

Wi = n
N − 1

N − 2
E (Y 2

ij − σ2
2 |Xi), Wij = Y 2

ij − σ2
2 − (Wi + Wj)/n.

It follows from (1.12) that E W 2
i ≤ cn2τ−12 and E W 2

ij ≤ cτ−12. These bounds in
combination with (2.52) yield the second inequality of (2.47).
Let us prove (2.48). Write

m2 = − 2

n + 1

(
n + 1

2

)
E Y1Y2 − 2

n + 1
W, W =

∑

1≤i<j≤n+1

(YiYj −E YiYj).

Here E W = 0. Using E Yj = 0 we obtain for i 6= j

E (YiYj |Xi) = −Y 2
i /(N − 1) and E YiYj = −σ2

1/(N − 1).

Furthermore, invoking (2.5) we get

E m2 = σ2
1n/(N − 1) and |E m2| ≤ τ−2,

thus proving the first bound of (2.48). To prove the second bound, we apply
(2.51) and (2.52). A simple calculations shows that the summands of the linear
and quadratic parts are

Wi = n
N − 1

N − 2
E

(
YiYj +

σ2
1

N − 1

∣∣Xi

)
= n

N − 2
(σ2

1 − Y 2
i ),

Wij = YiYj + (N − 1)−1σ2
1 − n−1(Wi + Wj).
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Using (1.12) we show that E W 2
1 ≤ cτ−4 and E W 2

12 ≤ cτ−4. Invoking (2.52) we
obtain E W 2 ≤ c. This implies the second bound of (2.48).
Let us prove (2.49). Note that H−LH is a centered U -statistic. Calculation shows

that the linear part of the statistic H−LH vanishes. Its orthogonal decomposition
(1.9) contains only the quadratic part and, therefore, reduces to

H − LH = QH , QH =
∑

1≤i<j≤n+1

Hij ,

Hij = Yij(Yi + Yj)− N − 1

N − 2

(
E (YjYij |Xi) + E (YiYij |Xj)

)
.

It follows from (1.12) that E H2
ij ≤ cτ−8. The second identity of (2.3) shows that

E Q2
H =

�n+1
2

��N−n−1
2

�
�N−2

2

� E H2
ij ≤ c0τ

4E H2
ij ≤ cτ−4,

thus proving (2.49).
In order to prove (2.50), we write H3 in the form of U -statistic of degree three

H3 =
∑

1≤i<j<k≤n+1

Ψijk, Ψijk = YijYik + YkiYkj + YjiYjk.

Calculation shows that E Y12Y13 = −σ2
2/(N − 2). We obtain, by symmetry, that

E Ψijk = 3E Y12Y13 = −3σ2
2/(N − 2). Therefore,

E H3 =
(

n + 1
3

)
E Ψ123 = −3

�n+1
3

�

N − 2
σ2

2 .

This implies the first bound of (2.50). In order to prove the second bound, decom-
pose, by means of (1.9), H3 = E H3 + U1 + U2 + U3, where

U1 =
∑

1≤i≤n+1

(
n

2

)
Ψ̃i, U2 =

∑

1≤i<j≤n+1

(
n− 1

1

)
Ψ̃ij , U3 =

∑

1≤i<j<k≤n+1

Ψ̃ijk.

Here we write for r 6= i 6= j

Ψ̃i = 3(N − 1)

(N − 2)(N − 3)

(
σ2

2 −E (Y 2
ri|Xi)

)
,

Ψ̃ij = − 2

N − 4
Y 2

ij + N − 2

N − 4
E (YriYrj |Xi, Xj) + 3

N − 4
σ2

2

+ N − 2

N − 4

(
3 N − 1

(N − 2)2
(E (Y 2

ri|Xi) + E (Y 2
rj |Xj))− 6 N − 1

(N − 2)2
σ2

2

)
,

Ψ̃ijk = Ψijk −E Ψijk − Ψ̃i − Ψ̃j − Ψ̃k − Ψ̃ij − Ψ̃ik − Ψ̃jk.
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Using (1.12) one can show that

E Ψ̃2
i ≤ cτ−12N−2, E Ψ̃2

12 ≤ cτ−12, E Ψ̃2
123 ≤ cτ−12.

Finally, invoking (2.1) we obtain

E Var H3 = E U2
1 + E U2

2 + E U2
3

≤ cτ2

(
n

2

)2

E Ψ̃2
1 + cτ4

(
n− 1

1

)2

E Ψ̃2
12 + cτ6E Ψ̃2

123

≤ cn2τ−8.

This proves (2.50).
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