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Abstract. For symmetric asymptotically linear statistics based on simple ran-
dom samples, we construct a one-term empirical Edgeworth expansion, where the
moments defining the true Edgeworth expansion are replaced by their jackknife es-
timators. In order to establish the validity of the empirical Edgeworth expansion
(in probability) we prove the consistency of the jackknife estimators.

4. Lemmas

In the first part of the section, we collect the statements of lemmas. Proofs are
given aftewards.

Lemma 4.1. Under conditions of Lemma 2.3, the bounds (3.29), (3.30), (3.32),
and (3.39) hold. If in addition, n ≤ N/2, then the bound (3.38) holds.

Let ri, r̃i, rij , and wij be random variables defined in (3.19), (3.26), (3.28), and
(3.21), respectively.

Lemma 4.2. We have

E r2
i ≤ 2−1n−1

∗ δ2, 1 ≤ i ≤ n + 1,(4.1)

E r̃i ≤ 2−1n−1
∗ δ2, 1 ≤ i ≤ n + 2,(4.2)

E r2
ij ≤ c

qσ2
1

n3
+ c

qσ2
2

n
+ c

δ3

n3∗
, 1 ≤ i < j ≤ n + 2.(4.3)

Furthermore, under conditions of Lemma 2.3, the following bounds hold:

(4.4) E |wijTiTj | = O(τ−5), E |wijTiTj |6/5 = O(τ−6).
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2 M. BLOZNELIS

Lemma 4.3. Assume that (2.1) is satisfied. Then we have

(4.5) E w2
ij ≤ 3C2τ

−6γ2 + 6C2τ
−2n−2,

(4.6) E r̃2
i ≤ 25C2τ

−4γ2 + 2−2τ−4δ3,

(4.7) E |wij r̃j | ≤ 24τ−5(1 + C2)(1 + γ2 + δ3),

(4.8) E |rij r̃i| ≤ cτ−5κ(C2γ2 + δ3)1/2,

(4.9) E |rijTiTj | ≤ cτ−5C2κ, E |rijTi| ≤ cτ−4C
1/2
2 κ,

E |rijT∗| ≤ cτ−5C
1/2
2 κ,

where κ2 = δ3 + τ−2C2 + τ−2C2γ2 and where T∗ is defined in (3.21).

Proof of Lemma 3.1. Let us prove (3.14) and (3.15). From (3.12) and (3.6) it
follows that that E U2

1 ≤ σ2
T ≤ E U2

1 + δ2. In particular, we have E U2
1 ≤ C2.

Furthermore, by (3.10),

E U2
1 = ζ2(1 + (N − 1)−1) ≤ ζ2 + (N − 1)−1E U2

1 .

Combining these inequalities, we obtain (3.14) and the estimate

0 ≤ σ2
T − ζ2 = (σ2

T −E U2
1 ) + (E U2

1 − ζ2) ≤ δ2 + (N − 1)−1C2.

Let us prove (3.16). By (3.8),

(4.10) E (D2T )2 = E U2
2 (D2T ) + E U2

3 (D2T ) + · · ·+ E U2
n∗(D2T ).

Combining (3.11) and (3.10), we get

(4.11) E U2
2 (D2T ) = 4σ2

2(N − 1)(N − 3)−1.

Furthermore, by (3.11), for j = 3, . . . , n∗, we have

(4.12) E U2
j (D2T ) = 2−1h3,jh

−1
2,jE U2

j (D3T ) ≤ 2−1n∗E U2
j (D3T ).

In the last step, we used the inequality h3,j ≤ n∗h2,j . From (4.12) it follows that

(4.13)
n∗∑

j=3

E U2
j (D2T ) ≤ 2−1n∗

n∗∑

j=3

E U2
j (D3T ) = 2−1n∗E (D3T )2 = 2−1n−3

∗ δ3.

Combining (4.10), (4.11), and (4.13), we obtain

δ2 = n2
∗E (D2T )2 ≤ 4 N − 1

N − 3
n2
∗σ

2
2 + 2−1n−1

∗ δ3 ≤ 26C2n
−1
∗ γ2 + 2−1n−1

∗ δ3.
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In the last step, we used the identity σ2
2 = τ−6ζ2γ2 and the inequality ζ2 ≤ C2.

Proof of Lemma 4.1. We shall use the same notation as in proof of Lemma 2.3.
From (3.13) and (3.14) it follows that E T 2

∗ ≤ ζ2n−2 ≤ C2n
−2. Furthermore, by

Chebyshev’s inequality, P{|T∗| > n−3/4} ≤ C2n
−1/2. Therefore, in what follows,

we can assume that

(4.14) |T∗| ≤ n−3/4.

By (2.3) and (3.14), we have, for 0 < r ≤ s,

(4.15) E |Ti|r = τ−rζrE |Tiσ
−1
1 |r = O(τ−r), 1 ≤ i ≤ N.

Proof of (3.29). Let us prove (3.29) for i = 5. The inequality (4.14) and |ṽi| ≤
|Ti|+ |T∗| imply

|R̃5| ≤ R∗1 + n−3/4R∗2 + n−3/2R∗3, R∗1 =
′∑
|rijTiTj |,(4.16)

R∗2 =
′∑
|rij |(|Ti|+ |Tj |), R∗3 =

′∑
|rij |.

Furthermore, by symmetry and (4.9),

E R∗1 = 2−1[n + 2]2E |r1nT1Tn| = o(n2τ−5),

E R∗2 = [n + 2]2E |r1nT1| = o(n2τ−4),

E R∗3 ≤ 2−1[n + 2]2E |r1n| = o(n2τ−3).

Therefore, we have

q2τR∗1 = oP (1), q2τR∗2 = oP (τ), q2τR∗3 = oP (τ2).

Invoking these bounds in (4.16), we obtain τq2R̃5 = oP (1).
Let us prove (3.29) for 1 ≤ i ≤ 4 in the case where n ≤ N/2. Note that n ≤ N/2

implies τ2 ≥ n/2 and q ≥ 1/2.
Consider R̃1. We have τ |R̃1| ≤ (A1 + |T∗|)B1, where

A1 = max
1≤j≤n+2

|Tj |, B1 = τ

′∑
|wij |(|r̃i|+ |r̃j |).

By symmetry,

E As
1 ≤ E |T1|s + · · ·+ E |Tn+2|s = (n + 2)E |T1|s,

E B1 = τ [n + 2]2E |wn1||r̃n|.
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Now (4.15) implies E As
1 = o(1), and (4.7) implies E B1 = O(1). Therefore, A1 =

oP (1) and B1 = OP (1). Finally, invoking (4.14), we obtain (A1 + |T∗|)B1 = oP (1).
Consider R̃3. We have τ |R̃3| ≤ A2B2, where

A2 = max
1≤j≤n+2

|r̃j |, B2 = τ

′∑
|wij ||r̃i|.

By symmetry,

E A2
2 ≤ E r̃2

1 + · · ·+ E r̃2
n+2 = (n + 2)E r̃2

1,

E B2 = τ2−1[n + 2]2E |wn1||r̃n|.

Now (3.25) combined with (3.16) implies E A2
2 = o(1), and (4.7) implies E B2 =

O(1). Therefore, A2 = oP (1) and B2 = OP (1) and, hence, τq2R̃3 = oP (1).
Proofs of (3.29) for i = 2 and i = 4 are similar to those in the cases where

i = 1 and i = 3. The only difference is that now, instead of E B1 and E B2, one
estimates the expectations of

τ

′∑
|rij |(|r̃i|+ |r̃j |) and τ

′∑
|rij r̃j |,

using (4.8).
Let us prove (3.29) for 1 ≤ i ≤ 4 in the case where n > N/2. We first prove

(3.29) for i = 1. By symmetry, it suffices to show that

(4.17) q2τR∗ = oP (1), R∗ =
′∑

wij ṽir̃j .

The inequalities |ṽi| ≤ |Ti|+ |T∗| and (4.14) imply

|R∗| ≤ R∗1 + n−3/4R∗2, R∗1 =
′∑
|wijTir̃j |, R∗2 =

′∑
|wij r̃j |.

In order to prove (4.17) we shall show that

(4.18) q2τE R∗1 = o(1) and q2τn−3/4E R∗2 = o(1).

Let us prove the first bound. By Cauchy-Schwarz,

(4.19) E R∗1 ≤ A
1/2
1 B

1/2
1 , A1 = E

′∑
w2

ij , B1 = E
′∑

T 2
i r̃2

j .
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The inequalities

(4.20) T 2
1 + · · ·+ T 2

n+2 ≤ NE T 2
1 , r̃2

1 + · · ·+ r̃2
n+2 ≤ NE r̃2

1,

combined with (4.15), (3.25), and (3.16) imply

(4.21) B1 ≤ N2E T 2
1 E r̃2

1 = N2o(τ−4).

Furthermore, by (4.5),

(4.22) A1 = [n + 2]22−1E w2
n1 = n2O(τ−6).

Invoking (4.21) and (4.22) in (4.19) and using the inequality N ≤ 2n, we obtain
the first bound of (4.18). The second bound follows from (4.7).
Let us prove that τq2E |R̃3| = o(1). By Cauchy–Schwarz, E |R̃3| ≤ A

1/2
1 B

1/2
2 ,

where B2 = E
∑′

r̃2
i r̃2

j and where A1 is defined in (4.19). Furthermore, by (4.20),
(3.25), and (3.16) we have B2 ≤ N2(E r̃2

1)
2 = N2o(τ−4). This bound in combina-

tion with (4.22) implies τq2E |R̃3| = o(1).
The bounds τq2E |R̃k| = o(1) for k = 2, 4 are proved in a similar way. The

only difference is that, instead of A1, one estimates the expectation E
∑′

r2
ij =

n2o(τ−6) by (3.25).
Proof of (3.30) and (3.32). Let us prove (3.30). It suffices to show that q2τ∆′ =

oP (1), where ∆′ = (n + 1)2n−2s− s∗. We have

(4.23) ∆′ = s∗1 − s∗2, s∗1 = T 2
∗

′∑
wij , s∗2 = T∗

′∑
wij(Ti + Tj).

By (4.14),

|s∗1| ≤ n−3/2
′∑
|wij |, |s∗2| ≤ n−3/4

′∑
|wij |(|Ti|+ |Tj |).

Invoking the bounds (which follow from (4.5), by Cauchy–Schwarz) E |w1n| =
O(τ−3) and E |w1nT1| = O(τ−4), we obtain E |s∗1| = n1/2O(τ−3) and E |s∗2| =
n5/4O(τ−4). Now the bound E q2τ |∆′| = o(1) follows from (4.23).
Let us prove (3.32). By symmetry,

2q2τn2[n + 2]−1
2 E s∗ = q2n2τE w1nT1Tn = τ5E w1nT1Tn.

Therefore, ∆ = τ5E (w1n − T1n)T1Tn. Finally, by symmetry,

τ5E (w1n − T1n)T1Tn = −2τ5(n + 1)−1E T 2
1 Tn = O(N−1).
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In the last step, we use (4.15) and the identity

E T 2
1 Tn = E T 2

1 E (Tn|X1) = E T 2
1

( NE Tn − T1

N − 1

)
= −1

N − 1
E T 3

1 ,

which follows from E Tn = 0.
Before the proof of (3.38) and (3.39) we introduce some more notation. Write

sij = wijTiTj , s0 = E sij , t2i = E (T 2
j |Xi)

and note that, by (3.1) and (4.15), t2i ≤ 2E T 2
j = O(τ−2).

Proof of (3.38). Using the property (3.2) and the identity IiIj = IiIj + Ii + Ij − 1
we obtain

E g∗2(Xi, Xj)IiIj = E g∗2(Xi, Xj)IiIj .

Here we denote
Ii = 1− Ii.

Furthermore, invoking the identity

(4.24) g∗2(Xi, Xj) = sij − s0 +(N − 1)(N − 2)−1
(
2s0−E (sij |Xi)−E (sij |Xj)

)
,

we get

E g∗2(Xi, Xj)IiIj = R1 −R2 + (N − 1)(N − 2)−1(2R2 −R3 −R4),

R1 = E sijIiIj , R2 = s0E IiIj ,

R3 = E IiIjE (sij |Xi), R4 = E IiIjE (sij |Xj).

In order to prove (3.38) we show that Rk = O(τ1/4−6) for k = 1, 2, 3.
By Chebyshev’s inequality and (4.15),

E IiIj ≤ E Ii, E Ii ≤ η−2E T 2
i = τ1/2σ2

1 = O(τ−3/2),(4.25)

E T 2
i Ii ≤ η−1E |Ti|3 = O(τ1/4−3).(4.26)

Furthermore, using (3.1), we obtain from (4.26) that

(4.27) E T 2
i T 2

j IiIj ≤ N(N − 1)−1(E T 2
i Ii)2 = O(τ1/2−6).

Combining (4.4) and (4.25), we obtain R2 = O(τ−1/2−6). Furthermore, by
Cauchy–Schwarz, we derive from (4.5) and (4.27)

|R1| ≤ (E w2
ij)

1/2(E T 2
i T 2

j IiIj)1/2 = O(τ1/4−6).
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Consider R3 = E TiIiIjE (wijTj |Xi). We apply Cauchy–Schwarz conditionally
given Xi:

|R3| ≤ E A0A
1/2
1 ti, A0 = |TiIiIj |, A1 = E (w2

ij |Xi).

Therefore, |R3| = O(τ−1)E A0A
1/2
1 . Furthermore, by Cauchy–Schwarz and (4.5),

E A0A
1/2
1 ≤ (E A2

0)
1/2(E A1)1/2 = O(τ−3)(E A2

0)
1/2.

Finally, by (3.1), (4.25), and (4.26),

E A2
0 = E IjE (T 2

i Ii|Xj) ≤ N(N − 1)−1E IjE T 2
i Ii = O(τ−1/4−4).

Hence, we obtain

E |R3| = O(τ−1)O(τ−3)O(τ−1/8−2) = O(τ−1/8−6).

Proof of (3.39). A simple calculation gives

g̃2(Xi, Xj) = r1 − r2 + (N − 1)(N − 2)−1(2r2 − r3 − r4),

r1 = g∗2(Xi, Xj)IiIj , r2 = E IiIjg∗2(Xi, Xj),

r3 = IiE (Ijg∗2(Xi, Xj) |Xi), r4 = IjE (Iig∗2(Xi, Xj) |Xj).

In order to prove (3.39) we shall show that E r2
i = O(τ−7) for i = 1, 2, 3. Note

that, by (3.38), we have r2
2 = o(τ1/2−12).

Let us prove the bound E r2
1 = O(τ−7). In view of (4.24) and the bound s2

0 =
O(τ−10) (see (4.4)), it sufices to show that

(4.28) E IiIjs2
ij = O(τ−7), E IiIj

(
E (sij |Xi)

)2 = O(τ−7).

Invoking the inequality s2
ijIiIj ≤ η4w2

ij , from (4.5) we obtain the first bound of
(4.28). In order to prove the second bound write E (sij |Xi) = TiE (wijTj |Xi)
and apply Cauchy–Schwarz conditionally given Xi:

|E (wijTj |Xi)|2 ≤
(
E (w2

ij |Xi)
)
t2i .

Furthermore, invoking the inequality T 2
i Ii ≤ η2 and the bound t2i = O(τ−2), we

obtain
E IiIj

(
E (sij |Xi)

)2 = O(τ−2)η2E w2
ij = O(τ−1/2−8).
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Let us prove E r2
3 = O(τ−7). Denote

r1,∗ = IiE (Ijsij |Xi), r2,∗ = IiE (sij |Xi)E (Ij |Xi),

r3,∗ = IiE
(
IjE (sij |Xj)

∣∣Xi

)
.

In view of (4.24) and the bound s2
0 = O(τ−10), it suffices to show that E r2

i,∗ =
O(τ−7) for i = 1, 2, 3.
Let us prove these bounds. We have

r1,∗ = IiTiE (IjTjwij |Xi), r2,∗ = IiTiE (Tjwij |Xi)E (Ij |Xi).

By the inequality T 2
i Ii ≤ η2 and Cauchy–Schwarz (applied conditionally given

Xi),
r2
1,∗ ≤ η4E (w2

ij |Xi), r2
2,∗ ≤ η2E (w2

ij |Xi)t2i .

Finally, invoking (4.5), we obtain E r2
1,∗ = O(τ−7) and E r2

2,∗ = O(τ−1/2−8).
Consider r3,∗. Write

w := E
(
IjE (sij |Xj)

∣∣Xi

)
= E (IjTjH

∣∣Xi), H = E (wijTi|Xj).

We apply Cauchy–Schwarz conditionally given Xi:

w2 ≤ t2i E (H2
∣∣Xi) and H2 ≤ t2jE (w2

ij |Xj).

Furthermore, invoking the bound t2i = O(τ−2), we obtain

w2 = E
(
E (w2

ij |Xj)
∣∣Xi

)
O(τ−4).

Finally, using (4.5), we get

E r2
3,∗ ≤ E w2 = E w2

ijO(τ−4) = O(τ−10).

Proof of Lemma 4.3. By (3.14) we have

E T 2
ij = σ2

2 = σ2
1τ−4γ2 = τ−6ζ2γ2 ≤ τ−6C2γ2,(4.29)

E |Ti|r = σr
1βr = τ−rζrβr ≤ τ−rC

r/2
2 βr.(4.30)

Let us prove (4.5). By the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2),

w2
ij ≤ 3T 2

ij + 3(n + 1)−2(T 2
i + T 2

j ).

Now apply (4.29) and (4.30).
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The bound (4.6) follows from (4.2) and (3.16).
The bound (4.7) follows from (4.5) and (4.6) by Cauchy-Schwarz.
Let us prove (4.8). By (4.3) and (4.29),

(4.31) E r2
ij ≤ cτ−6κ2.

Now (4.8) follows from (4.31) and (4.6) by Cauchy–Schwarz.
Let us prove (4.9). By Cauchy–Schwarz,

E |rijTiTj | ≤ (E r2
ij)

1/2(E T 2
i T 2

j )1/2.

Invoking (4.31) and the bound E T 2
j T 2

i ≤ 2τ−4C2
2 , which follows from (3.1) and

(4.30), we obtain the first inequality of (4.9). The remaining two inequalities are
proved in a similar way.

Before the proof of Lemma 4.2 we introduce some more notation. For
2 ≤ i ≤ n∗ and 3 ≤ j ≤ n∗, write

(4.32) Ki =
∑

Ai−1⊂Ωn

TAi−1∪{n+1}, Lj =
∑

Aj−2⊂Ωn

TAj−2∪{n+1,n+2}.

Mi =
∑

Ai−1⊂Ωn+1

TAi−1∪{n+2}, Qi =
∑

Ai⊂Ωn+1

TAi .

Proof of Lemma 4.2. Let us prove (4.1). By symmetry, it suffices to prove (4.1)
for i = n + 1. Write

aj = n− j + 1

n + 1
, bj = j

n + 1
, dj = N − 2j + 1

N − n
, d′j = N − j + 1

N − n
.

We have rn+1 = κ2 + · · ·+ κn∗ , where

κj =
∑

Aj⊂Ωn+1

(
In+1∈Aj −

j

n + 1

)
TAj = ajKj − bjUj .

Note that, by (3.3), κi and κj are uncorrelated for i 6= j. Therefore, the inequality,
which we prove below,

(4.33) Eκ2
j ≤ 2−1n∗E U2

j (D2T ), 2 ≤ j ≤ n∗,

implies the bound (4.1). Indeed, we have

(4.34) E r2
n+1 =

n∗∑

j=2

Eκ2
j ≤

n∗
2

n∗∑

j=2

E U2
j (D2T ) = n∗

2
E (D2T )2 = δ2

2n∗
.
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It remains to prove (4.33). By (5.2), a2
jE K2

j = ajbjdjE U2
j . This identity in

combination with the inequalities dj ≤ d′j and 1 ≤ d′j implies

Eκ2
j ≤ 2a2

jE K2
j + 2b2

jE U2
j = 2 bj(ajdj + bj)E U2

j

≤ 2 bj(aj + bj)d′jE U2
j = 2−1bjd

′
jh2,jE U2

j (D2T ),

where, in the last step, we used the identity aj + bj = 1 and replaced E U2
j by

4−1h2,jE U2
j (D2T ) (see (3.11)). Finally, invoking the inequality

bjd
′
jh2,j = n− 1

n + 1

n(N − n− 1)

(j − 1)(N − j)
≤ n∗

we complete the proof of (4.33).
Let us prove (4.2). By symmetry, it suffices to prove (4.2) for i = n + 2. Since,

by (3.3), the summands of (3.26) are uncorrelated, the bound (4.2) follows from
the inequalities

(4.35) E Ṽ 2
n+2,k ≤ 2−1n∗E U2

k (D2T ), 2 ≤ k ≤ n∗

(cf. (4.34)). Let us prove (4.35). Denote

lk = n + 1− k

n + 1
, ãk = n + 2− k

n + 2
, b̃k = k

n + 2
, ek = (N − k + 1)(N − n− k)

[N − n]2
.

From the identity Ṽn+2,k = lkãkMk − lk b̃kQk it follows that

(4.36) E Ṽ 2
n+2,k ≤ 2l2kã2

kE M2
k + 2l2k b̃2

kE Q2
k.

Furthermore, by (5.4) and (5.5),

l2kã2
kE M2

k = lkãk b̃k
(N − 2k + 1)(N − n− k)

[N − n]2
E U2

k ≤ lkãk b̃kekE U2
k ,

l2k b̃2
kE Q2

k = lk b̃2
k

N − n− k

N − n
E U2

k ≤ lk b̃2
kekE U2

k .

Invoking these inequalities in (4.36) and using the identity ãk + b̃k = 1, we get
E Ṽ 2

n+2,k ≤ 2 lk b̃kekE U2
k . Finally, the identity E U2

k = 4−1h2,kE U2
k (D2T ) (see

(3.11)), in combination with the inequality

lk b̃kekh2,k ≤ (n + 1− k)(N − n− k)

N − k
≤ n∗,

completes the proof of (4.35).
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Let us prove (4.3). By (4.7), E r2
ij ≤ 5(E R2

0 + · · · + E R2
4). We shall bound

the expectations E R2
i for 0 ≤ i ≤ 4. By (3.13), E R2

1 ≤ 4qn−3σ2
1 . By (3.10),

E R2
2 ≤ 18q2n−2σ2

2 . Furthermore, invoking (5.6), we obtain

E R2
3 = E R2

4 ≤ 4qn−1σ2
2 .

We complete the proof of (4.3) by showing that

E R2
0 ≤ 24n−3

∗ δ3.

Recall that R0 = Z3 + · · ·+ Zn∗ (see (3.27) and (3.28)). Note that, by (3.3), the
random variables Zk and Zr are uncorrelated for k 6= r. Therefore, the inequality

(4.37) E Z2
k ≤ 24ηk, ηk = n∗E U2

k (D3T ), 3 ≤ k ≤ n∗.

implies

E R2
0 =

n∗∑

k=3

E Z2
k ≤ 24n∗

n∗∑

k=3

E U2
k (D3T ) = 24n∗E (D3T )2 = 24n−3

∗ δ3.

It remains to prove (4.37). By symmetry, we can assume without loss of generality
that i = n + 1 and j = n + 2. A simple calculation gives

(4.38) Zk = u1Uk + u2(Kk + W ) + u3Lk,

where the random variables Kk and Lk are introduced in (4.32) and where

W =
∑

Ak−1⊂Ωn

TAk−1∪{n+2}, u1 = [k + 1]2

[n + 2]2
,

u2 = u1 − k

n + 1
, u3 = u1 − 2k

n + 1
+ 1.

From (4.38) it follows that

E Z2
k ≤ 4u2

1E U2
1 + 4u2

2(E K2
k + E W 2) + 4u2

3E L2
k.

Note that E W 2 = E K2
k . Therefore, in order to prove (4.37) it suffices to show

that
u2

1E U2
k ≤ ηk, u2

2E K2
k ≤ ηk, u3

3E L2
k ≤ ηk.

The first inequality follows from (3.11). Remaining two inequalities are conse-
quences of (5.2), (3.11) and (5.3), (3.11), respectively.
Let us prove (4.4). By Hölder’s inequality,

E |wijTiTj |r ≤
(
E w2

ij

)r/2(
E |TiTj |2r/(2−r)

)(2−r)/2
,

where we choose r = 1 and r = 6/5. Combining (4.5) and the bound E |TiTj |2r/(2−r) =
O(τ−4r/(2−r)), which follows from (4.15) via (3.1), we obtain (4.4).
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5. Estimates for moments

In what follows, we shall use the formula (see, e.g., Zhao and Chen [3])

(5.1)
min{s,t}∑

v=0

(
s

v

)(
t

v

)(
u

v

)−1

(−1)v =
(

u− t

s

)(
u

s

)−1

,

where s, t, u are nonnegative integers such that u ≥ max{s, t}.
Let Kj , Lj , Mj , and Qj be the random variables introduced in (4.32).

Lemma 5.1. We have

E K2
j = j

n− j + 1

N − 2j + 1

N − n
E U2

j , 2 ≤ j ≤ n∗,

(5.2)

E L2
j = [j]2 [N − 2j + 2]2

[n− j + 2]2 [N − n]2
E U2

j , 3 ≤ j ≤ n∗,

(5.3)

E M2
j = j(n + 1)

[n− j + 2]2

(N − 2j + 1)(N − n− j)

[N − n]2
E U2

j , 2 ≤ j ≤ n∗,

(5.4)

E Q2
j = n + 1

n− j + 1

N − n− j

N − n
E U2

j , 2 ≤ j ≤ n∗,

(5.5)

E
( ∑

k∈Ωn+2\{i}
T{i,k}

)2 = (n + 1)(N − n− 2)

N − 2
σ2

2 .

(5.6)

Proof of Lemma 5.1. Let us prove (5.2). By symmetry,

(5.7) E K2
j =

(
n

j − 1

)
κK , κK = E TΩj−1∪{n+1}Kj .

A straightforward calculation gives

κK =
v0∑

v=0

(
j − 1

v

)(
n− j + 1

v

)
sj,j−v, v0 = min{j − 1, n− j + 1}.

Invoking (3.9) and the identity (5.1), we obtain κK = σ2
j [N−n−1]j−1/[N−j]j−1.

Substituting this expression into (5.7), we obtain an explicit formula for E K2
j . A

comparison of this formula and (3.10) yields (5.2).
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The proof of (5.3) is similar. By symmetry,

(5.8) E L2
j =

(
n

j − 2

)
κL, κL = E TΩj−2∪{n+1,n+2}Lj .

A straightforward calculation gives

κL =
v0∑

v=0

(
j − 2

v

)(
n− j + 2

v

)
sj,j−v, v0 = min{j − 2, n− j + 2}.

Invoking (3.9) and the identity (5.1), we obtain κL = σ2
j [N−n−2]j−2/[N−j]j−2.

Substituting this expression into (5.8), we obtain an explicit formula for E L2
j . A

comparison of this formula and (3.10) yields (5.3).
Let us prove (5.4). By symmetry,

(5.9) E M2
j =

(
n + 1
j − 1

)
κM , κM = E TΩj−1∪{n+2}Mj .

A calculation shows

κM =
v0∑

v=0

(
n− j + 2

v

)(
j − 1

v

)
sj,j−v, v0 = min{j − 1, n− j + 2}.

Invoking (3.9) and then using (5.1), we find κM = σ2
j [N−n−2]j−1/[N−j]j−1. This

expression combined with (5.9) leads to an explicit formula for E M2
j . Comparison

of this formula and (3.10) yields (5.4).
Let us prove (5.5). By symmetry,

(5.10) E Q2
j =

(
n + 1

j

)
κQ, κQ = E TΩk

Qj .

A calculation shows

κQ =
v0∑

v=0

(
n− j + 1

v

)(
j

v

)
sj,j−v, v0 = min{j, n− j + 1}.

Invoking (3.9) and then using (5.1), we find κQ = σ2
j [N − n− 1]j/[N − j]j . This

expression combined with (5.10) leads to an explicit formula for E Q2
j . Comparison

of this formula and (3.10) yields (5.5).
The identity (5.6) follows from (3.9). We have

E
( ∑

k∈Ωn+2\{i}
T{i,k}

)2 = (n + 1)σ2
2 + (n + 1)ns2,1 = (n + 1)(N − n− 2)

N − 2
σ2

2 .
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6. Appendix

Here we give an estimate for the convergence rate in probability of finite popula-
tion sample means. Strong law of large numbers was established in Rosén [2].
Given fν : Xν → R, introduce the random variables Zi,ν = fν(Xi,ν), i = 1, . . . , nν .

Denote Vν(ε) = E |Z1,ν |I|Z1,ν |>ετ2
ν
.

Lemma 6.1. Assume that there exists an absolute constant C3 > 0 and a se-
quence εν ↓ 0 such that E |Z1,ν | ≤ C3 and Vν(εν) < εν . Then, for ν = 1, 2, . . . ,

(6.1) P{|
nν∑

i=1

(Zi,ν −E Z1,ν)| > τ2
ν ψν} ≤ ψν , ψν = 2(C3 + 1)ε1/3

ν + 2Vν(1).

Proof of Lemma 6.1. Write Z̃i,ν = Zi,νI|Zi,ν |≤τ2
ν
,

Zν =
nν∑

i=1

Zi,ν , Z ′ν =
Nν∑

i=nν+1

Zi,ν , Z̃ν =
nν∑

i=1

Z̃i,ν .

We can assume that the number of summands nν ≤ Nν/2. Otherwise, using the
identity Zν − E Zν = E Z ′ν − Z ′ν , we turn to the sum Z ′ν having less than Nν/2
summands. Note that the inequality nν ≤ Nν/2 implies nν ≤ 2τ2

ν . In order to
prove (6.1) we replace Zi,ν by Z̃i,ν for i = 1, . . . , nν and bound the error of this
replacement by

(6.2)
nν∑

i=1

P{|Zi,ν | > τ2
ν } = nνP{|Z1,ν | > τ2

ν } ≤
nν

τ2
ν

Vν(1) ≤ 2Vν(1).

In the next step, we replace E Zν by E Z̃ν . We have

(6.3) |E Zν −E Z̃ν | ≤ nνE |Z1,ν − Z̃1,ν | = nνE |Z1,ν | I|Z1,ν |>τ2
ν
≤ 2τ2

ν Vν(1).

From (6.2) and (6.3) it follows that, given δ > 0,

(6.4) P{|Zν −E Zν | > τ2
ν δ} ≤ P{|Z̃ν −E Z̃ν | > τ2

ν (δ − 2Vν(1))}+ 2Vν(1).

Choose δ = κ + 2Vν(1) and κ = ε
1/3
ν and apply the bound

(6.5) P{|Z̃ν −E Z̃ν | > τ2
νκ} ≤ κ−22(C3 + 1)εν .

From (6.4) and (6.5) we obtain

P{|Zν −E Zν | > τ2
ν δ} ≤ ψν .
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Now (6.1) follows from the inequality ψν ≥ δ.
It remains to prove (6.5). This inequality follows by Chebyshev’s inequality from

the bound

(6.6) Var Z̃ν ≤ 2τ4
ν (C3η + Vν(η)),

where we choose η = εν . Let us prove (6.6). A direct calculation gives

(6.7) Var Z̃ν = τ2
ν Nν(Nν − 1)−1Var Z̃1,ν ≤ 2τ2

ν Var Z̃1,ν .

Write Var Z̃1,ν ≤ E Z̃2
1,ν = W1 + W2, where

W1 = E Z2
1,νI|Z1,ν |≤ητ2

ν
≤ ητ2

ν E |Z1,ν | ≤ ητ2
ν C3.

W2 = E Z2
1,νIητ2

ν <|Z1,ν |≤τ2
ν
≤ τ2

ν Vν(η).

Hence, we obtain Var Z̃1,ν ≤ τ2
ν (ηC3 + Vν(η)). Invoking this inequality in (6.7),

we obtain (6.6), thus, completing the proof.
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