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Abstract. For symmetric asymptotically linear statistics based on simple ran-
dom samples, we construct the one-term empirical Edgeworth expansion, where the
moments defining the true Edgeworth expansion are replaced by their jackknife es-
timators. In order to establish the validity of the empirical Edgeworth expansion
(in probability), we prove the consistency of the jackknife estimators.

1. Introduction

Given a set X = {x1, . . . , xN}, let X = {X1, . . . , Xn} denote a simple random
sample of size n < N drawn without replacement from X . That is, for every n-
subset B ⊂ X , we have P

{
X = B }

=
(
N
n

)−1
. Let ϕ be a real function defined on

n-subsets of X . We write ϕ(X1, . . . , Xn) to denote the value of ϕ at a (random)
subset X. The random variable T = ϕ(X1, . . . , Xn) is called a symmetric finite
population statistic. “Symmetric” refers to the fact that T is invariant under
permutations of the sample.
Bloznelis and Götze [10], [11] constructed the one-term Edgeworth expansion

G(x) = Φ(x)− (q − p)α + 3κ

6τ
Φ′′′(x)

for the distribution function

F (x) = P{T −E T ≤ xσT }, σ2
T = Var T.

Here
τ2 = Npq, p = n/N, q = 1− p.
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The moments

α = σ−3
1 E g3

1(X1) and κ = σ−3
1 τ2E g2(X1, X2)g1(X1)g1(X2) (1.1)

refer to the linear part
∑

i g1(Xi) and the quadratic part
∑

i<j g2(Xi, Xj) of Ho-
effding’s decomposition

T = E T +
∑

1≤i≤n

g1(Xi) +
∑

1≤i<j≤n

g2(Xi, Xj) + . . . . (1.2)

Here we assume that the linear part does not vanish, that is,

σ2
1 > 0, where σ2

1 = E g2
1(X1). (1.3)

For basic facts about Hoeffding’s decomposition of finite population statistics,
we refer to [10]. Functions g1 and g2 can be expressed by linear combinations of
the conditional expectations h1(x) = E

(
T ′

∣∣ X1 = x
)

and h2(x, y) = E
(
T ′

∣∣ X1 =
x,X2 = y

)
, where T ′ = T −E T ,

g1(x1) = N − 1

N − n
h1(x1), (1.4)

g2(x1, x2) = N − 2

N − n

N − 3

N − n− 1

(
h2(x1, x2)− N − 1

N − 2
(h1(x1) + h1(x2)

)
.

Expressions for higher order symmetric kernels gk, k = 3, 4, . . . ,n, are determined
in [10].
Note that, in order to write a one-term Edgeworth expansion, one does not need

to evaluate all terms of Hoeffding’s decomposition, but the moments of the linear
and quadratic parts only. Even this problem can be difficult to solve. In such
cases, one can use the empirical Edgeworth expansion

Ĝ(x) = Φ(x)− (q − p)α̂ + 3κ̂

6τ
Φ′′′(x),

where the true moments α and κ are replaced by their estimators. In the present
paper, we consider the jackknife estimators α̂ and κ̂; see (1.5) below.
In order to define the jackknife estimators we need few additional observations.

In what follows, {X1, . . . , Xm}, m = n, n+1, n+2, denote simple random samples
drawn without replacement from X . It is convenient to represent the sample
X1, . . . , Xm by the set of first m variables of the random permutation (X1, . . . , XN )
of the ordered set (x1, . . . , xN ).
For 1 ≤ k ≤ n + 1, 1 ≤ r ≤ n + 2, and 1 ≤ i 6= j ≤ n + 2, denote

Vk = T − T(k), Ṽr = T̃ − T (r), Wij = T̃ − T (i) − T (j) + T(i,j),
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where

T = 1

n + 1

n+1∑

k=1

T(k), T (r) = 1

n + 1

∑

1≤j≤n+2, j 6=r

T(r,j),

T̃ = 1�n+2
2

�
∑

1≤i<j≤n+2

T(i,j),

and where T(k) = ϕ(X1, . . . , Xk−1, Xk+1, . . . , Xn, Xn+1) denotes the value of ϕ at
the n-set of observations {X1, . . . , Xn+1} \ {Xk} and T(i,j) denotes the value of ϕ
at the n-set of observations {X1, . . . , Xn+1, Xn+2} \ {Xi, Xj}.
Write

σ̂2
J =

n+1∑

k=1

V 2
k , α̂J =

√
n

σ̂3
J

n+1∑

k=1

V 3
k ,

κ̂J = 2
√

n

σ̂3
J

∑

1≤i<j≤n+2

Wij ṼiṼj .

We show in Lemmas 2.1, 2.2, and 2.3 below that

α̂ := α̂J , σ̂2 := qσ̂2
J , and κ̂ := qκ̂J (1.5)

are consistent estimators of α, σ2
T , and κ.

There is a rich literature devoted to jackknife variance estimators of statistics
based on independent observations; see, e.g., [26] and references therein. It is
well known that the classical Quenouille–Tukey jackknife estimator of variance σ̂2

J

is asymptotically consistent provided that the underlying statistic is sufficiently
“smooth”; see, e.g., [19], [20], and [27].
In order to obtain a consistent variance estimator in the case of samples drawn

without replacement, one needs a finite population correction; see (1.5).
Beran [5] and Putter and van Zwet [23] used jackknife estimators of moments

(corresponding to α and κ) to define empirical Edgeworth expansions for statistics
based on independent and identically distributed observations. Putter and van
Zwet [23] proved the consistency of the estimator α̂J . However, their estimator of
κ

λ̂2 = 2
√

nσ−3
J

∑

1≤i<j≤n+2

WijViVj

involves an unspecified quantity Vn+2. Replacement of Vi and Vj by Ṽi and Ṽj in
λ̂2 results in the estimator κ̂J , which is a symmetric statistic of the observations
X1, . . . , Xn+2. The consistency of κ̂J in the i.i.d. case can be proved by using the
argument of Lemma 5.2 of [23].
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In order to obtain a consistent estimator of κ in the case of samples drawn without
replacement, we introduce a finite population correction; see (1.5).
The moments α and κ are related to the linear and quadratic parts only. In

order to establish the consistency of α̂ and κ̂ we impose appropriate smoothness
conditions which control higher order nonlinear terms of the decomposition (1.2).
The smoothness conditions are formulated in terms of second moments of finite
differences. We write n∗ = min{n,N − n} and define

DjT = ϕ(X1, . . . , Xn)− ϕ(X1, . . . , Xj−1, Xj+1, . . . , Xn, X ′
j), X ′

j = Xn+j .

Higher order difference operations are defined recursively:

Dj1,j2T = Dj2
(
Dj1T

)
, Dj1,j2,j3T = Dj3

(
Dj2(Dj1T )

)
, . . . .

They are symmetric, i.e., Dj1,j2T = Dj2,j1T , etc. Given k < n∗, we write

δj = δj(T ) = E
(
n

(j−1)
∗ DjT

)2
, DjT = D1,2,...,jT, 1 ≤ j ≤ k. (1.6)

The paper is organized as follows. In Section 2, we formulate our results. Proofs
are given in Section 3. Some more technical calculations are postponed to Section
4. In Section 5, we collect moment inequalities for different parts of the decom-
position (1.2). In Appendix 6, we estimate the convergence rate in probablity of
finite population sample means.
Sections 4 - 6 will appear in the second part of this paper “Empirical Edgeworth

expansion for finite population statistics. II,” which will be published in another
issue of this journal.

2. Results

To make the presentation mathematically rigorous we introduce the following
model. Let Xν = {x1,ν , . . . , xNν ,ν}, ν = 1, 2, . . . , be a sequence of populations,
and let Tν = ϕν(X1,ν , . . . , Xnν ,ν) be a sequence of symmetric statistics. Here
X1,ν , . . . , Xnν ,ν denote a sample of size nν ≤ Nν drawn without replacement from
Xν . Write

τ2
ν = Nνpνqν , pν = nν/Nν , qν = 1− pν , σ2

T,ν = Var Tν ,

and let αν , κν , and σ2
1,ν denote the moments defined by (1.1) and (1.3) with respect

to the Hoeffding decomposition

Tν = E Tν +
∑

1≤i≤nν

g1,ν(Xi,ν) +
∑

1≤i<j≤nν

g2,ν(Xi,ν , Xj,ν) + . . . .
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Given ν, by σ̂2
ν , α̂ν , and κ̂ν we denote jackknife estimators of σ2

T,ν , αν , and κν

defined by (1.5). Furthermore, write ξν = σ−1
1,νg1,ν(X1,ν) and denote

Ψ(t) = |E exp{itξν}|, βs,ν = E |ξν |s, β∗s,ν(ε) = E |ξν |sI|ξν |s>ετ2
ν
,

γs,ν = σ−s
1,ντ2s

ν E |g2,ν(X1,ν , X2,ν)|s, δk,ν = δk(Tν), ζν = σ1,ντν .

We assume that there exist absolute constants 0 < C1 < C2 < ∞ such that

C1 ≤ σ2
T,ν ≤ C2, ν = 1, 2, . . . . (2.1)

Furthermore, we assume that min{nν ; Nν − nν} → ∞ as ν → ∞. In particular,
we have τ2

ν →∞ and Nν →∞.
2.1 Edgeworth expansions.
Theorem 2.1 below provides the one-term Edgeworth expansion

Gν(x) = Φ(x)− (qν − pν)αν + 3κν

6τν
Φ′′′(x)

for the distribution function Fν(x) = P{Tν −E Tν ≤ xσT,ν}.
For particular classes of statistics that are smooth functions of finite population

sample means, Edgeworth expansions were constructed by Babu and Singh [1]
and Babu and Bai [2]. Theorem 2.1 below provides a uniform analogue of the
corresponding result proved in [10].

Theorem 2.1. Assume that τν →∞. Suppose that there exist positive numbers
C1, C2, C3, and s > 3, t > 2, sequences εν ↓ 0 and ην ↑ ∞, and a positive
decreasing function φ on (0,+∞) such that (2.1) is satisfied,

δ3,ν ≤ εντ−1
ν , (2.2)

βs,ν ≤ C3, γt,ν ≤ C3, (2.3)

and
Ψ(t) ≤ 1− φ(t), C−1

3 ≤ |t| ≤ ην (2.4)

for ν = 1, 2, . . . .
Then there exists a sequence ψν ↓ 0 depending on C1, C2, C3, s, t, {εν}, {ην},

and φ only such that, for ν = 1, 2, . . . ,

sup
x
|Fν(x)−Gν(x)| < ψντ−1

ν . (2.5)

Our main result Theorem 2.2 establishes the validity (in probability) of the em-
pirical Edgeworth expansion

Ĝν(x) = Φ(x)− (qν − pν)α̂ν + 3κ̂ν

6τν
Φ′′′(x).
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Theorem 2.2. Assume that τν →∞. Suppose that there exist positive numbers
C1, C2, C3, and s > 3, t > 2, sequences εν ↓ 0 and ην ↑ ∞, and a positive
decreasing function φ on (0, +∞) such that (2.1), (2.3), and (2.4) are satisfied and

δ2,ν ≤ ενn−1/3
ν , δ3,ν ≤ εντ−1

ν , (2.6)

for ν = 1, 2, . . . .

Then there exists a sequence ψν ↓ 0, depending only on C1, C2, C3, s, t, {εν},
{ην}, and φ such that, for ν = 1, 2, . . . ,

P
{
sup

x
|Fν(x)− Ĝν(x)| > ψντ−1

ν

}
< ψν . (2.7)

Note that conditions (2.1), (2.3), (2.4), and (2.2) (respectively (2.6)) define the
(uniformity) classes of sequences {(Xν , ϕν), ν = 1, 2, . . . }, for which the bound
(2.5) (respectively (2.7)) holds uniformly. This way of formulating results is conve-
nient for applications like sub-sampling (see [21], [3], and [8]), jackknife histogram
(see [28], [25], [13]), and finite population bootstrap (see [7], [14], [1], and [12]). All
of these resampling schemes deal with classes of sequences {(Xν , ϕν), ν = 1, 2, . . . }.
Empirical Edgeworth expansions for distribution functions of symmetric statistic

based on i.i.d. observations were studied by a number of authors: Beran [5],
Bhattacharya and Qumsiyeh [6], Helmers [16], Hall [15], and Putter and van Zwet
[23], etc. The most general result yielding an empirical Edgeworth expansion for
symmetric statistic of i.i.d. observations was obtained by Putter and van Zwet
[23]. Theorem 2.2 could be considered as an extension of their result to the simple
random sample model.
If nν/Nν → 0, the simple random sample model approaches the i.i.d. situation.

In the i.i.d case, Theorem 2.2 remains valid, with qν (respectively pν) replaced by
1 (respectively 0), and with τν replaced by

√
nν . In the definition of δj(Tν) (see

(1.6)), one should also replace n∗ by nν . Note that, even in this case, Theorem
2.2 differs from the corresponding i.i.d. result of [23], where the smoothness con-
ditions are formulated in terms of variances of higher order parts of Hoeffding’s
decomposition of statistics. In particular, in order to verify such conditions one
should be able to estimate the variances of cubic and higher order parts of the de-
composition. Although our smoothness conditions (2.6) do not refer to Hoeffding’s
decomposition, they, in fact, control the higher order parts of the decomposition
as well. An advantage of our conditions is that they are much simpler and easier
to handle.
The moments δk are estimated in [10] for general U–statistics and smooth func-

tions of sample means. In particular, for U–statistics, we typically have δk,ν =
O(τ−2

ν ) and, for smooth functions of sample means, we have δk,ν = O(n−1
ν ).
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In the case where lim supν nνN−1
ν ≤ 1− δ for some 0 < δ ≤ 1, we have that, for

large ν, τ2
ν ≤ nν ≤ δ−1τ2

ν . In view of (3.16), condition (2.6) follows from

δ3,ν ≤ εντ−1
ν and γt,ν ≤ C3 for some t ≥ 2 and C3 > 0.

2.2. Consistency of jackknife estimator of variance.

Lemma 2.1. Assume that (2.1) holds. Suppose that δ2,ν = o(1), τν →∞, and

∀ε > 0, β∗2,ν(ε) = o(1) as ν →∞. (2.8)
Then

∀δ > 0, P{|σ̂2
ν − σ2

T,ν | > δ} = o(1) as ν →∞. (2.9)

Remark 2.1. Assume that (2.1) holds. Suppose that there exists a positive se-
quence εν ↓ 0 such that δ2,ν ≤ εν and

β∗2,ν(εν) ≤ εν , ν = 1, 2, . . . . (2.10)

Then there exists a positive sequence ψν ↓ 0 depending on C1, C2, and {εν} only
such that

P{|σ̂2
ν − σ2

T,ν | > ψν} < ψν , ν = 1, 2, . . . . (2.11)

Remark 2.2. Condition (2.10) is satisfied if, for some s > 2 and C3 > 0, we have
βs,ν < C3 for all ν = 1, 2, . . . . Indeed, the inequalities

β∗2,ν(ε) ≤ (τ2
ν ε)1−s/2βs,ν ≤ (τ2

ν ε)1−s/2C3

imply (2.10) with εν = C
2/s
3 τ

−2+4/s
ν .

2.3 Consistency of jackknife estimators of α and κ.

Lemma 2.2. Assume that (2.1) holds. Suppose that τν →∞ and δ2,ν = o(n−1/3
ν ),

and, for every ε > 0,
β∗3,ν(ε) = o(1), β3,ν = O(1)

as ν →∞. Then

∀δ > 0, P{|α̂ν − αν | > δ} = o(1) as ν →∞. (2.12)
Remark 2.3. Assume that (2.1) holds. Suppose that there exist an absolute

constant C3 > 0 and a sequence εν ↓ 0 such that δ2,ν ≤ ενn
−1/3
ν and

β∗3,ν(εν) ≤ εν , and β3,ν ≤ C3 (2.13)
for ν = 1, 2, . . . . Then there exists a positive sequence ψν ↓ 0 depending on
C1, C2, C3, and {εν} only such that

P{|α̂ν − αν | > ψν} < ψν , ν = 1, 2, . . . .

Remark 2.4. Condition (2.13) is satisfied if, for some s > 3 and C3 > 0, we have
βs,ν < C3 for ν = 1, 2, . . . . Indeed, the inequalities β3,ν ≤ β

3/s
s,ν and

β∗3,ν(ε) ≤ (ετ2
ν )1−s/3βs,ν ≤ (ετ2

ν )1−s/3C3

imply (2.13) with εν = C
3/s
3 τ

−2+6/s
ν .



8 M. BLOZNELIS

Lemma 2.3. Assume that (2.1) holds and τν → ∞ as ν → ∞. Suppose that
(2.3) is satisfied with some s ≥ 3 and t ≥ 2. Assume that, for some εν ↓ 0,

δ3 ≤ εν , ν = 1, 2, . . . .

Then there exists a sequence ψν ↓ 0 depending on C1, C2, C3, and {εν} only such
that

P{|κ̂ν − κν | > ψν} < ψν , ν = 1, 2, . . . . (2.14)

3. Proofs

In order to simplify the notation we drop the subscript ν whenever this does not
cause an ambiguity. By c we shall denote positive absolute constants.
For k = 1, 2, . . . and x ∈ R, write

Ωk = {1, . . . , k}, [x]k = x(x− 1) . . . (x− k + 1), [x]0 = 1.

By Aj we shall always denote a subset of ΩN of cardinality |Aj | = j.
Given a function f : X → [0, +∞), subset A = {i1, . . . , ik} ⊂ ΩN , and j ∈ ΩN \A,

the following inequality holds:

E
(
f(Xj)

∣∣ Xi1 , . . . , Xik

)
= 1

N − k

∑

k∈ΩN\A
f(Xk) ≤ N

N − k
E f(Xj). (3.1)

We shall often use the inequality, which is an immediate consequence of (3.1),

E f(Xi)f(Xj) ≤ N(N − 1)−1(E f(Xi))2 ≤ 2(E f(Xi))2.

Since Hoeffding’s decomposition and its properties play the central role in our
proofs, we collect basic facts about the decomposition in a separate Subsection 3.1.
Proofs of these facts can be found in [10]. In Subsection 3.2, we prove Theorems
2.1 and 2.2. Lemmas 2.1–3 and Remarks 2.1 and 2.3 are proved in Subsection 3.3.
3.1. Let Uj denote the j-th sum in (1.2),

Uj =
∑

1≤i1<···<ij≤n

gj(Xi1 , . . . , Xij ).

Given 1 ≤ j ≤ n, the kernel gj satisfies E gj(Xi1 , . . . , Xij ) = 0 and

E
(
gj(Xi1 , . . . , Xij )

∣∣ Xk1 , . . . , Xkr

)
= 0 a.s. (3.2)
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for every 1 ≤ i1 < · · · < ij ≤ n and every 1 ≤ k1 < · · · < kr ≤ n such that r < j.
In particular, we have

E gj(Xi1 , . . . , Xij
)gr(Xk1 , . . . , Xkr

) = 0 (3.3)

By (3.3), the random variables Ui and Uj with i 6= j are uncorrelated.
In the case where T is an U–statistic of arbitrary fixed degree k, that is,

ϕ(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

h(xi1 , . . . , xik
)

for some symmetric kernel h, we have Uj = 0 almost surely for every j > k.
In the case where n > N/2, we have Uj = 0 almost surely for j > N − n.
For evey j ≤ n∗, the following identity holds almost surely:

Uj = (−1)jU ′
j , U ′

j =
∑

n∗+1≤i1<···<ij≤N

gj(Xi1 , . . . , Xij ). (3.4)

Therefore, by (1.2), we have almost surely (see (2.7) and (2.8) in [10])

T −E T = U1 + · · ·+ Un∗ = (−1)U ′
1 + · · ·+ (−1)n∗U ′

n∗ . (3.5)

Furthermore, since Ui and Uj are uncorrelated, we have

σ2
T = E U2

1 + · · ·+ E U2
n∗ . (3.6)

Conditioning on X1 = y1, . . . , Xn = yn, we obtain from (3.5) that

ϕ(y1, . . . , yn) = E T +
n∗∑

k=1

∑

1≤i1<···<ik≤n

gk(yi1 , . . . , yik
) (3.7)

for every {y1, . . . , yn} ⊂ {x1, . . . , xN}.
Given A = {i1, . . . , ij} ⊂ ΩN , with 1 ≤ j ≤ n, write TA = gj(Xi1 , . . . , Xij ) and

denote Ti = g1(Xi) and Tij = g2(Xi, Xj).
Given a class H of subsets A ⊂ ΩN with cardinality |A| ≤ n∗, introduce the

random variable S =
∑

A∈H TA. Split

S = U1(S) + · · ·+ Un∗(S), Uj(S) =
∑

Aj∈H
TAj .

By (3.3), E S2 = E U2
1 (S) + · · ·+ E U2

n∗(S). In particular, given k < n∗, we have

E (DkT )2 = E U2
k (DkT ) + · · ·+ E Un∗(DkT )2. (3.8)

For A,B ⊂ Ω with |A| = |B| = j ≤ n and |A ∩B| = m, write

σ2
j = E T 2

A, sj,m = E TATB .

It is easy to derive from (3.2) (see Lemma 1 of [10]) that

sj,m = (−1)j−m

(
N − j

j −m

)−1

σ2
j , 0 ≤ m ≤ j ≤ n. (3.9)
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Lemma 3.1A. (Lemma 2 of [10]). For 1 ≤ i ≤ j ≤ n∗, the following identities
hold:

E U2
j =

�n
j

��N−n
j

�
�N−j

j

� σ2
j , (3.10)

E U2
j = 2−ihi,jE U2

j (DiT ), hi,j = [n]i[N − n]i

[j]i[N − j + 1]i
, (3.11)

E U2
j + · · ·+ E U2

n∗ ≤ n
−(j−2)
∗ δj . (3.12)

An application of (3.10) with j = 1 to the statistic T1 + · · ·+ Tk gives

E (T1 + · · ·+ Tk)2 = k(N − k)(N − 1)−1σ2
1 . (3.13)

3.2. We need the following lemma, which is proved in Section 4 below.

Lemma 3.1. Assume that (2.1) holds. Then

ζ2 ≤ C2, (3.14)

0 ≤ σ2
T − ζ2 ≤ δ2 + (N − 1)−1C2, (3.15)

δ2 ≤ 26C2n
−1
∗ γ2 + 2−1n−1

∗ δ3. (3.16)

Proof of Theorem 2.2. The theorem follows from Theorem 2.1, Remark 2.4, and
Lemma 2.3.

Proof of Theorem 2.1. Write ∆ν = supx |P{U{ν} ≤ xζν} −Gν(x)|, where

U{ν} =
∑

1≤i≤nν

g1,ν(Xi,ν) +
∑

1≤i<j≤nν

g2,ν(Xi,ν , Xj,ν).

Theorem 1 of [9] provides the bound ∆ν = o(τ−1
ν ) as ν → ∞. Analysis of their

proof shows that, under conditions (2.1), (2.3), and (2.4), one can specify the
dependence of the bound on the parameters C1, C2, C3, s, t, and the function φ in
the following way. There exists a sequence ψν ↓ 0 depending only on C1, C2, C3, s, t,
and φ such that

∆ν ≤ ψντ−1
ν , ν = 1, 2, . . . . (3.17)

Write Tν −E Tν = U{ν} + R{ν}. Then

Fν(x) = P{U{ν} ≤ ζν(x− v1x− v2)}, v1 = 1− ζ−1
ν σT,ν , v2 = ζ−1

ν R{ν}.

A Slutzky’s type argument yields, for every b > 0,

sup
x
|Fν(x)−Gν(x)| ≤ ∆ν + I1 + I2,

I1 = sup
x∈R,|r|=b

|Gν(x)−Gν

(
x− v1x− r

)|, I2 = P{|v2| > b}.
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In view of (3.17), it suffices to construct a similar bound for I1 + I2.
By C∗ we shall denote a constant depending on C1, C2, C3, s, t, and the sequence
{εν} only. It follows from (2.1), (2.2), and (2.3) via (3.16) and (3.15) that

|σ2
T,ν − ζ2

ν | ≤ C∗τ−2
ν and ζ2

ν ≥ C1 − C∗τ−2
ν . (3.18)

Combining Hölder’s inequality and (3.1), we infer from (2.3) that |αν | < C∗ and
|κν | < C∗. Since the function Φ(x) and its derivatives decay exponentially as x →
∞, from these bounds we obtain the inequality I1 ≤ C∗|v1| + C∗b. Furthermore,
by (3.18), we have |v1| ≤ C∗τ−2

ν . Therefore, I1 ≤ C∗(τ−2
ν + b). Finally, by

Chebyshev’s inequality, (3.12), and (3.18),

I2 ≤ b−2E v2
2 ≤ b−2ζ−2

ν τ−2
ν δ3,ν ≤ C∗b−2τ−2

ν δ3,ν .

We obtain
I1 + I2 ≤ C∗(τ−2

ν + b + b−2τ−2
ν δ3,ν).

Choosing b−1 = τνε
1/3
ν , we obtain I1 + I2 ≤ ψντ−1

ν with some ψν ↓ 0, thus,
completing the proof of the theorem.

3.3. Proof of Remarks 2.1 and 2.3. Let us prove Remark 2.1. Note that (2.9)
is equivalent to the following statement: there exists a sequence ψν ↓ 0 such that
(2.11) holds. Analysis of the proof of Lemma 2.1 (see below) shows that one can
choose the sequence {ψν} so that it depends on C1, C2, and {εν} only.
Remark 2.3 is obtained from Lemma 2.2 in a similar way.

Proof of Lemma 2.1. Using representation (3.7), we obtain

Vi = vi + ri, 1 ≤ i ≤ n + 1, (3.19)

vi =
∑

A1⊂Ωn+1

(
Ii∈A1 −

1

n + 1

)
TA1 , ri =

n∗∑

j=2

∑

Aj⊂Ωn+1

(
Ii∈Aj −

j

n + 1

)
TAj .

Therefore, we can write σ̂2
J = V 2 + R, where

V 2 =
n+1∑

i=1

v2
i , R = 2W1 + W 2

2 , W1 =
n+1∑

i=1

rivi, W 2
2 =

n+1∑

i=1

r2
i .

By (3.15), σ2
T − ζ2 = o(1). Therefore, in order to prove (2.9) it suffices to show

that
|qV 2 − ζ2| = oP (1) and qR = oP (1). (3.20)
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To prove the first part of (3.20), write

V 2 = Z − Y 2/(n + 1), Z =
n+1∑

i=1

T 2
i , Y =

n+1∑

i=1

Ti.

We have, by Lemma 6.1, qZ − ζ2 = oP (1). Furthermore, Y 2/(n + 1) = oP (1),
since, by (3.13) and (3.14), E Y 2/(n + 1) ≤ ζ2/n ≤ C2/n.
In order to prove the second part of (3.20) it suffices to show that qE W 2

2 = o(1).
Indeed, by Cauchy–Schwarz,

qE |W1| ≤ qE V W2 ≤ (qE V 2)1/2(qE W 2
2 )1/2,

where qE V 2 = E U2
1 ≤ C2. Finally, by symmetry and (4.1),

qE W 2
2 = q(n + 1)E r2

1 = (τ2 + q)E r2
1 ≤ δ2 = o(1).

Proof of Lemma 2.2. Write α̂ = WQ, where Q = ζ3σ̂−3. Since the bound β3 =
O(1) implies (2.8), from (3.15) and Lemma 2.1 we obtain that Q− 1 = oP (1). In
order to prove (2.12) it remains to show that

W − α = oP (1), where W = n−1
n+1∑

j=1

V 3
j σ−3

1 .

By (3.19), W − α = R0 + 3R1 + 3R2 + R3, where

R0 = w − α, w = n−1
n+1∑

j=1

v3
j σ−3

1 , R1 = n−1
n+1∑

j=1

v2
j rjσ

−3
1 ,

R2 = n−1
n+1∑

j=1

vjr
2
j σ−3

1 , R3 = n−1
n+1∑

j=1

r3
j σ−3

1 .

We shall show that Ri = oP (1) for 0 ≤ i ≤ 3.
Write

vj = Tj − r, r = (n + 1)−1(T1 + · · ·+ Tn+1).

We have

R0 = S3 − 3S2
r

σ1
+ 3S1

r2

σ2
1

− n + 1

n

r3

σ3
1

− α, Sk = n−1
n+1∑

i=1

T k
i

σk
1

.
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By (3.13), E S2
1 ≤ n−1 and E r2σ−2

1 ≤ n−1. Therefore, S1 = oP (1) and r/σ1 =
oP (1). Furthermore, Lemma 6.1 gives S3−α = oP (1) and S2− 1 = oP (1). Hence,
we obtain R0 = oP (1).
Let us prove that Ri = oP (1) for i = 1, 2, 3. By Hölder’s inequality,

R1 ≤ w2/3R
1/3
3 , R2 ≤ w1/3R

2/3
3 .

Note that w = R0 + α is stochastically bounded as ν →∞. Therefore, it suffices
to show that R3 = oP (1). Given ε > 0, we have, by Chebyshev’s inequality,

P{|R3| > ε} ≤ ε−2/3E |R3|2/3 ≤ ε−2/3n−1
∗ σ−2

1 n1/3δ2 = o(1).

Here we use the inequality (
∑

i |ri|3)2/3 ≤ ∑
i r2

i , the bound (4.1), and the fact
that n∗σ2

1 ≥ ζ2 = σ2
T +o(1) is bounded away from zero by (3.15) and (2.1). Lemma

is proved.

Proof of Lemma 2.3. For brevity, we shall prove the bound κ̂ − κ = oP (1) only.
Going along the line of the proof, one can easily see that the bound depends on
C1, C2, C3, s, t, and {εν} only, i.e., that (2.14) holds.
Note that (2.3) implies κ = O(1) as ν → ∞. Indeed, by Cauchy–Schwarz and

(3.1),
κ ≤ σ−2

1

(
E T 2

1 T 2
2

)1/2
γ

1/2
2 ≤ (N/(N − 1))1/2β2γ

1/2
2 .

Throughout the proof by
∑′ we denote the sum

∑
1≤i<j≤n+2. Write

S =
′∑

Wij ṼiṼj and s =
′∑

wij ṽiṽj ,

where we denote

wij = Tij − (n + 1)−1(Ti + Tj), (3.21)

ṽi = n

n + 1
(Ti − T∗), T∗ = 1

n + 2

n+2∑

j=1

Tj .

Invoking the identity 2qn1/2σ̂−3
J = 2q2τ σ̂−3, we obtain

κ̂− κ = σ̂−3(2q2τS − ζ3κ) + (σ̂−3ζ3 − 1)κ.

By (2.1), (3.15), and Lemma 2.1, we have σ̂−3 ≤ C
−3/2
1 + o(1) and σ̂−3ζ3 −

1 = oP (1). Therefore, in order to prove κ̂ − κ = oP (1) it suffices to show that
2q2τS − ζ3κ = oP (1). We shall prove this bound in two steps by showing that

q2τ(S − s) = oP (1), (3.22)

2q2τs− ζ3κ = oP (1). (3.23)
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Proof of (3.22). Firstly, we shall show that, for every i ∈ Ωn+2, and {i, j} ⊂ Ωn+2,

Ṽi = ṽi + r̃i and Wij = wij + rij , (3.24)

where E r̃2
i and E r2

ij satisfy

E r̃2
i ≤ 2−1n−1

∗ δ2, E r2
ij ≤ c

qσ2
1

n3
+ c

qσ2
2

n
+ c

δ3

n3∗
. (3.25)

Using representation (3.7) for T(i,j), {i, j} ⊂ Ωn+2, we obtain

T̃ =
n∗∑

k=1

[n + 2− k]2

[n + 2]2

∑

Ak⊂Ωn+2

TAk
,

T (i) =
n∗∑

k=1

n + 1− k

n + 1

∑

Ak⊂Ωn+2

Ii/∈Ak
TAk

.

Furthermore, invoking the identity Ii/∈Ak
= 1− Ii∈Ak

, we get

Ṽi = T̃ − T (i) =
n∗∑

k=1

Ṽi,k, Ṽi,k =
∑

Ak⊂Ωn+2

n + 1− k

n + 1

(
Ii∈Ak

− k

n + 2

)
TAk

.

Note that Ṽi,1 = ṽi. Therefore, the first identity of (3.24) holds with

r̃i = Ṽi,2 + · · ·+ Ṽi,n∗ . (3.26)

In order to prove the second identity of (3.24), we write Wij in the following form
(cf. [22], pp. 74–75):

Wij = Z1 + · · ·+ Zn∗ , (3.27)

Zk =
∑

Ak⊂Ωn+2

(
[k + 1]2

[n + 2]2
− (
Ii∈Ak

+ Ij∈Ak

) k

n + 1
+ Ii∈Ak

Ij∈Ak

)
TAk

.

Denoting R0 = Z3 + · · ·+ Zn∗ , we obtain Wij = Z1 + Z2 + R0. Furthermore,

Z1 + Z2 = wij + R1 + R2 + R3 + R4,

R1 = 2

(n + 1)(n + 2)

∑

A1⊂Ωn+2

TA1 , R2 = 6

(n + 1)(n + 2)

∑

A2⊂Ωn+2

TA2 ,

R3 = − 2

n + 1

∑

k∈Ωn+2\{i}
T{i,k}, R4 = − 2

n + 1

∑

k∈Ωn+2\{j}
T{j,k}.
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Finally, we obtain

Wij = wij + rij , with rij = R0 + · · ·+ R4. (3.28)

The bounds (3.25) are proved in Lemma 4.2 below.
Using representation (3.24), we can write

S − s = R̃1 + R̃2 + R̃3 + R̃4 + R̃5,

R̃1 =
′∑

wij(ṽir̃j + r̃iṽj), R̃2 =
′∑

rij(ṽir̃j + r̃iṽj),

R̃3 =
′∑

wij r̃ir̃j , R̃4 =
′∑

rij r̃ir̃j , R̃5 =
′∑

rij ṽiṽj .

Now (3.22) follows from the bounds, which are proved in Lemma 4.1 below,

q2τR̃i = oP (1), 1 ≤ i ≤ 5. (3.29)

Proof of (3.23). Write

s∗ =
′∑

wijTiTj

and note that E q2τ |s∗| = O(1) as ν → ∞. In particular, q2τs∗ = OP (1) as
ν →∞. Indeed, by symmetry and (4.4) we have

E q2τ |s∗| ≤ q2τ2−1[n + 2]2E |w1nT1Tn| = O(1).

It is easy to see that (3.23) is a consequence of the following bounds:

q2τ
(
s− n2(n + 1)−2s∗

)
= oP (1), (3.30)

q2τ(s∗ −E s∗) = oP (1), (3.31)

∆ := 2q2τn2[n + 2]−1
2 E s∗ − ζ3κ = o(1). (3.32)

The bounds (3.30) and (3.32) are proved in Lemma 4.1.
Let us prove (3.31). In what follows, C∗ denotes a positive constant which depends

on C1, C2, C3, s, t, and {εν} only.
The random variable

s∗ −E s∗ =
′∑

s(Xi, Xj), s(Xi, Xj) = wijTiTj −E wijTiTj ,
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is an U -statistic of degree two of the observations X1, . . . , Xn+2. Hoeffding’s
decomposition (1.2) represents it by the sum of the linear and quadratic parts
s∗ −E s∗ = L + Q, where

L =
∑

1≤i≤n+2

g∗1(Xi), Q =
′∑

g∗2(Xi, Xj),

and where, by (1.4),

g∗1(Xi) = (n + 1)t∗(Xi), g∗2(Xi, Xj) = s(Xi, Xj)− t∗(Xi)− t∗(Xj),

t∗(Xi) = (N − 1)(N − 2)−1E
(
s(Xi, Xj)

∣∣Xi

)
.

In order to prove (3.31) we shall show that

τq2L = oP (1), (3.33)

τq2Q = oP (1). (3.34)

Let us prove (3.33). Since E |t∗(X1)|6/5 ≤ C∗E |w1nT1Tn|6/5, from (4.4) we obtain
the bound

E |g∗1(X1)|6/5 = (n + 1)6/5E |t∗(X1)|6/5 = O(n6/5τ−6). (3.35)

Let X∗
1 , . . . , X∗

n+2 denote a sample drawn with replacement from X . By Theorem
4 of Hoeffding (1963),

E |L|6/5 ≤ E
∣∣ ∑

1≤i≤n+2

g∗1(X∗
i )

∣∣6/5
. (3.36)

Furthermore, by the Marcinkievicz–Zygmund inequality,

E
∣∣ ∑

1≤i≤n+2

g∗1(X∗
i )

∣∣6/5 ≤ C
∑

1≤i≤n+2

E |g∗1(X∗
i )|6/5 = C(n + 2)E |g∗1(X1)|6/5.

In combination with (3.36) and (3.35), this inequality yields

E |L|6/5 = O(n11/5τ−6).

Therefore, we obtain E |τq2L|6/5 = O(τ−2/5), and now (3.33) follows.
Let us prove (3.34). In view of (3.4), we can further assume without loss of

generality that n ≤ N/2. In particular, n ≤ 2τ2.
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We first replace g∗2(Xi, Xj) by the truncated random variables

g∗2(Xi, Xj)IiIj , Ij = I|Ti|<η, η = τ−1/4.

Write M =
∑′

g∗2(Xi, Xj)IiIj . By symmetry and Chebyshev’s inequality

P{Q 6= M} ≤ P{ max
1≤i≤n+2

|Ti| > η} ≤ (n + 2)P{|T1| > η}

≤ (n + 2)η−3E |T1|3 ≤ C∗τ−1/4β3 = O(τ−1/4).

Therefore, it suffices to prove (3.34) with Q replaced by M . For this purpose, we
shall show that

τq2(M −E M) = oP (1) (3.37)

and τq2E M = o(1). The last bound follows from the bound (which is proved in
Lemma 4.1 below)

E g∗2(Xi, Xj)IiIj = O(τ1/4−6). (3.38)

Indeed, by symmetry and (3.38) we have

τq2E M = τq22−1[n + 2]2E g∗2(Xi, Xj)IiIj = O(τ−3/4).

Let us prove (3.37). Using (1.2), we decompose the statistic

M −E M =
′∑

m(Xi, Xj), m(Xi, Xj) = g∗2(Xi, Xj)IiIj −E g∗2(Xi, Xj)IiIj ,

into the sum of the linear and quadratic parts M −E M = L̃ + Q̃, where

L̃ =
∑

1≤i≤n+2

g̃1(Xi),
′∑

g̃2(Xi, Xj).

Here, by (1.4),

g̃1(Xi) = (n + 1)t̃(Xi), g̃2(Xi, Xj) = m(Xi, Xj)− t̃(Xi)− t̃(Xj),

t̃(Xi) = (N − 1)(N − 2)−1E (m(Xi, Xj)
∣∣ Xi).

Clearly, (3.37) follows from the bounds

τq2L̃ = oP (1) and τq2Q̃ = oP (1).

The proof of the first bound is similar to that of (3.33). In order to prove the
second bound we show that τ2q4E Q̃2 = o(1). An application of (3.10) with j = 2
gives

E Q̃2 =
�n+2

2

��N−n−2
2

�
�N−2

2

� E g̃2
2(X1, X2) ≤ 2τ4E g̃2

2(X1, X2).

In the last step, we used the inequality n2q2 ≤ τ4. Finally, the bound (which is
proved in Lemma 4.1)

E g̃2
2(X1, X2) = O(τ−7) (3.39)

completes the proof of the lemma.
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