
1. Introduction and results

Let X, X1, X2, . . . be independent and identically distributed centered random
variables with EX2 < ∞. By the central limit theorem, the distributions Fn of the
normalized sums Sn = n−1/2(X1 + · · ·+ Xn) converge to the normal distribution
N(0, σ2), where σ2 = EX2

1 . Assume that the distribution of X has an absolutely
continuous component (with respect to Lebesgue’s measure λ). Then the distri-
bution Fn has an absolute continuous component too. Moreover, this component
becomes dominant as n →∞, and it’s density pn converges to the density g of the
limiting normal distribution N(0, σ2) in L1 metric

(1.1)
∫ +∞

−∞
|pn(x)− g(x)|dx → 0.

This version of the local limit theorem is due to Prokhorov (1952), see also Ibrag-
imov and Linnik (1971). Prokhorov’s local limit theorem extends to random vec-
tors with values in a finite-dimensional Euclidean space, see Mamatov and Halikov
(1964).
Note that (1.1) ensures the normal approximation of the probabilities

P{Sn ∈ B} uniformly over the class of all Borel sets:

(1.2) sup{|P{Sn ∈ B} −G(B)| : B is a Borel set} → 0.

Here G denotes the limiting normal distribution. Furthermore, it is easy to see
that (1.1) and (1.2) are equivalent. Sazonov and Ulyanov (1979), Senatov (1980),
Sazonov (1981) provide bounds for the convergence rate in (1.2) in the central
limit theorem in Rk.
In the present paper we study the validity of (1.2) in the case of infinite-

dimensional central limit theorem (CLT). Let E be a separable Banach space
with the norm ‖ · ‖. Given a signed measure µ, defined on the class of Borel sets
B(E) of E, let |µ| denote the total variation

|µ| = sup{|µ(B)| : B ∈ B(E)}.

Let X1, X2, . . . be independent random variables with values in E and with the
common distribution F . Assume that the distributions Fn of Sn = n−1/2(X1 +
· · ·+Xn) converge weakly to a Gaussian distribution G. We are interested in what
extra condition on F would ensure the validity of (1.2). Yu. A. Davydov (1989)
poses the question whether the infinite-dimensional analogue of Prokhorov’s local
limit theorem with λ replaced by G holds: does the assumption that F has a
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component which is absolutely continuous with respect to G implies |Fn −G| → 0.
In the present paper we give the negative answer by constructing an example of l2-
valued random vector which satisfies CLT. Although its distribution F is absolutely
continuous with respect to the limiting distribution G, the total variation |Fnk

−G|
is bounded from below by a positive constant for some sequence nk → ∞, see
Theorem below.
Our result is negative. There are also positive results related to (1.2) for the

infinite-dimensional CLT. Rachev and Yukich (1989) showed the bound |Fn−G| ≤
2−3/2n−1/2 subject to the condition ν3(F,G) ≤ 1 + 2(3/2)3/2, where νt(F, G) =
sup{|h|t|(F − G) ∗ Gh| : h ∈ R}. Here µ ∗ κ denotes the convolution of signed
measures µ and κ, and Gh(B) := G(h−1B), for B ∈ B(E). Clearly, the above
mentioned result provides a sufficient condition for (1.2) to hold. However the
relation between infinite-dimensional distributions F and G imposed by this con-
dition is rather complex, see, e.g., Bloznelis (1989). Note that this is not the case
for finite-dimensional F and G because in this case the quantity νt(F, G) can be
easily handled using the differentiability of the density function (with respect to
Lebesgue’s measure) of the Gaussian distribution Gh. In particular, νt is compa-
rable with Zolotarev’s ζt metric, for E = Rk, see Rachev and Yukich (1989).
Let Y be a centered Gaussian random variable with values in the space l2 (= the

space of real sequences x = (x1, x2, . . . ) such that ‖x‖2 =
∑

x2
i < ∞). We assume

that the distribution G of Y is infinite-dimensional, that is, P{Y ∈ L} = 0 for
every finite-dimensional subspace L ⊂ l2.

Theorem. For every infinite-dimensional Gaussian random variable Y with val-
ues in l2 there exists a random variable X1 with values in l2 such that

(1.3) EX1 = 0, covX1 = covY, E‖X‖r < ∞, for every r > 0,

the distribution F of X1 is absolutely continuous with respect to the distribution
G and

(1.4) lim sup
n

|Fn −G| > 0.

Note that (1.3) is sufficient for the CLT (the weak convergence Fn ⇒ G).
Remark. Theorem extends to random variables with values in an arbitrary

(infinite-dimensional) separable Banach space.

2. Proof

Before the proof we introduce necessary notation. Let R∞ denote the linear space
of real sequences y = (y1, y2, . . . ) and πk : R∞ → R denote the k-th coordinate
projection, so that πk(y) = yk. The space R∞ is a measurable space with respect to
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the σ-algebra B generated by the cylindric sets π−1
1 (B1)∩π−1

2 (B2)∩· · ·∩π−1
k (Bk),

where, B1, . . . , Bk, k = 1, 2, . . . denote Borel subsets of R. By e1, e2, . . . we denote
the coordinate vectors of R∞ so that πk(ei) = 0 for k 6= i and πi(ei) = 1. For
y ∈ R∞ we also write y =

∑
i yie

i.
Let η1, η2, . . . be independent standard normal random variables. The sequence

η = (η1, η2, . . . ) is a random vector with values in R∞. Let N denote its distribu-
tion (a cylindric probability distribution on R∞).

Proof. The proof consists of three steps. The first step provides a construction of
a probability distribution F on R∞ which is absolutely continuous with respect to
N (N -absolutely continuous for short) and satisfies (2.5) and (2.6). In the second
step we show (1.4) for sums of R∞- valued random variables with the distribution
F . In the third step using the canonical representation of an l2-valued Gaussian
random variable we construct a linear operator R∞ → l2. The image of F provides
the principal component of the distribution of the random variable X1 from the
theorem.
Step 1. In order to keep the presentation simple we prove a variant of the theo-

rem for a distribution F which has an N -absolutely continuous component only.
Obvious changes that lead to N -absolutely continuous distribution are indicated
at the end of the proof.
Introduce the probability distribution on R∞

(2.1) F = NA +
∑

i≥1

pi(δxi + δ−xi)/2.

Here, for xi > 0, we denote by δxi (respectively δ−xi) the unit mass placed at the
point xie

i (respectively −xie
i). Furthermore, NA denotes the restriction of N on

the set A
A = {x ∈ R∞ : |πi(x)| ≤ ai, i = 1, 2, . . . },

that is, NA(B) := N (A∩B), for any B ⊂ B. Here ai = 4
√

ln(i + 2) for i ≥ 2 and
we choose 0 < a1 < 1 such that N (A) = 1/2. To see that such a choice is possible
write N (A) = P1(a1)P2, where P1(a) = P{|η1| ≤ a} and

P2 =
∏

i≥2

P{|ηi| ≤ ai} ≥ 1−
∑

i≥2

P{|ηi| > ai}

and note that P1(1) ≥ 0.59 and P2 ≥ 0.99.
Introduce the sequence

σ2
i = Eη2

i I{η ∈ A} = N (A)E(η2
i | η2

i ≤ a2
i ), i ≥ 1.

Clearly, σ2
i → N (A) = 0.5 as i → ∞. From the fact that the function x →

E(η2
1 | η2

1 ≤ x2) is increasing for x > 0, we conclude that the sequence {σ2
i } increases
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together with the sequence {ai} for i = 1, 2, . . . . Moreover, a simple calculation
shows that σ2

2 ≥ 1/3. Therefore

(2.2) σ2
i < 0.5, for i ≥ 1, and σ2

i > 1/3, for i ≥ 2.

We complete the description of the probability distribution (2.1) by specifying the
numbers pi, xi > 0. Denote Nk = 2k+1 and introduce the sequence {nk}, where
n1 = 1 and nk = 24(k+5), for k ≥ 2. Write

Ik = {i : nk ≤ i < nk+1}, k = 1, 2, . . . ,

and put, for i ∈ Ik,

pi = x−2
i (1− σ2

i ),(2.3)

xi = 4Nkai(1 + ∆i),(2.4)

where the numbers ∆i > 0 are specified in what follows. The function

f(∆nk
, . . . , ∆nk+1−1) =

∑

i∈Ik

1− σ2
i

16Nka2
i (1 + ∆i)2

is continuous and decreasing with respect to each of it’s arguments and satisfies

f(0, . . . , 0) > 1 > f(n1/2
k+1, . . . , n

1/2
k+1).

The first inequality follows from the inequality 1−σ2
i > 1/2, see (2.2). The second

inequality is obvious. Therefore, one can find 0 < ∆i < n
1/2
k+1, i ∈ Ik, such that

f(∆nk
, . . . , ∆nk+1−1) = 1.

We use these values of ∆i to define xi by means of (2.4). From (2.3) and (2.4) we
obtain ∑

i∈Ik

pi = N−1
k f(∆nk

, . . . , ∆nk+1−1) = N−1
k

This implies
∑

i pi = 1/2 and, therefore, the formula (2.1) defines indeed a prob-
ability distribution on R∞.
Let ξ = (ξ1, ξ2, . . . ) be a random element with values in R∞ and with the distri-

bution F . Note that (2.3) implies

(2.5) Eξ2
i = σ2

i + x2
i pi = 1, i ≥ 1.
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Since the distribution F is symmetric, we have

(2.6) Eξi = 0, and Eξiξj = 0, 1 ≤ i < j.

Step 2. Let ξ1, ξ2, . . . be independent random variables with values in R∞ and
with the common distribution F . Write S∗r = ξ1 + · · ·+ ξr. We shall show that

(2.7) lim sup
k→∞

(N (Tk)−P{S∗Nk
∈
√

Nk Tk}
) ≥ (1− e−1)/2,

for cylindric sets Tk = ∩i∈Ik
π−1

i ([−ai, ai]). Let L(y) =
∑

i∈Ik
πi(y)ei denote the

projection of R∞ on the linear subspace Rk generated by the coordinate vectors
ei, i ∈ Ik. The Borel σ-algebra of Rk is denoted by B(Rk). By H we denote
the probability distribution of the random vector Z = L(ξ) =

∑
i∈Ik

ξie
i which

takes values in Rk. Let Z1, Z2, . . . be independent random vectors in Rk with the
common distribution H. By Hr we denote the r-fold convolution of H. That is,
P{Z1 + · · ·+ Zr ∈ B} = Hr(B), for B ⊂ B(Rk). In particular, the probability in
(2.7) equals

(2.8) P{S∗N ∈
√

N Tk} = HN (V ), for V =
√

NL(Tk).

Here and below we write N = Nk for brevity. In order to prove (2.7) we shall
show that

(2.9) HN (V ) ≤ (1 + (1−N−1)N )/2.

Indeed, this inequality together with limk→∞N (Tk) = 1 implies (2.7).
Let us prove (2.9). Split H = H1 + H2, where

H1 =
∑

i∈Ik

pi(δxi + δ−xi)/2,

and where H2 = H−H1 is a positive measure with the support set L(Ak) = L(Tk).
Note that, for i = 1, 2, the total variation |Hi| = sup{Hi(B) : B ∈ B(Rk)} satisfy

|H1| =
∑

i∈Ik

pi = N−1, |H2| = 1− |H1| = 1−N−1.

Let us write the probability of (2.8) in the following form

(2.10) HN (V ) = (H1 + H2)N (V ) = HN
2 (V ) +

N∑

j=1

(
N

j

)
Hj

1HN−j
2 (V ),



7

where HiHj denotes the convolution Hi ∗Hj . That is, for B ∈ B(Rk),

HiHj (B) = Hi ∗Hj (B) =
∫

Rk

Ix+y∈BHi(dx)Hj(dy).

Note that the first summand in the right of (2.10) does not exceed

HN
2 (V ) ≤ |HN

2 | = |H2|N = (1−N−1)N .

Now consider the measure Hj
1HN−j

2 in the case where j is odd. Clearly, Hj
1(B) = 0,

for every Borel set B ∈ B(Rk) such that B ∩B0 = ∅, where

(2.11) B0 =
{∑

i∈Ik

rixie
i : ri ∈ {0,±1,±2, . . . }, ri 6= 0 for some i ∈ Ik

} ⊂ Rk.

Furthermore, the support (N − j)L(Tk) of the measure HN−j
2 is a subset of

N L(Tk). Since B0 does not contain the zero vector 0 ∈ Rk and, by (2.4),
xi > 4Nai we conclude that the sets B0 +N L(Tk) and V do not intersect. There-
fore,

(2.12) Hj
1HN−j

2 (V ) = 0.

Now consider the measure Hj
1HN−j

2 for even j. Split Hj
1 = Q + R, where Q(B) =

Hj
1(0 ∩ B), for B ∈ B(Rk). Arguing as in the proof of (2.12) we conclude that

Hj
1HN−j

2 (V ) = QHN−j
2 (V ). Furthermore, the identity |Q| = Hj

1(0) and the
inequality (which is proved at the end of this step)

(2.13) Hj
1(0) ≤ |Hj

1 |
(

j

j/2

)
2−j = 1

Nj

(
j

j/2

)
2−j

implies

(2.14) Hj
1HN−j

2 (V ) = QHN−j
2 (V ) ≤ |Q| |HN−j

2 | =
(

j

j/2

)
2−j 1

Nj
(1− 1

N
)N−j .

This inequality in combination with (2.12) and (2.10) yields

HN (V ) ≤ (1− 1

N
)N +

N/2∑

i=1

(
N

2i

)
( 1

N
)2i(1− 1

N
)N−2i

(
2i

i

)
2−2i.

Since
(

j
j/2

)
2−j ≤ 2−1 the right sum is less than

N∑

j=2

(
N

j

)
( 1

N
)j(1− 1

N
)N−j 1

2
≤ 1

2
(1− (1− 1

N
)N ).
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We arrive at (2.9).
Let us prove (2.13). Given an even number j, let κ1, . . . ,κj be independent

random vectors with values in Rk and with the common distribution P{κ1 ∈
B} = |H1|−1H1(B), for B ∈ B(Rk). Write

Ii = Iκi∈M , M = {xie
i : i ∈ Ik} ⊂ Rk.

Clearly, I1, . . . , Ij are independent Bernoulli random variables with the success
probability P{Ii = 1} = 1/2. The event {κ1 + · · · + κj = 0} is a particular case
of the event {I+1 + · · ·+ I+j = j/2}. Therefore,

p∗ := P{κ1 + · · ·+ κj = 0} ≤ P{I1 + · · ·+ Ij = j/2} =
(

j

j/2

)
2−j .

This implies (2.13), since Hj
1(0) = |H1|jp∗.

Step 3. Given l2-valued Gaussian random variable Y one can find a sequence
of orthonormal vectors {di} ⊂ l2 such that almost surely Y =

∑
i siYid

i, where
Y1, Y2, . . . is a sequence of independent standard normal random variables and
{si} is a sequence of square summable non-negative integers. Choose an integer
sequence rk ↑ +∞ such that srk

xk < 1 for k = 1, 2, . . . . We can assume that
ηk = Yrk

. Define the random variable X =
∑

i Xid
i with values in l2, by putting

Xi = siYi for i 6= {rk} and Xi = siξi for i ∈ {rk}. Clearly, the random variable
X satisfies (1.3) and (1.4).
In order to obtain a distribution which is absolutely continuous with respect to G

we replace the point masses δxi and δ−xi by measures Hxi and H−xi that concen-
trate around the points xie

i and −xie
i respectively and are absolutely continuous

with respect to N . In this way one obtains a distribution on R∞ which satisfies
(2.5) and (2.6). Further steps of the proof remains unchanged.

Appendix

Here we provide details of the proof in the case of G-absolutely continuous dis-
tribution F . In Step 4. we construct a probability distribution F1 on R∞ such
that: F1 is absolutely continuous with respect to N , the first and the second order
moments of F1 and N coincide and

lim sup
N

|FN
1 (
√

N TN )−N (TN )| > 0,

for a sequence of cylindric sets TN ⊂ R∞. This inequality is verified in Step 5.
Step 4. Let the sequences {nk}, {Nk} and sets Ik ⊂ N be the same as above. Let

a > 0 denote the solution of the equation E(η2
1 | η2

1 ≤ a2) = 1/2. For k = 1, 2, . . .
introduce the sets Ak ⊂ R∞

Ak = A′k ∩A′′k , A′k =
⋂

i∈Ik+1

π−1
i ([−a, a]), A′′k =

⋂

j∈N\Ik+1

π−1
j ([−aj , aj ]).
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Define positive measures Gk on R∞. For a Borel set B ∈ B put

Gk(B) = m−1
k N (Ak ∩B), where mk =

∏

i∈Ik+1

P{η2
i ≤ a2

i }
P{η2

i ≤ a2} .

Clearly, |Gk| = Gk(Ak) = m−1
k N (Ak) = N (A) = 1/2.

Define the probability distribution on R∞

F1 = NA +
∑

i≥1

pi

2
(Hxi + H−xi),

where for i ∈ Ik we put Hxi(B) = Gk(B−xie
i) (respectively H−xi = Gk(B+xie

i)),
for B ∈ B. The sequences of positive numbers {pi} and {xi} are determined below.
Since F1 is a probability distribution we have |F1| = 1. This together with the
identities |NA| = 1/2 and

|Hxi | = |H−xi | = |Gk| = 1/2, i ∈ Ik, k = 1, 2, . . .

imply
∑

i pi = 1. The last identity is satisfied provided that

(3.2)
∑

i∈Ik

pi = 2−k, k = 1, 2, . . . .

We shall construct the sequence {pi} so that (3.2) holds.
Firstly, define pi and xi for i ∈ I1. Put

p−1
i = 2(n2 − n1), 1 ≤ i < n2.

This yields (3.2) for k = 1. Given i ∈ I1, we define xi. The function

gi(x) = N (A)E
(
(ηi + x)2

∣∣ η2
i ≤ a2

i

)− σ2
i

is continuous, gi(0) = 0 and gi(x) → +∞ as x → ∞. Therefore, there exists
xi > 0 such that

(3.3) gi(xi) = p−1
i (1− 2σ2

i ).

Here we use the fact that 1− 2σ2
i > 0, see (2.2).

Let us show that

(3.4) v2
i = 1, where v2

i =
∫

y2
i dF1(y).
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Here yi = πi(y) denotes the i-th coordinate of y = (y1, y2, . . . ) ∈ R∞. Denote

sij =
∫

y2
i dHxj

(y) =
∫

y2
i dH−xj

(y).

We have

(3.5) v2
i = σ2

i +
∞∑

j=1

pjsij .

For i ∈ I1 and j 6= i we have sij = σ2
i . Therefore, the right sum in (3.5) equals

σ2
i (1− pi). From (3.5) we obtain

v2
i = σ2

i + σ2
i (1− pi) + pisii.

Finally, (3.4) follows from the identities (3.3) and sii = gi(xi)+σ2
i . For convenience

we include the proof of the last identity

sii =
∫

(xi + yi)2dG1(y)

= G1(A1)

P{η2
i ≤ a2

i }
E(ηi + xi)2Iη2

i≤ai

= G1(A1)E((ηi + xi)2
∣∣ η2

i ≤ a2
i )

= gi(xi) + σ2
i .

In the last step we use G1(A1) = N (A).
Let k = 2, 3, . . . . For i ∈ Ik, write

pi = 2rix
−2
i ,(3.6)

xi = 4Nkai(1 + ∆i),(3.7)

ri = 1− 2σ2
i + 21−k(σ2

i − 4−1),

where the positive numbers ∆i are specified in what follows. The function

h(∆nk
, . . . , ∆nk+1−1) =

∑

i∈Ik

ri

16 a2
i (1 + ∆i)2Nk

.

is continuous. Using the inequalities (which follow from (2.2)) 6−12−k < ri < 1,
it is easy to show that

h(n1/2
k+1, . . . , n

1/2
k+1) < 1 < h(0, . . . , 0).
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Therefore, there exist numbers 0 < ∆i < n
1/2
k+1, for i ∈ Ik, such that

(3.8) h(∆nk
, . . . , ∆nk+1−1) = 1.

We use these numbers ∆i to define xi in (3.7). It follows from (3.6), (3.7) and
(3.8) that (3.2) holds

∑

i∈Ik

pi = 2

Nk
h(∆nk

, . . . , ∆nk+1−1) = 2

Nk
= 2−k.

Let us show (3.4), for i ∈ Ik. To this aim, given i ∈ Ik, we evaluate sij , j ∈ N.
We have

sij = σ2
i , j ∈ N \ Ik−1, j 6= i,

sij = Gk−1(Ak−1)E(η2
i

∣∣ η2
i ≤ a2) = 4−1, j ∈ Ik−1,

sii = Gk(Ak)E
(
(ηi + xi)2

∣∣ η2
i ≤ a2

i

)
= σ2

i + x2
i /2.

Here we use the identities Gk(Ak) = N (A) = 1/2, for every k = 1, 2, 3, . . . .
Collecting these expressions in (3.5) we obtain (3.4).
Step 5. Let Z = (Z1, Z2, . . . ) be a random variable with values in R∞ and with

the distribution F1. By the construction of the distribution F1 we have EZ2
i = 1

and EZi = 0 and EZiZj = 0, for j > i ≥ 1. The latter two identities follows from
the fact that F1 is symmetric.
Let Z1, Z2, . . . be independent random variables with values in R∞ and with the

common distribution F1. Write S∗r = Z1 + · · ·+ Zr. We shall show that

(3.9) lim sup
k→∞

(N (Tk)−P{S∗Nk
∈

√
Nk Tk}) ≥ (1− e−1)/2.

By H̃ we denote the image L(F1) of the distribution F1. We have H̃ = H̃1 + H̃2,
where

H̃1 =
∑

i∈Ik

pi

2

(
L(Hxi) + L(H−xi)

)

and H̃2 = L(F1)− H̃1. Here L(Hxi) denotes the image of the measure Hxi . Note
that for large i we have ai > a. We assume that k is large enough so that the latter
inequality holds. Therefore, the support of the measure H̃2 is the set L(Tk)(= T ∗k
for brevity). The support of the measure L(Hxi) is the set xje

j + T ∗k Note that

|H̃1| =
∑

i∈Ik

pi

2
(|Hxi |+ |H−xi |)

=
∑

i∈Ik

pi

2
= 1

2k+1
= 1

Nk
.
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Therefore,

(3.10) |H̃2| = 1− |H̃1| = 1−N−1
k .

In order to prove (3.9) we proceed as in the proof of (2.7). That is, we shall show
(2.9). To this aim we prove that (2.12) and (2.14) holds in the present situation
as well.
In what follows B denotes a Borel set in Rk. To prove (2.12) note that, for j odd,

H̃j
1(B) = 0, provided that B∩B∗

j = ∅, where B∗
j = B0+jT ∗k , and where B0 ⊂ Rk is

defined by (2.11). Similarly, H̃N−j
2 (B) = 0, for every B such that B∩(N−j)T ∗k =

∅. Therefore, H̃j
1H̃N−j

2 (B) = 0, provided that B ∩ (B∗
j + (N − j)T ∗k ) = ∅. Since

|xi| > 4Nai, the sets B∗
j + (N − j)T ∗k and V =

√
N T ∗k do not intersect. Thus,

(2.12) follows.
Let us prove (2.14). For even j we have H̃j

1(B) = 0, provided that B∩(jT ∗k∪B∗
j ) =

∅. Split H̃j
1 = Q̃ + R̃, where Q̃ (respectively R̃) denote the restriction of H̃j

1 on
the set jT ∗k (respectively B∗

j ). In particular, Q̃(B) = H̃j
1(B ∩ jT ∗k ). The same

argument as above shows R̃ H̃N−j
2 (V ) = 0. Therefore,

(3.11) H̃j
1H̃N−j

2 (V ) = (Q̃ + R̃)H̃N−j
2 (V ) = Q̃H̃N−j

2 (V ).

Proceeding as in the proof of (2.13) we obtain |Q̃| ≤ N−j
(

j
j/2

)
2−j . It follows from

this inequality, (3.11) and (3.10) that

H̃j
1H̃N−j

2 (V ) ≤ |Q̃| |H̃2|N−j ≤
(

j

j/2

)
2−j 1

Nj
(1− 1

N
)N−j .

We arrive at (2.14), thus, completing the proof of (3.9).
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