
AN EDGEWORTH EXPANSION FOR

STUDENTIZED FINITE POPULATION STATISTICS

M. Bloznelis

Abstract. We show the validity of the one-term Edgeworth expansion for Studen-
tized asymptotically linear statistics based on samples drawn without replacement
from finite populations. Replacing the moments defining the expansion by their
estimators we obtain an empirical Edgeworth expansion. We show the validity of
the empirical Edgeworth expansion in probability.

1. Introduction and Results

1. Let T = t(X1, . . . , Xn) be a real valued statistic based on sample X1, . . . , Xn

drawn without replacement from a finite population X = {x1, . . . , xN}. Write

p = n/N, q = 1− p, n∗ = min{n, N − n}.

Let σ2
T denote the variance of T and let

S2 = S2(T ) = q

n+1∑

j=1

(
T(j) − T

)2
, T = 1

n + 1

n+1∑

j=1

T(j),

denote the jackknife estimator of variance based on sample X1, . . . , Xn+1 (of
size n + 1) drawn without replacement form X . Here T(j) = t(X1, . . . , Xj−1,
Xj+1, . . . , Xn+1).
In the simplest case of a linear statistic L = g(X1)+ · · ·+g(Xn) (here g : X → R)

the asymptotic normality as n∗ → ∞ of (L− E L)/S(L) follows from the central
limit theorem combined with the law of large numbers. Edgeworth expansions
were shown by Babu and Singh [1], see also [13].
Many important statistics are asymptotically linear as n increases. Consequently,

their Studentized versions (T − E T )/S are asymptotically standard normal. In
order to treat general asymptotically linear statistics we use linearization by means
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of the orthogonal decomposition. This kind of decomposition of statistics, was
first used by Hoeffding [9] in the case of independent and identically distributed
observations. Orthogonal decomposition of symmetric statistics based on samples
drawn without replacement was studied by Bloznelis and Götze [6], see also [14].
We shall assume in what follows that T is symmetric. That is, the kernel t is

invariant under permutations of its arguments, i.e., t(y1, . . . , yn) = t(yπ(1), . . . ,
yπ(n)), for any permutation π of indices 1, 2, . . . , n. Note that the sample mean,
the sample variance, sample quantiles, U -statistics, L-statistics, and many others
are symmetric. Given a symmetric statistic T is decomposed into the sum of
centered and uncorrelated U−statistics of increasing order,

(1.1) T = E T +
∑

1≤i≤n

g1(Xi) +
∑

1≤i<j≤n

g2(Xi, Xj) + . . . .

The first sum

(1.2) L =
∑

1≤i≤n

g1(Xi), g1(Xi) = N − 1

N − n
E (T −E T |Xi),

is called the linear part of T . The second sum Q =
∑

i<j g2(Xi, Xj) is called the
quadratic part. Here, for i 6= j,

(1.3) g2(Xi, Xj) = N − 3

N − n− 1

(
N − 2

N − n
E (T −E T

∣∣Xi, Xj)− g1(Xi)− g1(Xj)
)
.

The random variables g1(Xk) and g2(Xi, Xj) are centered and uncorrelated for
arbitrary 1 ≤ i, j, k ≤ n, i 6= j. For a detailed description of the decomposition we
refer to [6].
We shall assume that the linear part does not vanish, that is, σ2

1 > 0, where
σ2

1 = Var g1(X1). Note that the variance of the linear part

Var L = τ2σ2
1N/(N − 1), where τ2 = Npq.

Furthermore, n∗/2 ≤ τ2 ≤ n∗.
If, for large n, the linear part dominates the statistic, we call T asymptotically

linear. In this case Bloznelis and Götze [6] showed that the one-term Edgeworth
expansion

G(x) = Φ(x)− (q − p)α + 3κ

6τ
Φ′(x)(x2 − 1)

approximates the distribution function F (x) = P{T −E T ≤ σT x} up to the error
o(n−1/2

∗ ). The moments

(1.4) α = σ−3
1 E g3

1(X1), κ = σ−3
1 τ2E g2(X1, X2)g1(X1)g1(X2)
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refer to the linear and the quadratic part of the decomposition.
We shall show in Theorem 2 below that the one-term Edgeworth expansion

(1.5) H(x) = Φ(x) + (q − p + (q + 1)x2)α + 3(x2 + 1)κ

6τ
Φ′(x)

approximates the distribution function of the Studentized statistic

FS(x) = P{T −E T ≤ S(T )x}

up to the error o(n−1/2
∗ ).

Note that in order to write the expansion (1.5) one does not need to evaluate
all terms of the decomposition (1.1), but the moments (1.4) of the linear and the
quadratic part only. Furthermore, these moments can be estimated.
Let us define the jackknife estimators. In what follows {X1, . . . , Xm}, for m =

n, n + 1, n + 2, denote simple random samples drawn without replacement from
X . It is convenient to represent the sample {X1, . . . , Xm} by the set of the first m
variables of the random permutation (X1, . . . , XN ) of the ordered set (x1, . . . , xN ).
For 1 ≤ k ≤ n + 1, 1 ≤ i, j, r ≤ n + 2, i 6= j, denote

Vk = T − T(k), Ṽr = T̃ − T (r), Wij = T̃ − T (i) − T (j) + T(i,j),

where

T (r) = 1

n + 1

∑

1≤j≤n+2, j 6=r

T(r,j), T̃ = 1�n+2
2

�
∑

1≤i<j≤n+2

T(i,j).

Here T(i,j) denotes the value of t at the sample {X1, . . . , Xn+2} \ {Xi, Xj}. Write

(1.6) α̂J =
√

n

σ̂3
J

n+1∑

k=1

V 3
k , κ̂ = q

2
√

n

σ̂3
J

∑

1≤i<j≤n+2

Wij ṼiṼj ,

where σ̂2
J =

∑n+1
k=1 V 2

k .
Bloznelis [4] showed that α̂, κ̂ and S2(T ) (= qσ̂2

J) are consistent estimators of
α, κ and σ2

T as n → ∞. Using this fact we show in Theorem 3 below that the
empirical Edgeworth expansion

(1.7) Ĥ(x) = Φ(x) + (q − p + (q + 1)x2)α̂ + 3(x2 + 1)κ̂

6τ
Φ′(x)

approximates FS(x) up to the error o(n−1/2
∗ ) in probability.
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One-term Edgeworth expansions for Studentized U -statistics based on indepen-
dent and identically distributed observations were constructed by Helmers [8]. Ex-
pansions for Studentized versions of general symmetric statistics were shown by
Putter and van Zwet [12], see also [2], [11]. Empirical Edgeworth expansions that
use jackknife estimators were studied by Beran [3]. Putter and van Zwet [12] con-
structed such expansions for general symmetric statistics and their Studentized
versions.
One-term Edgeworth expansion for U -statistics of degree two based on samples

drawn without replacement was constructed by Kokic and Weber [10]. Bloznelis
and Götze [6] established the validity of the one-term Edgeworth expansion for
general symmetric finite population statistics. Corresponding empirical Edgeworth
expansions were constructed by Bloznelis [4]. Since often the variance of the un-
derlying statistic (estimator) is unknown, it is important, for practical purposes, to
have such approximations for Studentized versions of statistics too. This question
is addressed in the present paper. The one-term Edgeworth expansion for Studen-
tized finite population statistics (1.5) and the corresponding empirical Edgeworth
expansion (1.7) seem to be new and not known in the literature before.
2. Results. In order to formulate asymptotic results for finite population

statistics we introduce a sequence of populations Xν = {xν 1. . . . , xν Nν}, ν =
1, 2, . . . , and a sequence of symmetric statistics Tν = tν(Xν 1, . . . , Xν nν ). Here
{Xν 1, . . . , Xν nν} denotes a sample drawn without replacement from Xν . Orthog-
onal decomposition expands Tν into the sum of uncorellated centered U -statistics

(1.8) Tν = E Tν+Uν 1+· · ·+Uν nν , Uν k =
∑

1≤i1<···<ik≤nν

gν k(Xν i1 , . . . Xν ik
).

Let Lν = Uν 1 and Qν = Uν 2 denote the linear and the quadratic part respectively.
Furthermore, denote nν ∗ = min{Nν − nν , nν} and σ2

ν 1 = Var g2
ν 1(Xν 1),

βν s = σ−s
ν 1E |gν 1(Xν 1)|s, γν s = σ−s

ν 1τ2s
ν E |gν 2(Xν 1, Xν 2)|s,

where s > 0 and where τν = Nνpνqν , pν = nν/Nν , qν = 1 − pν . Let αν , κν and
α̂ν , κ̂ν denote the moments defined by (1.4) and their jackknife estimators (1.6)
respectively. Furthermore, let S2

ν = S2
ν(Tν) denote the jackknife estimator of the

variance σ2
ν T of Tν . Write Ψν(t) = E exp{itσ−1

ν 1gν 1(Xν 1)}.
We shall assume that nν ∗ tends to infinity as ν →∞ and construct bounds for

∆ν = sup
x
|Fν S(x)−Hν(x)| and ∆̂ν = sup

x
|Fν S(x)− Ĥν(x)|.

Here Fν S(x) = P{(Tν −E Tν)/Sν(Tν) ≤ x}. The functions Hν(x) and Ĥν(x) are
defined by (1.5) and (1.7), but using αν , κν and α̂ν , κ̂ν .
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Firstly, we consider a special case of U -statistics. We write Tν = Uν , where

(1.9) Uν =
∑

1≤i<j≤nν

hν(Xν i, Xν j).

In this case the decomposition (1.8) reduces to Uν = E Uν +Lν +Qν . The kernels
defining the linear and the quadratic part are obtained from (1.2) and (1.3)

gν 1(x) = (nν − 1) Nν − 1

Nν − 2
E

(
hν(Xν 1, Xν 2)−E hν(Xν 1, Xν 2)

∣∣∣Xν 1 = x
)
,

gν 2(x, y) = hν(x, y)−E hν(Xν 1, Xν 2)− (nν − 1)−1(gν 1(x) + gν 1(y)).

Theorem 1. Let Tν be a U -statistic of the form (1.9). Assume that nν ∗ → ∞
as ν → ∞. Assume that there exist absolute constants s > 6, C1 > 0, a positive
continuous function φ on (0,+∞), and sequences {ξν} ↑ ∞ and {ην} ↑ ∞ such
that for ν = 1, 2, . . . ,

βν s ≤ C1, γν s ≤ C1,(1.10)

|Ψ(t)| ≤ 1− φ(|t|), for 0 < |t| ≤ ην ,(1.11)

nν ≤ Nν − ξνN2/3
ν .(1.12)

Then there exists a sequence {ψν} ↓ 0 depending only on C1, φ, {ξν}, and {ην}
such that, for every ν = 1, 2 . . . ,

∆ν ≤ ψντ−1
ν ,(1.13)

P
{
∆̂ν > ψντ−1

ν

} ≤ ψν .(1.14)

Remark 1. Under the moment condition (1.10), the non-lattice condition (1.11)
and (1.12) the results (1.13) respectively (1.14) establish the bounds as nν∗ →∞

(1.15) ∆ν = o(n−1/2
ν∗ ) respectively ∆̂ν = oP (n−1/2

ν∗ )

(in probability). Here nν∗ plays the same role as the sample size does in the i.i.d.
situation, see [7].
Remark 2. Let us note that the non-lattice condition (1.11) is the weakest possible

smoothness condition. The condition (1.12) is very mild. The moment condition
(1.10) is far from the optimal one. Here one would expect the uniform integrability
of βν 3 and γν 5/3, for ν = 1, 2, . . . , instead of (1.10). In the proof no effort was made
to obtain the result (1.15) under the optimal moment conditions. A modification
of our proof involving truncation would probably reduce the moment condition
(1.10) up to βν s < C1 and γν t < C1, for s > 3 and t > 2, cf. [5].
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Let us consider a general symmetric statistic Tν . Using (1.8) we write

Tν = Uν + Rν ,

where Uν = E Tν + Lν + Qν is a finite population U -statistic of degree two and
where the remainder Rν =

∑
j≥3 Uν j . For a typical standardized asymptotically

linear statistic σ−1
νT Tν admitting one-term expansion we have as nν∗ →∞

(1.16) σ−1
νT Rν = oP (n−1/2

ν∗ ) and Sν(Tν)/Sν(Uν) = 1 + oP (n−1/2
ν∗ )

in probability. Consequently, one-term expansions for (Tν− E Tν)/Sν(Tν) and
(Uν −E Uν)/Sν(Uν) are, in fact, the same.
Bloznelis and Götze [6] introduced simple conditions that ensure the validity of

approximations like (1.16). These conditions are formulated in terms of moments
of differences. Recall that (Xν 1, . . . , Xν Nν ) denotes a random permutation of the
ordered population (xν 1, . . . , xν Nν ). For j < nν ∗ define

DjTν = tν(Xν1, . . . , Xνn)− tν(Xν1, . . . , Xνj−1, Xνj+1, . . . , Xνn, Xνn+j).

Higher order differences are defined recursively: DijTν = Dj
(
DiTν

)
, for i 6= j;

DijkTν = Dk
(
Dj(DiTν)

)
, for i 6= j 6= k; . . . . Write

δν j = δν j(Tν) = E
(
n

(j−1)
ν∗ DjTν

)2
, DjTν := D12...jTν .

Theorem 2. The statement (1.13) holds true for a sequence of general symmetric
statistic {Tν} if in addition to (1.10), (1.11) and (1.12) we assume that

δν 3 ≤ ενn
−2/3
ν ∗ σ2

ν T ,

for some decreasing sequence {εν} ↓ 0 as ν →∞.

Theorem 3. The statement (1.14) holds true for a sequence of general symmetric
statistic {Tν} if in addition to (1.10), (1.11) and (1.12) we assume that

δν 2 ≤ ενn−1/3
ν σ2

ν T , δν 3 ≤ ενn
−2/3
ν ∗ σ2

ν T ,

for some decreasing sequence {εν} ↓ 0 as ν →∞.

Theorems 2 and 3 establish the bounds (1.15) for general symmetric statistic.
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2. Proofs

We shall prove only Theorem 1. The proof of Theorems 2 and 3 is almost the same.
The extension of the argument of the proof of Theorem 1 to general symmetric
statistics needs only a minor modification, see [4] and [12]. In the proof we shall
use the variance decomposition, see formula (2.6) of [6],

(2.1) Var Tν =
nν∑

k=1

Var Uν k, Var Uνk =
�nν

k

��Nν−nν
k

�
�Nν−k

k

� σ2
ν k.

Here σ2
ν k = Var gνk(Xν 1, . . . , Xν k), and Var Uνk = 0, for k > nν∗.

Proof of Theorem 1. We assume without loss of generality that E Uν = 0 and
Var Uν = 1, for ν = 1, 2, . . . .
Denote, for brevity, σ2

νU = Var Uν , S2
ν = S2

ν(Uν), Yνi = gν1(Xνi), and Yνij =
gν2(Xνi, Xνj). In order to simplify the notation we shall write o(ns

ν∗) to denote
the sequence ψ̃νns

ν∗, where {ψ̃ν} ↓ 0 is a sequence depending only on the constants
C1, the function φ and the sequences {ξν} and {ην}. Furthermore, we shall drop
the subscript ν whenever this does not cause an ambiguity. By c we denote a
constant which depends only on C1.
Note that (1.14) follows from (1.13) and the consistency results established in

Lemmas 2.1-3 in [4]: as ν →∞

|S2
ν − σ2

νU | = oP (1), |α̂ν − αν | = oP (1), |κ̂ν − κν | = oP (1).

Let us mention that Lemma 2.2 in [4], which establishes the consistency result
for α̂ν , assumes, in addition, that δ2(Uν) = o(n−1/3

ν ). For U statistics of degree
two (and such that Var U = 1) this condition can be replaced by the condition
formulated in the second inequality of (1.10).
Let us prove (1.13). It follows from (2.1) that σ2

U = Var L + Var Q,

(2.2) Var L =
�n
1

��N−n
1

�
�N−1

1

� σ2
1 , Var Q =

�n
2

��N−n
2

�
�N−2

2

� σ2
2 .

By the assumption σ2
U = 1, we have Var L ≤ 1. Therefore, σ2

1 ≤ τ−2. Invoking
Hölder’s inequality γ2 ≤ γ

1/3
6 we obtain from (1.10)

(2.3) σ2
2 = γ2σ

2
1τ−4 ≤ C

1/3
1 σ2

1τ−4 ≤ cτ−6.

The identities σ2
U = 1 and (2.2) combined with (2.3) show

(2.4) 1− cτ−2 ≤ Var L ≤ 1 and τ−2 ≥ σ2
1 ≥ τ−2 − cτ−4.
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The remaining part of the proof splits in two steps.
Step 1. In this step we show that that there exists a sequence {ψ̃ν} ↓ 0 (which

depends only on C1) such that for every ν = 1, 2, . . .

(2.5) S2
ν = σ2

νU + LS + Mν , LS =
nν+1∑

j=1

f(Xνi),

f(Xνi) = qν(1− 1

nν + 1
)(Y 2

νi − σ2
ν1) + 2qνnν

Nν − 1

Nν − 2
E (YνjYνij |Xνi).

Here the sequence of random variables {Mν} satisfies

(2.6) P{|Mν | ≥ ψ̃ντ−1
ν } ≤ ψ̃ντ−1

ν .

To show (2.5) and (2.6) fix k and split Vk = U − U(k) = Zk + Wk, where

Zk =
n+1∑

j=1

Yj

(
I{j=k} − 1

n + 1

)
, Wk =

∑

1≤i<j≤n+1

Yij

(
I{k∈{i,j}} − 2

n + 1

)
,

and write

(2.7) S2 = q
∑

k

V 2
k = q

∑

k

Z2
k + 2q

∑

k

ZkWk + q
∑

k

W 2
k .

A calculation shows

∑

k

Z2
k =

(
1− 1

n + 1

) n+1∑

k=1

Y 2
k −

2

n + 1

∑

1≤i<j≤n+1

YiYj ,

∑

k

ZkWk =
∑

1≤i<j≤n+1

(Yi + Yj)Yij − 2

n + 1
H1H2,

∑

k

W 2
k = 2

∑

1≤i<j≤n+1

Y 2
ij + 2H3 − 8

n + 1
H2

2 + 4

(n + 1)2
H2

2 .

Here H1 =
∑

1≤k≤n+1 Yk and H2 =
∑

1≤i<j≤n+1 Yij , and

H3 =
∑

1≤i≤n+1

∑

1≤j<k≤n+1

YijYikI{i/∈{j,k}}.

Finally, from (2.7) we obtain (2.5) with Mν = m1 + q(m2 + · · ·+ m8). Here

m1 = nqσ2
1 − σ2

U , m2 = − 2

n + 1

∑

1≤i<j≤n+1

YiYj ,

m3 = − 4

n + 1
H1H2, m4 = 2(H − LH),
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where

H =
∑

1≤i<j≤n+1

(Yi + Yj)Yij and LH =
∑

1≤i≤n+1

n
N − 1

N − 2
E (YjYij |Xi),

and where

m5 = 2
∑

1≤i<j≤n+1

Y 2
ij , m6 = 2H3, m7 = − 8

n + 1
H2

2 , m8 = 4

(n + 1)2
H2

2 .

In order to prove (2.6) we show that

E H2
1 < 2, E H2

2 ≤ cτ−2, |E H3| ≤ cq−2τ−2,

|m1| ≤ cτ−2, |E m2| ≤ τ−2 E m5 ≤ cq−2τ−2,(2.8)

Var m2 ≤ cn−2, Var m5 ≤ cq−2τ−6,

Var (H − LH) ≤ cτ−4, Var H3 ≤ cq−2τ−4.(2.9)

It is easy to show that the bounds (2.8) and (2.9) imply (2.6), provided that
qντν →∞ as ν →∞. The latter condition is equivalent to (1.12).
The bounds for expectations (2.8) are simple consequences of (2.1), (2.2), (2.3)

and (2.4). In order to bound the variances (2.9) we decompose the random vari-
ables m2, m5, H − LH (which are U-statistics of degree two) and H3 (which is a
U-statistic of degree three) by means of (1.8) and use the identity (2.1).
Step 2. Denote L̃S =

∑n
i=1 f(Xi) and write S̃2 = 1 + L̃S , for L̃S > −1, and

put S̃2 = 2, for L̃S ≤ −1. Denote ∆̃ = supx ∆̃(x), where ∆̃(x) = |P{U/S̃ ≤
x} −H(x)|. Using Chebyshev’s inequality we obtain

(2.10) P{|S̃ − 1| > 1/2} ≤ P{|L̃S | > 1/2} ≤ 4E L̃2
S ≤ c τ−2.

Using (2.5) and σ2
U = 1 we write

S/S̃ =
√

1 + (M + f(Xn+1))/S̃2 = 1 + M̃.

By Lagrange mean value theorem, we obtain form (2.6) and (2.10) that the remain-
der M̃ satisfies (2.6). Since xH ′(x) is bounded, this implies ∆ ≤ ∆̃+ o(n−1/2

∗ ). In
what follows we construct the bound ∆̃ = o(n−1/2

∗ ).
The bound sup{∆̃(x) : |x| ≥ log n∗} = o(n−1/2

∗ ) follows from the result of Theo-
rem 2 of [6], see also Theorem 2.1 in [4],

(2.11) sup
x
|P{U/σU ≤ x} −G(x)| = o(n−1/2

∗ ),
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and the fact that |G(x)| and |H(x)| decrease exponentially as |x| → ∞. Here we
also use σ2

U = 1 and (2.10).
Let |x| < log n∗. For |L̃S | ≤ 4/5 we use the inequalities A ≤ S̃ ≤ B, where A =

1 + L̃S/2− L̃2
S/4 and B = 1 + L̃S/2. Since, by (2.10), P{|L̃S | > 4/5} = o(n−1/2

∗ ),
we obtain ∆̃(x) ≤ max{∆A, ∆B}+ o(n−1/2

∗ ), where

∆A = sup
|x|≤log n∗

|P{U ≤ Ax} −H(x)|, ∆B = sup
|x|≤log n∗

|P{U ≤ Bx} −H(x)|.

It is easy to show (for instance, by using Chebyshev’s inequality) that P{|A−B| >
n
−8/15
∗ } = o(n−1/2

∗ ). Since xH ′(x) is bounded this implies ∆A ≤ ∆B + o(n−1/2
∗ ).

Finally, an application of (2.11) gives ∆B = o(n−1/2
∗ ) thus completing the proof

of the bound ∆̃ = o(n−1/2
∗ ).
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