
ONE- AND TWO-TERM EDGEWORTH EXPANSIONS FOR

FINITE POPULATION SAMPLE MEAN. EXACT RESULTS. II

M. Bloznelis

Abstract. We prove the validity of one- and two-term Edgeworth expansions un-
der optimal conditions (a Cramer-type smoothness condition and the minimal mo-
ment conditions) and provide precise bounds for the remainders of expansions. The
bounds depend explicitly on the ratio p = N/n, where N respectively n denotes the
sample size respectively the population size.

3. Proofs

Here we prove Theorem 2 formulated in Sec. 1 of the first part of the paper.

Proof of Theorem 2. Given j ∈ {1, 2}, we shall show that

∆j,n = o(τ−j
n ) as τn →∞. (3.49)

The bounds ∆?
j,n = o(τ−j

n ) are derived from (3.49) using the same argument as
that of the proof of Corollary 1.
Let us prove (3.49). We can assume without loss of generality that

VarX1,n = EX2
1,n = τ−2

n .

Then ∆j,n = ‖P{Sn ≤ x}−Gj,n(x)‖, where Sn = X1,n+· · ·+XNn,n. Furthermore,
we can assume that the sum Sn consists of no more than n/2 summands, i.e., that
pn ≤ qn. Indeed, for pn > qn, we have Sn = S̃n, since EX1,n = 0. Here

S̃n = X̃1,n + · · ·+ X̃Ñn,n with X̃k,n = −Xn−k+1,n and Ñn = n−Nn.

In this way, we represent Sn by the sum S̃n consisting of less than n/2 summands.
It is easy to verify that one- and two-term Edgeworth expansions of P{S̃n ≤ x}
(written in terms of the moments of X̃1,n and with the parameter p̃n(= qn))
coincide with G1,n and G2,n, respectively.
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In order to prove (3.49), we shall show that, for every ε > 0,

lim sup
n

τ j
n∆j,n < ε, j = 1, 2. (3.50)

We shall prove (3.50) for j = 2 only. The proof for j = 1 is almost the same.
Assume that (1.7), (1.8), and (1.9) hold for j = 2. Since pn ≤ qn, we have

Nn ≤ τ2
nq−1

n ≤ 2τ2
n.

In the first step, we replace Sn by S′ defined by

S′ = X ′
1 + · · ·+ X ′

Nn
, X ′

k = Xk,nI{X2
k,n ≤ 1}.

Note that, by Chebyshev’s inequality and (1.8),

P{X1 6= X ′
1} ≤ P{X2

1,n > 1} ≤ τ−4
n β?

4,n(1) = o(τ−4
n ) as τn →∞.

Therefore,

P{S 6= S′} ≤
Nn∑

k=1

P{Xk 6= X ′
k} ≤ NnP{X1 6= X ′

1} = 2τ2
nP{X1 6= X ′

1} = o(τ−2
n ),

and we obtain

‖P{S ≤ x} −P{S′ ≤ x}‖ ≤ P{S 6= S′} = o(τ−2
n ). (3.51)

In the next step, we replace S′ by S′′ = S′ − ES′. Since ES′ = NnEX ′
1 and, by

EX1,n = 0,

|EX ′
1| = |EX1,nI{X2

1,n > 1}| ≤ τ−4
n β?

4,n(1) = o(τ−4
n ), (3.52)

we have |ES′| = o(τ−2
n ). Therefore,

‖P{S′ ≤ x} −G2,n(x)‖ ≤‖P{S′′ ≤ x} −G2,n(x)‖+ |ES′|max
x
|G(1)

2,n(x)|
=‖P{S′′ ≤ x} −G2,n(x)‖+ o(τ−2

n ). (3.53)

In the last step, we used the relation

lim sup
n

‖G(1)
2,n(x)‖ ¿ lim sup

n
β4,n < ∞,

which follows from (3.10) and (1.7).
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Now we replace S′′ by SY defined by

SY = Y1 + · · ·+ YNn , Yk = σ−1
∗ τ−1

n (X ′
k −EX ′

k), σ2
∗ = VarX ′

1.

Clearly, S′′ = SY σ∗τn and, thus,

P{S′′ ≤ x} = P{SY ≤ x + κx}, κ = σ−1
∗ τ−1

n − 1.

Therefore, we can write

‖P{S′′ ≤ x} −G2,n(x)‖ ≤ I1 + I2 + I3, I1 = ‖GY (x)−G2,n(x)‖, (3.54)

I2 = ‖P{SY ≤ x} −GY (x)‖, I3 = ‖G2,n(x + κx)−G2,n(x)‖.

Here GY is defined in the same way as G2 but with αi replaced by α′i = τ i
nEY i

1 .
In the remaining part of the proof, we show that

I1 = o(τ−2
n ), I3 = o(τ−2

n ), (3.55)

and that there exists c > 0 such that, for every 0 < ε < 1, we have

lim sup
n

I2τ
2
n ≤ cε. (3.56)

Note that (3.55), (3.56), and (3.54), in combination with (3.51) and (3.53), yield
(3.50) for j = 2. Therefore, it remains to prove (3.55) and (3.56).
Write β′j = τ j

nE|Y1|j , j = 1, 2, . . . . In the first step of the proof of (3.55) and
(3.56), we show that

α′j = αj,n + o(τ j−4
n ), j = 3, 4, (3.57)

β′j ≤ 2j−1βj,n + o(τ−2
n ), j = 3, 4, (3.58)

β′5 ≤ 24ετnβ4,n + 24τnβ?
4,n(ε) + o(τ−1

n ), ∀ 0 < ε < 1. (3.59)

Note that (1.8) implies

σ2
∗ = τ−2

n + o(τ−4
n ), σ−j

∗ − τ j
n = o(τ j−2

n ), j = 1, 2, . . . . (3.60)

To prove the first relation of (3.60), note that, by (3.52),

τ−2
n = EX2

1,n ≥ σ2
∗ = E(X ′

1)
2 − (EX ′

1)
2 = E(X ′

1)
2 + o(τ−8

n ),

and, by Chebyshev’s inequality and (1.8),

E(X ′
1)

2 = EX2
1,n −EX2

1,nI{X2
1,n > 1} ≥ EX2

1,n − τ−4
n β?

4,n(1) = τ−2
n + o(τ−4

n ).
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The second relation of (3.60) follows from the first one.
In order to prove (3.57), we write α′j = αj,n + R1 + R2 + R3, where

R1 = τ j
nEY j

1 −σ−j
∗ E(X ′

1)
j , R2 = (σ−j

∗ − τ j
n)E(X ′

1)
j , R3 = τ j

nE
(
(X ′

1)
j−Xj

1,n

)
,

and show that

R1 = o(τ−3
n ), R2 = o(τ−2

n ), R3 = o(τ j−4
n ). (3.61)

Note that the relation (which follows from (1.7))

|E(X ′
1)

j | ≤ E|X ′
1|j ≤ E|X1,n|j = τ−j

n βj,n = O(τ−j
n ), j = 1, 2, 3, 4, (3.62)

in combination with (3.60), yields R2 = o(τ−2
n ).

The bound R3 = o(τ j−4
n ) follows from (1.8) by Chebyshev’s inequality:

|R3| = τ j
n|EXj

1,nI{X2
1,n > 1}| ≤ τ j−4

n β?
4,n(1) = o(τ j−4

n ).

To prove R1 = o(τ−3
n ), write R1 = σ−j

∗ EV , where

V = (X ′
1 −EX ′

1)
j − (X ′

1)
j = (−EX ′

1) j (X ′
1 − θ∗EX ′

1)
j−1

for some 0 ≤ θ∗ ≤ 1, by the mean value theorem. Furthermore, invoking the
inequality

(a + b)k ≤ 2k−1(ak + bk), a, b > 0, k = 1, 2, . . . , (3.63)

and using (3.52) and (3.62), we obtain

E|V | ¿ |EX ′
1|

(
E|X ′

1|j−1+|EX ′
1|j−1

)
= o(τ−4

n )
(
O(τ1−j

n )+o(τ4(j−1)
n )

)
= o(τ−3−j

n ).

This relation together with (3.60) implies

R1 = σ−j
∗ EV =

(
τ j
n + o(τ j−2

n )
)
EV = o(τ−3

n ),

thus completing the proof of (3.61). We arrive at (3.57).
Let us prove (3.58). Note that (3.60) implies

σ−1
∗ τ−1

n = 1 + o(τ−2
n ). (3.64)

Combining (3.63) with (3.64), (3.62), and (3.52), we obtain, for j = 3, 4, 5,

E|Y1|j ≤ 2j−1σ−j
∗ τ−j

n

(
E|X ′

1|j + |EX ′
1|j

) ≤ 2j−1τ−j
n βj,n + o(τ−j−2

n ). (3.65)
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Since β′j = τ j
nE|Y1|j , from (3.65) we obtain (3.58).

In order to prove (3.59), we combine the first inequality of (3.65) with (3.64) and
(3.52) and obtain

β′5 = τ5
nE|Y1|5 ≤ 24(1 + o(τ−2

n ))τ5
nE|X ′

1|5 + o(τ−15
n ).

Finally, invoking the inequality (which holds for an arbitrary 0 < ε < 1)

E|X ′
1|5 = E|X1,n|5I{X2

1,n ≤ 1} ≤ εEX4
1,n + EX4

1,nI{X2
1,n > ε}

≤ ετ−4
n β4,n + τ−4

n β?
4,n(ε),

we obtain
β′5 ≤ 24τn(1 + o(τ−2

n ))
(
εβ4,n + β?

4,n(ε)
)

+ o(τ−15
n ).

This inequality together with (1.7) implies (3.59).
Now we are going to prove (3.55). The bound I1 = o(τ−2

n ) is an immediate
consequence of (3.57). To prove the second bound of (3.55), note that, by the
mean value theorem and the exponential decay of G

(1)
2,n(x) as |x| → +∞, we have,

for |κ| ≤ 1,
I3 ¿ |κ|max

x
|G(1)

2,n(x)|(1 + |x|). (3.67)

It is easy to show (see (3.10)) that ‖|G(1)
2,n(x)|(1 + |x|)‖ ¿ β4,n. This inequality, in

combination with (3.67) and (3.64), yields I3 ¿ o(τ−2
n )β4,n = o(τ−2

n ) by (1.7).
In order to prove (3.56), we fix ε ∈ (0, 1) and apply (3.5) with T = Tn = τ2

nε−1

and H = Hn = b1τn/β′3. Therefore, it suffices to show that

lim sup
n

τ2
nT−1

n ‖G(1)
Y (x)‖ ≤ c ε (3.68)

lim sup
n

τ2
nI[0,Hn](F̂Y − ĜY ) ≤ c ε, (3.69)

I[Hn,Tn](ĜY ) = o(τ−2
n ), (3.70)

I[Hn,Tn](F̂Y ) = o(τ−2
n ). (3.71)

Here ĜY and F̂Y denote the Fourier–Stieltjes transforms of GY (x) and
FY (x) = P{SY ≤ x}, respectively.
Let us prove (3.68) – (3.71). Note that (3.69) is a consequence of (3.8) combined

with (3.59) and (1.7), (1.8).
The relation (3.68) follows from the inequalities

lim sup
n

‖G(1)
Y (x)‖ ¿ lim sup

n
β′4 ¿ lim sup

n
β4,n < ∞,
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using (3.10), (3.58), and (1.7).
Let us prove (3.70). It follows from (3.11) and (3.12) that

I[Hn,Tn](ĜY ) ¿ H−3
n

(
1 + (β′3)

2 + β′4
)

= O(τ−3
n ).

In the last step, we used the inequality lim supn β′j < ∞ for j = 3, 4, which follows
from (3.58) and (1.7).
To prove (3.71) we proceed as in proof of (3.9) and obtain

I[Hn,Tn](F̂Y ) ≤ τn ln Tn exp{−τ2
nρ′n}, (3.72)

ρ′n = 1− sup
{|E exp{itτnY1}| : b1/β′3 ≤ |t| ≤ τnε−1

}

Note that (3.72) and
lim inf

n
ρ′n > 0 (3.73)

imply (3.71). It remains to show (3.73). For this purpose, we replace Y1 by X1,n

and then apply (1.9). Note that, for every t,

|E exp{itτnY1}| = |E exp{itσ−1
∗ X ′

1}| ≤ |E exp{itτnX1,n}|+ Rn(t),

Rn(t) =
∣∣∣E

(
exp{itσ−1

∗ X ′
1} − exp{itτnX1,n}

)∣∣∣ ≤ |t|E|σ−1
∗ X ′

1 − τnX1,n|.

Therefore, with ρ′′n defined in the same way as ρ′n, but with Y1 replaced by X1,n

in the exponent, we have

lim inf
n

ρ′n ≥ lim inf
n

ρ′′n − lim sup
n

Rn, Rn = sup
|t|≤τn/ε

|Rn(t)|. (3.74)

We claim that (1.9) implies
lim inf

n
ρ′′n > 0. (3.75)

Indeed, (3.75) follows from (1.9) and the fact that b1 ≥ lim infn b1/β′3 > 0, where
the last inequality is a consequence of lim supn β′3 ¿ lim supn β3,n < ∞ by (3.58)
and (1.7).
Finally, we shall show that

lim sup
n

Rn = 0. (3.76)

Clearly, (3.76) together with (3.75) yield (3.73) via (3.74). In order to prove (3.76),
we write

E|σ−1
∗ X ′

1 − τnX1,n| ≤ σ−1
∗ E|X ′

1 −X1,n|+ |σ−1
∗ − τn|E|X1,n|. (3.77)
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To estimate the first summand, we apply Chebyshev’s inequality and use (3.60)
and (1.8) to get

σ−1
∗ E|X ′

1 −X1,n| = σ−1
∗ E|X1,n|I{X2

1,n > 1} ≤ σ−1
∗ τ−4

n β?
4,n(1) = o(τ−3

n ). (3.78)

Furthermore, by (3.60) and (1.7), we have

|σ−1
∗ − τn|E|X1,n| = |σ−1

∗ − τn|τ−1
n β1,n = o(τ−2

n ). (3.79)

Collecting (3.78) and (3.79) in (3.77), we obtain |Rn(t)| ≤ |t|o(τ−2
n ), thus, proving

(3.76). The proof of Theorem 2 is complete.

4. Appendix I

Introduce the function Θ(x) =
(

2

π

π − x

π + x

)2

and write

c2 = 2 b1

b
+ c1, c1 = 3

2
(1−Θ(b)) + 2b1

b
Θ(b), b = 0.075. (4.1)

Note that the constants b1 < b (see also (1.2)) are chosen so that c1 < 1 and
c2 < 1.
Given a number L > 0 and a function f(s, t), we write f ≺ L if

τ

∫

|t|≤H

dt

|t|

∫

|s|≤π

|f(s, t)|e−ζ0/2ds ¿ L.

Recall that ζ0 = τ2s2 + t2.
Proof of (3.19). In order to prove (3.19), we shall show that

Ri ≺ R, i = 1, 2, 3, R = β5τ
−3. (4.2)

Let us prove (4.2) for i = 1. By the inequality (5.2) below, we have

|v̂∗3,j | ¿ pq(1 + |t|5) exp{ b1

b
t2}|txj |ξ4

j .

This bound, in combination with the inequality (5.4) below, gives

|R1| ¿ pq(1 + |t|5) exp{ c2

2
ζ0}

n∑

j=1

|txj |ξ4
j . (4.3)

The inequalities ξ4
j ¿ s4 + t4x4

j and s4|xj | ¿ |s|5 + |xj |5 imply

n∑

j=1

|txj |ξ4
j ¿ |t|

n∑

j=1

(|s|5 + (1 + t4)|xj |5) = |t|n(|s|5 + (1 + t4)κ5

)
.
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Combining this bound with (4.3), we obtain

|R1| ¿ τ2|t|(1 + |t|5)(|s|5 + (1 + t4)κ5

)
exp{ c2

2
ζ0}.

This inequality, in combination with c2 < 1, implies R1 ≺ τ−3 + τ2κ5 ¿ R.
Let us prove (4.2) for i = 3. Since |γ(3)(0)| ≤ pq by Lemma 5.1, we have |v̂1,j | ≤

pq|txj |ξ2
j . Furthermore, by (5.2) we have

|v̂∗1,j | ≤ pq|txj |ξ2
j (1 + |t|3) exp{ b1

b
t2}.

From these inequalities, (5.4), and the simple inequality |xj |ξ2
j ¿ wj := |xj |(s2 +

t2x2
j ), it follows that

|R3| ≤ p3q3|t|3(1 + |t|3) exp{ c2

2
ζ0}

n∑

j=3

j−1∑

k=2

k−1∑
r=1

wjwkwr. (4.4)

Note that the (triple) sum equals the expectation
(

n

3

)
EW1W2W3, where Wi = |Xi|(s2 + t2X2

i ), i = 1, 2, 3.

To bound this expectation, note that

E(W3|X1X2) ≤ n

n− 2
EW3, E(W2|X1) ≤ n

n− 1
EW2. (4.5)

Furthermore, by the inequality |ad2| ¿ |a|3 + |d|3, we have

EW1 ¿ E
(|s|3 + |X1|3 + t2|X1|3

)
= |s|3 + (1 + t2)κ3. (4.6)

From (4.5) and (4.6) it follows that
(

n

3

)
EW1W2W3 ¿ n3(EW1)3 ¿ n3

(|s|3 + (1 + t2)κ3

)3 ¿ n3
(|s|9 + (1 + t2)3κ3

3

)
.

Combining these inequalities with (4.4), we obtain

|R3| ≤ τ6|t|3(1 + |t|3) exp{ c2

2
ζ0}

(|s|9 + (1 + t2)3κ3
3

)
.

Now a simple calculation shows that R3 ≺ τ−3 + τ6κ3
3 ¿ R. In the last step, we

estimated κ3
3 ≤ β5τ

−9 using (3.2).
The proof of (4.2) for i = 2 is much the same.
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Proof of (3.34). In order to prove (3.34), we shall show that

γn−1(s)R?
2 ≺ R, γn−2(s)R?

3 ≺ R, R = β5τ
−3. (4.7)

Let us prove the first inequality of (4.7). By the inequality (5.13) below, we have

γn−1(s)R?
2 = R?

2 + r with |r| ¿ |R?
2|r∗1 .

Invoking the inequality |γ(4)(0)| ¿ pq of Lemma 5.1, we obtain

|r| ¿ τ4s4|t|3κ3 exp{ c1

2
ζ0}.

Now a straightforward calculation gives |r| ≺ κ3 ¿ R. The proof of R?
2 ≺ R is

much the same as that of S?
1,1 ∼ 0 in (3.41) above. We obtain (4.7) for k = 2.

In order to prove the second inequality of (4.7), we show that

n2δR?
3,jγ

n−2(s) ≺ R, j = 1, 2, 3, where δ :=
(

γ(3)(0)

2

)2
�n
2

�

n2
, (4.8)

satisfies δ ¿ p2q2. To prove (4.8) for j = 1, we apply (5.13) and obtain

n2δR?
3,1γ

n−2(s) = n2δR?
3,1 + r with |r| ¿ n2δ|R?

3,1|r∗1 .

A simple calculation gives

|r| ¿ τ6s4|t|5|EX3
1X2

2 | exp{ c1

2
ζ0} ≺ τ2|EX3

1X2
2 | ¿ R.

In the last step, we estimated |EX3
1X2

2 | ¿ κ5 using Hölder’s inequality.
To show n2δR?

3,1 ≺ R, we proceed as in the proof of S?
1,1 ∼ 0 in (3.41) above.

The proof of (4.8) for j = 1 is complete.
Let us prove (4.8) for j = 2, 3. By Lemma 5.6, we have

R?
3,2 = −s4t2

{2

n− 1
− 2s3t3

{3

n− 1
− 2

3
s2t4

{4

n− 1
. (4.9)

By (3.1), κ6 ≤ (pq)−1/2κ5 and, therefore,

|R?
3,3| ¿ s2t4

κ4

n− 1
+ t6

9

κ5

n1/2τ
. (4.10)

Finally, we estimate n2δγn−2(s) ¿ τ4 exp{c1ζ0/2} using (5.5), and apply (4.9)
and (4.10) to obtain (4.8) for j = 2, 3.
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Proof of (3.38). By (5.13) and (5.5) we have, for j = 1, 2,

|γn−j(s)− γn(s)| = |γn−j(s)||1− γj(s)| ¿ pq|s|3 exp{ c1

2
ζ0}.

This implies

|γn−1(s)− γn(s)||S?
j | ¿ pq|s|3 exp{ c1

2
ζ0}|S?

j |, j = 1, 2,

|γn−2(s)− γn(s)||S?
3 | ¿ pq|s|3 exp{ c1

2
ζ0}|S?

3 |.

A simple calculation shows that the right hand sides are ≺ R. We obtain (3.38).
Proof of (3.40) and (3.42). By (5.14) we have

γn(s)S?
1,1 = S?

1,1 + S∗1,1 + r, |r| ¿ |S?
1,1|r∗2 . (4.11)

Furthermore, by (5.13) we have

|S?
j,1 − γn(s)S?

j,1| ¿ r∗1 |S?
j,1|, j = 2, 3. (4.12)

|gj,1 − γn(s)gj,1| ¿ r∗1 |gj,1|, j = 1, 2, 3. (4.13)

A simple calculation shows that

|S?
1,1|r∗2 ≺ R, |S?

j,1|r∗1 ≺ R, |gk,1|r∗1 ≺ R, j = 1, 2, k = 1, 2, 3.

These bounds, in combination with (4.11), (4.12), and (4.13), yield (3.40) and
(3.42).

5. Appendix II

Recall that

b1 = 0.001, b = 0.075, Θ(x) =
(

2

π

π − x

π + x

)2

, ζ0 = τ2s2 + t2,

β(x) = p exp{iqx}+ q exp{−ipx}, γ(x) = β(x) exp{ pq

2
x2}.

Denote
K = {xk : |Hxk| > b}, H = b1τβ−1

3 .

Below we use the following inequality proved in Höglund [10]. For all z0 ∈ [0, π)
and z satisfying |z| ≤ π + z0, we have

|β(z)|2 ≤ 1− pq(z)2Θ(z0). (5.1)
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Lemma 5.1. The function γ satisfies

γ(0) = 1, γ′(0) = γ′′(0) = 0, γ(3)(0) = i3pq(q − p), γ(4)(0) = pq(1− 6pq),

|γ(k)(u)| ¿ α(u2)(pq + |u|kpkqk), k = 3, 4, 5.

Proof of Lemma 5.1. The proof is elementary.

Lemma 5.2. Assume that |t| ≤ H. For all 0 ≤ θ∗1 , θ∗2 ≤ 1 and j ∈ Ωn, we have

|γ(k)(θ∗1(s + θ∗2txj))| ¿ exp{ b1

b
t2}(pq + |t|k(pq)k/2), k = 3, 4, 5. (5.2)

Proof of Lemma 5.2. We prove the lemma only in the case where k = 5. Write,
for short,

ξ := θ∗1(s + θ∗2txk), α(x) := exp{pqx/2}
and note that γ(x) = β(x)α(x2).
By the inequality |a + b|i ≤ 2i−1(|a|i + |b|i), we have

|ξ|i ¿ 2i−1(|s|i + |t|i|xk|5),

Since |s| ≤ π and, by (3.1), |xk| ≤ (pq)−1/2, we obtain

|ξ|5 ¿ 1 + |t|5(pq)−5/2, |ξ|2 ≤ 2π2 + 2t2x2
k.

The second inequality implies α(ξ2) ¿ α(2t2x2
k). Therefore, by Lemma 5.1, we

have
|γ(5)(ξ)| ¿ α(2t2x2

k)
(
pq + |t|5(pq)5/2

)
.

It remains to show that
α(2t2x2

k) ¿ exp{t2b1/b}. (5.3)

For xk /∈ K, we have |txk| ≤ b. Therefore, α(2t2x2
k) ¿ 1, and (5.3) is satisfied.

For xk /∈ K, we have x2
k ≤ b1(pqb)−1 by Lemma 5.4. Therefore, α(2t2x2

k) ≤
exp{t2b1/b}. We obtain (5.3), thus, proving the lemma.

Lemma 5.3. Assume that |t| ≤ H. For every i = 1, 2, 3 and j ∈ Ωn, we have

|Ψi,j | ≤ exp{ c1

2
ζ0}, where Ψi,j = γn−j−i+1(s)

j−1∏

k=1

γ(s + txk), (5.4)

γj(s) ≤ exp{ jpq

2
(1−Θ(b))s2} ≤ exp{ c1

2
ζ0}, (5.5)
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where c1 is given in (4.1).

Proof of Lemma 5.3. Write

Ik = I{xk ∈ K}, Ick = I{xk /∈ K}.

Recall that the subset K ⊂ X is introduced in the beginning of Appendix II. Let
us show that

j−1∏

k=1

γ(s + txk) ≤ exp{ pq

2

(
Z1(1−Θ(b)) + Z2Θ(b)}, (5.6)

Z1 =
j−1∑

k=1

(s + txk)2, Z2 =
j−1∑

k=1

(s + txk)2Ik.

Clearly, |s + txk| ≤ π + H|xk| ≤ π + b for xk /∈ K. An application of (5.1) gives

|β(s+txk)|2 ≤ 1−pq(s+txk)2Θ(b) ≤ exp{−pq(s+txk)2Θ(b)}, xk /∈ K. (5.7)

Therefore, for arbitrary k ∈ Ωn, we can write

|β(s + txk)| ≤ exp{− pq

2
(s + txk)2Θ(b)Ick}.

This inequality implies (5.6).
Using (5.1) we construct a bound for γn−j(s) as well. As in (5.7), we can write

|β(s)| ≤ exp{−2−1pqs2Θ(b)}.

This inequality implies (5.5). It follows from (5.6) and (5.5) that

|Ψ1,j | ≤ exp{ pq

2
Z}, Z = (s2(n− j) + Z1)(1−Θ(b)) + Z2Θ(b),

Clearly, this bound extends to Ψi,j with i = 2, 3 as well. In order to prove (5.4),
it remains to show that

Z ≤ c1(ns2 + (pq)−1t2). (5.8)

Höglund [10] showed that EX1 = 0 and EX2
1 = τ−2 imply

2
∣∣

j∑

k=1

xk| ≤
(

n

pq

)1/2

, j ∈ Ωn.
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This inequality, combined with (3.1), gives

(n−j)s2 +Z1 = (n−1)s2 +2st

j−1∑

k=1

xk + t2
j−1∑

k=1

x2
k ≤ (n−1)s2 + |st|

(
n

pq

)1/2

+ t2

pq
.

Finally, invoking the inequality |ab| ≤ (a2 + b2)/2, we obtain

(n− j)s2 + Z1 ≤ 3

2

(
ns2 + t2

pq

)
(5.9)

To estimate Z2, we invoke the bounds

|K| ≤ n
b1

b
and

∑

xk∈K
x2

k ≤
b1

pqb
(5.10)

that follow from Lemma 5.4. The inequality (a + b)2 ≤ 2a2 + 2b2, combined with
(5.10), gives

Z2 ≤ 2s2|K|+ 2t2
∑

xk∈K
x2

k ≤ 2 b1

b

(
ns2 + t2

pq

)
.

This bound, in combination with (5.9), yields (5.8), thus, completing the proof.

Lemma 5.4. For subset K ⊂ X , we have

|K| ≤ n
br
1

br

βr

βr
3

,
∑

xj∈K
x2

j ≤
b1

b

1

pq
. (5.11)

In particular, every xk ∈ K satisfies x2
k ≤ b1(pqb)−1. Recall that the subset K ⊂ X

is introduced in the beginning of Appendix II.

Proof of Lemma 5.4. To prove the first inequality, we write

|K| ≤
∑

xj∈K

(
H|xj |

b

)r

≤ Hr

br
nE|X1|r = n

br
1

br

βr

βr
3

.

To prove the second inequality, we apply Hölder’s inequality:

∑

xj∈K
x2

j ≤
( ∑

xj∈K
|xj |3

)2/3

|K|1/3 ≤ (
nE|X1|3

)2/3|K|1/3.

Furthermore, writing nE|X1|3 = nβ3τ
−3 and substituting the bound (5.11) for

|K| with r = 3, we see that the right-hand side is bounded by b1(pqb)−1.
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Lemma 5.5. Let Z ≥ 0 be a random variable satisfying EZ2 = 1. Then

(EZ3)2 ≤ EZ4,
(
EZ3

)3 ≤ EZ5, EZ4 EZ3 ≤ EZ5. (5.12)

Proof of Lemma 5.5. The first inequality follows from the Cauchy–Schwartz in-
equality:

EZ3 = EZ Z2 ≤ (EZ2)1/2(EZ4)1/2.

This implies (EZ3)3 ≤ EZ4EZ3. It remains to prove the last inequality of (5.12).
By Hölder’s inequality, we have

EZ4 = EZ2/3Z10/3 ≤ (EZ2)1/3(EZ5)2/3 = (EZ5)2/3,

EZ3 = EZ4/3Z5/3 ≤ (EZ2)2/3(EZ5)1/3.

Clearly, these inequalities yield (5.12).

Lemma 5.6. Let k and l be positive integers. We have

EXk
1 X l

2 = n

n− 1
κkκl − 1

n− 1
κk+l.

Proof of Lemma 5.6. The lemma follows from the identities

EXk
1 X l

2 = EXk
1 E(X l

2|X1), E(X l
2|X1) = n

n− 1
κl − 1

n− 1
X l

1.

Lemma 5.7. For all k ∈ Ωn and |s| ≤ π, we have

|γk(s)− 1| ¿ kpq|s|3δk−1 ¿ r∗1 , r∗1 = τ2|s|3 exp{ c1

2
ζ0}, (5.13)

∣∣∣γk(s)− 1− k
γ(3)(0)

6
s3

∣∣∣ ¿ kpqs4(1 + kpqs2)δk−1 ¿ r∗2 (5.14)

δk = exp{ kpq

2
s2(1−Θ(b))}, r∗2 = τ2s4(1 + τ2s2) exp{− c1

2
ζ0}.

where c1 is given in (4.1).

Proof of Lemma 5.7. By (3.20), we have

γk(s)− 1 = (γ(s)− 1)
k∑

j=1

γj−1(s). (5.15)
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Expanding γ(s) in powers of s and using the fact that γ(0) = 1 and γ′(0) =
γ′′(0) = 0 (see Lemma 5.1), we get

γ(s)− 1 = r1 γ(s)− 1 = γ(3)(0)

6
s3 + r2, ri = Eθγ

(i+2)(θs)si+2 (1− θ)i+1

(i + 1)!
,

for i = 1, 2. Invoking the inequality |γ(i+2)(θs)| ¿ pq (see (5.2)), we obtain

|ri| ¿ pq|s|i+2, i = 1, 2. (5.16)

To prove the first inequality of (5.13), we construct a bound for the right-hand
side of (5.15). Using (5.16) with i = 1, we bound |γ(s) − 1|. To bound |γj−1(s)|,
j = 2, . . . , r, we use (5.5). The second inequality of (5.13) is trivial.
To prove (5.14) we replace the right-hand side of (5.15) by kγ(3)(0)s3/6 and show

that the error of this replacement does not exceed kpqs4(1+kpq)δk−1. In the first
step, we replace (γ(s)− 1) by γ(3)(0)s3/6 in (5.15). The error of this replacement

|r2|
k∑

j=1

|γj−1(s)| ¿ kpqs4δk−1, (5.17)

by (5.5) and (5.16). In the second step, using (5.13), we replace γj−1(s) in the
right-hand side of (5.15) by 1, for j = 2, . . . , k. The error of the second replacement

| γ(3)(0)s3

6
|

k∑

j=2

|γj−1(s)− 1| ¿ | γ(3)(0)s3

6
|(k − 1) max

2≤j≤k
|γj−1(s)− 1|

¿ p2q2k2s6δk−1. (5.18)

The first inequality of (5.14) follows from (5.17) and (5.18). The second inequality
of (5.13) is trivial.
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