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Abstract. For symmetric asymptotically linear statistics based on simple ran-
dom samples, we construct a one-term empirical Edgeworth expansion, where the
moments defining the true Edgeworth expansion are replaced by their jackknife es-
timators. In order to establish the validity of the empirical Edgeworth expansion
(in probability) we prove the consistency of the jackknife estimators.

4. LEMMAS

In the first part of the section, we collect the statements of lemmas. Proofs are
given aftewards.

Lemma 4.1. Under conditions of Lemma 2.3, the bounds (3.29), (3.30), (3.32),
and (3.39) hold. If in addition, n < N/2, then the bound (3.38) holds.

Let 7, 74, 7ij, and w;; be random variables defined in (3.19), (3.26), (3.28), and
(3.21), respectively.

Lemma 4.2. We have

(4.1) Er? <27'n; 10y, 1<i<n+1,
(4.2) E# <27 n s, 1<i<n+2,
2 2
2 qo qo d3 ..
(4.3) Erijgcn—;+cT2—|—cn3, 1<i<j<n+2.

*

Furthermore, under conditions of Lemma 2.3, the following bounds hold:

(44) E ‘w”TZle = O(T_5), E ’UJUTZTJ‘(S/S = O(T_ﬁ).
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Lemma 4.3. Assume that (2.1) is satisfied. Then we have

) Ew?j < 307 %y + 60,2072,

) E7} <2°Cor™ Yy + 27277403,

) E |wi;7;| < 2'77°(14 C2)(1 + 72 + 83),

) E |ri;7i| < om0 5(Coya + 65) 12,

) E |ri; TiTj| < et °Cas, E |ri;T;| < 07_4021/2%
E |ri;Ty| < 07_5021/2%,

R
© 0 ~ o

(4.
(4.
(4.
(4.
(4.

where »? = 63 + 77 2Cy + 7 2C37y, and where T, is defined in (3.21).

Proof of Lemma 3.1. Let us prove (3.14) and (3.15). From (3.12) and (3.6) it
follows that that EUl2 < J?p < EU12 + 05. In particular, we have EU12 < (C,.
Furthermore, by (3.10),

EUZ=C(1+(N-1)") <+ (N-1)"'EUZ

Combining these inequalities, we obtain (3.14) and the estimate

0<op—¢*=(07 —EU) +(BU} - %) <+ (N - 1)7'Ca.
Let us prove (3.16). By (3.8),
(4.10) E (D:7)? = EU3(DT) + EU(DoT) + - -- + EUZ_ (DoT).
Combining (3.11) and (3.10), we get
(4.11) E UZ(D,T) = 403(N — 1)(N —3)~ 1.
Furthermore, by (3.11), for j = 3,...,n,., we have
(4.12) EU?(DoT) =2 " hg jhy ;EUZ (DsT) < 27 'n, EU; (D3T).

In the last step, we used the inequality hs ; < n.hg ;. From (4.12) it follows that

(4.13) ZE U7 (D7) <27 'ny Y BU(DsT) =27 ', E (DsT)* =27 'n; %65,
j=3
Combining (4.10), (4.11), and (4.13), we obtain

52:n3E(]D2T)2<4x_;n02+2 n, 153<2602n 'yg+2 n 5.
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In the last step, we used the identity 03 = 779?75 and the inequality ¢ < Cs.

Proof of Lemma 4.1. We shall use the same notation as in proof of Lemma 2.3.
From (3.13) and (3.14) it follows that ET? < (?n~2? < Cyn~2. Furthermore, by
Chebyshev’s inequality, P{|T.| > n=%/4} < Cyn~1/2. Therefore, in what follows,
we can assume that

(4.14) |T,| <n=3/4,
By (2.3) and (3.14), we have, for 0 < r <s,
(4.15) E|T}|" =7 "¢C'E|Tio;'|"=0(r""), 1<i<N.

Proof of (3.29). Let us prove (3.29) for i = 5. The inequality (4.14) and |7;| <
| T3] + |T%[ imply

/
(4.16) |Rs| < Ry +n **R5 +n*?R;, Ry =) |ry TV,
/ /
Ry = lryl(ITI+1T5)), Ry =) Iryl-
Furthermore, by symmetry and (4.9),
ER; =27 n+ 2)1E |r1,ThT,| = o(n®*777),

ER; = [n+2]2E |r,Th| = o(n27'_4),
E R} <27 [n 4 2)2E |rin| = o(n?773).

Therefore, we have
TR} =op(1),  ¢*TR;=op(1),  ¢’TR; =op(r?).

Invoking these bounds in (4.16), we obtain 7¢*>Rs = op(1).

Let us prove (3.29) for 1 < i <4 in the case where n < N/2. Note that n < N/2
implies 72 > n/2 and ¢ > 1/2.

Consider R;. We have 7|R;| < (A; + |T.|) By, where

/
A= Jex, T3, Bi=1) lwil(7] +175)).
By symmetry,

EA; <ETI|* -+ B|Tuol' = (n+ 2B T1]°,
EB1 = T[Tl—l—?]QE |wn1an].
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Now (4.15) implies E A = o(1), and (4.7) implies E By = O(1). Therefore, A; =

op(1) and By = Op(1). Finally, invoking (4.14), we obtain (A1 +[7%|)B1 = op(1).
Consider R3. We have 7|R3| < A3 Bs, where

!/
Ay = max |7, BngZ|wij||fi|-

1<j<n+2
By symmetry,

EAZ<E# +.---+E, = (n+2)E,

E By = 727 [n 4 212 |wp1 |7l
Now (3.25) combined with (3.16) implies E A3 = o(1), and (4.7) implies E By =
O(1). Therefore, Ay = op(1) and By = Op(1) and, hence, 7¢* Rz = op(1).
Proofs of (3.29) for ¢ = 2 and ¢ = 4 are similar to those in the cases where

t = 1 and ¢ = 3. The only difference is that now, instead of E By and E B;, one
estimates the expectations of

/ /
T Irigl(7l +175) and 7> il
using (4.8).

Let us prove (3.29) for 1 < i < 4 in the case where n > N/2. We first prove
(3.29) for i = 1. By symmetry, it suffices to show that

/
(417) quR* = Op(l), R* = Zwijf)ﬂ:j.
The inequalities |0;] < |T;| + |T%x| and (4.14) imply
/ /
|R*| < R} +n"*/"R3, Ry =) |wiTiis|, Ry =" |wiFl.
In order to prove (4.17) we shall show that

(4.18) PTE R = o(1) and 3 E Ry = o(1).

Let us prove the first bound. By Cauchy-Schwarz,

/ /
(4.19) ER; < A/?B}?, A =EY v} B =EY T
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The inequalities
(4.20) T2 4. 4+ T2, <NET?, #+4...4+72,,<NE#®,
combined with (4.15), (3.25), and (3.16) imply
(4.21) By < N’ET?E# = N2o(t™%).
Furthermore, by (4.5),
(4.22) Ay = [n+ 2.2 '"Ew?, = n?0(77%).

Invoking (4.21) and (4.22) in (4.19) and using the inequality N < 2n, we obtain
the first bound of (4.18). The second bound follows from (4.7).

Let us prove that 7¢?E |Rs| = o(1). By Cauchy-Schwarz, E |R3| < Ai/zB;/z,
where By = E Y 7777 and where A, is defined in (4.19). Furthermore, by (4.20),
(3.25), and (3.16) we have By < N%2(E#%)? = N2o(r~%). This bound in combina-
tion with (4.22) implies 7¢*E |R3| = o(1).

The bounds 7¢°E |R;| = o(1) for k = 2,4 are proved in a similar way. The
only difference is that, instead of A, one estimates the expectation E Z' r?j =
n?o(t7°) by (3.25).

Proof of (5.30) and (3.32). Let us prove (3.30). It suffices to show that ¢*7A’ =
op(1), where A’ = (n + 1)?n~2%s — s*. We have

/ /
(4.23) A" =57 — 55, s] :Twaij, S;:T*ZQUij(Ti+Tj).

By (4.14),

/ /
st <732 wil, L85l < T Jwg [(IT] + 1T5)).
Invoking the bounds (which follow from (4.5), by Cauchy—Schwarz) E |wy,| =
O(773) and E |wy,,T1| = O(r™%), we obtain E |st| = n'/20(773) and E |s3| =

n°/*0(r=*). Now the bound E ¢>7|A’| = o(1) follows from (4.23).
Let us prove (3.32). By symmetry,

2¢°mn%[n + 25 'E s* = ¢*n*tE w1, 11 T), = T°E w1, T1 T).
Therefore, A = 7°E (w1, — T1,,)T1T},. Finally, by symmetry,

B (wip — Tin) 1Ty = —27°(n+ 1) 'ETET, = O(N™1).
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In the last step, we use (4.15) and the identity

NET, - T -1

ETiT, =ETTE(To|X1) =BT} (— ") = &

BT,

which follows from ET,, = 0.
Before the proof of (3.38) and (3.39) we introduce some more notation. Write

Sij = wijTiTj, So = E Sij, t2 =E (Tlel)

(3

and note that, by (3.1) and (4.15), t7 <2ET? = O(17?).
Proof of (3.58). Using the property (3.2) and the identity I,1; = LI, + 1, +1; — 1
we obtain
E g5(X;, X;)L1; = E g5(X;, X;) LI

Here we denote ~

Furthermore, invoking the identity
(4.24) g5(Xi, X;) = sij — 50+ (N = 1)(N —2)7" (250 — E (535 | Xi) —E (545 | X)),
we get

Eg;(X;, X;);I; = Ry — Ry + (N — 1)(N — 2)"'(2Ry — R3 — Ry),
Rl =E Sijﬁiﬁja RQ = SoELﬁj,
R3 == EEZEJE (Sij|Xi)7 R4 == EEZE]E (Silej)-

In order to prove (3.38) we show that Ry, = O(7'/4=6) for k = 1,2, 3.
By Chebyshev’s inequality and (4.15),

(425) EEZE] < EE, EEZ < 7772E Ti2 = 7-1/20-% = 0(7—*3/2),
(42600 EI7L <y 'E|LF =047,

Furthermore, using (3.1), we obtain from (4.26) that
(4.27) ET?T?I; < N(N —1)"Y(ETL)? = O(r1/2-6).

Combining (4.4) and (4.25), we obtain Ry = O(7~/27%). Furthermore, by
Cauchy—Schwarz, we derive from (4.5) and (4.27)

Ral < (Bu?) (B TPTILL,)? = O(r/4-9),
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Consider R3 = E T;IL,IE (w;;T;|X;). We apply Cauchy—Schwarz conditionally
given X;:

|Rs| SEAoA i, Ao =|TLL|, A =Ew}|X,).

Therefore, |R3| = O(t™1E AOA}/ ?. Furthermore, by Cauchy—Schwarz and (4.5),

E 4,A)? < (E A2)V2(E A)"/? = O(r3)(E A2)'/2.
Finally, by (3.1), (4.25), and (4.26),

E A} =ELE (T7L|X;) < N(N - ) T'ELET?L = O(r—/44).

Hence, we obtain

E|Rs| = O(r )O(r#)O(r 1/872) = O(r—/376).
Proof of (3.89). A simple calculation gives

G2(Xi, Xj) =71 —ro+ (N = 1)(N —2)71(2ry — 13 — 74),
r1 = g5 (X, X;)L1;, ro = ELl;95(X;, Xj),
r3 = LE (I3 (Xs, X;) | X4), rs = LE (Ligs (Xs, X;) | X;).

In order to prove (3.39) we shall show that Er? = O(7~7) for i = 1,2,3. Note
that, by (3.38), we have r2 = o(71/2712).

Let us prove the bound E7? = O(r~7). In view of (4.24) and the bound s3 =
O(7719) (see (4.4)), it sufices to show that

(4.28) ELLs% =0 "), ELL(E(s;| X)) =0F).

1915 —

Invoking the inequality s3;1;1; < n*w};, from (4.5) we obtain the first bound of

(4.28). In order to prove the second bound write E (s;; | X;) = TE (wi;T5 | X;)
and apply Cauchy—Schwarz conditionally given Xj:

E (wi; T; | X:)|? < (B (| X,))t2.
Furthermore, invoking the inequality 77I; < 1 and the bound 7 = O(772%), we

obtain
ELL(E (s X,))" = O 2)PBwd = O(r~/27%).
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Let us prove Er3 = O(777). Denote

7“17* = HZE (]IJSU‘XZ), 7“2’* = ]IZE (SZ]‘XZ)E (]I]‘XZ),

r3« = HZE (H]E (81J|XJ)‘XZ)
In view of (4.24) and the bound s3 = O(7710), it suffices to show that Eri* =
O(r~") fori =1,2,3.
Let us prove these bounds. We have

7“1,* = HZTZE (HJTJw”|Xl), 7’27* = ]IZT'ZE (T]wz]]XZ)E (]Ilez)
By the inequality T2I; < n? and Cauchy—Schwarz (applied conditionally given
Xi)a
7"%,* < "74E (win|Xi)7 7’3,* < 772E (wizj‘Xi)tzz'

Finally, invoking (4.5), we obtain Ev? , = O(7~7) and Ev, = O(r~1/278).
Consider r3 .. Write

w =B (LE (s4|X;)|X;) = E(LT; H|X;), H=E (w;T;|X;).
We apply Cauchy—Schwarz conditionally given Xj:
w? <7E (H?|X;) and H? <t5E (w};|X;).
Furthermore, invoking the bound t? = O(772), we obtain
w? =E (E (w};|X;)|X:)0(r™).
Finally, using (4.5), we get

Er%y* <Ew?= Ew?j0(7_4) = O(T_lo).

Proof of Lemma 4.3. By (3.14) we have

(4.29) ET} =o0f = ot 'y =7 °CPya <77 °Ca,
(4.30) E|T" =0if, =77"¢"B < 77Cy*B.

Let us prove (4.5). By the inequality (a + b+ ¢)? < 3(a? + b2 + ¢?),
2 2 22 2
wi; < 3735 +3(n+ 1) (17 +T5).

Now apply (4.29) and (4.30).
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The bound (4.6) follows from (4.2) and (3.16).
The bound (4.7) follows from (4.5) and (4.6) by Cauchy-Schwarz.
Let us prove (4.8). By (4.3) and (4.29),

(4.31) Er <er 052

Now (4.8) follows from (4.31) and (4.6) by Cauchy—Schwarz.
Let us prove (4.9). By Cauchy—Schwarz,

B[y TiT)| < (Br)Y2(BT2T2)/2,

Invoking (4.31) and the bound ET7T? < 27*C3, which follows from (3.1) and
(4.30), we obtain the first inequality of (4.9). The remaining two inequalities are
proved in a similar way.

Before the proof of Lemma 4.2 we introduce some more notation.  For
2<1<n,and 3 <j < n,, write

(4‘32) KZ = Z TA.L',1U{TL+1}7 L] = Z TAj,2U{7’L-|—1,7’L-|—2}‘
Ai—lCQn Aj—QCQn

M; = Z TAi_lu{n+2}7 Qi = Z TAi'

A¢71CQn+1 AiCQn+1

Proof of Lemma 4.2. Let us prove (4.1). By symmetry, it suffices to prove (4.1)
for i =n 4+ 1. Write
n—j+1

_ _ _
G =T 0 b= o 4=

N—2j+1
N —n

N—-j3+1
!/ J
, dj_iN—n .

We have 7,41 = s0 + -+ + 5, , Where

_ J _
j= Y, (Invrea, = 727 )Ta, = 4K, = b;U;
A;CQnyr

Note that, by (3.3), »; and »; are uncorrelated for ¢ # j. Therefore, the inequality,
which we prove below,

(4.33) Esx; <27 'n,EU;(D.T), 2<j<mn,

implies the bound (4.1). Indeed, we have

(4.34) ri = ZE%2 < ZEU2 DoT) = - E(D:T)* =
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It remains to prove (4.33). By (5.2), a3E K; = a;bjd;EU?. This identity in
combination with the inequalities d; < d;- and 1 < d;- implies

E s <2a°E K 4+ 20;EU; = 2b;(a;d; + b;)EU;
< 2b;(a; + by)d;EU; = 27'b;dhe jE U (D, T),

where, in the last step, we used the identity a; + b; = 1 and replaced Esz by
47 hy ;JEU ]-2 (DoT) (see (3.11)). Finally, invoking the inequality

n—1 n(N—-n-1) <n
*

' _
bidiha; = 5T o= S

we complete the proof of (4.33).

Let us prove (4.2). By symmetry, it suffices to prove (4.2) for i = n + 2. Since,
by (3.3), the summands of (3.26) are uncorrelated, the bound (4.2) follows from
the inequalities

(4.35) EVZ,, <2 'nEUZ(D.T), 2<k<n,

(cf. (4.34)). Let us prove (4.35). Denote

I, — n+1—k G — n+2—k E . k - (N—k+1)(N—n—k)
k — ) k — ’ k_n+27 k — [N—n]g

n+1 n+ 2
From the identity Vn+2,k = lpar My — bpQy it follows that
(4.36) EV? . <2aiE M} + 230E Q}.
Furthermore, by (5.4) and (5.5),

(N—=2k+1)(N—n
[N —n]a

l%d%E M;? = lk&kl;k _k) EU,? § lkdki)kekE Ug,

~ ~ N — _ k ~
OEQf = Wby —— —EU; <libiexE UL
Invoking these inequalities in (4.36) and using the identity aj + b = 1, we get

EV2,, < 2Lbee,EUZ. Finally, the identity EUZ = 47 hy ;E UZ(DoT) (see
(3.11)), in combination with the inequality

(n+1—k)(N—-n—k)
N —k

librerha < < Ny,

completes the proof of (4.35).
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Let us prove (4.3). By (4.7), Ev}; < 5(ERj + --- + E R}). We shall bound
the expectations E R? for 0 < i < 4. By (3.13), ER? < 4gn—30%. By (3.10),
E R2 < 18¢>n~2032. Furthermore, invoking (5.6), we obtain

E R2 =ER? < 4qn~'02.
We complete the proof of (4.3) by showing that
E Rj < 2'n;%03.

Recall that Ry = Z3 + -+ - + Z,,, (see (3.27) and (3.28)). Note that, by (3.3), the
random variables Z; and Z, are uncorrelated for k # r. Therefore, the inequality

(4.37) EZ? <2,  n=nEBUFDsT), 3<k<n,.
implies
ER} =Y EZ; <2'n. ) EUZDsT)=2'n,E (DsT)* = 2*n_"6s.
k=3 k=3

It remains to prove (4.37). By symmetry, we can assume without loss of generality
that i =n+ 1 and j = n + 2. A simple calculation gives

(438) Zy = w Uk + 'U/Q(Kk- + W) + ugLy,
where the random variables K}, and Ly are introduced in (4.32) and where
_ _ [k+1]2
W - Z TAk,lu{n+2}> Uy = [TL+2}2 )
Ak—lCQn
—uy - =y — 2% +1
U = U7 ntl’ us = uq ol .

From (4.38) it follows that
EZ} <4?EU? + 4u2(E K2 + EW?) + 4u2E L2.

Note that EW? = E K7?. Therefore, in order to prove (4.37) it suffices to show
that
wWEUZ <, uiE K7 <y, uSE L < ny.

The first inequality follows from (3.11). Remaining two inequalities are conse-
quences of (5.2), (3.11) and (5.3), (3.11), respectively.
Let us prove (4.4). By Hélder’s inequality,

E |wijTiTj|T < (E wigj)v"/Z (E |TiTj|2r/(2_r))(2_r)/2,

where we choose r = 1 and r = 6/5. Combining (4.5) and the bound E |T;T;|?/2—") =}}
O(r=*/(2=7)) which follows from (4.15) via (3.1), we obtain (4.4).
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5. ESTIMATES FOR MOMENTS
In what follows, we shall use the formula (see, e.g., Zhao and Chen [3])
min{s,t}

oo R OO =0

where s, ¢, u are nonnegative integers such that u > max{s,t}.
Let K, L;j, M;, and Q; be the random variables introduced in (4.32).

Lemma 5.1. We have

(5.2)
2 _ J N-2j+1 9 )
ERj= =7 v~ BU 2<j <n.,
(5.3)
2 [il2 [N — 25 4 2]2 9 '
2 — : <<
BL; [n—j+2]2[N—n]2EU]’ 3y,
(5.4)
2+l (N=2j+ DN =n—j) b |
2 — : e
EMJ n—37+2]2 [N —n]2 EU]’ 2—.]_77'*,
(5.5)
2 n+l N—-n—j 9 )
EQj= n—j+1 N-n EUj, 2<j<n.,
(5.6)

2 (n+1)(N—-—n-2)
E ( Z T{z,k}) = N —2 O'%.
keQn2\{i}

Proof of Lemma 5.1. Let us prove (5.2). By symmetry,

n
(5.7) E K} = (j B 1) K, xk =ETq, uini11 K.

A straightforward calculation gives

"K:i I Sjj—vs  vo=min{j —1,n—j+1}
v v ’

v=0

Invoking (3.9) and the identity (5.1), we obtain »x = 07[N —n—1];_1/[N —j];_1.
Substituting this expression into (5.7), we obtain an explicit formula for E K7. A
comparison of this formula and (3.10) yields (5.2).
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The proof of (5.3) is similar. By symmetry,

n
(5.8) EL: = <j B 2) »r, w =ETo, ,u{n+1n+23Llj.

A straightforward calculation gives

~(—2\(n—j+2
%L:;( ; )( ; )sj’jv, vo =min{j — 2, n — j + 2}.
Invoking (3.9) and the identity (5.1), we obtain sz, = 0[N —n—2];_2/[N — j];_o.
Substituting this expression into (5.8), we obtain an explicit formula for E L?. A

comparison of this formula and (3.10) yields (5.3).
Let us prove (5.4). By symmetry,

n—+1

(5.9) EM‘f:(j_1

)%M7 sm =ETqo, vty Mj.

A calculation shows

N (n—j+2\ (i1 il 1 -
M = Z v o ) SBimv vo =min{j — 1, n — j +2}.
v=0

Invoking (3.9) and then using (5.1), we find seps = 05[N—n—2];_1/[N—j];_1. This
expression combined with (5.9) leads to an explicit formula for E M?. Comparison
of this formula and (3.10) yields (5.4).

Let us prove (5.5). By symmetry,

n+1
(5.10) EQ?:( j >%Q, %Q:ETQij.

A calculation shows

Vo . .
n—j+1\/[(7 C .
- 1,] — VU = Y - 1 *
[ —
Invoking (3.9) and then using (5.1), we find »q = 0[N —n — 1];/[N — j];. This
expression combined with (5.10) leads to an explicit formula for E Q?. Comparison
of this formula and (3.10) yields (5.5).

The identity (5.6) follows from (3.9). We have

(’I’L-}-l)(N—?’L—Q) 0_2

2 2 _
E ( Z T{i7k}) =(n+1)o5+ (n+ 1)7182,1 = N —2 2-
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6. APPENDIX

Here we give an estimate for the convergence rate in probability of finite popula-
tion sample means. Strong law of large numbers was established in Rosén [2].

Given f, : X, — R, introduce the random variables Z; , = f,(X;,),i=1,...,n,.
Denote V,,(¢) = E[Z1 ,[l|z, ,|>er2-

Lemma 6.1. Assume that there exists an absolute constant C3 > 0 and a se-
quence ¢, | 0 such that E|Z, | < Cs and V,(¢,) < e,. Then, forv=1,2,...

J

(6.1) P{| ZV(Z,W ~EZ1,)| > 20, } <, Y, = 2(Cs + 1)el/? +2V,,(1).

=1

Proof of Lemma 6.1. Write Zi,v =Ziliz, 1<z,

Ny N, ny
, ~ -
Z, = § Zz',u; Zy = E Zi,V7 Zy, = E Zi,Z/-
=1 i=n,+1 1=1

We can assume that the number of summands n,, < N, /2. Otherwise, using the
identity Z, —EZ, = EZ, — Z/,, we turn to the sum Z/, having less than N, /2
summands. Note that the inequality n, < N, /2 implies n, < 272. In order to
prove (6.1) we replace Z; , by ZLV for : = 1,...,n, and bound the error of this

replacement by

ny
2
T

(6.2) Y P{Ziy| >} =nP{|Z1,| > 70} <

i=1

V(1) <2V, (1).

In the next step, we replace E Z,, by E Z,. We have

63) [EZ, ~EZ|<nE|Z1, — 21| = 0mE|Z1,|]z, 52 < 27V (1).
From (6.2) and (6.3) it follows that, given § > 0,

6.4)  P{|Z,—EZ,|>7125<P{|Z, —EZ,| > 7126 -2V, (1))} + 2V, (1).
Choose 6 = »+ 2V, (1) and » = el/3 and apply the bound

(6.5) P{|Z, —EZ,| > 12} < 7 22(C3 + 1)e,,.

From (6.4) and (6.5) we obtain

P{|Z, —EZ,| > 125} < ,.
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Now (6.1) follows from the inequality v, > J.

It remains to prove (6.5). This inequality follows by Chebyshev’s inequality from
the bound

(6.6) Var Z, < 274(Cyn + Vi ()

where we choose 1 = ¢,. Let us prove (6.6). A direct calculation gives
(6.7) Var Z,, = 72N, (N, — 1) 'Var Zl,v < 27%Var Zl,u-
Write Var Zl,,, <E 212’1, = Wi + Wy, where

Wy = EZl2,VI[|Z1,V|§777'3 < TITEE |Zl,1/‘ < 777—303'
W =EZ{, Iy <1z, ,1<r2 < Vo ().

Hence, we obtain Var Z; , < 72(nCs + V,(n)). Invoking this inequality in (6.7),
we obtain (6.6), thus, completing the proof.
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