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Abstract. We study orthogonal decomposition of symmetric statistics based on
samples drawn without replacement from finite populations. Several applications to
finite population statistics are given: we establish one term Edgeworth expansions
for general asymptotically normal symmetric statistics, prove Efron–Stein inequality
and consistency of the jackknife estimator of variance. Our expansions provide
second order a.s. approximations to Wu’s (1990) jackknife histogram.

1. Introduction

Orthogonal decomposition of statistics were introduced by Hoeffding (1948) in
his proof of the asymptotic normality of U–statistics. Since then the orthogonal
decomposition (called also ANOVA decomposition or Hoeffding’s decomposition)
became an indispensable tool of analysis of distributional properties of statistics
based on independent observations. In particular it plays a crucial role in the
analysis of variance components (Efron and Stein 1981, Karlin and Rinott 1982,
Vitale 1992) and provides a natural framework for the first and the second order
asymptotics of statistics (Hajek 1968, Rubin and Vitale 1980, van Zwet 1984,
Bentkus, Götze and van Zwet 1997).
We study orthogonal decomposition of statistics based on samples drawn without

replacement from finite populations. For simplicity we consider the case of simple
random samples. We start with an overview of the orthogonal decomposition of
general symmetric statistics based on simple random samples, see Section 2 below.
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Here we also provide bounds for the remainders of the approximation of statistics
by a fixed number, say two or three, of terms of the Hoeffding decomposition.
Orthogonal decompositions of finite population U -statistics of fixed degree k were
used first in Zhao and Chen (1990) without providing uniform estimates for the
remainders as k increases together with the number of observations.
In Section 3 some brief applications are given. Here we prove the consistency of

the jackknife variance estimator for symmetric statistics based on samples drawn
without replacement, the finite population Efron–Stein inequality and discuss sec-
ond order approximations to the distribution of jackknife histogram (Shao 1989,
Wu 1990, Booth and Hall 1993) and sub-sampling (Politis and Romano 1994,
Bickel, Götze and van Zwet 1997, Bertail 1997). In Section 4 the Hoeffding de-
composition is used to establish asymptotic expansions for distribution functions
of general symmetric finite population statistics.

2. Hoeffding’s decomposition

Let T = t(X1, . . . , Xn) denote a statistic based on simple random sample X1,
. . . , Xn drawn without replacement from a finite population X = {x1, . . . , xN}
consisting of N units. Clearly, n < N . We shall assume that the function t
is invariant under permutations of its arguments. Therefore, T is a symmetric
statistic.
The Hoeffding decomposition

(2.1) T = E T +
∑

1≤i≤n

g1(Xi) +
∑

1≤i<j≤n

g2(Xi, Xj) + . . .

represents T by the sum of n mutually uncorrelated U–statistics of increasing
order. Here gk, k = 1, 2, . . . , n, denote symmetric kernels, which satisfy

(2.2) E (gk(Xi1 , . . . , Xik
)|Xj1 , . . . Xjr ) = 0,

for every 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jr ≤ n such that r < k. It is
easy to verify that such decomposition is unique.
The functions gk, k = 1, . . . , n, are linear combinations of conditional expectations

hj(xi1 , . . . , xij ) = E
(
T −E T

∣∣ X1 = xi1 , . . . , Xj = xij

)
.

We show in Appendix below that

(2.3) gk(x1, . . . , xk) = dn,k

k∑

j=1

Mk,j

∑

1≤i1<···<ij≤k

hj(xi1 , . . . , xij ).
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Here, for k = 2, 3, . . . , n the coefficients

(2.4) dk,j =
k−1∏

r=j

N − r

N − r − j
, 1 ≤ j ≤ min{k − 1, N − k}.

In the case where 2k > N + 1 we put dk,j = 0 for N − k < j ≤ k − 1. Finally,
we write dn,n = 1, for 2n ≤ N + 1 and dn,n = 0, for 2n > N + 1. Furthermore,
the coefficients Mk,j , for k satisfying the inequality 2k ≤ N + 1, are given by the
recursive relation

Mk,j = −
k−1∑

i=j

dk,iMi,j

(
k − j

i− j

)
, 1 ≤ j ≤ k − 1,

and we put Mk,k = 1. For 2k > N + 1 we write Mk,j = 0.
A simple calculation gives

g1(x) = N − 1

N − n
h1(x),

g2(x, y) = N − 2

N − n

N − 3

N − n− 1

(
h2(x, y)− N − 1

N − 2
(h1(x) + h1(y)

)
.

Let Uj , 1 ≤ j ≤ n denote the j–th sum in (2.1),

Uj = Uj(T ) =
∑

1≤i1<···<ij≤n

gj(Xi1 , . . . , Xij ).

Clearly, (2.2) implies E Uk Ur = 0, for k 6= r. That is, the U -statistics of the
decomposition (2.1) are mutually uncorrelated. Note, that in contrary to the
i.i.d. case, the random variables gj(Xi1 , . . . , Xij ) and gj(Xk1 , . . . , Xkj ) are not
uncorrelated. Indeed, for m denoting the number of elements of the intersection
{i1, . . . , ij} ∩ {k1, . . . , kj} we have

(2.5) sj,m := E gj(Xi1 , . . . , Xij ) gj(Xk1 , . . . , Xkj ) = (−1)j−m

�N−j
j−m

� σ2
j .

Here we denote σ2
j = E g2

j (Xi1 , . . . , Xij ). Invoking a simple combinatorial argu-
ment we evaluate the variances

(2.6) Var Uj =
�n

j

��N−n
j

�
�N−j

j

� σ2
j and Var T =

n∑

j=1

�n
j

��N−n
j

�
�N−j

j

� σ2
j .
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The formulas (2.5) and (2.6) have been used in Zhao and Chen (1990) for U -
statistics of fixed degree k. For convenience, we include the proof of (2.5) and
(2.6), see Lemmas 1 and 2 in Appendix below.
Here we shall develop several consequences of (2.3) and (2.6) which are new and

have important applications. It follows from (2.3) and (2.6) that for j > N − n
we have Uj ≡ 0. That is, the decomposition (2.1) reduces to

(2.7) T = E T + U1 + · · ·+ Un∗ , n∗ = min{n, N − n}.
Moreover, (2.2) entails the duality property, formulated in Proposition 1 below.
Let (X1, . . . , XN ) denote a random permutation of the ordered set (x1, . . . , xN )

which is uniformly distributed over the class of permutations. Then the first n
observations X1, . . . , Xn represent a simple random sample from X . For j =
1, . . . , N − n denote X ′

j = Xn+j .

Proposition 1. For j ≤ n∗ we have

(2.8) Uj ≡ U ′
j , where U ′

j = (−1)j
∑

1≤i1<···<ij≤N−n

gj(X ′
i1 , . . . , X

′
ij

).

Therefore, T ≡ T ′ , where T ′ = E T + U ′
1 + · · ·+ U ′

n∗ .

The proposition says that, in a sense T is a function of n∗ random variables. In
particular, if n > N/2 one may replace the statistic by a U - statistic based on
n∗ < N/2 observations.

Proof of Proposition 1. For the linear statistic U1 the identity (2.8) is a conse-
quence of E U1 = 0. For j = 2, . . . , n∗, this identity follows from (2.2).

One may view the decomposition (2.1) as a stochastic expansion of the statistic T .
Indeed, for a number of statistics the first few terms of the decomposition provide
a sufficiently precise approximations. To bound the errors of such approximations
we introduce appropriate smoothness conditions.
Denote

DjT = t(X1, . . . , Xn)− t(X1, . . . , Xj−1, Xj+1, . . . , Xn, X ′
j), X ′

j = Xn+j .

A higher order difference operations are defined recursively

Dj1,j2T = Dj2
(
Dj1T

)
, Dj1,j2,j3T = Dj3

(
Dj2(Dj1T )

)
, . . . .

They are symmetric, i.e., Dj1,j2T = Dj2,j1T , etc. Given k < n∗ write

δj = δj(T ) = E
(
n

(j−1)
∗ DjT

)2
, DjT = D1,2,...,jT, 1 ≤ j ≤ k.

In Examples 1 and 2 below we estimate the moments δj for U statistics and smooth
functions of sample means.

Theorem 1. For 1 ≤ k < n∗, we have

(2.9) T = E T + U1 + · · ·+ Uk + Rk, with E R2
k ≤ n

−(k−1)
∗ δk+1.

The proof of Theorem 1 is given in the Appendix.
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3. Applications

Jackknife estimator of variance. The Quenouille–Tukey jackknife estimator of
variance is a symmetric statistic of observations X1, . . . , Xn+1,

σ2
J = σ2

J(T ) =
n+1∑

j=1

(T(j) − T )2, T = 1

n + 1

n+1∑

j=1

T(j),

where we write T(j) = t(X1, . . . , Xj−1, Xj+1, . . . , Xn, Xn+1).
In the case of independent and identically distributed observations the jackknife

estimator of variance is asymptotically consistent if the underlying statistic is
sufficiently smooth, see e.g., Miller (1974), Parr (1985) and Shao and Wu (1989)
where in the later paper several smoothness conditions are discussed.
Here we consider statistics based on samples drawn without replacement. Let

X1, . . . , Xn be a simple random sample drawn without replacement from the
population X = {x1, . . . , xN}. The jackknife variance estimator for statistic
T = t(X1, . . . , Xn) is defined by

σ2
FJ = σ2

FJ(T ) = qσ2
J(T ), where q = (N − n)/N.

Note that σ2
FJ (T ) is a symmetric statistic of the sample X1, . . . , Xn+1 drawn

without replacement from the population X . For a linear statistic T = E T +∑n
i=1 g1(Xi) it is easy to show that E σ2

FJ(T ) = Var T .
Our first application of the orthogonal decomposition (2.1) is the finite population

Efron–Stein inequality: for arbitrary symmetric finite population statistic T =
t(X1, . . . , Xn) we have

(3.1) E σ2
FJ(T ) ≥ Var T.

That is, the jackknife variance estimator tends to be biased upwards. In the i.i.d.
case the Efron–Stein inequality was proved by Efron and Stein (1981). The proof
of (3.1) is given in the Appendix.
Another application of (2.1) is a general consistency result for the estimator σ2

FJ .
Assuming that n and N →∞ we prove the consistency of σ2

FJ for asymptotically
linear symmetric finite population statistics. In order to formulate the consistency
result we consider a sequence of statistics Tn = tn(X1, . . . , Xn). That is, we show
that for every ε > 0

(3.2) P{|σ2
FJ(Tn)−Var Tn| > ε} = o(1) as n,N →∞.

Let Ti,n denote the summand g1(Xi) of the linear part of decomposition (2.1) for
the statistic Tn.
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Proposition 2. Assume that N and n∗ = min{n, N − n} → ∞. Assume that

(i) for some 0 < c1 < c2 < ∞, we have c1 ≤ Var Tn ≤ c2 and δ2(Tn) = o(1);
(ii) for every ε > 0,

(3.3) n∗E T 2
1,nIT 2

1,n>ε = o(1).

Then (3.2) holds.

The proof of Proposition 2 is given in the Appendix.
Recall that δ2(Tn) = n2

∗E (D2Tn)2, where

D2Tn = tn(X1, . . . , Xn)− tn(X2, . . . , Xn, Xn+1)

− tn(X1, X3, . . . , Xn, Xn+2) + tn(X3, . . . , Xn+2).

Note that the condition (i) implies that Tn is asymptotically linear as n∗ → ∞.
That is,

(3.4) Tn = E Tn +
n∑

i=1

Ti,n + oP (1), with Var (
n∑

i=1

Ti,n) ≥ c1 − o(1).

Here E Tn +
∑n

i=1 Ti,n denotes the linear part of the decomposition (2.1) of Tn.
Indeed, by (2.1), we have Tn = E Tn +

∑n
i=1 Ti,n + rn, where the remainder

rn and the linear part are uncorrelated. The condition δ2(Tn) = o(1) implies
the bound E r2

n = o(1), see Theorem 1. Therefore, (3.4) follows. Note that the
uniform integrability condition (3.3) can be replaced by a more restrictive moment
condition lim supn E (T 2

1,nn∗)1+δ < ∞, for some δ > 0.
Sub-sampling. Let Y1, . . . , Yn be independent observations from a probability

distribution P . Let θn = θn(Y1, . . . , Yn) be an estimator of a real–valued parameter
θ = θ(P ). In order to make inferences about θ one estimates the distribution of
θn−θ. Assuming that the distribution Kn of τn(θn−θ) converges weakly to a limit
law Politis and Romano (1994) showed that the conditional distribution function

K̂m(x) = P{τm(θm(X1, . . . , Xm)− θn) ≤ x
∣∣∣Y1, . . . , Yn}

estimates the true distribution function Kn(x) = P{τn(θn − θ) ≤ x} consistently
as n,m →∞ so that m/n → 0 and τm/τn → 0. Here τn denotes a non-random se-
quence of normalizing constants and X1, . . . , Xm denotes a random sample drawn
without replacement from {Y1, . . . , Yn}. Assuming in addition that Kn(x) admits
an Edgeworth expansion, Bertail (1997) showed that K̂m(x) admits a correspond-
ing stochastic expansion. The proofs of Politis and Romano (1994) and Bertail
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(1997) exploit the U–statistic structure of the conditional distribution function
K̂m(x) and rely on the law of large numbers for U–statistics.
Another way to construct higher order approximations to K̂m(x) is based on

conditional asymptotic expansions given {Y1, . . . , Yn}. Let vm = vm(Y1, . . . , Yn)
(respectively em = em(Y1, . . . , Yn)) denote the conditional variance (respectively
the mean value) of τm(θm(X1, . . . , Xm)− θn), given Y1, . . . , Yn. Theorem 2 below
provides the conditional asymptotic expansion

(3.5) K̂m(x vm + em) = Φ(x)− q̂m(x)Φ(3)(x)
(
m(1−m/n)

)1/2 + O
(
m−1
∗

)

almost surely as m∗ = min{m, n−m} → ∞ and n →∞. An explicit formula for
the first term of the expansion q̂m(x) is provided in Section 4 below.
Wu (1990) used one term asymptotic expansion of finite population Studentized

mean due to Babu and Singh (1985) to construct a second order approximation
like (3.5) to the jackknife histogram of Studentized mean Clearly, (3.5) provides
such approximations with remainder O(m−1

∗ ) for a broad class of asymptotically
linear statistics, see also Bickel, Götze and van Zwet (1997) for other possible
applications of (3.5).
Let us mention that for some classes of statistics the order of the approximation

of K̂m(x) can be further improved by using Richardson extrapolation, see Bickel
and Yahav (1988), Booth and Hall (1993), Bertail (1997).
Finally, we discuss applications to resampling of finite population statistics. Us-

ing orthogonal decomposition of Section 2 and Edgeworth expansions of Section
4 one can extend i.i.d. results of Putter and van Zwet (1998) on empirical Edge-
worth expansions to samples drawn without replacement. This question is ad-
dressed in Bloznelis (2000). Furthermore, orthogonal decomposition of Section 2
and expansions of Section 4 below could be extended to stratified sampling with-
out replacement models and applied to resampling schemes like finite population
bootstrap (Gross (1980), Bickel and Freedman (1984), Chao and Lo (1985), Babu
and Singh (1985), Chen and Sitter (1993), Booth, Butler and Hall (1994), Helmers
and Wegkamp (1998)) and its modifications.

4. Stochastic and asymptotic expansions

We shall apply (2.9) to study the asymptotics of the distribution of T .
When speaking about the finite population asymptotics we assume that we have

a sequence of populations Xr = {xr,1, . . . , xr,Nr}, with Nr → ∞ as r → ∞, and
a sequence of symmetric statistics Tr = tr(Xr,1, . . . , Xr,nr ), based on samples
Xr,1, . . . , Xr,nr drawn without replacement from Xr. We shall assume that the
variances σ̃2

r = Var Tr remain bounded away from zero as r → ∞. In order to
keep the notation simple we drop the subscript r in what follows.
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In typical situations (U–statistics, smooth functions of sample means, Student’s
t and many others) we have Uj = OP (n(1−j)/2

∗ ), for j = 1, . . . , k, and

(4.1) δk+1 = O(n−1
∗ ) as n∗, N →∞,

for some k. Clearly, (4.1) is a smoothness condition. It implies the validity of the
stochastic expansion (2.9) with the remainder Rk = OP (n−k/2

∗ ). The condition
(4.1) is easy to handle. Below, we verify this condition for two classes of statistics:
smooth functions of multivariate sample means and U–statistics.
In the remaining part of the section we study the first and the second order

approximations of asymptotically linear statistics. We shall assume that the linear
part U1 is nondegenerate, that is, s2 := Var U1 > 0. Note that, by (2.6),

s2 = τ2σ2
1N/(N − 1), where τ2 = Npq, p = n/N, q = 1− p.

Clearly, n∗/2 ≤ τ2 ≤ n∗. In Proposition 3 below we formulate sufficient conditions
for the asymptotic normality.

Proposition 3. Assume that σ̃ remains bounded away from zero and δ2 = o(1)
as n∗, N → ∞. Then σ̃ − s = o(1). Suppose, in addition, that (3.3) holds. Then
σ̃−1(T − E T ), s−1(T − E T ) and (T − E T )/σFJ are asymptotically standard
normal.

Proof of Proposition 3. In view of Theorem 1, the condition δ2 = o(1) implies the
validity of the short stochastic expansion T = E T + U1 + oP (1). We also have
σ̃2−s2 = o(1) and, by Proposition 2, σ2

FJ/σ̃2 = σ2
FJ(T/σ̃) = 1+oP (1). Therefore,

the linear part dominates the statistic T and it suffices to prove the asymptotic
normality of s−1U1. The asymptotic normality is ensured by (3.3) which (under
conditions of the proposition) implies a Lindeberg type Erdős–Rényi condition

E g2
1(X1)σ−2

1 I|g1(X1)|>ετσ1 = o(1) as n∗, N →∞,

for every ε > 0, see Erdős and Rényi (1959). Note that (3.3) is equivalent to the
Erdős–Rényi condition if, in addition, σ̃ is bounded as n∗, N →∞.

Assuming that (4.1) holds, for k = 2, we obtain from Theorem 1 the stochastic
expansion T = E T + U1 + U2 + OP (n−1

∗ ). It suggests that Edgeworth expansions
of T −E T and U1 +U2 should coincide up to the order O(n−1

∗ ). Note that U1 +U2

is a U–statistic of degree two. Bloznelis and Götze (2000) showed that an one
term asymptotic expansion

G(x) = Φ(x)− (q − p) α + 3 κ

6 τ
Φ(3)(x)
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approximates the distribution function P{U1 + U2 ≤ x s} with the remainder
O(n−1

∗ ). Here Φ(3)(x) denotes the third derivative of the standard normal distri-
bution function Φ(x),

α = σ−3
1 E g3

1(X1), κ = σ−3
1 τ2E g2(X1, X2) g1(X1) g1(X2).

Using Theorem 1, one may extend this result to arbitrary symmetric statistics.
In particular, in order to construct one term Edgeworth expansion of T we do
not need to evaluate all the summands of (2.1), but (moments of) the first few
terms only. A general result formulated in Theorem 2 below provides the bounds
o(n−1/2

∗ ) and O(n−1
∗ ) for the error of the expansion

∆ := sup
x

∣∣F (x)−G(x)
∣∣, where F (x) = P{T ≤ E T + xσ̃}.

Similar bounds hold for

∆1 := sup
x

∣∣F1(x)−G(x)
∣∣, where F1(x) = P{T ≤ E T + xσ1τ}.

In order to establish the validity of an Edgeworth expansion we need to impose
an appropriate smoothness condition. It is the non-lattice condition in the case
of the remainder o(n−1/2

∗ ) and it is a Cramér type condition in the case of the
remainder O(n−1

∗ ). Either of these conditions will be imposed on the linear part
of the statistic.
Given g : R → C write ‖g‖[a,b] = supa<|t|<b |g(t)|. We shall say that the linear

part is asymptotically non–lattice, if for every ε > 0 and every B > 0, the char-
acteristic function ϕ(t) = E exp{itσ−1

1 g1(X1)} of the random variable σ−1
1 g1(X1)

satisfies

(4.2) lim inf
n∗,N→∞

‖ϕ‖[ε,B] < 1.

A more stringent smoothness condition is a Cramér type condition

(4.3) lim inf
n∗,N→∞

‖ϕ‖[ε,τ ] < 1.

Note that τ →∞ as n∗, N →∞. Write

βs = E |n1/2
∗ g1(X1)|s, γs = E |n3/2

∗ g2(X1, X2)|s, ζs = E |n5/2
∗ g3(X1, X2, X3)|s.
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Theorem 2. Assume that σ̃ remains bounded away from zero as N →∞.

(i) Assume that (4.2) holds, δ3 = o(n−1/2
∗ ) and, for some δ > 0, the moments

β3+δ and γ2+δ are bounded as n∗, N →∞. Then

∆ = o(n−1/2
∗ ) and ∆1 = o(n−1/2

∗ ), as n∗, N →∞.

(ii) Assume that (4.3) holds, δ4 = O(n−1
∗ ) and, the moments β4, γ4, ζ2 are bounded

as n∗, N →∞. Then

∆ = O(n−1
∗ ) and ∆1 = O(n−1

∗ ) as n∗, N →∞.

Proof of Theorem 2. Note that either of the conditions (i) and (ii) implies

(4.4) σ̃2 = s2 + O(n−1
∗ ) = τ2σ2

1 + O(n−1
∗ ).

Therefore, it suffices to construct bounds for ∆1.
Let us prove ∆1 = o(n−1/2

∗ ). In the case of U–statistics of degree two (the
remainder in (2.9) R2 ≡ 0), this bound is proved in Bloznelis and Götze (1999 a). A
passage to the general case can be made by using a Slutzky type argument. Indeed,
by (2.9), under condition (i), we have P{|R2| > εn

−1/2
∗ } ≤ ε−2δ3 = o(n−1/2

∗ ), for
every ε > 0. Note that supx |G(1)(x)| remains bounded as n∗, N →∞.
The proof of the bound ∆1 = O(n−1

∗ ) is rather complex and laborious. It is given
in a more technical paper Bloznelis and Götze (1999 b).

Note that if σ̃ remains bounded away from zero as n∗, N →∞, then (4.4) implies
τσ1/σ̃ = 1 + O(n−1

∗ ). Therefore, we can replace G by G0, where

G0(x) = Φ(x)− τ2

σ̃2

(q − p) α0 + 3 τ2κ0

6 σ̃
Φ(3)(x),

α0 = E g3
1(X1), κ0 = E g2(X1, X2) g1(X1) g1(X2).

Corollary. Theorem 2 remains valid if we replace G by G0 in the definition of ∆
and ∆1.

If n,N → ∞ and n2 = o(N), the simple random sample model approaches
the i.i.d. situation. In this case Theorem 2 and the Corollary agree with the
corresponding results of Bentkus, Götze and van Zwet (1997), who constructed
second order approximation to symmetric statistics of i.i.d. observations.
In order to construct one term Edgeworth expansion G (respectively G0) one

needs to evaluate the parameters σ1, α, κ (respectively σ̃, α0, κ0). For some classes
of statistics it reduces to routine calculations, see examples below. Another possi-
ble way is to substitute consistent estimators of these parameters. The consistency
of the corresponding jackknife estimators is established in Bloznelis (2000).
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Earlier results on Edgeworth expansions for nonlinear asymptotically normal fi-
nite population statistics by Babu and Singh (1985), Babu and Bai (1996) apply
to statistics which can be approximated by smooth functions of multivariate sam-
ple means. Their approach combines linearization and expansions for multivariate
sample means. This approach, though conceptually simpler, focuses on particular
class of statistics (smooth functions of multivariate sample means). Furthermore,
it often requires a bit restrictive Cramér type smoothness condition imposed on the
underlying multivariate sample mean rather than on the linear part of the statistic
itself. Another approach was used by Kokic and Weber (1990) to prove the validity
of one term Edgeworth expansion for finite population U -statistic. However, they
did not use finite population orthogonal decomposition. In contrast to Theorem 2
all of above mentioned results establish the validity of the expansions under some
additional conditions on the sample fraction p = n/N .
In what follows we consider two examples: U–statistics and smooth functions of

sample means.
Example 1. U–statistics. Given an integer m let ϕ denote a real symmetric

function defined on m–subsets of the population X = {x1, . . . , xN}. Define U–
statistic

(4.5) U =
∑

1≤i1<···<im≤n

ϕ(Xi1 , . . . , Xim)

based on simple random sample X1, . . . , Xn (n > m) drawn without replace-
ment from X . We shall assume that E U = 0 and construct one term Edgeworth
expansion G(x). To this aim we evaluate the parameters σ1, α and κ.
Write Hoeffding’s decomposition for symmetric statistic ϕ(X1, . . . , Xm),

ϕ(X1, . . . , Xm) =
∑

1≤k≤m

∑

1≤i1<···<ik≤m

g̃k(Xi1 , . . . , Xik
),

where symmetric kernels g̃k are defined by (2.3). Clearly, every summand
ϕ(Xi1 , . . . , Xim) of (4.5) can be written in such form. Substitution of these ex-
pressions in (4.5) yields Hoeffding’s decomposition of U ,

U =
∑

1≤k≤m

∑

1≤i1<···<ik≤n

gk(Xi1 , . . . , Xik
), where gk =

(
n− k

m− k

)
g̃k.

Denoting σ2
0 = E g̃2

1(X1) we have σ2
1 =

(
n−1
m−1

)2
σ2

0 ,

α = σ−3
0 E g̃3

1(X1), κ = (m− 1)n

n− 1

q

σ3
0

E g̃2(X1, X2)g̃1(X1)g̃1(X2).
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In order to estimate the moments (of differences) δk, we invoke variance formulas
(2.6) and (5.21), see below. A straightforward calculation gives

(4.6) δk ≤ c(m)nk−2
∗

(
Var U2

k + · · ·+ Var U2
m

)
,

where c(m) denotes a constant which depends only on m. Note that (4.6) implies
n
−(k−1)
∗ δk+1 ≤ c(m)E R2

k, where Rk denotes the remainder of (2.9). That is, for
U–statistics of degree m, the inequality (2.9) is precise (up to the constant c(m)).
Example 2. Smooth functions of multivariate sample means. Assume

that X ⊂ Rk and consider the statistic T =
√

n/q (h(X) − h(a)), where h :
Rk → R. Here X = n−1(X1 + · · ·+ Xn) and a = E X1. Assuming that h is three
times differentiable and derivatives are bounded we construct one term Edgeworth
expansion and bound δ3. In order to bound δ4 we need one more derivative.
We may assume without loss of generality that E X1 = 0.
Denote Yi = h(1)(0)Xi and Yi,j = h(2)(0)XiXj and write

σ2
h = E Y 2

1 , αh = σ−3
h E Y 3

1 , κh = σ−3
h E Y1Y2Y1,2.

Here h(s)(y) denote the s–th derivative of h at the point y ∈ Rk. We write
h(s)(y)z1 . . . zs to denote the value of the s–linear form h(s)(y) with arguments
z1, . . . , zs ∈ Rk.
Straightforward, but tedious calculations shows that αh and qκh provides suffi-

ciently precise approximations to α and κ. Therefore, by Theorem 2,

Φ(x)− (q − p)αh + 3q κh

6τ
Φ(3)(x)

can be used as one term asymptotic expansion of the distribution function P{T −
E T ≤ xσh}. The verification of the conditions of Theorem 2 reduces to routine,
but cumbersome calculations. We skip most of technical details and focus on the
smoothness conditions (4.1) only.
Let ‖h(s)(y)‖ denote the smallest c > 0 such that |h(s)(y)z1 · · · zs| ≤ c|z1| · · · |zs|.

Here |zi|2 = z2
i,1 + · · · + z2

i,k denotes the Euclidean norm of a vector
zi = (zi,1, . . . , zi,k) ∈ Rk. We say that the s–th derivative is bounded if
‖h(s)‖∞ := supy ‖h(s)(y)‖ is finite.
Assuming that ‖h(j)‖∞ and E |X1|2 remain bounded as n∗, N →∞ we prove that

δj(T ) = O(n−1
∗ ). More precisely, we show that, for every fixed j = 1, 2, . . . , n∗,

(4.7) δj(T ) ≤ 2j Nj

[N ]j
‖h(j)‖2∞(E |X1|2)j n2j−2

∗
q n2j−1

,

where [N ]j = N(N−1) . . . (N−j+1). Let κ1,κ2, . . . be a sequence of independent
random variables uniformly distributed in [0, 1]. We assume that the sequence and
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the random permutation (X1, . . . , XN ) are independent. Given a differentiable
function f we use the mean value formula f(x + y)− f(x) = E κ1f

(1)(x + κ1y)y.
Here E κ1 denotes the conditional expectation given all the random variables but
κ1. Write ui = n−1(Xi −X ′

i). By the mean value formula

(4.8) Djh(X) = E κ1 . . .E κj
h(j)(X − (κ1u1 + · · ·+ κjuj))u1 · · ·uj ,

Furthermore, invoking the simple bound E |Xi1 |2 . . . |Xij
|2 ≤ N j/[N ]j(E |X1|2)j ,

for i1 < · · · < ij , we obtain E |u1 . . . uj |2 ≤ 2jN j/[N ]jn−2j(E |X1|2)j . The last
inequality in combination with (4.8) implies (4.7).
The smoothness condition on h can be relaxed. By the law of large numbers,

X concentrates around a = E X1 with high probability. Therefore, it suffices to
impose smoothness conditions on h in a neighbourhood of a only.

5. Appendix

We may assume without loss of generality that E T = 0. Recall that (X1, . . . , XN )
denotes random permutation of the ordered set (x1, . . . , xN ).
Denote Ωk = {1, . . . , k}, for k = 1, 2, . . . , and Ω = ΩN . Given a statistic V =

V (X1, . . . , XN ) write

E (V |A) = E (V
∣∣ Xi, i ∈ A), A ⊂ Ω,

and denote E (V
∣∣∅) = E V .

Proof of (2.3). Introduce random variables QA, for A ⊂ Ωn, with |A| ≥ 1.
For |A| = 1, we put QA = E (T

∣∣A). Let n0 be the largest integer such that
2n0 − 1 ≤ N .
For |A| = 2, 3, . . . , min{n0, n}, we define QA recursively as follows. Given A ⊂ Ωn,

with |A| = k, write

(5.1) QA = E (T
∣∣A)− dk,k−1

∑

B⊂A, |B|=k−1

QB − · · · − dk,1

∑

B⊂A, |B|=1

QB ,

where the numbers dk,j are chosen so that for each B ⊂ A,

(5.2) E (QA|B) = 0, |B| < |A|.
A straightforward calculation gives (2.4). In Lemma 1 we extend the identity
(5.2) to arbitrary B ⊂ ΩN satisfying |B| < |A|. Now (5.2) implies that the sums∑
|B|=i QB and

∑
|B|=j QB in (5.1) are uncorrelated for 1 ≤ i < j ≤ k. Therefore,

(5.1) provides an orthogonal decomposition for the statistic E (T |A),

(5.3) E (T |A) =
k∑

j=1

dk,j

∑

B⊂A,|B|=j

QB ,
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where we put dk,k = 1.
For n ≤ n0 this identity yields the decomposition for T

(5.4) T = E (T |Ωn) =
∑

B⊂Ωn,|B|≥1

TB , TB = dn,|B|QB ,

where for every B ⊂ Ωn and C ⊂ ΩN we have almost surely

(5.5) E (TB |C) = 0, for |C| < |B|.
Denoting

gk(x1, . . . , xk) = E
(
TΩk

∣∣ X1 = x1, . . . , Xk = xk

)
, k = 1, 2, . . . , n,

we obtain (2.1) from (5.4) and (2.2) from (5.5).
Now assume that n > n0. For k = n0 + 1, . . . , n we show that (5.3) remains

valid if we choose dk,j = 0, for j = N − k + 1, . . . , k. Let QA with (|A| = k) be
defined by (5.1). A calculation shows that if for j = 1, . . . , N−k the numbers dk,j ,
are given by (2.4) and dk,j = 0 for j > N − k then (5.2) holds for every B ⊂ A
with |B| ≤ N − k. Proceeding as in proof of (5.8) below one can show that (5.2)
extends to arbitrary B ⊂ ΩN such that |B| ≤ N − k. In particular, for A = Ωk

and B = ΩN \ Ωk we have E (QA|B) = 0 almost surely. Since E (QA|B) = QA,
we obtain QA = 0 almost surely thus proving (5.3). In the case where A = Ωn the
identity (5.3) provides the orthogonal decomposition for T ,

(5.6) T = E (T |Ωn) =
N−n∑

j=1

∑

B⊂Ωn,|B|=j

TB , TB = dn,|B|QB ,

where QB is given by (5.1) and satisfy (5.2) and (5.5) Finally, invoking a simple
combinatoric calculation we derive (2.3) from (5.1) and (5.4), (5.6).
Before to formulate Lemmas 1 and 2 we introduce some notation. Define the

random variable TA for arbitrary A = {i1, . . . , ir} ⊂ Ω, with cardinality r ≤ n,
by putting TA = gr(Xi1 , . . . , Xir ). Let us write also T∅ = 0. Note that TA is a
centered symmetric statistic of observations Xi, i ∈ A. Two random variables TA

and TB are identically distributed if |A| = |B|. The difference operation Di can
be applied to TA provided that i′ = n + i /∈ A. We write DiTA = TA − TA({i}) if
i ∈ A and put DiTA = 0 otherwise. Here A({i}) = (A\{i})∪{i′}. A higher order
differences Di = Di . . . D1 are defined recursively: D2TA = D2TA − D2TA({1}),
etc. We shall apply these differences to TA, with A ∈ Ωn. Note that DiTA = 0,
whenever Ωi * A. If Ωi ⊆ A, we can write A = Ωi ∪B, for some B ⊂ Ωn \ Ωi. In
this case we have

DiTΩi∪B =
∑

C⊂Ωi

(−1)|C|TΩi(C)∪B ,(5.7)

Ωi(C) =(Ωi \ C) ∪ C ′, C ′ = {l′ : l ∈ C}, l′ = l + n.
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Here we write also Ωi(∅) = Ωi.
Given A,B ∈ Ω, with |A ∩B| = k and |A| = |B| = j, j ≤ n, denote

σ2
j = E T 2

A, sj,k = E TATB .

If, in addition, A, B ⊂ Ωn \ Ωi we write

σ2
i,j+i = E

(
DiTΩi∪A

)2
, si,j,k = EDiTΩi∪ADiTΩi∪B .

Put σ2
0,j = σ2

j and s0,j,k = sj,k.

Lemma 1. The following identities hold

E (TG|H) = 0, for every G,H ⊂ Ω with |H| < |G|,(5.8)

sj,k = (−1)j−k

�N−j
j−k

� σ2
j , 0 ≤ k ≤ j ≤ n0,(5.9)

si,j,k = (−1)j−k

�N−j−2i
j−k

� σ2
i,i+j , 0 ≤ k ≤ j ≤ n0 − i,

(5.10)

σ2
i,j = N − j + 1

N − j − i + 1
2iσ2

j , i ≤ j ≤ n0.

(5.11)

Proof of Lemma 1. We start with an auxiliary identity (5.12). Fix C, D ⊂ Ω such
that 1 ≤ |C| ≤ |D| and |C \D| = 1. Denote C1 = C ∩D. We have

(5.12) E (TC

∣∣D) = 1

N − |D|
∑

i∈Ω\D
T{i}∪C1 = −1

N − |D|
∑

i∈D\C
T{i}∪C1 ,

since, (Ω \D) ∪ (D \ C) = Ω \ C1 and, by (5.5),

∑

i∈Ω\C1

T{i}∪C1 = (N − |C1|)E (TC |C1) = 0.

Let us prove (5.8). For H ⊂ G ⊂ Ωn, (5.8) follows from (5.5). By symmetry, it still
holds for H ⊂ G ⊂ Ω. For |H \G| = k, we prove (5.8) by induction. Assume that
(5.8) holds for every k ≤ r. Given G,H ⊂ Ω, with |H\G| = r+1, fix a ∈ G\H and
denote Ga = G \ {a}. Write E (TG|H) = E (Va|H), where Va = E (TG|Ga ∪H).
An application of (5.12) to Va gives E (Va|H) = 0, by induction hypothesis, with
k = r. Hence, E (TG|H) = 0 and we obtain (5.8), with k = r + 1.
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Let us prove (5.9). Given A,B ⊂ Ω, with |A| = |B| = j ≥ 1 and |A∩B| = k < j,
fix ia ∈ A \B and denote A1 = A \ {ia}. An application of (5.12) gives

sj,k = E TBE (TA|A1 ∪B) = −1

N − (2j − k − 1)

∑

i∈B\A
E TBT{i}∪A1

= (−1)(j − k)

N − (2j − k − 1)
sj,k+1,(5.13)

where the last identity follows by symmetry. Applying (5.13) several times, for
increasing k, we obtain (5.9).
Let us prove (5.10). Let A,B be as above and assume in addition that A,B ⊂

Ωn \Ωi. Fix ia ∈ A \B and ib ∈ B \A. Denote B1 = B \ {ib} and B2 = B1 ∪{ia}.
It follows from (5.7) that

(5.14) si,j,k =
∑

C⊂Ωi

(−1)|C|EDiTΩi∪AhC , hC = TΩi(C)∪B .

Write H = A ∪ Ωi ∪ Ω′i ∪B1, where Ω′i = {1′, . . . , i′}. By (5.12),

E (hC |H) = −1

N − |H| M, M =
∑

r∈H\(Ωi(C)∪B1)

TΩi(C)∪B1∪{r}.

Split M = KC + LC ,

KC =
∑

r∈A\B
TΩi(C)∪B1∪{r}, LC =

∑

r∈(Ωi∪Ω′i)\Ωi(C)

TΩi(C)∪B1∪{r}

and substitute the expression E (hC |H) = −(N − |H|)−1(KC + LC), in (5.14) to
get

si,j,k =
∑

C⊂Ωi

(−1)|C|EDiTΩi∪AE (hC |H) = −1

N − |H| (SK + SL),

(5.15)

SK =
∑

C⊂Ωi

(−1)|C|EDiTΩi∪AKC , SL =
∑

C⊂Ωi

(−1)|C|EDiTΩi∪ALC .

We shall show below that SL = 0. Now consider SK . By symmetry,

EDiTΩi∪AKC = |A \B|EDiTΩi∪ATΩi(C)∪B2 .

Therefore, SK = (j − k)S, where, by (5.7),

S = EDiTΩi∪A

∑

C⊂Ωi

(−1)|C|TΩi(C)∪B2 = EDiTΩi∪ADiTΩi∪B2 .
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We obtain SK = (j − k)si,j,k+1. Finally, by (5.15) and the identity SL = 0,

(5.16) si,j,k = (−1)

N − |H| SK = (−1)(j − k)

N − (2j + 2i− k − 1)
si,j,k+1.

Applying this identity several times, for increasing k, we obtain (5.10).
It remains to prove SL = 0. To this aim we shall show that almost surely

(5.17)
∑

C⊂Ωi

(−1)|C|LC =
∑

C⊂Ωi

(−1)|C|
∑

r∈Ω∗i (C)

TΩi(C)∪B1∪{r} = 0.

Here Ω∗i (C) = (Ωi ∪ Ω′i) \ Ωi(C). Note that for any fixed C ⊂ Ωi and j1 ∈ Ω∗i (C)
there exists a unique pair D, j2, with D 6= C, where D ⊂ Ωi and j2 ∈ Ω∗i (D) such
that

(5.18) Ωi(C) ∪ {j1} = Ωi(D) ∪ {j2}.
Namely, if j1 ∈ Ω′i then j1 = j′ for some j ∈ Ωi and in this case D = C ∪ {j}.
If j1 ∈ Ωi then necessarily j1 ∈ C and in this case D = C \ {j1}. In both cases
we have

∣∣|C| − |D|∣∣ = 1 and therefore, (−1)|C| + (−1)|D| = 0. Hence, for every
random variable TΩi(C)∪B1∪{j1} of the sum (5.17) there exists a unique counterpart
TΩi(D)∪B1∪{j2} (in the same sum) satisfying (5.18). Clearly, we have

(−1)|C|TΩi(C)∪B1∪{j1} + (−1)|D|TΩi(D)∪B1∪{j2} = 0

and thus, (5.17) follows.
Let us prove (5.11). Fix A ⊂ Ωn \ Ωi with |A| = j − i. We have

σ2
i,j = E

(
DiTΩi∪A

)2 = E
(
Di−1TΩi∪A − Di−1TΩi({i})∪A

)2

= E
(
Di−1TΩi∪A

)2 + E
(
Di−1TΩi({i})∪A

)2 − 2EDi−1TΩi∪A Di−1TΩi({i})∪A

= 2σ2
i−1,j − 2 si−1,j−i+1,j−i = 2

(
1 + 1

N − (j + i− 1)

)
σ2

i−1,j .

In the last step we used (5.16). Applying this identity several times, for decreasing
i, we obtain (5.11) thus completing the proof of the lemma.

We shall consider statistics of the form: V =
∑

B⊂H TB , where H denotes some
class of subsets B of Ω with |B| ≤ n. Denote Uj(V ) =

∑
B⊂H, |B|=j TB and write

ej(V ) = σ−2
j Var Uj(V ), for σ2

j > 0. Otherwise put ej(V ) = 0. By (5.8), random
variables Ur(V ) and Uk(V ) are uncorrelated, for r 6= k. Therefore,

(5.19) Var V = Var U1(V ) + · · ·+ Var Un(V ) = e1(V )σ2
1 + · · ·+ en(V )σ2

n

In what follows we use the formula

(5.20)
min{s,k}∑

v=0

(−1)v

(
s

v

)(
k

v

)(
u

v

)−1

=
(

u− s

k

)(
u

k

)−1

,

where the integers s, t, u ≥ 0, see, e.g., Zhao and Chen (1990).
Write ri,j =

(
N−n−i

j−i

)(
N−i−j

j−i

)−1
.
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Lemma 2. The formulas (2.6) holds true. For every 1 ≤ i ≤ j ≤ n∗, we have

(5.21) Var Uj(DiT ) =
(

n− i

j − i

)
ri,jσ

2
i,j =

(
n− i

j − i

)
ri,j

N − j + 1

N − i− j + 1
2iσ2

j ,

(5.22) Var Uj(T ) ≤ (n∗/2)iVar Uj(DiT ).

Proof of Lemma 2. Let us prove the first part of (2.6). By symmetry,

(5.23) Var Uj(T ) =
(

n

j

)
E TΩj Uj(T ) and E TΩj Uj(T ) =

n−j∑
v=0

mvsj,j−v,

where mv denotes the number of subsets B ⊂ Ωn, with |B| = j, satisfying
|B ∩ (Ωn \ Ωj)| = v. Clearly, mv =

(
n−j

v

)(
j

j−v

)
. Therefore,

E TΩj Uj(T ) =
v0∑

v=0

(
n− j

v

)(
j

v

)
sj,j−v, v0 := min{n− j, j}.

Invoking (5.9) and then using (5.20) we obtain E TΩj Uj(T ) = r0,jσ
2
j . This identity

in combination with (5.23) gives the first part of (2.6). The second part is trivial,
cf (5.19).
Let us prove (5.21). We have

Uj(DiT ) =
∑

A⊂Ωn\Ωi, |A|=j−i

DiTΩi∪A, i ≤ j ≤ n.

By symmetry,

Var Uj(DiT ) =
(

n− i

j − i

)
EDiTΩj Uj(DiT ),

EDiTΩj Uj(DiT ) =
min{n−j,j−i}∑

u=0

(
n− j

u

)(
j − i

j − i− u

)
si,j−i,j−i−u.

Invoking (5.10) and then using (5.20) we obtain EDiTΩj Uj(DiT ) = ri,jσ
2
i,j , thus,

proving the first identity of (5.21). The second one follows from (5.11).
The inequality (5.22) is a simple consequence of the identity

Var Uj(DiT )

Var Uj(T )
= 2i [j]i [N − j + 1]i

[n]i [N − n]i
,

which follows from (2.6) and (5.21).
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Proof of Theorem 1. Combining (2.7) and (5.22) we obtain

E R2
k = Var Uk+1(T ) + · · ·+ Var Un∗(T )

≤ (n∗/2)k+1
(
Var Uk+1(Dk+1T ) + · · ·+ Var Un∗(Dk+1T )

)

= n1−k
∗ 2−1−kδk+1.

Proof of (3.1). Using the identity σ2
J =

∑n+1
i=1 T 2

i − (n + 1)T
2

it is easy to show
that (3.1) is equivalent to the inequality (n+1−q−1)E T 2 ≥ (n+1)E T

2
. In order

to prove this inequality it suffices to show that for every j = 1, . . . , n∗,

(5.24) (n + 1− q−1)Var Uj(T ) ≥ (n + 1)−1Var Uj(H), H = (n + 1)T .

Let us evaluate Var Uj(H). An application of (2.1) to T(1), . . . , T(n+1) gives

H =
n∗∑

j=1

(n + 1− j)Wj , Wj =
∑

B⊂Ωn+1, |B|=j

TB .

Proceeding as in proof of (5.23) we obtain

E W 2
j =

(
n + 1

j

)(
N − n− 1

j

)(
N − j

j

)−1

σ2
j .

Therefore, we have an explicit formula for Var Uj(H) = (n+1−j)2E W 2
j . Invoking

(2.6) we obtain an explicit formula for the left-hand side of (5.24) as well. Now a
simple arithmetics proves (5.24).
Proof of Proposition 2. Under condition (i) we have s2−σ̃2 = o(1) as n∗, N →
∞. In particular, s2 = O(1). Let V 2 = σ2

J(U1(T )) denote the jackknife variance
estimator of U1(T ), the linear part of T . In order to prove (3.2) it suffices to show
that as n∗, N →∞

q(σ2
J − V 2) = oP (1) and qV 2 − s2 = oP (1).

The first relation is implied by the smoothness condition δ2 = o(1). The second
relations follows by the (weak) law of large numbers (use (3.3) and the fact that
s2 = O(1)).
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