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Abstract. Let T be a symmetric statistic based on sample of size n drawn without
replacement from a finite population of size N , where N > n. Assuming that the
linear part of Hoeffding’s decomposition of T is nondegenerate we construct a one
term Edgeworth expansion for the distribution function of T and prove the validity of
the expansion with the remainder O(1/n∗) as n∗ →∞, where n∗ = min{n, N −n}.

1. Introduction and results

1.1. Introduction. Given a set X = {x1, . . . , xN}, let (X1, . . . , XN ) be a
random permutation of the ordered set (x1, . . . , xN ). We assume that the random
permutation is uniformly distributed over the class of permutations. Let

T = t(X1, . . . , Xn)

denote a symmetric statistic of the first n observations X1, . . . , Xn, where n < N .
That is, t is a real function defined on the class of subsets {xi1 , . . . , xin

} ⊂ X
of size n and we assume that t(xi1 , . . . , xin) is invariant under permutations of
its arguments. Since X1, . . . , Xn represents a sample drawn without replacement
from the population X , we call T a symmetric finite population statistic.
We shall consider symmetric finite population statistics which are asymptotically

normal when n∗ and N tend to∞, where n∗ = min{n,N−n}. In the simplest case
of linear statistics the asymptotic normality was established by Erdős and Rényi
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(1959) under fairly general conditions. The rate in the Erdős-Rényi central limit
theorem was studied by Bikelis (1972). Höglund (1978) proved the Berry–Esseen
bound. An Edgeworth expansion was established by Robinson (1978), see also
Bickel and van Zwet (1978), Schneller (1989), Babu and Bai (1996).
Asymptotic normality of nonlinear finite population statistics was studied by

Nandi and Sen (1963), who proved a central limit theorem for U–statistics. The
accuracy of the normal approximation of U–statistics was studied by Zhao and
Chen (1987, 1990), Kokic and Weber (1990). A general Berry–Esseen bound
for combinatorial multivariate sampling statistics (including finite population U–
statistics) was established by Bolthausen and Götze (1993). Rao and Zhao (1994),
Bloznelis (1999) constructed Berry-Esseen bounds for Student’s t statistic. One
term asymptotic expansions of nonlinear statistics, which can be approximated
by smooth functions of (multivariate) sample means have been shown by Babu
and Singh (1985), see also Babu and Bai (1996). For U–statistics of degree two
one term Edgeworth expansions were constructed by Kokic and Weber (1990).
Bloznelis and Götze (1999, 2000) established the validity of one term Edgeworth
expansion for U–statistics of degree two with remainders o(1/

√
n∗) and O(1/n∗).

A second order asymptotic theory for general asymptotically normal symmetric
statistics of independent and identically distributed observations was developed in
a recent paper by Bentkus, Götze and van Zwet (1997), which concludes a num-
ber of previous investigations of particular statistics: Bickel (1974), Callaert and
Janssen (1978), Götze (1979), Callaert, Janssen and Veraverbeke (1980), Serfling
(1980), Helmers (1982), Helmers and van Zwet (1982), van Zwet (1984), Bickel,
Götze and van Zwet (1986), Lai and Wang (1993), etc. This theory is based on
the representation of symmetric statistics by sums of U–statistics of increasing or-
der via Hoeffding’s decomposition. Another approach, see, e.g., Chibisov (1972),
Pfanzagl (1973), Bhattacharya and Ghosh (1978), which is based on Taylor ex-
pansions of statistics in powers of the underlying i.i.d. observations, focuses on
smooth functions of observations.
In view of important classes of applications (jackknife histogram, see, Wu (1990),

Shao (1989), Booth and Hall (1993) and subsampling, see, Politis and Romano
(1994), Bertail (1997), Bickel, Götze and van Zwet (1997)) we want to develop
in this paper a second order asymptotic theory similar to that of Bentkus, Götze
and van Zwet (1997) for simple random samples drawn without replacement from
finite populations.
The starting point of our asymptotic analysis is the Hoeffding decomposition

(1.1) T = ET +
∑

1≤i≤n

g1(Xi) +
∑

1≤i<j≤n

g2(Xi, Xj) + . . .

which expands T into the sum of mutually uncorrelated U -statistics of increasing
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order

(1.2) Uk =
∑

1≤i1<···<ik≤n

gk(Xi1 , . . . , Xik
), k = 1, . . . , n.

Here the symmetric kernels gk, k = 1, . . . , n, are centered, Egk(X1, . . . , Xk) = 0,
and satisfy the orthogonality condition

(1.3) E(gk(X1, . . . , Xk)|X1, . . . , Xk−1) = 0 almost surely.

It follows from (1.3) that U1, . . . , Un are orthogonal in L2 (i.e., EUkUr = 0, for k 6=
r). Furthermore, the condition (1.3) ensures the uniqueness of the decomposition
1.1) in the following sense: given another decomposition like 1.1) with symmetric
kernels, say g′k, satisfying (1.3), we always have gk = g′k.
Let us mention briefly that given k, the function gk(xi1 , . . . , xik

) can be expressed
by a linear combination of conditional expectations E(T −ET |X1 = xr1 , . . . , Xj =
xrj ) where j = 1, . . . , k and {xr1 , . . . , xrj} ⊂ {xi1 , . . . , xik

}. The expressions for
g1 and g2 are provided by (1.5) below. For larger k = 3, . . . , n, the expressions are
more complex and we refer to Bloznelis and Götze (2001) where a general formula
for gk is derived.
We shall assume that the linear part U1 =

∑
g1(Xi) is nondegenerate. That

is, σ2 > 0, where σ2 = Varg1(X1). In the case where, for large n∗, the linear
part dominates the statistic we can approximate the distribution of T by a normal
distribution, using the central limit theorem. Furthermore, the sum of the linear
and quadratic term,

U = ET +
∑

1≤i≤n

g1(Xi) +
∑

1≤i<j≤n

g2(Xi, Xj)

typically provides a sufficiently precise approximation to T so that one term Edge-
worth expansions for the distribution functions of T and U are, in fact, the same.
Therefore, in order to construct a one term Edgeworth expansion of T it suffices
to find such expansion for U . In particular, we do not need to evaluate all the
summands of the decomposition 1.1), but (moments of) the first two terms only,
cf. (1.4) below. Similarly, the two term Edgeworth expansion for the distribution
function of T could be constructed using the approximation T ≈ ET +U1+U2+U3,
etc. An advantage of such an approach is that it provides (at least formal) Edge-
worth expansion for an arbitrary symmetric finite population statistic T no matter
whether it is a smooth function of observations or not. In the present paper we
construct the one term Edgeworth expansion for the distribution function of T
and prove the validity of the expansion with the remainder O(1/n∗).
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A simple calculation shows that the variance of the linear part satisfies

Var
∑

1≤i≤n

g1(Xi) = σ2τ2 N

N − 1
, τ2 = Npq, p = n/N, q = 1− p.

Note that n∗/2 ≤ τ2 ≤ n∗. We approximate the distribution function

F (x) = P{T ≤ ET + στx},
by the one term Edgeworth expansion

(1.4) G(x) = Φ(x)− (q − p) α + 3 κ

6 τ
Φ(3)(x)

and provide an explicit bound for the remainder

∆ = sup
x∈R

|F (x)−G(x)|,

where

α = σ−3Eg3
1(X1) and κ = σ−3τ2Eg2(X1, X2)g1(X1)g1(X2)

and where

(1.5) g1(Xi) = N − 1

N − n
E(T ′ |Xi), T ′ = T −ET,

g2(Xi, Xj) = N − 2

N − n

N − 3

N − n− 1

(
E(T ′ |Xi, Xj)− N − 1

N − 2
(E(T ′|Xi) + E(T ′|Xj))

)
.

Furthermore, Φ denotes the standard normal distribution function, and Φ(3) de-
notes the third derivative of Φ.
Before to formulate our main results, Theorems 1.1 and 1.2, we introduce the

smoothness conditions, which together with the moment conditions, ensure the
validity of the expansion (1.4).
1.2. Smoothness conditions. Given a general symmetric statistic T we ap-

proximate it by a U -statistic via Hoeffding’s decomposition. In order to control
the accuracy of such an approximation we use moments of finite differences of T .
Introduce the difference operation

DjT = t(X1, . . . , Xj , . . . , Xn)− t(X1, . . . , X
′
j , . . . , Xn), X ′

j = Xn+j ,

where Xj is replaced by X ′
j in the second summand, for j ≤ n∗. Higher order

difference operations are defined recursively:

Dj1,j2T = Dj2
(
Dj1T

)
, Dj1,j2,j3T = Dj3

(
Dj2(Dj1T )

)
, . . . .

It is easy to see that the difference operations are symmetric, i.e., Dj1,j2T =
Dj2,j1T , etc. Given k < n∗ write

δj = δj(T ) = E
(
τ2(j−1)DjT

)2
, DjT = D1,2,...,jT, 1 ≤ j ≤ k.

Bounds for the accuracy of the approximation of T by the sum of the first few
terms of the decomposition 1.1) are provided by the following theorem.
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Theorem A. ( Bloznelis and Götze (2001)) For 1 ≤ k < n∗, we have

(1.6) T = ET + U1 + · · ·+ Uk + Rk, with ER2
k ≤ τ−2(k−1)δk+1.

In typical situations (U -statistics, smooth functions of sample means, Student’s t
and many others) for a properly standardized statistic T we have Uj = OP

(
τ1−j

)
,

for j = 1, . . . , k, and

(1.7) δk+1 = O(τ−2) as n∗, N →∞,

for some k. Note that (1.7) can be viewed as a smoothness condition. For instance,
given a statistic which is a function of the sample mean this condition is satisfied
in the case where the function (defining the statistic) is k + 1 times differentiable,
see Bloznelis and Götze (2001).
Assuming that (1.7) holds for k = 2 we obtain from Theorem A that T = U +

OP (τ−2) thus, showing that up to an error O(τ−2) the statistics T and U are
asymptotically equivalent. Finally, we remark that (1.7) holds if δk+1/σ2 and the
variance of the linear part VarU1 remain bounded as n∗, N →∞.
Another smoothness condition we are going to use is a Cramér type condition.

Recall Cramér’s (C) condition for the distribution FZ of a random variable Z,

(C) sup
|t|>δ

|E exp{itZ}| < 1, for some δ > 0.

In the classical theory of sums of independent random variables this condition
together with moment conditions ensures the validity of Edgeworth expansions
with remainders O(n−k/2) and o(n−k/2), k = 2, 3, . . . , for the distribution function
of the sum of n independent observations from the distribution FZ , see Petrov
(1975).
In our situation the condition like (C) is too stringent. We shall use a modification

of (C) which is applicable to random variables assuming a finite number of values
only. For the summand of the linear part Z = σ−1g1(X1), we assume that ρ > 0,
where

ρ := 1− sup{|E exp{itZ}| : b1/β3 ≤ |t| ≤ τ}.
Here b1 is a small absolute constant (one may choose, e.g., b1 = 0.001) and
β3 = σ−3E|g1(X1)|3. Other modifications of Cramér’s (C) condition which are
applicable to discrete random variables were considered by Albers, Bickel and van
Zwet (1976), Robinson (1978) and Bloznelis and Götze (2000), where in the latter
paper relations between various conditions are discussed.
1.3. Results. Write ζ = σ−2τ8Eg2

3(X1, X2, X3) and denote

βk = σ−kE|g1(X1)|k, γk = σ−kτ2kE|g2(X1, X2)|k, k = 2, 3, 4.
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Theorem 1.1. There exists an absolute constant c > 0 such that

(1.8) ∆ ≤ c

τ2

β4 + γ4 + ζ

ρ2
+ c

τ2

δ4

σ2ρ2
.

For U–statistics of arbitrary but fixed degree k

(1.9)
∑

1≤i1<···<ik≤n

h(Xi1 , . . . , Xik
),

where h is a real symmetric function defined on k-subsets of X , we have the
following bound.

Theorem 1.2. There exist an absolute constant c > 0 and a constant c(k) > 0
depending only on k such that

(1.10) ∆ ≤ c

τ2

β4 + γ4

ρ2
+ c(k)

τ2

δ3

σ2ρ2
.

Since the absolute constants are not specified Theorems 1.1 and 1.2 should be
viewed as asymptotic results. Assume that the population size N → ∞ and the
sample size n increases so that n∗ → ∞. In particular, τ → ∞. In those models
where β4, γ4 and ζ + δ4/σ2 (respectively δ3/σ2) remain bounded and

(1.11) lim inf ρ > 0

Theorem 1.1 (respectively Theorem 1.2) provides the bound ∆ = O(τ−2). Since
n∗/2 ≤ τ2 ≤ n∗ we obtain ∆ = O(1/n∗).
Remark 1. Note that the bounds of Theorems 1.1 and 1.2 are established without

any additional assumption on p and q. This fact is important for applications, like
subsampling, where p or q may tend to zero as N →∞.
Remark 2. The bound of order O(τ−2) for the remainder is unimprovable, because

the next term of the Edgeworth expansion, at least for linear statistics, is of order
O(τ−2), see Robinson (1978).
Remark 3. An expansion of the probability P{T ≤ ET + στx} in powers of

τ−1 would be the most natural choice of asymptotics. We invoke two simple
arguments supporting this choice. Firstly, τ2 is proportional to the variance of
the linear part. Secondly, the number of observations n does not longer determine
the scale of T in the case where samples are drawn without replacement since the
statistic effectively depends on n∗(≈ τ2) observations. Indeed, it was shown in
Bloznelis and Götze (2001) that, for n > N − n, we have almost surely

(1.12) T = T ∗, T ∗ = ET + U∗
1 + · · ·+ U∗

n∗ ,
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where we denote

U∗
k =

∑

1≤i1<···<ik≤n∗
(−1)kgk(X ′

i1 , . . . , X
′
ik

), X ′
j = Xn+j .

That is, T effectively depends on n∗ = N − n observations X ′
1, . . . , X

′
n∗ only.

Remark 4. The bounds of Theorems 1.1 and 1.2 are optimal in the sense that
it is impossible to approximate F by a continuous differentiable function, like
G, with the remainder o(τ−2), if no additional smoothness condition apart from
(1.11) is imposed. Already for U -statistics of degree two, Cramér’s condition (1.11)
together with moment conditions of arbitrary order do not suffice to establish the
approximation of order o(τ−2). This fact is demonstrated by means of a counter
example in Bentkus, Götze and van Zwet (1997) in the i.i.d. situation, and it is
inherited by finite population statistics. Indeed, in the case where N →∞ and n
remains fixed the simple random sample model approaches the i.i.d. situation. We
have τ → √

n, p → 0, q → 1. Replacing τ , p and q by
√

n, 0 and 1 respectively we
obtain from G the one term Edgeworth expansion for the distribution function of
symmetric statistic based on i.i.d. observations, which was constructed in Bentkus,
Götze and van Zwet (1997).
Remark 5. The bound (1.8) involves moments (of nonlinear parts) which are

higher than those which are necessary to define expansions. Thus, in an optimal
dependence on moments one would like to replace γ4+ζ+δ4/σ2 by γ2+δ3/σ2 in the
remainder. Let us mention also that for U -statistics of degree k, where k is fixed,
the bound (1.10) is more precise than (1.8). Indeed, a straightforward calculation
shows that for some absolute constant c we have δ3 ≤ cσ2ζ+cδ4τ

−2. Our technique
allows us to prove (1.10) for the U -statistics only and with c(k) →∞, for k →∞.
In order to apply our results to particular classes of statistics one has to estimate

moments δ3 or δ4 of differences D3T or D4T . For U statistics and smooth functions
of sample means this problem is easy and routine, see Bloznelis and Götze (2001).
Some applications of our results to resampling procedures are considered ibidem.
The remaining part of the paper is organized as follows. In Section 2 we prove

Theorem 1.2. Theorem 1.1 is a consequence of Theorem 1.2. In the proof we use
the “data dependent smoothing technique”, first introduced in Bentkus, Götze
and van Zwet (1997), and expansions of characteristic functions. Expansions of
characteristic functions are presented separately in Section 3. Section 4 collects
auxiliary combinatorial lemmas. Lemma 4.2 of this section may be of independent
interest.

2. Proofs

The section consists of two parts. In the first part, for reader’s convenience, we
collect several important facts about Hoeffding’s decomposition of finite population
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statistics which are used in proofs below. These facts are shown in Bloznelis and
Götze (2001). The second part contains proofs of Theorems 1.1 and 1.2.
Throughout this section and the next we shall assume without loss of generality

that ET = 0 and σ2 = τ−2. For k = 1, 2, . . . , we write Ωk = {1, . . . , k}. By
C, c, c0, c1, . . . we denote positive absolute constants. Given two numbers a and
b > 0, we write a ¿ b if |a| ≤ c b.
2.1. Hoeffding’s decomposition of a finite population statistic

(2.1) T = ET + U1 + · · ·+ Un

was studied by Zhao and Chen (1990) in the case of a U -statistic and by Bloznelis
and Götze (2001) in the case of a general symmetric statistic. It was shown in
the latter paper that if n > N/2 then Uj ≡ 0 for j > N − n. Note that if T is a
U–statistic of degree k (that is, a statistic of the form (1.9)) then always Uj ≡ 0
for j > k. Recall that Uj is defined in (1.2).
Given A = {i1, . . . , ir} ⊂ Ωn and B = {j1, . . . , js} ⊂ ΩN with 1 ≤ r ≤ n write

TA = gr(Xi1 , . . . , Xir ) and E(TA|B) = E(TA|Xj1 , . . . , Xjs),

and denote T∅ = ET . By symmetry, the random variables TA and TA′ are identi-
cally distributed for any A,A′ ⊂ ΩN such that |A| = |A′| ≤ n. A simple calculation
shows that (1.3) extends to the following identity

(2.2) E(TA|B) = 0, for any A,B ⊂ ΩN , such that |B| < |A| ≤ n.

For A,B ⊂ ΩN with 1 ≤ j = |A| = |B| ≤ n and k = |A ∩B| denote

σ2
j = ET 2

A, sj,k = ETATB .

Using (2.2) it is easy to show, see e.g., Bloznelis and Götze (2001), that

(2.3) sj,k = (−1)j−k

(
N − j

j − k

)−1

σ2
j , 0 ≤ k ≤ j ≤ n∗.

Since ET = 0 we can write (2.1) in the form T =
∑

A⊂Ωn
TA. Similarly, for Uk

from (1.2) we have Uk =
∑

A⊂Ωn, |A|=k TA.
2.2 Proofs of Theorems 1.1 and 1.2. The expression exp{ix} is abbrevi-

ated by e{x}. Given a complex function H defined on R, we write ‖H(x)‖ =
supx∈R |H(x)|. Write

δ = 1− sup{E cos(tg1(X1) + s) : s ∈ R, b1τ/β3 ≤ |t| ≤ τ2}.
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It is easy to show that ρ ≤ δ, see Bloznelis and Götze (2000). This inequality will
be used in the proof below. We also use the inequalities 1 = β2 ≤ β3 ≤ β

1/2
4 and

γ2 ≤ γ
2/3
3 ≤ γ

1/2
4 which are simple consequences of Hölder’s inequality.

We can assume that for sufficiently small c0,

(2.4) β4 ≤ c0τ
2, γ2 ≤ c0τ

2δ2, δ−2/3 ln τ ≤ c0τ.

Indeed, if (2.4) fails, the bounds (1.8) and (1.10) follow from the inequalities

F (x) ≤ 1 and |G(x)| ¿ 1 + τ−1(β1/2
4 + γ

1/2
2 ).

Note that β4 ≥ 1 and the first inequality in (2.4) imply that τ2 ≥ c−1
0 is sufficiently

large.

Proof of Theorem 1.1. The theorem is a consequence of Theorem 1.2. Write T =
U1 + U2 + U3 + R3, see (1.6). A Slutzky type argument gives

(2.5) ∆ ≤ ∆′ + τ−2‖G(1)(x)‖+ P{|R3| ≥ τ−2},

where, ∆′ := ‖P{U1 + U2 + U3 ≤ στx} −G(x)‖ satisfies, by (1.10),

∆′ ¿ τ−2ρ−2(β4 + γ4 + ζ).

Furthermore, by (2.4), ‖G(1)(x)‖ ¿ 1. We bound this quantity by cβ4, since
β4 ≥ 1. Finally, by (1.6), we have P{|R3| ≥ τ−2} ≤ δ4 and using the identity
σ2 = τ−2 we replace δ4 by τ−2δ4/σ2. Collecting these bounds in (2.5) we obtain
(1.8).

Proof of Theorem 1.2. In view of (1.12) it suffices to prove the theorem in the case
where n ≤ N/2. Therefore, we assume without loss of generality that n ≤ N/2
and n∗ = n. The proof of (1.10) is complex and we first outline the main steps.
In the first step we replace T by T̃ = V1 + · · ·+Vm +W , where W is a function of

the observations (Xm+1, . . . , Xn) (=:Xm for short), and where Vj = V (Xj ,Xm) is
a function of Xj and Xm. Random variables W , V1, . . . , Vm and the integer m < n
are specified below.
In the second step we apply Prawitz’s (1972) smoothing lemma to construct

upper and lower bounds for the conditional distribution function F̃1(x) = P{T̃ ≤
στx|Xm}:

F̃1(x+) ≤ 1/2 + V P

∫

R
exp{−itx}H−1K(t/H)f1(t)dt,(2.6)

F̃1(x−) ≥ 1/2− V P

∫

R
exp{−itx}H−1K(−t/H)f1(t)dt.(2.7)
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Here f1(t) = E
(
exp{itT̃}|Xm

)
denotes the conditional characteristic function of T̃ ;

F (x+) = limz↓x F (z), F (x−) = limz↑x F (z), and V P denotes Cauchy’s principal
value. The kernel K(s) = K1(s)/2 + iK2(s)/(2πs), where

K1(s) = II{|s| ≤ 1} (1− |s|), K2(s) = II{|s| ≤ 1} ((1− |s|) π s cot(π s) + |s|).

The positive random variable H = OP (n) (a function of Xm) is specified below.
Taking the expectations of (2.6) and (2.7) we obtain upper and lower bounds for
F1(x+) and F1(x−), where F1(x) = P{T̃ ≤ στx}. Combining these bounds with
the inversion formula

G(x) = 1/2 + i/(2π) lim
M→∞

V P

∫

|t|≤M

exp{−itx}Ĝ(t)t−1dt,

see, e.g., Bentkus, Götze and van Zwet (1997), we obtain upper bounds for
F1(x+) − G(x) =: d1 and G(x) − F1(x−) =: d2 respectively. Here Ĝ denotes
the Fourier-Stieltjes transform of G. Thus, for d1, we have

(2.8) F1(x+)−G(x) ≤ EI1 + EI2 + EI3,

I1 = 1

2
H−1

∫

R

exp{−ix t}K1

( t

H

)
f1(t) dt,

I2 = i

2 π
V.P.

∫

R

exp{−ix t}K2

( t

H

)(
f1(t)− Ĝ(t)

) dt

t
,

I3 = i

2 π
V.P.

∫

R

exp{−ix t}
(
K2

( t

H

)− 1
)
Ĝ(t) dt

t
.

A similar inequality holds for d2. This step of the proof is called ”data depending
smoothing”, see Bentkus, Götze and van Zwet (1997).
The final step of the proof provides upper bounds for d1 and d2. For this pur-

pose we construct an upper bound for |f1(t)|, for |t| ≥ cn1/2/β3. Using Cramér’s
condition and the multiplicative structure of f1 (note that T̃ is conditionally lin-
ear given Xm) we show that |f1(t)| decay exponentially in |t|. Furthermore, for
|t| ≤ cn1/2/β3 we replace the conditional characteristic function f1 by the uncon-
ditional one F̂ (t) = E exp{itT} and construct bounds for |F̂ (t)− Ĝ(t)| by means
of expansions of F̂ (t) in powers observations X1, . . . , Xn.
Note that, usually, the validity of an Edgeworth expansion is proved using the con-

ventional Berry–Eseen smoothing lemma, see e.g., Petrov (1975), Callaert, Janssen
and Veraverbeke (1980), Bickel, Götze and van Zwet (1986). In the present paper
(in the second step of the proof) we use Prawitz’s smoothing lemma instead. This
lemma is more precise in the sense that the right-hand sides of (2.6) and (2.7) do
not involve absolute values of characteristic functions. Therefore, after taking the
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expected values of (2.6) and (2.7) we can interchange the order of integration in
the right-hand sides and obtain the unconditional characteristic functions in the
integrands. At the same time, the appropriate choice of the random cut-off H
allows to control the nonlinear part of T̃ so that the exponential decay of |f1(t)|
is established using the minimal smoothness condition (Cramér’s condition on the
linear part of the statistic). More restrictive smoothness conditions which involve
nonlinear parts of the statistic are considered in Callaert, Janssen and Veraverbeke
(1980), Bickel, Götze and van Zwet (1986).
Step 1. Let m denote the integer closest to the number 8δ−1 ln τ . Since, by (2.4),

τ2 ≥ c−1
0 we can choose c0 small enough so that 10 ≤ m ≤ n/2. Split T = V +W ,

where

V =
∑

B⊂Ωn, B∩Ωm 6=∅
TB , W =

∑

B⊂Ωn, B∩Ωm=∅
TB ,

V =
m∑

i=1

Vi + Λm + Ym + Zm, Vi = T{i} + ξi + ηm,i, ξi =
n∑

j=m+1

T{i,j}.

Here we denote

(2.9) Λm =
∑

B⊂Ωm, |B|=2

TB , Zm =
∑

B⊂Ωn, |B∩Ωm|≥3

TB ,

Ym =
∑

B⊂Ωn, |B∩Ωm|=2,|B|≥3

TB , ηm,i =
∑

B⊂Ωn, B∩Ωm={i}, |B|≥3

TB .

We are going to replace T by T̃ =
∑m

i=1 Vi + W . Write T = T̃ + R, where
R = Λm + Ym + Zm. Given ε = δ−2τ−2, a Slutzky type argument gives

∆ ≤ ∆1 + ε ‖G(1)(x)‖+ P{|R| ≥ ε}, ∆1 = ‖F1(x)−G(x)‖,

where F1(x) = P{T̃ ≤ στx}. Invoking the bounds of Lemma 4.1 and the simple
bound E|Λm|3 ¿ m6E|T{1,2}|3, we obtain, by Chebyshev’s inequality, that

P{|R| ≥ ε} ≤ P{|Λm| ≥ ε

3
}+ P{|Ym| ≥ ε

3
}+ P{|Zm| ≥ ε

3
} ¿ δ3/σ2 + γ3

τ2δ2
.

Finally, we bound ‖G(1)(x)‖ as in proof of Theorem 1.1 above. We obtain

∆ ¿ ∆1 + τ−2δ−2(1 + δ3/σ2 + γ3).

Therefore, in order to prove (1.10), it remains to bound ∆1. Clearly, ∆1 ≤
max{d1; d2}, where d1 = F1(x+)−G(x) and d2 = G(x)−F1(x−). The remaining
part of the proof provides bounds for d1 and d2.
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Step 2. Let A = (A1, . . . , AN ) be a random permutation of (x1, . . . , xN ) which
is uniformly distributed over the class of permutations. Let r = [(n + m)/2]
denote the integer part of (n + m)/2. Introduce the sets I0 = {m + 1, . . . , n} ,
J0 = {1, . . . , N} \ I0, J1 = J0 ∪

{
m + 1, . . . , r

}
and J2 = J0 ∪

{
r + 1, . . . , n

}
.

Define (random) sub-populations Ai = {Ak, k ∈ Ji}, i = 0, 1, 2, and given Ai let
A∗i be a random variable uniformly distributed in Ai.
We assume that Xj = Aj , for j ∈ I0 and, given Aj , j ∈ I0, the observations

X1, . . . , Xm, are drawn without replacement from A0. Write

H = n δ/
(
32 q−1 n (Θ1 + Θ2) + 1

)
, Θi = E∗|vi(A∗i )|, i = 1, 2,

v1(a) =
∑

r+1≤j≤n

g2(a,Aj), v2(a) =
∑

m+1≤j≤r

g2(a,Aj).

Here, given Ai, we denote E∗f(A∗i ) = |Ji|−1
∑

j∈Ji
f(Aj), for f : Ai → R.

In order to prove an upper bound for F1(x+) − G(x) we apply (2.8) and show
that

(2.10) |EI1|+ |E(I2 + I3)| ¿ τ−2δ−2(β4 + γ4 + c(k)δ3/σ2).

An upper bound for G(x)− F1(x−) is obtained in a similar same way.
In the remaining part of the proof we verify (2.10). Write

F̂1(t) = E e{t T̃}, H1 = b1τ/β3,

Z1 = {|t| ≤ H1} ⊂ R, Z2 = {H1 ≤ |t| ≤ H} ⊂ R,

J1 =
∫

Z1

e{−tx} F̂1(t)− Ĝ(t)

t
dt, J2 =

∫

Z2

|f1(t)|
|t| dt,

J3 =
∫

|t|>H1

|Ĝ(t)|
|t| dt, J4 =

∫

Z1

e{−tx} f1(t)

H
dt, J5 =

∫

Z2

|f1(t)|
H

dt,

Here and below we write e{x} for exp{ix}. Using the inequality |K1(s)− 1| ≤ |s|
we replace K1(s) by 1 in EI1 and obtain

|EI1| ¿ |EJ4|+ EJ5 + R, R = EH2
1H−2.

Similarly, using the inequality |K2(s) − 1| ≤ 5s2 and the fact that K2(s) = 0 for
|s| > 1, we obtain

|E(I2 + I3)| ¿ |EJ̃1|+ EJ2 + J3 + R, R = EH2
1H−2,

where J̃1 is defined as J1 above, but with F̂1 replaced by f1. Note that the change
of the order of integration yields EJ̃1 = J1.
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The bounds J3 ¿ τ−2(β4 + γ2) and R ¿ δ−2τ−2(1 + γ2) are proved in Bloznelis
and Götze (2000). Furthermore, note that J5 ≤ J2. Therefore, in order to prove
(2.10) it suffices to show that
(2.11)

EJ2 ¿ β4 + δ3/σ2

τ2
, |EJ4| ¿ 1 + γ2 + δ3/σ2

τ2δ2
, |J1| ¿ β4 + γ4 + c(k)δ3/σ2

τ2δ2
.

Step 3. Here we bound |J1|, EJ2, and |EJ4|.
The bound for EJ2. Given t, denote It = I{|t|E∗|ηm(A∗0)| < δ/16}, where

ηm(x) = E(ηm,1|X1 = x,Xm+1, . . . , Xn). The identity f1(t) = Itf1(t)+(1−It)f1(t)
combined with the inequalities

1− It ≤ 162δ−2t2
(
E∗|ηm(A∗0)|

)2 ≤ 162δ−2t2E∗η2
m(A∗0)

yields J2 ≤ J2.1 + J2.2, where

J2.1 =
∫

Z2

IIt
|f1(t)|
|t| dt and J2.2 = 162δ−2E∗η2

m(A∗0)H
2.

In order to prove the bound (2.11) for EJ2 we show that

EJ2.2 ¿ τ−2δ3/σ2 and EJ2.1 ¿ β3/n2.

The first bound is a consequence of the inequalities H ≤ nδ and EE∗η2
m(A∗0) ≤

n−3δ3/σ2, where the latter inequality follows from (4.1) by symmetry.
The proof of the bound EJ2.1 ¿ β3/n2 is almost the same as that of the cor-

responding inequality (3.12) in Bloznelis and Götze (2000). The only and minor
difference is that now we add one more nonlinear term ηm. Namely, in the proof of
(3.12) ibidem one should replace v(a) = v1(a) + v2(a) by ṽ(a) = v(a) + ηm(a) and
use the bound E∗|t ηm(A∗0)| ≤ δ/16 when estimating E∗(1 + 2u2(A∗0)) in (3.17),
ibidem. Indeed, the bound E∗|t ηm(A∗0)| ≤ δ/16 holds on the event {IIt 6= 0}.
The bound for EJ4. Define J ′4 in the same way as J4, but with f1(t) replaced

by E(e{tŨ} |Xm), where Ũ = U − Λm. We shall apply the bound |EJ ′4| ¿
n−1(1 + γ2)/δ2 which is proved in (3.20) of Bloznelis and Götze (2000). This
bound and the inequality

(2.12) |EJ4 −EJ ′4| ¿ τ−2δ−2(1 + δ3/σ2 + γ2)

yield the bound (2.11) for EJ4.
In order to prove (2.12) we write T̃ − Ũ = R2 − Ym − Zm, see (1.6) and (2.9).

This identity in combination with the inequality | e{x} − e{y}| ≤ |x − y| yields
|EJ4 −EJ ′4| ¿ R, where

R = H2
1EH−1E

(|R2 − Ym − Zm|
∣∣Xm

)

≤ H2
1 (EH−2)1/2

[
(ER2

2)
1/2 + (EY 2

m)1/2 + (EZ2
m)1/2

]
.
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In the last step we applied Cauchy–Schwarz. It follows from (1.6), (4.1) and the
last inequality of (2.4) that the quantity in the brackets [. . . ] ¿ τ−2δ−1δ

1/2
3 /σ.

Finally, invoking the bound EH−2 ¿ n−2δ−2(1 + γ2), which is proved in (5.1) of
Bloznelis and Götze (2000), we complete the proof of (2.12).
The bound for |J1|. The bound (2.11) is a consequence of the following two

bounds

(2.13) |IZ1(F̂1 − F̂ )| ¿ τ−2δ−2(1 + γ2 + δ3/σ2),

(2.14) |IZ1(F̂ − Ĝ)| ¿ τ−2δ−2(β4 + γ4 + c(k)δ3/σ2).

Recall that F̂ (t) = E e{tT}. Here and below for a Borel set B ⊂ R and an
integrable complex function f , we write (for short) IB(f) =

∫
B t−1f(t)dt.

The proof of (2.14) is rather complex. We place it in a separate Section 3 below.
Note that the bound (2.14) is the only step of the proof where we essentially use
the assumption that T is a U–statistic.
Here we show (2.13). In the proof we replace F̂1(t)− F̂ (t) by f(t) = E e{tT}itΛm

and then replace f(t) by g(t) = E e{tU}itΛm. Finally, we invoke the bound

(2.15) |IZ1(g)| ¿
(

m

2

)
n−3/2(1 + γ2) ¿ n−1δ−2(1 + γ2),

which is proved in (3.38) of Bloznelis and Götze (2000). In order to show how (2.13)
follows from (2.15) write T̃ = T − Λm − Ym − Zm, see (2.9). We have F̂1(t) =
E e{t(T − Λm − Ym − Zm)}. Expanding the exponent in powers of it(Ym + Zm)
and then in powers of itΛm we get

|F̂1(t)− F̂ (t)− f(t)| ¿ E|tYm|+ E|tZm|+ t2EΛ2
m.

Furthermore, the identity T − U = R2 combined with the mean value theorem
yields |f(t)− g(t)| ¿ Et2|ΛmR2|. Combining these two inequalities we obtain

|IZ1(F̂1−F̂ )| ¿ |IZ1(g)|+R, R = 2H1E|Ym|+2H1|Zm|+H2
1EΛ2

m+H2
1E|ΛmR2|.

Now, the bound (2.11) follows from (2.15) and the bound R ¿ τ−2δ−2(1 + γ2 +
δ3/σ2). The latter bound follows from the inequalities (4.1), (1.6), and the simple
inequality EΛ2

m ≤ m2n−3γ2, via Hölder’s inequality.
The proof of Theorem 1.2 is complete.

3. Expansions

Here we show (2.14). Split Z1 = B1 ∪ B2 where B1 = {|t| ≤ c1} and B2 = {c1 ≤
|t| ≤ H1}, and where c1 is an absolute constant. Clearly, (2.14) follows from the
obvious inequalities

IZ1(F̂ − Ĝ) ≤ IB1(F̂ − Ĝ) + IB2(F̂ − Ĝ),

IB1(F̂ − Ĝ) ≤ IB1(F̂ − F̂U ) + IB1(F̂U − Ĝ), F̂U (t) = E e{tU},
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and the bounds

(3.1) IB2(F̂ − Ĝ) ¿ R, R = β4 + γ4 + c(k)δ3/σ2

τ2δ2
,

(3.2) IB1(F̂U − Ĝ) ¿ β4 + γ4

τ2
, IB1(F̂ − F̂U ) ¿ 1 + δ3/σ2

τ2
.

The first bound of (3.2) is proved in (4.1) of Bloznelis and Götze (2000). To prove
the second bound we decompose T = U +R2, see (1.6), and apply the mean value
theorem to get |F̂ (t) − F̂U (t)| ≤ E|tR2|. Finally, an application of (1.6) gives
E|R2| ≤ (ER2

2)
1/2 ≤ τ−2δ

1/2
3 /σ, and, obviously, δ

1/2
3 /σ ≤ 1 + δ3/σ2.

In order to prove (3.1) we write the characteristic function F̂ (t) in the Erdős-
Rényi (1959) form, see (3.4) below. Let ν = (ν1, . . . , νN ) be i.i.d. Bernoulli random
variables independent of (X1, . . . , XN ) and having probabilities P{ν1 = 1} = p
and P{ν1 = 0} = q. Observe, that the conditional distribution of

T ∗ =
∑

A⊂ΩN ,|A|≤n

TAν∗A, where ν∗A =
∏

i∈A

νi,

given the event E = {Sν = n}, coincides with the distribution of T . Here Sν =
ν1 + · · ·+ νN . Therefore, F̂ can be written as follows

(3.3) F̂ (t) = λ

∫ πτ

−πτ

E e{tT ∗ + τ−1s(Sν − n)}ds, λ−1 = 2πP{E}τ.

Using (2.2) it is easy to show that, for 1 ≤ k ≤ n, almost surely
∑

A⊂ΩN , |A|=k

TAν∗A =
∑

A⊂ΩN , |A|=k

QA, QA = TAν̃A, ν̃A =
∏

i∈A

(νi − p).

Therefore, almost surely, tT ∗ + τ−1s(Sν − n) = S + tQ, where

S =
N∑

i=1

Si, Si = (tT{i} + τ−1s)(νi − p), Q =
∑

A⊂ΩN , 2≤|A|≤n

QA.

Substitution of this identity in (3.3) gives

(3.4) F̂ (t) = λ

∫ πτ

−πτ

E e{S + tQ}ds.

In view of (3.4), the bound (3.1) follows from the inequalities

(3.5)
∫

t∈B2

λ

∫

|s|≤π τ

∣∣E e{S + tQ} − (h1 + h2)
∣∣ds

dt

|t| ¿ R,

(3.6)
∫

t∈B2

∣∣λ
∫

|s|≤π τ

(h1 + h2)ds− Ĝ(t)
∣∣ dt

|t| ¿R.
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Here

h1 = E e{S}, h2 = i3
(

n

2

)
E e{S3 + · · ·+ SN}V, V = tQ{1,2}S1S2.

The inequality (3.6) is proved in Bloznelis and Götze (2000) (formula (4.2)).
We are going to prove (3.5). Before the proof we introduce some notation. Given

a complex valued function f(s, t) we write f ≺ R if
∫

B2

dt

|t|

∫ πτ

−πτ

|f(s, t)|ds ¿R.

Furthermore, we write f ∼ g for f−g ≺ R. In view of the inequality λ ≤ √
2π, see

Höglund (1978), the bound (3.5) can be written as follows: E e{S + tQ} ∼ h1 +h2.
Let us prove (3.5). In what follows we assume that t ∈ B2 and |s| ≤ πτ . Given s, t

write u = s2 + t2 and let (here and throughout the section) m denote the integer
closest to the number c2N u−1 ln u, where c2 is an absolute constant. We choose
c1 and c2 so that 10 < m < N/2. Split

(3.7) Q = K + L + W + Y + Z, K = ζ + µ, ζ =
m∑

j=1

ζj , µ =
m∑

j=1

µj ,

ζj =
∑

A∩Ωm={j}, |A|=2

QA, µj =
∑

A∩Ωm={j}, |A|≥3

QA, 1 ≤ j ≤ m,

L =
∑

A⊂Ωm, |A|=2

QA, Y =
∑

|A∩Ωm|=2, |A|≥3

QA,

Z =
∑

|A∩Ωm|≥3

QA, W =
∑

A∩Ωm=∅, |A|≥2

QA,

and denote f1 = E e{S + t(K + W )} and f2 = E e{S + t(K + W )}itL.
In order to prove E exp{S + tQ} ∼ h1 + h2 we shall show that

E e{S + tQ} ∼ f1 + f2,(3.8)

f2 ∼ h3, h3 = i3
(

m

2

)
E e{S3 + · · ·+ SN}V,(3.9)

f1 ∼ h1 + h2 − h3.(3.10)

Let us introduce some more notation. Given a sum v = v1 + · · · + vk we write
vB =

∑
j∈B vj , for B ⊂ Ωk. Given B ⊂ ΩN , by E(B) we denote the conditional

expectation given all the random variables, but νj , j ∈ B. For D ⊂ Ωm, denote

(3.11) YD = |E(D) e{SD}|, ZD = |E(D) e{SD + tζD}|, ID = I{κD > c−1
3 },

κD = τ2|D|−1
∑

j∈D

ζ2(Xj), ζ(a) =
N∑

j=m+1

g2(a,Xj)(νj − p).
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Using the multiplicative structure of YD one can prove a sufficiently fast decay of
its expected value as u →∞. More precisely, one can construct random variables
FD, D ⊂ ΩN , of the form FD =

∏
i∈D ũ(tg1(Xi) + s/τ), where ũ ≥ 0 is a real

function, such that for |D| ≥ m/4 we have

(3.12) YD ≤ FD, ZD ≤ ID + FD, E(F2
D

∣∣Xi, Xj) ¿ u−20, ∀ i, j ∈ ΩN \D.

Clearly, the latter inequality holds for the unconditional expectation as well. the
formulas (4.9) and (4.10) ibidem. The proof of (3.12) and the construction of
random variables FD are provided in formulas (4.7-10) of Bloznelis and Götze
(2000). Let us mention that in order to establish (3.12), one chooses the constants
c1, c2 and c3 in an appropriate way.
Split Ωm = Ω1

m∪Ω2
m∪Ω3

m, where Ωi
m, i = 1, 2, 3 are disjoint consecutive intervals

with cardinalities |Ωi
m| ≈ m/3. For i ≤ j, let Ωi,j denote the set of all pairs {l, r}

such that l ∈ Ωi
m, r ∈ Ωj

m and l < r.
Proof of (3.8). Expanding the exponent in powers of itZ and invoking (3.17) we

get E e{S + tQ} = f3 + R, where f3 = E e{S + t(K + L + W + Y )} and where

|R| ≤ E|tZ| ≤ |t|(EZ2)1/2 ¿ |t|c1/2
1 (k)u−3/2 ln3/2 u δ

1/2
3 σ−1τ−2 ≺ R.

Furthermore, expanding f3 in powers of it(L + Y ) we obtain

f3 = f1 + f2 + f4 + R, f4 = E e{S + t(K + W )}itY,

|R| ¿ t2E(L + Y )2 ¿ t2u−2 ln2 u τ−2(γ2 + c1(k)δ3/σ2) ≺ R.

In the last step we invoked (3.18) and used the identity EL2 =
(
m
2

)
p2q2τ−6γ2. We

obtain E e{S + tQ} ∼ f1 + f2 + f4.
It remains to prove that f4 ≺ R. To this aim we show that f4 ∼ f5 and f5 ≺ R,

where f5 = E e{S+t(ζ+W )}itY . By the mean value theorem |f4−f5| ≤ Et2|Y µ|.
Furthermore, by Cauchy–Schwarz and (3.18), (3.19),

Et2|Y µ| ≤ t2(EY 2)1/2(Eµ2)1/2 ¿ t2c1(k)u−3/2 ln3/2 u τ−4δ3/σ2 ≺ R.

Therefore, f4 ∼ f5. In order to prove f5 ≺ R we split f5 =
∑

1≤i≤j≤3 fi,j and
show that fi,j ≺ R, for every i ≤ j. Here fi,j is defined in the same way as
f5, but with Y replaced by Yi,j , where Yi,j denotes the sum of all QA such that
A ∩ Ωm ∈ Ωi,j . Given i, j choose r from {1, 2, 3} \ {i, j}. Note that the random
variable Yi,j and the sequence {νl, l ∈ Ωr

m} are independent. Therefore, by (3.12),

|fi,j | ≤ |t|EZΩr
m
|Yi,j | ≤ |t|(EZ2

Ωr
m

)1/2(EY 2
i,j)

1/2

≤ |t|(EF2
Ωr

m
+ c3EκΩr

m
)1/2(EY 2

i,j)
1/2.
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In the last step we used the simple inequality ID ≤ c3κD, for D = Ωr
m. Note that

the bound (3.18) applies to EY 2
i,j as well. This bound in combination with (3.12)

and (3.24) implies fi,j ≺ R thus completing the proof of (3.8).
Proof of (3.9). Split W = W0 + W1, where

(3.13) W0 =
∑

A⊂ΩN : A∩Ωm=∅,|A|=2

QA, W1 =
∑

A⊂ΩN : A∩Ωm=∅, |A|≥3

QA.

In order to prove (3.9) we replace f2 by f6 = E e{S + t(ζ + W )}itL and then
replace f6 by f7 = E e{S + t(ζ + W0)}itL. Finally, we invoke the relation f7 ∼ h3

which is proved in Bloznelis and Götze (2000) (formula (4.15)).
Let us prove f2 ∼ f6 and f6 ∼ f7. By the mean value theorem, |f2−f6| ≤ t2E|Lµ|.

Invoking (3.19) and the bound EL2 ≤ m2p2q2τ−6γ2 we obtain, by Cauchy–
Schwarz, t2E|Lµ| ≺ R. Hence, f2 ∼ f6.
Let us prove f6 ∼ f7. Split L =

∑
1≤i≤j≤3 Li,j , where Li,j =

∑
A∈Ωi,j

QA. Write
f6|i,j = E e{S + t(ζ + W )}itLi,j and f7|i,j = E e{S + t(ζ + W0)}itLi,j . In order to
prove f6 ∼ f7 we show that f6|i,j ∼ f7|i,j , for every 1 ≤ i ≤ j ≤ 3. Given i ≤ j,
choose r ∈ {1, 2, 3} \ {i, j} and denote D = Ωr

m. Expanding the exponent in f6|i,j
in powers of itW1 we obtain f6|i,j = f7|i,j + t2R, where

|R| ≤ EZD|Li,jW1| ≤ R1 + R2, R1 = EFD|Li,jW1|, R2 = EID|Li,jW1|,

by (3.12). By Cauchy–Schwarz, we have

(3.14) R2
1 ≤ EW 2

1 EL2
i,jF2

D, R2
2 ≤ EW 2

1 EL2
i,jID ≤ EW 2

1 EL2
i,jc3κD

Fix {i1, i2} ∈ Ωi,j . By symmetry, (3.12) and (3.24),

(3.15) EL2
i,jF2

D = |Ωi,j |p2q2Eg2
2(Xi1 , Xi2)E(F2

D |i1, i2) ¿ u−20τ−2γ2,

(3.16) EL2
i,jκD = |Ωi,j |p2q2Eg2

2(Xi1 , Xi2)E(κD |i1, i2) ¿ u−2 ln2 u τ−4γ2
2 .

Here we estimated |Ωi,j | < m2 and m2p2q2 ¿ τ4u−2 ln2 u ¿ τ4. It follows from
(3.14), (3.15), (3.16) and (3.20) that t2R ≺ R. We obtain f6|i,j ∼ f7|i,j thus
completing the proof of (3.9).
Proof of (3.10). In the proof we replace f1 by f8 = E e{S + t(ζ + W )} and then

replace f8 by the sum f10+f11, where f10 = E e{S+tW} and f11 = E e{S+tW}itζ.
Finally, we replace f10 by f12 = E e{S + tW0} and f11 by f13 = E e{S + tW0}itζ
(recall that W0 is defined in (3.13)), and invoke the relation f12+f13 ∼ h1+h2−h3,
which is proved in Bloznelis and Götze (2000) (formulas (4.36-37)).
Let us prove f1 ∼ f8. Expanding in f1 powers of itµ we obtain

f1 = f8 + f9 + R, f9 = E e{S + t(ζ + W )}itµ,
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where |R| ≤ t2µ2 ≺ R, by (3.19). Therefore, f1 ∼ f8+f9. In order to show f9 ≺ R,
split µ = µ∗1 +µ∗2 +µ∗3, where µ∗j =

∑
k∈Ωj

m
µk, and write f9 = f∗1 +f∗2 +f∗3 , where

f∗j = E e{S + t(ζ +W )}itµ∗j . Given j, we show f∗j ≺ R. Fix r ∈ {1, 2, 3} \ {j} and
denote D = Ωr

m. By (3.12),

|f∗j | ≤ |t|EZD|µ∗j | ≤ |t|(E(µ∗j )
2)1/2(E2(F2

D + ID)
)1/2

≤ 2|t|(E(µ∗j )
2)1/2(EF2

D + c
3/2
3 Eκ3/2

D )1/2.

Here we applied Cauchy–Schwarz and the inequality ID ≤ c
3/2
3 κ3/2

D . Note that
the bound (3.19) holds for µ∗j as well. This bound in combination with (3.24) and
(3.12) gives f∗j ≺ R. We obtain f9 ≺ R, thus, completing the proof of f1 ∼ f8.
In order to replace f8 by f10 + f11 we use the relation f8 ∼ f10 + f11. The proof

of this relation is almost the same as that of the corresponding relation (4.35) in
Bloznelis and Götze (2000).
It remains to show that f10 ∼ f12 and f11 ∼ f13. Expanding f10 in powers

of itW1 we get f10 = f12 + R, where |R| ≤ EYΩm |tW1|. It follows from (3.12)
and (3.20), by Cauchy–Schwarz, that |R| ≺ R. Therefore, f10 ∼ f12. In order
to prove f11 ∼ f13 split Ωm = V1 ∪ V2, where V1 ∩ V2 = ∅ and the cardinality
|Vi| ≈ m/2, for i = 1, 2, and write ζ = ζV1 +ζV2 . Expanding f11 in powers of itW1,
we get f11 = f13 + R(1) + R(2), where |R(i)| ≤ Et2|W1ζVi |YΩm\Vi

. Fix r ∈ V1. By
Cauchy–Schwarz and symmetry,

|R(1)|2 ≤ t2EW 2
1 Eζ2

V1
Y2

V2
= t2EW 2

1 |V1|(N −m)p2q2Eg2
2(Xr, XN )E(Y2

V2
|Xr, XN )

¿ t2τ−6u−20γ2c(k)δ3/σ2.

Here we applied (3.20) and (3.12). It follows that R(1) ≺ R. The same bound
holds for R(2) as well. Therefore f11 ∼ f13. The proof of (3.10) is complete.

Lemma 3.1. Assume that n ≤ N/2 and that T is a U–statistic of degree k. Then

EZ2 ≤ c1(k)m3p3q3τ−10δ3σ
−2,(3.17)

EY 2 ≤ c1(k)m2p2q2τ−8δ3σ
−2,(3.18)

Eµ2 ≤ c1(k)mpqτ−6δ3σ
−2,(3.19)

EW 2
1 ≤ c1(k)τ−4δ3σ

−2,(3.20)

where Y, Z and µ are defined in (3.7), and W1 is defined in (3.13). Here c1(k)
denotes a constant which depends on k only.

Proof of Lemma 3.1. Note that our assumption that T is a U -statistic of degree k
implies σ2

j = 0 for j > k. In the proof we use the bound which follows from (4.3),
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(4.4)

(3.21)
k∑

j=3

ajσ
2
j ¿ τ−8δ3, aj =

(
n− 3
j − 3

)(
N − n

j − 3

)(
N − j

j − 3

)−1

.

A simple calculation shows that a3 = 1 and aj = b1 · · · bj−3b
∗
1 . . . b∗j−3, where

bi = (n− 2− i)/(N − j − i + 1) and b∗i = N − n− i + 1. For i = 1, . . . , j − 3 and
j = 4, . . . , k we apply the following simple bounds p ≤ c(k)bi and q ≤ c(k)b∗i /N , for
some constant c(k) depending on k only. These bounds imply for j = 3, . . . , k, that
(pqN)j−3 ≤ c1(k)aj , where c1(k) is a constant depending on k only. Combining
this bound and (3.21) we obtain

(3.22)
k∑

j=3

pj−3qj−3N j−3σ2
j ¿ c1(k)τ−8δ3.

We introduce some more notation. Consider a random variable M =
∑

A∈MQA,
where M denotes a class of subsets of ΩN , i.e., M ⊂ {A ⊂ ΩN : 3 ≤ |A| ≤ n}.
Note that EQA = 0, for every A and EQ2

A = σ2
j pjqj , for |A| = j. Since QA and

QB are uncorrelated for A 6= B, we have

(3.23) EM2 =
∑

A∈M
EQ2

A =
n∑

j=3

ej [M ]σ2
j pjqj ,

where ej [M ] denotes the number of different subsets A ∈M of size |A| = j.
Let us prove (3.17). A simple calculation shows that

ej [Z] =
j−3∑
r=0

(
m

j − r

)(
N −m

r

)
, 3 ≤ j ≤ k.

Invoking the inequality
(

m
j−r

) ≤ m3
(

m
j−r−3

)
we obtain

ej [Z] ≤ m3

j−3∑
r=0

(
m

j − r − 3

)(
N −m

r

)
= m3

(
N

j − 3

)
.

by Vandermonde’s convolution formula. Therefore, ej [Z] ≤ m3N j−3. In view of
(3.23) (applied to Z) we obtain (3.17) from this inequality and (3.22).
The proof of the remaining bounds (3.18-20) is similar. We find

ej [Y ] =
(

m

2

)(
N −m

j − 2

)
, ej [µ] = m

(
N −m

j − 1

)
, ej [W1] =

(
N −m

j

)
.

It follows from these identities that

ej [Y ] ≤ m2N j−2, ej [µ] ≤ mN j−1, ej [W1] ≤ N j .

Combining these bounds and (3.22) we obtain (3.18-20), thus, completing the
proof of the lemma.
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Lemma 3.2. For every D ⊂ Ωm, with cardinality |D| ≥ m/4, and for any i, j ∈
Ωm \D we have

E(κD |Xi, Xj) ¿ τ−2γ2, E(κ3/2
D |Xi, Xj) ¿ τ−3γ3,(3.24)

EκD ¿ τ−2γ2, Eκ3/2
D ¿ τ−3γ3,

where κD is defined in (3.11) and where m ≈ c2Nu−1 ln u.

Proof of Lemma 3.2. Clearly, the first two inequalities imply the rest ones. The
first inequality is proved in Bloznelis and Götze (2000) (formula (4.22)).
Let us prove the second inequality. An application of the simple inequality

(|D|−1
∑

r∈D x2
r)3/2 ≤ |D|−1

∑
r∈D |xr|3 to xr = ζ(Xr) gives

κ3/2
D ≤ τ3|D|−1

∑

r∈D

|ζ(Xr)|3.

Invoking the bound E(|ζ(Xr)|3|Xi, Xj) ¿ (Npq)3/2E|g2(Xr, XN )|3 we complete
the proof. In order to prove this latter bound we first apply Rosenthal’s inequal-
ity to the conditional expectation of |ζ(Xr)|3 given all the random variables but
νm+1, . . . , νN and then take the expected value given Xi, Xj and apply the in-
equalities (4.5) of Bloznelis and Götze (2000), see also (5.4) ibidem. Lemma is
proved.

4. Combinatorial lemmas

Here we prove two lemmas. Lemma 4.1 establishes bounds for the second mo-
ments of random variables Ym, Zm and ηm,i defined in (2.9) above. Lemma 4.2
provides an auxiliary combinatorial identity.
We first introduce some more notation. For k ≤ n write Ωc

k = Ωn \ Ωk, where
Ωk = {1, . . . , k}. Let H be a random variable of the form H =

∑
A⊂H TA, where

H is a class of subsets of ΩN , H = {A ⊂ ΩN : 1 ≤ |A| ≤ n}. Denote Uj(H) =∑
A∈H,|A|=j TA and write ej(H) = EU2

j (H)σ−2
j , for σ2

j > 0. For σ2
j = 0 put

ej(H) = 0. We have

H =
∑

1≤j≤n

Uj(H) and EH2 =
∑

1≤j≤n

EU2
j (H) =

∑

1≤j≤n

ej(H)σ2
j ,

where the second identity follows from the fact that TA and TB are uncorrelated
for |A| 6= |B|, see (2.2) above.
For non–negative integers k, s, t, u such that u ≥ min{s, t}+ k denote

rk(s, t, u) =
s∧t∑
v=0

(−1)v+k

(
s

v

)(
t

v

)(
u

v + k

)−1

.

Here s ∧ t = min{s, t}. Recall that for x ∈ R,
(
x
r

)
= [x]r/r!, if the integer r ≥ 0,

and
(
x
r

)
= 0, for r < 0. Here [x]r = x(x− 1) · · · (x− r +1), for r > 0, and [x]0 = 1.

In particular, for non-negative integers s < v, we have
(

s
v

)
= 0
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Lemma 4.1. Assume that 100 ≤ n ≤ N/2. Given 3 ≤ m ≤ n and i ∈ Ωm, we
have

(4.1) EY 2
m ¿ n−3m4δ3, EZ2

m ¿ n−4m6δ3, Eη2
m,i ¿ n−2δ3.

Proof of Lemma 4.1. In order to prove (4.1) we show that

(4.2) EZ2
m ¿ m6EZ2

3 , EY 2
m ¿ nm4EZ2

3 , Eη2
m,i ¿ n2EZ2

3 ,

(4.3) EZ2
3 ¿ n−4δ3.

Let us show that, for 3 ≤ j ≤ n,

(4.4) ej(Z3) =
(

n− 3
j − 3

)
r0(j − 3, n− j,N − j) =

(
n− 3
j − 3

)(
N − n

j − 3

)(
N − j

j − 3

)−1

.

By symmetry,

EU2
j (Z3) =

(
n− 3
j − 3

)
ETΩj Uj(Z3), ETΩj Uj(Z3) =

(j−3)∧(n−j)∑
v=0

Mvsj,j−v,

where Mv =
(
n−j

v

)(
j−3

v

)
counts the summands TA of the sum Uj(Z3) which satisfy

|A∩Ωj | = j−v. Invoking (2.3), we obtain ETΩj Uj(Z3) = r0(j−3, n−j,N−j)σ2
j ,

thus proving the first part of (4.4). The second part follows from (4.19).
Let us prove the first inequality of (4.2). Write Zm = Z3 + D4 + · · ·+ Dm, where

Ds = Zs − Zs−1. By the inequality (a1 + · · ·+ as)2 ≤ s(a2
1 + · · ·+ a2

s), we have

EZ2
m ≤ (m− 2)(EZ2

3 + ED2
4 + · · ·+ ED2

m).

Now (4.2) follows from the inequalities ED2
s ¿ s4EZ2

3 , for 4 ≤ s ≤ m. To prove
these inequalities we show that, for 3 ≤ j ≤ n,

(4.5) ej(Ds) ¿ s4ej(Z3),

Observe, that ej(Ds) = 0, for n − s + 3 < j ≤ n, by the definition of Ds. In the
case where 3 ≤ j ≤ n− s+3, the inequalities (4.5) follow from the identities (4.6),
(4.7) and the bound (4.9), see below.
We have

Ds =
∑

A⊂Ωs−1, |A|=2

∑

B⊂Ωc
s

TA∪{s}∪B .
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Given j, this sum has
(
s−1
2

)(
n−s
j−3

)
different summands TA∪{s}∪B , such that |A ∪

{s} ∪B| = j. Fix B0 ⊂ Ωc
s with |B0| = j − 3 and denote A0 = Ω2 ∪ {s} ∪B0. By

symmetry

(4.6) EU2
j (Ds) =

(
s− 1

2

)(
n− s

j − 3

)
ETA0Uj(Ds).

In the next step we show that

(4.7) ETA0Uj(Ds) =
(
L0(j) + 2(s− 3)L1(j) +

(
s− 3

2

)
L2(j)

)
σ2

j ,

where we denote Li(j) = ri(j − 3, κ, N − j), where κ = n− s− j + 3. To this aim
split Uj(Ds) = W0 + W1 + W2, where

Wi =
∑

A∈Ai

∑

B⊂Ωc
s, |B|=j−3

TA∪{s}∪B , Ai = {A ⊂ Ωs−1 : |A| = 2, |A∩Ω2| = 2−i},

and write ETA0Uj(Ds) = ETA0W0 + ETA0W1 + ETA0W2. Note that (4.7) follows
from the identities

(4.8) ETA0Wi = |Ai|Li(j)σ2
j , i = 0, 1, 2,

which we are going to prove now. Denote H0 = {1, 2}, H1 = {1, 3}, H2 = {3, 4}.
By symmetry, for i = 0, 1, 2,

ETA0Wi = |Ai|ETA0

∑

B⊂Ωc
s, |B|=j−3

THi∪{s}∪B = |Ai|
(j−3)∧κ∑

v=0

Mv sj,j−v−i.

Here Mv =
(
κ
v

)(
j−3

v

)
counts the subsets B ⊂ Ωc

s such that |B ∩ B0| = j − 3 − v.
Invoking (2.3) we obtain (4.8).
We complete the proof of (4.5), by showing that, for 3 ≤ j ≤ n− s + 3,

(4.9) L′i(j) ¿ 1, where L′i(j) :=
(

n− s

j − 3

)
|Li(j)|
ej(Z3)

, i = 0, 1, 2.

To evaluate L′i(j) we use the expression (4.4) for ej(Z3) and invoke the formulas
(4.21) for Li(j). For i = 0 a simple calculation shows that

L′0(j) =
[n− s]j−3

[N − n]j−3

[N − n + s− 3]j−3

[n− 3]j−3
=

j−4∏
r=0

xr

yr

yr + s− 3

xr + s− 3
,
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where we denote xr = n− s− r and yr = N −n− r. Now the inequality L′0(j) ≤ 1
follows from the inequalities xr ≤ yr, which are consequences of the inequality
n ≤ N/2.
For i = 1, 2 the proof of (4.9) is similar.
Let us prove the second inequality of (4.2). To this aim we shall show that

(4.10) ej(Ym) ¿ nm4ej(Z3), 3 ≤ j ≤ n.

Note that (by the definition of Ym) ej(Ym) = 0, for j > n −m + 2. Let us prove
(4.10), for 3 ≤ j ≤ n − m + 2. Given j, fix B0 ⊂ Ωc

m, with |B0| = j − 2. By
symmetry,

(4.11) EU2
j (Ym) =

(
m

2

)(
n−m

j − 2

)
ETΩ2∪B0Uj(Ym).

Proceeding as in the proof of (4.7) above, we obtain

(4.12) ETΩ2∪B0Uj(Ym) =
(
L0(j) + 2(m− 2)L1(j) +

(
m− 2

2

)
L2(j)

)
σ2

j ,

where Li(j) = ri(j− 2, n−m− j + 2, N − j), for i = 0, 1, 2. Furthermore, arguing
as in proof of (4.9) we obtain

(4.13)
(

n−m

j − 2

)
Li(j) ¿ n ej(Z3), for i = 0, 1, 2.

Finally, combining (4.11-13) we get EU2
j (Ym) ¿ n m4ej(Z3)σ2

j . This bound im-
plies (4.10) thus completing the proof of the second inequality of (4.2)
In order to prove the last inequality of (4.2) we shall show that, for 3 ≤ j ≤ n,

(4.14) ej(ηm,i) ≤ n2ej(Z3).

Note that (by the definition of ηm,i) ej(ηm,i) = 0, for j > n−m + 1. Let us prove
(4.14), for 3 ≤ j ≤ n − m + 1. Given j, fix B0 ⊂ Ωc

m, with |B0| = j − 1. By
symmetry,

(4.15) EU2
j (ηm,i) =

(
n−m

j − 1

)
ET{i}∪B0Uj(ηm,i).

Denote κ = n−m− j + 1. A direct calculation shows that

ET{i}∪B0Uj(ηm,i) =
(j−1)∧κ∑

v=0

(
j − 1

v

)(
κ

v

)
sj,j−v = r0(j − 1, κ,N − j)σ2

j ,



FINITE POPULATION 25

where in the last step we invoke (2.3). Furthermore, proceeding as in the proof of
(4.9) we obtain

(4.16)
(

n−m

j − 1

)
r0(j − 1, κ, N − j) ≤ n2ej(Z3).

Now (4.14) follows from (4.15) and (4.16).
Proof of (4.3). Note that the inequality n ≤ N/2 implies τ2 ≥ n/2. Therefore,

in order to prove (4.3) it suffices to show that EZ2
3 ¿ E(D3T )2. For this purpose

we show that

(4.17) ej(Z3) ¿ ej(D3T ), 3 ≤ j ≤ n.

We invoke the formula for EU2
j (DiT ) provided in Lemma 2 of Bloznelis and Götze

(2001):

EU2
j (DiT ) =

�n−i
j−i

��N−n−i
j−i

�
�N−i−j

j−i

� N − j + 1

N − i− j + 1
2iσ2

j .

Combining this formula and (4.4) we find
ej(Z3)

ej(D3T )
= A B C where

A = [N − n]3

[N − j]3
, B = [N − 2j + 3]3

[N − n− j + 3]3
, C = 2−3 N − j − 2

N − j + 1
.

The inequality (4.17) follows from the inequalities A ≤ 1, C ≤ 2−3 and B ≤ 23.
The first two inequalities are obvious. In order to show the last one we write
j = n− ε and use the fact that ε ≥ 0. The lemma is proved.

In the remaining part of the section we evaluate the coefficients rk(s, t, u). Using
the identity, see Feller (1968), Chapter II,

(4.18)
∑

v

(−1)v

(
a

v

)(
u− v

t

)
=

(
u− a

u− t

)
, a, t, u ∈ {0, 1, 2, . . . },

Zhao and Chen (1990) showed that for u ≥ s ∧ t and s ≥ t

(4.19) r0(s, t, u) =
(

u− s

t

)(
u

t

)−1

.

Given integers 0 ≤ s ≤ t, let l(t, s) denote the coefficients of the expansion

(4.20) [v + t]t = l(t, t)[v]t + l(t, t− 1)[v]t−1 + · · ·+ l(t, 0)[v]0.
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Lemma 4.2. Let k, s, t, u ∈ {0, 1, 2, . . . }. For u ≥ s ∧ t + k, we have

(4.21) rk(s, t, u) =
k∑

r=0

l(k, r)(−1)r+kAk,r,

where

Ak,r = 0 for r > s ∧ t;
Ak,r = 0 for u < s + t + k − r;

Ak,r = (u− s− k)!(u− t− k)![s]r[t]r

(u− s− t− k + r)!u!
otherwise.

Clearly, the numbers l(i, j) can be expressed by Stirling numbers. A direct cal-
culation shows that

l(0, 0) = 1; l(1, 0) = 1, l(1, 1) = 1; l(2, 0) = 2, l(2, 1) = 4, l(2, 2) = 1;

l(3, 0) = 6, l(3, 1) = 18, l(3, 2) = 9, l(3, 3) = 1.

Proof of Lemma 4.2. Write a = min{s, t} and b = max{s, t}. We have

(4.22) rk(s, t, u) =
a∑

v=0

(−1)v+k

(
b

v

)
Mv, where Mv =

(
a

v

)(
u

v + k

)−1

.

A simple calculation shows that

Mv = [v + k]k

(
u− k − v

u− k − a

)
wk(a, u), wk(a, u) =

(
u− k

a

)−1

[u]−1
k .

Invoking the expansion (4.20), for the function v → [v + k]k, we obtain an expres-
sion for Mv. Substituting this expression in (4.22) we get

rk(s, t, u) = wk(a, u)
k∑

r=0

l(k, r)Sr, Sr =
a∑

v=0

(−1)v+k

(
b

v

)(
u− k − v

u− k − a

)
[v]r.

We complete the proof of (4.21) by showing that, for 0 ≤ r ≤ k,

(4.23) Sr = (−1)r+k[b]r

(
u− b− k

a− r

)
and [b]r

(
u− b− k

a− r

)
wk(a, u) = Ak,r.

Note that [v]r = 0, for v < r. For r ≤ v ≤ b, we have [v]r
(

b
v

)
= [b]r

(
b−r
v−r

)
.

Therefore, denoting v′ = v − r, we can write

Sr =
a−r∑

v′=0

(−1)v′+r+k[b]r

(
b− r

v′

)(
u− k − r − v′

u− k − a

)
.

Finally, invoking (4.18) we obtain the first identity of (4.23). The second identity
is trivial.
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