
1. Introduction and Results

Let X1, . . . , XN , . . . be independent identically distributed random variables with
the common distribution function F , expectation EX1 = µ, and finite non-vanishing
variance σ2 = E (X1 − µ)2. Let

tN = XN − µ

σ̂N

denote Student’s t statistic, where

σ̂2
N = N−1

∑N

i=1
(Xi −XN )2 and XN = N−1(X1 + · · ·+ XN ).

It is well known that the statistic TN =
√

NtN is asymptotically standard normal,
i.e., as N →∞
(1.1) sup

x
|GN (x)− Φ(x)| → 0, where GN (x) = P {TN ≤ x}

denotes the distribution function of TN and where Φ(x) denotes the standard normal
distribution function.

The accuracy of (1.1) was studied by a number of authors, Helmers and van
Zwet (1982), Helmers (1985), Slavova (1985), Hall (1988), Praškova (1989), Friedrich
(1989), Bentkus and Götze (1996), Bentkus, Bloznelis and Götze (1996), etc.

The Berry–Esseen bound of order O(N−1/2) under the minimal moment condition
E |X1|3 < ∞ was obtained by Slavova (1985). Bentkus and Götze (1996) proved the
bound supx |GN (x) − Φ(x)| < cN−1/2β3/σ3, thus extending the classical result of
Esseen (1945) to the Studentized sums. Here β3 := E |X1 − µ|3.

A higher order approximation to Student’s t statistic was considered by Chung
(1946), Bhattacharya and Ghosh (1978), Chibisov (1980), Hall (1987), Bentkus,
Götze and van Zwet (1997), Putter and van Zwet (1998), etc.

Although increasingly general and precise, none of these results is optimal in the
sense of expansions for GN (x) being established under minimal conditions. Hall
(1987) proved the validity of a k-term Edgeworth expansion for Student’s t statistic
with remainder o(N−k/2), for every integer k, provided that E |X1|k+2 < ∞ and the
distribution F is non-singular. The moment conditions in Hall (1987) are the minimal
ones, but the smoothness condition on the distribution F of the observations is too
restrictive. What is perhaps more important, Hall’s result is only valid for a fixed
underlying distribution function. As a result, it cannot be applied to the bootstrap.

The aim of the present paper is to prove the validity of an expansion under minimal
conditions, in such a way that an extension to the bootstrap is straightforward. To
this end, we approximate GN (x) by the one-term Edgeworth expansion

HN (x) = Φ(x) + κ3

6
√

N
(2 x2 + 1)Φ′(x), κ3 = E (X1 − µ)3/σ3
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and construct explicit bounds for the remainder

∆N = sup
x
|GN (x)−HN (x)|.

The minimal smoothness condition which allows to prove the validity of one-term
Edgeworth expansion, i.e., to prove the bound ∆N = o(N−1/2), is that F is non-
lattice.

Theorem 1.1. Assume that E |X1|3 < ∞ and the distribution of X1 is non-lattice.
Then

(1.2) ∆N = o(N−1/2) as N →∞.

Remark. If µ = 0, then Theorem 1.1 remains valid if we replace ∆N by ∆̃N :=
supx |G̃N (x) −HN (x)|, where G̃N (x) := P {T̃N ≤ x} denotes the distribution func-
tion of the selfnormalized sum

T̃N = X1 + · · ·+ XN

(X2
1 + · · ·+ X2

N )1/2
.

Bootstrap. Given XN := {X1, . . . , XN}, let X∗
1 , . . . , X∗

N denote independent ran-
dom variables uniformly distributed in X. Write

T ∗N =
√

N
X∗

N −XN

σ̂∗N
, σ∗

2

N = N−1
N∑

i=1

(X∗
i −X∗

N )2

and let G∗N (x) := P {T ∗N ≤ x |XN} denote the conditional probability of the event
{T ∗N ≤ x} given XN , for x ∈ R.

Theorem 1.2. Suppose that E |X1|3 < ∞ and that the distribution of X1 is non-
lattice. Then as N →∞

(1.3) sup
x∈R

|G∗N (x)−GN (x)| = o(N−1/2) a. s.

Theorem 1.2 improves earlier results of Babu and Singh (1983), Helmers (1991)
and Putter and van Zwet (1998) where the bound (1.3) was established assuming
that F is non-lattice and under increasingly sharp moment conditions, the sharpest
to date being E |X1|3+ε < ∞, for some ε > 0, obtained in the latter paper.

Theorems 1.1 and 1.2 are consequences of an explicit upper bound for ∆N given
in Proposition 2.1, which is formulated in Section 2 below.

A usual proof of the validity of Edgeworth expansions for distribution functions
combines Esseen’s (1945) smoothing lemma and expansions of characteristic func-
tions. Such scheme applies easily to a linear statistic since its characteristic function
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has a comparatively simple multiplicative structure. Before to apply it to Student’s t
statistic we approximate t by a statistic which is conditionally linear in the first m ob-
servations X1, . . . , Xm, m < n, given the remaining part of the sample Xm+1, . . . , Xn.
Here m ≈ ln N . Bentkus and Götze (1996) used similar idea to estimate the charac-
teristic function of Student’s t statistic.

The rest of the paper is organized as follows. In Section 2 we prove Theorems 1.1
and 1.2. Several steps of the proofs which are more technical are deferred to Section
3.

Acknowledgment We are grateful to anonymous referee for remarks which im-
prove the presentation.

2. Proofs

In the beginning of this section we formulate Proposition 2.1. Then we prove
Theorems 1.1 and 1.2, which are corollaries of Proposition 2.1. The proof of our
main result, Proposition 2.1, is postponed until after the proofs of Theorems 1.1 and
1.2.

Write

ρu = 1− sup
{|E exp{i tX1}| : σ2/(9β3) ≤ |t| ≤ u/σ

}
, u > 0.

For the remainder of this paper we shall assume without loss of generality that
EX1 = 0 and σ2 = EX2

1 = 1.

Proposition 2.1. There exists an absolute constant c > 0 such that for each N =
2, 3, ... and each 1 < u < N1/6,

∆N ≤ c√
N

( 1

u
+ AN

ρ4
u

+ BN

)
,(2.1)

AN = N−1/2
(
1 + EX4

1 I{X2
1 ≤ N}),

BN = N−1/2β2
3 + E |X1|3I{X2

1 ≥ N}.

Proof of Theorem 1.1. It is easy to show that E |X1|3 < ∞ implies AN = o(1) and
BN = o(1) as N → ∞. Furthermore, by the non-lattice property of F , we have
ρu > 0, for every u > 1. Hence, one can find an increasing sequence uN → ∞ as
N → ∞ such that ρ−4

uN
AN = o(1) and, therefore, the right-hand side of (2.1) with

u = uN is of order o(N−1/2).

Proof of Theorem 1.2. We shall apply (2.1) to G∗N (x) conditionally, given XN . Denote
Y1 = (X∗

1 −XN )/σ̂N and write κ̂3 = E ∗Y 3
1 , β̂3 = E ∗|Y1|3, where E ∗ denotes the

conditional expectation given XN .
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Define
H∗

N (x) = Φ(x) + κ̂3

6
√

N
(2x2 + 1)Φ′(x).

Then by (2.1), we have for every 1 < u < N1/6,

∆∗
N := sup

x
|G∗N (x)−H∗

N (x)| ≤ c√
N

( 1

u
+

A∗N
ρ̂4

u
+ B∗

N

)
,(2.2)

A∗N =N−1/2
(
1 + E ∗Y 4

1 I{Y 2
1 ≤ N}),

B∗
N =N−1/2β̂2

3 + E ∗|Y1|3I{Y 2
1 ≥ N},

where we denote

ρ̂u = 1− sup
{|E ∗ exp{i t Y1}| : bN ≤ |t| ≤ cN

}
, bN = σ̂2

N/(9β̂3), cN = u/σ̂N .

In order to prove the theorem it suffices to show

(2.3) ∆∗
N = o(N−1/2) a.s. as N →∞.

Indeed, by the SLLN, κ̂3 → κ3 a.s. as N → ∞. Hence, supx |HN (x) − H∗
N (x)| =

o(N−1/2) a.s. and this in combination with (1.2) and (2.3) implies (1.3).
Let us show (2.3). Given a > 1 write

β3(a) = E |X1|3I{|X1| ≥ a}, β̂3(a) = E ∗|Y1|3I{|Y1| ≥ a},

and note that

A∗N ≤ 1√
N

+ a√
N

E ∗|Y1|3I{|Y1| ≤ a}+ β̂3(a) ≤ 2 a√
N

β̂3 + β̂3(a),

B∗
N ≤ N−1/2β̂2

3 + β̂3(a).
(2.4)

Where in the last inequality it is assumed that N is sufficiently large, namely N ≥ a2.
Since E |X1|3 < ∞, the SLLN implies that as N →∞,

β̂3 → β3 and lim sup
N

β̂3(a) ≤ β3(a) a.s.(2.5)

bN → b := σ2/(9β3) and cN → u/σ a.s.(2.6)

Furthermore, Singh (1981) showed that for any, but fixed d > 0,

sup
0≤|t|≤d

∣∣E exp{itX1} − E ∗ exp{itX∗
1}

∣∣ = o(1) a.s. as N →∞,
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see formula (2.4) ibidem. This fact in combination with the SLLN for σ̂N , bN and
cN , see (2.6), implies

(2.7) ρ̂u → ρu a.s. as N →∞,

for every fixed u > 0. Substitution of (2.4), (2.7) in (2.2) in combination with (2.5)
gives

lim sup
N

√
N ∆∗

N ≤ c
(
u−1 + β3(a)(1 + ρ−4

u )
)

a.s.,

for arbitrary, but fixed u > 1 and a > 0. Since E |X1|3 < ∞, β3(a) = o(1) as a →∞
and therefore the right-hand side can be made arbitrary small by choosing u and a
sufficiently large. We obtain (2.3) thus completing the proof of the theorem.

Proof of Proposition 2.1.
For clarity we start by outlining the main steps of the proof. We first use Lemma

3.1 below to replace the statistic TN by a statistic S0, which is conditionally linear in
the first m observations X1, . . . , Xm, given the remaining observations of the sample,
Xm+1, . . . , XN . With K0(x) = P {S0 ≤ x} denoting the distribution function of
S0, an application of Berry–Esseen’s smoothing lemma then reduces the problem of
bounding |K0(x)−HN (x)| to that of bounding the difference |K̂0(t)− ĤN (t)|, where
K̂0 and ĤN denote the Fourier transforms of K0 and HN respectively. The (condi-
tional) linearity of S0 produces a multiplicative component in K̂0 and in combination
with the smoothness condition (non-lattice condition on F ) guarantees an exponen-
tial decay of |K̂0(t)|, for large t, |t| ≥ c(F )

√
N . Finally we bound the difference

|K̂0(t)− ĤN (t)|, for |t| ≤ c(F )
√

N .
Here and in what follows we write c(a, b, ...) to denote a constant that depends

only on the quantities a, b, .... By c, c1, c2,... we denote generic absolute constants.
The expression exp{x} is abbreviated by e{x}. We shall write A ¿ B to denote
the fact that A ≤ cB. If Q denotes the sum q1 + · · · + qk and A ⊂ {1, . . . , k}
then write QA =

∑
j∈A qj . Given A = {i1, . . . , im} ⊂ {1, . . . , N} we write E i1,...,im

to denote the conditional expectation given {Xj , j /∈ A}. For a function h write
‖h‖ = supx |h(x)|.

Let g : R → R be a function which is infinitely many times differentiable with
bounded derivatives and such that

8

9
≤ g(x) ≤ 8

7
, for all x ∈ R, and g(x) = 1√

x
, for 7

8
≤ x ≤ 9

8
.

Write cg = ‖g‖+ ‖g′‖+ ‖g′′‖+ ‖g′′′‖.
First, we replace the random variables X1, . . . , XN by truncated random variables

Yi = a−1N−1/2XiI{X2
i ≤ a2N}, i = 1, . . . , N,
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where a is the largest non-negative solution of the equation

a2 = EX2
1 II {X2

1 ≤ a2N}.

Note that |Yi| ≤ 1 and EY 2
i = 1/N . Write

Y = Y1 + · · ·+ YN , η = η1 + · · ·+ ηN , ηi = Y 2
i − E Y 2

i ,

bk = E |Y1|k, M = Nb4, γ = N |EY1|, γ0 = N−1/2 E |X1|3I{X2
1 ≥ N/2}.

By Hölder’s inequality,

(2.8) b3 ≥ b
3/2
2 = N−3/2, M≥ N b2

2 = N−1, (b3N)2 ≤ N2b2b4 = M.

We may and shall assume that for a sufficiently small c0 > 0,

(2.9) β3/
√

N ≤ c0, ρ−4
u N−1 ≤ c0, γ0 ≤ c0.

Indeed, if the first inequality fails, the bound (2.1) follows from the simple inequality
∆N ¿ 1 + β3/

√
N ¿ β2

3/N . Hence, without loss of generality we may assume that
β3/

√
N ≤ c0. Then ∆N ¿ 1 + β3/

√
N ¿ 1 and each of the remaining inequalities

in (2.9) implies (2.1)
Using (2.9) and Lemma 3.2 we obtain 3/4 < a ≤ 1 and, hence, M≤ AN . There-

fore, in order to prove the proposition it suffices to show that

(2.10) ∆N ¿R+ T−1, where R = M/ρ4
u + γ0, T = u

√
N.

Furthermore, (2.9) implies ∆N ¿ 1 and therefore we may and shall assume without
loss of generality that M≤ c0, since otherwise (2.10) follows from ∆N ¿ 1 ¿M.

Let m be the smallest integer such that m ≥ 4ρ−1
u ln N . Write A = {1, . . . ,m}

and B = {m + 1, . . . , N} and denote VB = 1 + ηB − Y 2
B/N . Introduce the statistics

(2.11) S = Y g(1 + η − Y 2/N), S0 = Y g(VB) + ηAYBg′(VB).

By Lemma 3.1, see below, the probability P {|S0−TN | ≥ N−2/3} is not greater than
cM/ρ2

u + cγ0. Now Slutzky’s argument gives

∆N ≤ ‖K0 −HN‖+ N−2/3‖H ′
N‖+ cR.

But ‖H ′
N‖ ≤ c, by (2.9). Hence, in order to prove (2.1) it remains to show

‖K0 −HN‖ ¿ R+ T−1.
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We are going to apply Esseen’s (1945) smoothing lemma. We have

‖K0 −HN‖ ¿ I + T−1, where I =
∫

0≤|t|≤T

|K̂0(t)− ĤN (t)|
|t| dt.

Write I = I1 + I2 + I3, where

I1 =
∫

0≤|t|≤L

|K̂0(t)− E e{itS}|
|t| dt, I2 =

∫

0≤|t|≤L

|E e{itS} − ĤN (t)|
|t| dt,

I3 =
∫

L≤|t|≤T

|K̂0(t)− ĤN (t)|
|t| dt, L−1 = 4Nb3.

We shall bound I1, I2 and I3. An application of Lemma 3.3 gives I2 ¿R.
Let us show I1 ¿ ρ−2

u M+ N−2/3. By (3.2) and (3.3), see below,

|K̂0(t)− E e{itS}| ≤ |t| E |S0 − S| ¿ |t|ER, R = R1 + · · ·+ R5,

where the random variables Ri are given by (3.2) and (3.3). A simple calculation
shows ER ¿ N−1/2(ρ−2

u M+ N−2/3). We obtain,

I1 ¿ LER ¿
√

N ER ¿ ρ−2
u M+ N−2/3.

It remains to show that I3 ¿R. We have

I3 ≤ I4 + I5, I4 =
∫

L≤|t|≤T

|K̂0(t)|/|t|dt, I5 =
∫

L≤|t|≤T

|ĤN (t)|/|t|dt.

By (2.9), |ĤN (t)| ≤ e{−t2/2}(1 + |t|3). Therefore, I5 ≤ e{−(cL)2}. The inequality
e{−s2} ≤ s−2 (which holds for sufficiently large s) applied to s = cL gives I5 ¿
(Nb3)2 ¿M, see (2.8). Finally, we shall show

(2.12) I4 ¿ N−1.

Write I = I{|YB | ≤ N1/20}. We have

|K̂0(t)| ≤ E |ψ(t)|+ P {|YB | > N1/20}, ψ(t) = E A e{itS0}I.

By Chebyshev’s inequality, the probability is bounded by E |YB |40/N2 ¿ N−2, (here
we use the bound E |YB |k ≤ c(k), see, e.g., Bentkus and Götze (1996)). Furthermore,

|ψ(t)| ≤ |κ|m, κ = E 1 e{it(Y1g(VB) + η1YBg′(VB))}I.
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We complete the proof of (2.12) by showing

(2.13) |κ| ≤ 1− ρu/2.

Indeed, this inequality implies |κ|m ≤ e{−mρu/2} ≤ N−2, by the choice of m. Let
us prove (2.13). Expanding in powers of itη1YBg′(VB) we obtain

κ = E 1 e{itY1g(VB)}I+ R,(2.14)

|R| ≤ 2T E 1|η1YB |cgI ≤ 2 cgTN1/20−1 ≤ 2 cgN
−1/4 < ρu/4.

In the last step we used (2.9). Furthermore, write Z = N−1/2a−1X1g(VB). We have

∣∣E 1 e{itY1g(VB)} − E 1 e{itZ}∣∣ ≤ 2 T E |Y1g(VB)− Z|
(2.15)

≤ 2 T ‖g‖N−3/2a−3 E |X1|3I{X2
1 ≥ a2N} ≤ 6γ0N

−1/4 ≤ N−1/4 ≤ ρu/4.

Here we used inequalities T ≤ N3/4, 2a−3‖g‖ ≤ 6 and γ0 ≤ c0, see (2.9). But
E 1 e{itZ} ≤ ρu. Collecting (2.14) and (2.15) we obtain (2.13) thus completing the
proof of the proposition.

3. Appendix

Lemma 3.1. Assume that (2.9) holds. Let S0 be given by (2.11). Then

(3.1) P {|S0 − TN | ≥ N−2/3} ¿ R1, R1 = ρ−2
u M+ γ0.

Proof of Lemma 3.1. The inequalities

P
{√

N tN 6= Yp
1 + η − Y 2/N

} ≤ N P {X2
1 > a2N} ≤ (4/3)3γ0,

P
{ Yp

1 + η − Y 2/N
6= S

} ≤ P {|η| > 1/4}+ P {Y 2/N > 1/4}

and

P {|η| > 1/4} ≤ 16 η2 ≤ 32N E Y 4
1 , P {Y 2/N > 1/4} ≤ 4 N−1 E Y 2 = 4/N

imply P {TN 6= S} ¿ R1.
In order to prove (3.1) it remains to show P {|S − S0| > N−2/3} ¿ R1. Write

S = Y g(VB + ηA + W ), where W = −Y 2
A/N − 2YAYB/N . Expanding g in powers of

W we get |S − Y g(VB + ηA)| ≤ cg|Y W |, where |Y W | ≤ R1 + R2 + R3 and

(3.2) R1 = |YA|3/N, R2 = 3Y 2
A|YB |/N, R3 = 2|YA|Y 2

B/N.
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Furthermore, expanding g in powers of ηA we obtain

(3.3) |Y g(VB + ηA)− S0| ≤ cg(R4 + R5), R4 = |YAηA|, R5 = |YB |η2
A.

Then |S − S0| ≤ cg(R1 + · · ·+ R5) and, by Chebyshev’s inequality,

P {|S − S0| ≥ N−2/3}
¿ N2/3 ER1 + N2/3 ER2 + EN4/3R2

3 + E (N2/3R4)4/3 + N2/3 ER5.

A simple calculation shows that the right hand side is bounded by cR1 thus com-
pleting the proof of (3.1)

Lemma 3.2. Assume that γ0 ≤ 1/4. Then

(3.4) 1−
√

2 γ0 ≤ a ≤ 1,

In particular we have 3/4 ≤ a ≤ 1.

Proof of Lemma 3.2. Clearly, a2 ≤ σ2 = 1. For u ≥ 0, write φ(u) = EX2
1 I{X2

1 ≤
u N}. We have

(3.5) τ := 1− φ(1/2) = EX2
1 I{X2

1 > N/2} ≤
√

2 γ0 ≤ 1/2.

The function φ(u) is nondecreasing. Therefore, (3.5) implies φ(1−τ) ≥ φ(1/2) = 1−τ .
But, φ(1) ≤ σ2 = 1. Then there exists a solution of the equation u = φ(u) in the
interval 1 − τ ≤ u ≤ 1. This implies a2 ≥ 1 − τ and we obtain a ≥ a2 ≥ 1 − τ .
This inequality in combination with (3.5) yields (3.4) thus completing the proof of
the lemma.

Lemma 3.3. Assume that (2.9) holds and that M ≤ c0, where c0 is a sufficiently
small absolute constant. Then

I2 =
∫

0≤|t|≤L

|E e{itS} −HN (t)|
|t| dt ¿M+ γ0, L = (4b3N)−1.

Proof of Lemma 3.3.
Write R = E e{itS} −HN (t). Split I2 = I2,1 + I2,2, where

I2,1 =
∫

0≤|t|≤c

|t|−1|R|dt, I2,2 =
∫

c≤|t|≤L

|t|−1|R|dt.

Let us show that I2,1 ¿ M + γ0. For an infinitely many times differentiable
function with bounded derivatives h : R→ C write c(h) = ‖h′‖+ · · ·+ ‖hvi‖. Let ξ
be a standard normal random variable. By Lemma 3.1 of Bloznelis and Putter (1999),

|Eh(S)− Eh(ξ) + N

6
EY 3

1 (3Eh′(ξ) + 2Eh′′′(ξ))| ¿ c(h)(M+ γ0).
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Choosing h(x) = e{itx} we obtain form this bound that |R| ¿ (|t|+· · ·+|t|6)(M+γ0).
Clearly, the last inequality implies I2,1 ¿M+ γ0.

The proof of the bound I2,2 ¿M+γ0 is similar to that of Lemma 3.1 of Bloznelis
and Putter (1999), but somewhat more involved. Now the remainder |R| of the
expansion needs to be integrable with respect to the measure dt/|t| over the region
{|t| > c}. In order to construct such an estimate for the remainder we use the
same argument as Bentkus and Götze (1996). That is, we approximate E e{itS} by
the characteristic function of a statistic which is conditionally linear in the first m
observations X1, . . . , Xm given the remaining part of the sample Xm+1, . . . , Xn. Here
m ≈ Nt−2 ln t. The detailed calculations are given in Bloznelis and Putter (1998).
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