ONE- AND TWO-TERM EDGEWORTH EXPANSIONS FOR FINITE POPULATION SAMPLE MEAN. EXACT RESULTS. II

M. Bloznelis

Abstract. We prove the validity of one- and two-term Edgeworth expansions under optimal conditions (a Cramer-type smoothness condition and the minimal moment conditions) and provide precise bounds for the remainders of expansions. The bounds depend explicitly on the ratio $p = N/n$, where N respectively n denotes the sample size respectively the population size.

3. Proofs

Here we prove Theorem 2 formulated in Sec. 1 of the first part of the paper.

Proof of Theorem 2. Given $j \in \{1, 2\}$, we shall show that

$$
\Delta_{j,n} = o(\tau_n^{-j}) \qquad \text{as} \qquad \tau_n \to \infty. \tag{3.49}
$$

The bounds $\Delta_{j,n}^* = o(\tau_n^{-j})$ are derived from (3.49) using the same argument as that of the proof of Corollary 1.

Let us prove (3.49). We can assume without loss of generality that

$$
\text{Var}\,X_{1,n} = \mathbf{E}X_{1,n}^2 = \tau_n^{-2}.
$$

Then $\Delta_{j,n} = ||\mathbf{P}\{S_n \leq x\} - G_{j,n}(x)||$, where $S_n = X_{1,n} + \cdots + X_{N_n,n}$. Furthermore, we can assume that the sum S_n consists of no more than $n/2$ summands, i.e., that $p_n \leq q_n$. Indeed, for $p_n > q_n$, we have $S_n = \tilde{S}_n$, since $\mathbf{E} X_{1,n} = 0$. Here

$$
\tilde{S}_n = \tilde{X}_{1,n} + \dots + \tilde{X}_{\tilde{N}_n, n} \quad \text{with} \quad \tilde{X}_{k,n} = -X_{n-k+1,n} \quad \text{and} \quad \tilde{N}_n = n - N_n.
$$

In this way, we represent S_n by the sum \tilde{S}_n consisting of less than $n/2$ summands. It is easy to verify that one- and two-term Edgeworth expansions of $P\{\tilde{S}_n \leq x\}$ (written in terms of the moments of $\tilde{X}_{1,n}$ and with the parameter $\tilde{p}_n (= q_n)$) coincide with $G_{1,n}$ and $G_{2,n}$, respectively.

¹⁹⁹¹ Mathematics Subject Classification. Primary 62E20; secondary 60F05.

Key words and phrases. Edgeworth expansion, finite population, Cramer condition.

In order to prove (3.49), we shall show that, for every $\varepsilon > 0$,

$$
\limsup_{n} \tau_n^j \Delta_{j,n} < \varepsilon, \qquad j = 1, 2. \tag{3.50}
$$

We shall prove (3.50) for $j = 2$ only. The proof for $j = 1$ is almost the same. Assume that (1.7), (1.8), and (1.9) hold for $j = 2$. Since $p_n \le q_n$, we have $N_n \leq \tau_n^2 q_n^{-1} \leq 2\tau_n^2$.

In the first step, we replace S_n by S' defined by

$$
S' = X'_1 + \dots + X'_{N_n}, \qquad X'_k = X_{k,n} \mathbb{I} \{ X_{k,n}^2 \le 1 \}.
$$

Note that, by Chebyshev's inequality and (1.8),

$$
\mathbf{P}\{X_1 \neq X_1'\} \le \mathbf{P}\{X_{1,n}^2 > 1\} \le \tau_n^{-4} \beta_{4,n}^{\star}(1) = o(\tau_n^{-4}) \quad \text{as} \quad \tau_n \to \infty.
$$

Therefore,

$$
\mathbf{P}\{S \neq S'\} \leq \sum_{k=1}^{N_n} \mathbf{P}\{X_k \neq X'_k\} \leq N_n \mathbf{P}\{X_1 \neq X'_1\} = 2\tau_n^2 \mathbf{P}\{X_1 \neq X'_1\} = o(\tau_n^{-2}),
$$

and we obtain

$$
\|\mathbf{P}\{S \le x\} - \mathbf{P}\{S' \le x\}\| \le \mathbf{P}\{S \ne S'\} = o(\tau_n^{-2}).\tag{3.51}
$$

In the next step, we replace S' by $S'' = S' - \mathbf{E}S'$. Since $\mathbf{E}S' = N_n \mathbf{E}X'_1$ and, by $\mathbf{E} X_{1,n} = 0,$

$$
|\mathbf{E}X_1'| = |\mathbf{E}X_{1,n}\mathbb{I}\{X_{1,n}^2 > 1\}| \le \tau_n^{-4} \beta_{4,n}^*(1) = o(\tau_n^{-4}),\tag{3.52}
$$

we have $|\mathbf{E}S'| = o(\tau_n^{-2})$. Therefore,

$$
||P\{S' \le x\} - G_{2,n}(x)|| \le ||P\{S'' \le x\} - G_{2,n}(x)|| + |\mathbf{E}S'|\max_{x} |G_{2,n}^{(1)}(x)||
$$

=
$$
||P\{S'' \le x\} - G_{2,n}(x)|| + o(\tau_n^{-2}). \tag{3.53}
$$

In the last step, we used the relation

$$
\limsup_{n} \|G_{2,n}^{(1)}(x)\| \ll \limsup_{n} \beta_{4,n} < \infty,
$$

which follows from (3.10) and (1.7).

Now we replace S'' by S_Y defined by

$$
S_Y = Y_1 + \dots + Y_{N_n},
$$
 $Y_k = \sigma_*^{-1} \tau_n^{-1} (X'_k - \mathbf{E} X'_k),$ $\sigma_*^2 = \text{Var } X'_1.$

Clearly, $S'' = S_Y \sigma_* \tau_n$ and, thus,

$$
\mathbf{P}\{S'' \le x\} = \mathbf{P}\{S_Y \le x + \varkappa x\}, \qquad \varkappa = \sigma_*^{-1}\tau_n^{-1} - 1.
$$

Therefore, we can write

$$
\|\mathbf{P}\{S'' \le x\} - G_{2,n}(x)\| \le I_1 + I_2 + I_3, \quad I_1 = \|G_Y(x) - G_{2,n}(x)\|, \tag{3.54}
$$

\n
$$
I_2 = \|\mathbf{P}\{S_Y \le x\} - G_Y(x)\|, \quad I_3 = \|G_{2,n}(x + \varkappa x) - G_{2,n}(x)\|.
$$

Here G_Y is defined in the same way as G_2 but with α_i replaced by $\alpha'_i = \tau_n^i \mathbf{E} Y_1^i$. In the remaining part of the proof, we show that

$$
I_1 = o(\tau_n^{-2}), \qquad I_3 = o(\tau_n^{-2}), \qquad (3.55)
$$

and that there exists $c > 0$ such that, for every $0 < \varepsilon < 1$, we have

$$
\limsup_{n} I_2 \tau_n^2 \le c\varepsilon. \tag{3.56}
$$

Note that (3.55) , (3.56) , and (3.54) , in combination with (3.51) and (3.53) , yield (3.50) for $j = 2$. Therefore, it remains to prove (3.55) and (3.56) .

Write $\beta_j' = \tau_n^j \mathbf{E} |Y_1|^j$, $j = 1, 2, \ldots$ In the first step of the proof of (3.55) and (3.56), we show that

$$
\alpha_j' = \alpha_{j,n} + o(\tau_n^{j-4}), \qquad j = 3, 4,
$$
\n(3.57)

$$
\beta_j' \le 2^{j-1}\beta_{j,n} + o(\tau_n^{-2}), \qquad j = 3, 4,
$$
\n(3.58)

$$
\beta_5' \le 2^4 \varepsilon \tau_n \beta_{4,n} + 2^4 \tau_n \beta_{4,n}^{\star}(\varepsilon) + o(\tau_n^{-1}), \qquad \forall \quad 0 < \varepsilon < 1. \tag{3.59}
$$

Note that (1.8) implies

$$
\sigma_*^2 = \tau_n^{-2} + o(\tau_n^{-4}), \qquad \sigma_*^{-j} - \tau_n^j = o(\tau_n^{j-2}), \qquad j = 1, 2, \dots
$$
 (3.60)

To prove the first relation of (3.60), note that, by (3.52),

$$
\tau_n^{-2} = \mathbf{E} X_{1,n}^2 \ge \sigma_*^2 = \mathbf{E} (X_1')^2 - (\mathbf{E} X_1')^2 = \mathbf{E} (X_1')^2 + o(\tau_n^{-8}),
$$

and, by Chebyshev's inequality and (1.8),

$$
\mathbf{E}(X_1')^2 = \mathbf{E}X_{1,n}^2 - \mathbf{E}X_{1,n}^2 \mathbb{I}\{X_{1,n}^2 > 1\} \ge \mathbf{E}X_{1,n}^2 - \tau_n^{-4} \beta_{4,n}^*(1) = \tau_n^{-2} + o(\tau_n^{-4}).
$$

The second relation of (3.60) follows from the first one.

In order to prove (3.57), we write $\alpha'_{j} = \alpha_{j,n} + R_1 + R_2 + R_3$, where

$$
R_1 = \tau_n^j \mathbf{E} Y_1^j - \sigma_*^{-j} \mathbf{E} (X_1')^j, \quad R_2 = (\sigma_*^{-j} - \tau_n^j) \mathbf{E} (X_1')^j, \quad R_3 = \tau_n^j \mathbf{E} ((X_1')^j - X_{1,n}^j),
$$

and show that

$$
R_1 = o(\tau_n^{-3}), \qquad R_2 = o(\tau_n^{-2}), \qquad R_3 = o(\tau_n^{j-4}).
$$
 (3.61)

Note that the relation (which follows from (1.7))

$$
|\mathbf{E}(X_1')^j| \le \mathbf{E}|X_1'|^j \le \mathbf{E}|X_{1,n}|^j = \tau_n^{-j}\beta_{j,n} = O(\tau_n^{-j}), \qquad j = 1, 2, 3, 4, \quad (3.62)
$$

in combination with (3.60), yields $R_2 = o(\tau_n^{-2})$.

The bound $R_3 = o(\tau_n^{j-4})$ follows from (1.8) by Chebyshev's inequality:

$$
|R_3| = \tau_n^j |\mathbf{E} X_{1,n}^j \mathbb{I}\{X_{1,n}^2 > 1\}| \leq \tau_n^{j-4} \beta_{4,n}^*(1) = o(\tau_n^{j-4}).
$$

To prove $R_1 = o(\tau_n^{-3})$, write $R_1 = \sigma_*^{-j} \mathbf{E} V$, where

$$
V = (X'_1 - \mathbf{E}X'_1)^j - (X'_1)^j = (-\mathbf{E}X'_1) j (X'_1 - \theta^* \mathbf{E}X'_1)^{j-1}
$$

for some $0 \leq \theta^* \leq 1$, by the mean value theorem. Furthermore, invoking the inequality

$$
(a+b)^k \le 2^{k-1}(a^k + b^k), \qquad a, b > 0, \quad k = 1, 2, \dots,
$$
 (3.63)

and using (3.52) and (3.62) , we obtain

$$
\mathbf{E}|V| \ll |\mathbf{E}X_1'|(\mathbf{E}|X_1'|^{j-1} + |\mathbf{E}X_1'|^{j-1}) = o(\tau_n^{-4})\big(O(\tau_n^{1-j}) + o(\tau_n^{4(j-1)})\big) = o(\tau_n^{-3-j}).
$$

This relation together with (3.60) implies

$$
R_1 = \sigma_*^{-j} \mathbf{E} V = (\tau_n^j + o(\tau_n^{j-2})) \mathbf{E} V = o(\tau_n^{-3}),
$$

thus completing the proof of (3.61). We arrive at (3.57). Let us prove (3.58) . Note that (3.60) implies

$$
\sigma_*^{-1} \tau_n^{-1} = 1 + o(\tau_n^{-2}).\tag{3.64}
$$

Combining (3.63) with (3.64) , (3.62) , and (3.52) , we obtain, for $j = 3, 4, 5$,

$$
\mathbf{E}|Y_1|^j \le 2^{j-1} \sigma_*^{-j} \tau_n^{-j} \left(\mathbf{E}|X_1'|^j + |\mathbf{E}X_1'|^j \right) \le 2^{j-1} \tau_n^{-j} \beta_{j,n} + o(\tau_n^{-j-2}).\tag{3.65}
$$

Since $\beta'_{j} = \tau_{n}^{j} \mathbf{E} |Y_{1}|^{j}$, from (3.65) we obtain (3.58).

In order to prove (3.59), we combine the first inequality of (3.65) with (3.64) and (3.52) and obtain

$$
\beta'_5 = \tau_n^5 \mathbf{E} |Y_1|^5 \le 2^4 (1 + o(\tau_n^{-2})) \tau_n^5 \mathbf{E} |X'_1|^5 + o(\tau_n^{-15}).
$$

Finally, invoking the inequality (which holds for an arbitrary $0 < \varepsilon < 1$)

$$
\mathbf{E}|X'_1|^5 = \mathbf{E}|X_{1,n}|^5 \mathbb{I}\{X_{1,n}^2 \le 1\} \le \varepsilon \mathbf{E} X_{1,n}^4 + \mathbf{E} X_{1,n}^4 \mathbb{I}\{X_{1,n}^2 > \varepsilon\} \le \varepsilon \tau_n^{-4} \beta_{4,n} + \tau_n^{-4} \beta_{4,n}^{\star}(\varepsilon),
$$

we obtain

$$
\beta_5' \le 2^4 \tau_n (1 + o(\tau_n^{-2})) \big(\varepsilon \beta_{4,n} + \beta_{4,n}^{\star}(\varepsilon)\big) + o(\tau_n^{-15}).
$$

This inequality together with (1.7) implies (3.59).

Now we are going to prove (3.55). The bound $I_1 = o(\tau_n^{-2})$ is an immediate consequence of (3.57). To prove the second bound of (3.55), note that, by the mean value theorem and the exponential decay of $G_{2,n}^{(1)}(x)$ as $|x| \to +\infty$, we have, for $|\varkappa| \leq 1$,

$$
I_3 \ll |\varkappa| \max_x |G_{2,n}^{(1)}(x)| (1+|x|). \tag{3.67}
$$

It is easy to show (see (3.10)) that $||G_{2,n}^{(1)}(x)||(1+|x|)|| \ll \beta_{4,n}$. This inequality, in combination with (3.67) and (3.64), yields $I_3 \ll o(\tau_n^{-2})\beta_{4,n} = o(\tau_n^{-2})$ by (1.7). In order to prove (3.56), we fix $\varepsilon \in (0,1)$ and apply (3.5) with $T = T_n = \tau_n^2 \varepsilon^{-1}$ and $H = H_n = b_1 \tau_n / \beta'_3$. Therefore, it suffices to show that

$$
\limsup_{n} \tau_n^2 T_n^{-1} \|G_Y^{(1)}(x)\| \le c \,\varepsilon \tag{3.68}
$$

$$
\limsup_{n} \tau_n^2 I_{[0, H_n]}(\hat{F}_Y - \hat{G}_Y) \le c \,\varepsilon,\tag{3.69}
$$

$$
I_{[H_n, T_n]}(\hat{G}_Y) = o(\tau_n^{-2}),\tag{3.70}
$$

$$
I_{[H_n, T_n]}(\hat{F}_Y) = o(\tau_n^{-2}).\tag{3.71}
$$

Here \hat{G}_Y and \hat{F}_Y denote the Fourier-Stieltjes transforms of $G_Y(x)$ and $F_Y(x) = \mathbf{P}\{S_Y \leq x\}$, respectively.

Let us prove $(3.68) - (3.71)$. Note that (3.69) is a consequence of (3.8) combined with (3.59) and (1.7), (1.8).

The relation (3.68) follows from the inequalities

$$
\limsup_{n} \|G_Y^{(1)}(x)\| \ll \limsup_{n} \beta'_4 \ll \limsup_{n} \beta_{4,n} < \infty,
$$

using (3.10) , (3.58) , and (1.7) .

Let us prove (3.70) . It follows from (3.11) and (3.12) that

$$
I_{[H_n,T_n]}(\hat{G}_Y) \ll H_n^{-3} \left(1 + (\beta_3')^2 + \beta_4'\right) = O(\tau_n^{-3}).
$$

In the last step, we used the inequality $\limsup_n \beta'_j < \infty$ for $j = 3, 4$, which follows from (3.58) and (1.7) .

To prove (3.71) we proceed as in proof of (3.9) and obtain

$$
I_{[H_n, T_n]}(\hat{F}_Y) \le \tau_n \ln T_n \exp\{-\tau_n^2 \rho_n'\},
$$

\n
$$
\rho_n' = 1 - \sup\{|\mathbf{E} \exp\{it\tau_n Y_1\}| : b_1/\beta_3' \le |t| \le \tau_n \varepsilon^{-1}\}
$$
\n(3.72)

Note that (3.72) and

$$
\liminf_{n} \rho'_n > 0 \tag{3.73}
$$

imply (3.71). It remains to show (3.73). For this purpose, we replace Y_1 by $X_{1,n}$ and then apply (1.9) . Note that, for every t,

$$
|\mathbf{E} \exp\{it\tau_n Y_1\}| = |\mathbf{E} \exp\{it\sigma_*^{-1} X_1'\}| \le |\mathbf{E} \exp\{it\tau_n X_{1,n}\}| + R_n(t),
$$

$$
R_n(t) = \left| \mathbf{E} \left(\exp\{it\sigma_*^{-1} X_1'\} - \exp\{it\tau_n X_{1,n}\}\right) \right| \le |t| \mathbf{E} |\sigma_*^{-1} X_1' - \tau_n X_{1,n}|.
$$

Therefore, with ρ''_n defined in the same way as ρ'_n , but with Y_1 replaced by $X_{1,n}$ in the exponent, we have

$$
\liminf_{n} \rho_n' \ge \liminf_{n} \rho_n'' - \limsup_{n} R_n, \quad R_n = \sup_{|t| \le \tau_n/\varepsilon} |R_n(t)|. \tag{3.74}
$$

We claim that (1.9) implies

$$
\liminf_{n} \rho_n'' > 0. \tag{3.75}
$$

Indeed, (3.75) follows from (1.9) and the fact that $b_1 \ge \liminf_n b_1/\beta'_3 > 0$, where the last inequality is a consequence of $\limsup_n \beta'_3 \ll \limsup_n \beta_{3,n} < \infty$ by (3.58) and (1.7).

Finally, we shall show that

$$
\limsup_{n} R_n = 0. \tag{3.76}
$$

Clearly, (3.76) together with (3.75) yield (3.73) via (3.74) . In order to prove (3.76) , we write

$$
\mathbf{E}|\sigma_*^{-1}X_1'-\tau_nX_{1,n}| \leq \sigma_*^{-1}\mathbf{E}|X_1'-X_{1,n}| + |\sigma_*^{-1}-\tau_n|\mathbf{E}|X_{1,n}|. \tag{3.77}
$$

To estimate the first summand, we apply Chebyshev's inequality and use (3.60) and (1.8) to get

$$
\sigma_*^{-1} \mathbf{E} |X_1' - X_{1,n}| = \sigma_*^{-1} \mathbf{E} |X_{1,n}| \mathbb{I} \{ X_{1,n}^2 > 1 \} \le \sigma_*^{-1} \tau_n^{-4} \beta_{4,n}^{\star}(1) = o(\tau_n^{-3}). \tag{3.78}
$$

Furthermore, by (3.60) and (1.7) , we have

$$
|\sigma_*^{-1} - \tau_n| \mathbf{E}|X_{1,n}| = |\sigma_*^{-1} - \tau_n|\tau_n^{-1}\beta_{1,n} = o(\tau_n^{-2}).
$$
\n(3.79)

Collecting (3.78) and (3.79) in (3.77), we obtain $|R_n(t)| \leq |t| \rho(\tau_n^{-2})$, thus, proving (3.76). The proof of Theorem 2 is complete.

4. Appendix I

Introduce the function $\Theta(x) = \left(\frac{2}{x}\right)^2$ π $\pi - x$ $\pi + x$ $\sqrt{2}$ and write

$$
c_2 = 2\frac{b_1}{b} + c_1, \qquad c_1 = \frac{3}{2}(1 - \Theta(b)) + \frac{2b_1}{b}\Theta(b), \qquad b = 0.075. \tag{4.1}
$$

Note that the constants $b_1 < b$ (see also (1.2)) are chosen so that $c_1 < 1$ and $c_2 < 1$.

Given a number $L > 0$ and a function $f(s, t)$, we write $f \prec L$ if

$$
\tau \int_{|t| \le H} \frac{dt}{|t|} \int_{|s| \le \pi} |f(s,t)| e^{-\zeta_0/2} ds \ll L.
$$

Recall that $\zeta_0 = \tau^2 s^2 + t^2$.

Proof of (3.19) . In order to prove (3.19) , we shall show that

$$
R_i \prec \mathcal{R}, \qquad i = 1, 2, 3, \qquad \mathcal{R} = \beta_5 \tau^{-3}.
$$
 (4.2)

Let us prove (4.2) for $i = 1$. By the inequality (5.2) below, we have

$$
|\hat{v}_{3,j}^*| \ll pq(1+|t|^5) \exp\{\frac{b_1}{b}t^2\}|tx_j|\xi_j^4.
$$

This bound, in combination with the inequality (5.4) below, gives

$$
|R_1| \ll pq(1+|t|^5) \exp\{\frac{c_2}{2}\zeta_0\} \sum_{j=1}^n |tx_j|\xi_j^4.
$$
 (4.3)

The inequalities $\xi_j^4 \ll s^4 + t^4 x_j^4$ and $s^4 |x_j| \ll |s|^5 + |x_j|^5$ imply

$$
\sum_{j=1}^{n} |tx_j|\xi_j^4 \ll |t| \sum_{j=1}^{n} (|s|^5 + (1+t^4)|x_j|^5) = |t|n(|s|^5 + (1+t^4)\kappa_5).
$$

Combining this bound with (4.3), we obtain

$$
|R_1| \ll \tau^2 |t|(1+|t|^5) (|s|^5 + (1+t^4)\kappa_5) \exp{\frac{c_2}{2}\zeta_0}.
$$

This inequality, in combination with $c_2 < 1$, implies $R_1 \prec \tau^{-3} + \tau^2 \kappa_5 \ll \mathcal{R}$. Let us prove (4.2) for $i = 3$. Since $|\gamma^{(3)}(0)| \leq pq$ by Lemma 5.1, we have $|\hat{v}_{1,j}| \leq$ $pq|tx_j|\xi_j^2$. Furthermore, by (5.2) we have

$$
|\hat{v}_{1,j}^*| \le pq |tx_j| \xi_j^2 (1+|t|^3) \exp\{\frac{b_1}{b} t^2\}.
$$

From these inequalities, (5.4), and the simple inequality $|x_j|\xi_j^2 \ll w_j := |x_j|(s^2 +$ $t^2x_j^2$, it follows that

$$
|R_3| \le p^3 q^3 |t|^3 (1+|t|^3) \exp\left\{\frac{c_2}{2}\zeta_0\right\} \sum_{j=3}^n \sum_{k=2}^{j-1} \sum_{r=1}^{k-1} w_j w_k w_r. \tag{4.4}
$$

Note that the (triple) sum equals the expectation

$$
\binom{n}{3}
$$
 E*W*₁*W*₂*W*₃, where $W_i = |X_i|(s^2 + t^2 X_i^2)$, $i = 1, 2, 3$.

To bound this expectation, note that

$$
\mathbf{E}(W_3|X_1X_2) \le \frac{n}{n-2} \mathbf{E}W_3, \qquad \mathbf{E}(W_2|X_1) \le \frac{n}{n-1} \mathbf{E}W_2.
$$
 (4.5)

Furthermore, by the inequality $|ad^2| \ll |a|^3 + |d|^3$, we have

$$
\mathbf{E}W_1 \ll \mathbf{E}(|s|^3 + |X_1|^3 + t^2 |X_1|^3) = |s|^3 + (1 + t^2)\kappa_3.
$$
 (4.6)

From (4.5) and (4.6) it follows that

$$
\binom{n}{3} \mathbf{E} W_1 W_2 W_3 \ll n^3 (\mathbf{E} W_1)^3 \ll n^3 (|s|^3 + (1+t^2)\kappa_3)^3 \ll n^3 (|s|^9 + (1+t^2)^3 \kappa_3^3).
$$

Combining these inequalities with (4.4), we obtain

$$
|R_3| \le \tau^6 |t|^3 (1+|t|^3) \exp\left\{\frac{c_2}{2}\zeta_0\right\} \left(|s|^9 + (1+t^2)^3 \kappa_3^3\right).
$$

Now a simple calculation shows that $R_3 \prec \tau^{-3} + \tau^6 \kappa_3^3 \ll \mathcal{R}$. In the last step, we estimated $\kappa_3^3 \leq \beta_5 \tau^{-9}$ using (3.2).

The proof of (4.2) for $i = 2$ is much the same.

Proof of (3.34) . In order to prove (3.34) , we shall show that

$$
\gamma^{n-1}(s)R_2^{\star} \prec \mathcal{R}, \qquad \gamma^{n-2}(s)R_3^{\star} \prec \mathcal{R}, \qquad \mathcal{R} = \beta_5 \tau^{-3}.
$$
 (4.7)

Let us prove the first inequality of (4.7) . By the inequality (5.13) below, we have

$$
\gamma^{n-1}(s)R_2^{\star} = R_2^{\star} + r \quad \text{with} \quad |r| \ll |R_2^{\star}|r_1^{\star}.
$$

Invoking the inequality $|\gamma^{(4)}(0)| \ll pq$ of Lemma 5.1, we obtain

$$
|r| \ll \tau^4 s^4 |t|^3 \kappa_3 \exp\{\frac{c_1}{2} \zeta_0\}.
$$

Now a straightforward calculation gives $|r| \prec \kappa_3 \ll \mathcal{R}$. The proof of $R_2^* \prec \mathcal{R}$ is much the same as that of $S_{1,1}^{\star} \sim 0$ in (3.41) above. We obtain (4.7) for $k = 2$. In order to prove the second inequality of (4.7), we show that

$$
n^2 \delta R_{3,j}^{\star} \gamma^{n-2}(s) \prec \mathcal{R}, \qquad j = 1, 2, 3, \qquad \text{where} \quad \delta := \left(\frac{\gamma^{(3)}(0)}{2}\right)^2 \frac{\frac{n}{2}}{n^2}, \quad (4.8)
$$

satisfies $\delta \ll p^2q^2$. To prove (4.8) for $j = 1$, we apply (5.13) and obtain

$$
n^2 \delta R_{3,1}^{\star} \gamma^{n-2}(s) = n^2 \delta R_{3,1}^{\star} + r \quad \text{with} \quad |r| \ll n^2 \delta |R_{3,1}^{\star}| r_1^{\star}.
$$

A simple calculation gives

$$
|r| \ll \tau^6 s^4 |t|^5 |\mathbf{E} X_1^3 X_2^2| \exp\{\frac{c_1}{2} \zeta_0\} \prec \tau^2 |\mathbf{E} X_1^3 X_2^2| \ll \mathcal{R}.
$$

In the last step, we estimated $|\mathbf{E} X_1^3 X_2^2| \ll \kappa_5$ using Hölder's inequality.

To show $n^2 \delta R_{3,1}^* \prec \mathcal{R}$, we proceed as in the proof of $S_{1,1}^* \sim 0$ in (3.41) above. The proof of (4.8) for $j = 1$ is complete.

Let us prove (4.8) for $j = 2, 3$. By Lemma 5.6, we have

$$
R_{3,2}^{\star} = -s^4 t^2 \frac{\varkappa_2}{n-1} - 2s^3 t^3 \frac{\varkappa_3}{n-1} - \frac{2}{3} s^2 t^4 \frac{\varkappa_4}{n-1}.
$$
 (4.9)

By (3.1), $\varkappa^6 \leq (pq)^{-1/2}\kappa_5$ and, therefore,

$$
|R_{3,3}^{\star}| \ll s^2 t^4 \frac{\kappa_4}{n-1} + \frac{t^6}{9} \frac{\kappa_5}{n^{1/2}\tau}.
$$
 (4.10)

Finally, we estimate $n^2 \delta \gamma^{n-2}(s) \ll \tau^4 \exp\{c_1 \zeta_0/2\}$ using (5.5), and apply (4.9) and (4.10) to obtain (4.8) for $j = 2, 3$.

Proof of (3.38). By (5.13) and (5.5) we have, for $j = 1, 2$,

$$
|\gamma^{n-j}(s) - \gamma^{n}(s)| = |\gamma^{n-j}(s)||1 - \gamma^{j}(s)| \ll pq|s|^{3} \exp{\frac{c_1}{2}\zeta_0}.
$$

This implies

$$
|\gamma^{n-1}(s) - \gamma^{n}(s)||S_{j}^{\star}| \ll pq|s|^{3} \exp\{\frac{c_{1}}{2}\zeta_{0}\}|S_{j}^{\star}|, \qquad j = 1, 2,
$$

$$
|\gamma^{n-2}(s) - \gamma^{n}(s)||S_{3}^{\star}| \ll pq|s|^{3} \exp\{\frac{c_{1}}{2}\zeta_{0}\}|S_{3}^{\star}|.
$$

A simple calculation shows that the right hand sides are $\prec \mathcal{R}$. We obtain (3.38). *Proof of* (3.40) *and* (3.42) . By (5.14) we have

$$
\gamma^{n}(s)S_{1,1}^{\star} = S_{1,1}^{\star} + S_{1,1}^{\star} + r, \qquad |r| \ll |S_{1,1}^{\star}|r_{2}^{\star}.
$$
 (4.11)

Furthermore, by (5.13) we have

$$
|S_{j,1}^* - \gamma^n(s)S_{j,1}^*| \ll r_1^*|S_{j,1}^*|, \qquad j = 2,3. \tag{4.12}
$$

$$
|g_{j,1} - \gamma^n(s)g_{j,1}| \ll r_1^* |g_{j,1}|, \qquad j = 1, 2, 3.
$$
 (4.13)

A simple calculation shows that

$$
|S_{1,1}^{\star}|r_2^{\star} \prec \mathcal{R}, \qquad |S_{j,1}^{\star}|r_1^{\star} \prec \mathcal{R}, \qquad |g_{k,1}|r_1^{\star} \prec \mathcal{R}, \qquad j = 1,2, \quad k = 1,2,3.
$$

These bounds, in combination with (4.11) , (4.12) , and (4.13) , yield (3.40) and (3.42).

5. Appendix II

Recall that

$$
b_1 = 0.001,
$$
 $b = 0.075,$ $\Theta(x) = \left(\frac{2}{\pi} \frac{\pi - x}{\pi + x}\right)^2,$ $\zeta_0 = \tau^2 s^2 + t^2,$
 $\beta(x) = p \exp\{iqx\} + q \exp\{-ipx\},$ $\gamma(x) = \beta(x) \exp\{\frac{pq}{2} x^2\}.$

Denote

$$
\mathcal{K} = \{x_k : |Hx_k| > b\}, \qquad H = b_1 \tau \beta_3^{-1}.
$$

Below we use the following inequality proved in Höglund [10]. For all $z_0 \in [0, \pi)$ and z satisfying $|z| \leq \pi + z_0$, we have

$$
|\beta(z)|^2 \le 1 - pq(z)^2 \Theta(z_0). \tag{5.1}
$$

10

Lemma 5.1. The function γ satisfies

$$
\gamma(0) = 1, \quad \gamma'(0) = \gamma''(0) = 0, \quad \gamma^{(3)}(0) = i^3pq(q-p), \quad \gamma^{(4)}(0) = pq(1-6pq),
$$

$$
|\gamma^{(k)}(u)| \ll \alpha(u^2)(pq+|u|^k p^k q^k), \qquad k = 3, 4, 5.
$$

Proof of Lemma 5.1. The proof is elementary.

Lemma 5.2. Assume that $|t| \leq H$. For all $0 \leq \theta_1^*, \theta_2^* \leq 1$ and $j \in \Omega_n$, we have

$$
|\gamma^{(k)}(\theta_1^*(s+\theta_2^*tx_j))| \ll \exp\{\frac{b_1}{b}t^2\}(pq+|t|^k(pq)^{k/2}), \qquad k=3,4,5. \tag{5.2}
$$

Proof of Lemma 5.2. We prove the lemma only in the case where $k = 5$. Write, for short,

$$
\xi := \theta_1^*(s + \theta_2^* tx_k), \qquad \alpha(x) := \exp\{pqx/2\}
$$

and note that $\gamma(x) = \beta(x)\alpha(x^2)$. By the inequality $|a+b|^i \leq 2^{i-1}(|a|^i + |b|^i)$, we have

$$
|\xi|^i \ll 2^{i-1} (|s|^i + |t|^i |x_k|^5),
$$

Since $|s| \leq \pi$ and, by (3.1), $|x_k| \leq (pq)^{-1/2}$, we obtain

$$
|\xi|^5 \ll 1 + |t|^5 (pq)^{-5/2}, \qquad |\xi|^2 \leq 2\pi^2 + 2t^2 x_k^2.
$$

The second inequality implies $\alpha(\xi^2) \ll \alpha(2t^2 x_k^2)$. Therefore, by Lemma 5.1, we have ¡

 $|\gamma^{(5)}(\xi)| \ll \alpha(2t^2x_k^2)$ $pq + |t|^5 (pq)^{5/2}$.

It remains to show that

$$
\alpha(2t^2x_k^2) \ll \exp\{t^2b_1/b\}.\tag{5.3}
$$

For $x_k \notin \mathcal{K}$, we have $|tx_k| \leq b$. Therefore, $\alpha(2t^2x_k^2) \ll 1$, and (5.3) is satisfied. For $x_k \notin \mathcal{K}$, we have $x_k^2 \leq b_1 (pqb)^{-1}$ by Lemma 5.4. Therefore, $\alpha(2t^2x_k^2) \leq$ $\exp\{t^2b_1/b\}$. We obtain (5.3), thus, proving the lemma.

Lemma 5.3. Assume that $|t| \leq H$. For every $i = 1, 2, 3$ and $j \in \Omega_n$, we have

$$
|\Psi_{i,j}| \le \exp\{\frac{c_1}{2}\zeta_0\}, \quad \text{where} \quad \Psi_{i,j} = \gamma^{n-j-i+1}(s) \prod_{k=1}^{j-1} \gamma(s + tx_k), \tag{5.4}
$$

$$
\gamma^j(s) \le \exp\{\frac{jpq}{2}(1 - \Theta(b))s^2\} \le \exp\{\frac{c_1}{2}\zeta_0\}, \tag{5.5}
$$

where c_1 is given in (4.1).

Proof of Lemma 5.3. Write

$$
\mathbb{I}_k = \mathbb{I}\{x_k \in \mathcal{K}\}, \qquad \mathbb{I}_k^c = \mathbb{I}\{x_k \notin \mathcal{K}\}.
$$

Recall that the subset $\mathcal{K} \subset \mathcal{X}$ is introduced in the beginning of Appendix II. Let us show that

$$
\prod_{k=1}^{j-1} \gamma(s + tx_k) \le \exp\left\{\frac{pq}{2} \left(Z_1(1 - \Theta(b)) + Z_2\Theta(b)\right)\right\},\tag{5.6}
$$
\n
$$
Z_1 = \sum_{k=1}^{j-1} (s + tx_k)^2, \quad Z_2 = \sum_{k=1}^{j-1} (s + tx_k)^2 \mathbb{I}_k.
$$

Clearly, $|s + tx_k| \leq \pi + H|x_k| \leq \pi + b$ for $x_k \notin \mathcal{K}$. An application of (5.1) gives

$$
|\beta(s+tx_k)|^2 \le 1 - pq(s+tx_k)^2 \Theta(b) \le \exp\{-pq(s+tx_k)^2 \Theta(b)\}, \qquad x_k \notin \mathcal{K}.
$$
 (5.7)

Therefore, for arbitrary $k \in \Omega_n$, we can write

$$
|\beta(s+tx_k)| \le \exp\{-\frac{pq}{2} (s+tx_k)^2 \Theta(b) \mathbb{I}_k^c\}.
$$

This inequality implies (5.6).

Using (5.1) we construct a bound for $\gamma^{n-j}(s)$ as well. As in (5.7), we can write

$$
|\beta(s)| \le \exp\{-2^{-1}pqs^2\Theta(b)\}.
$$

This inequality implies (5.5) . It follows from (5.6) and (5.5) that

$$
|\Psi_{1,j}| \le \exp{\frac{pq}{2}Z}
$$
, $Z = (s^2(n-j) + Z_1)(1 - \Theta(b)) + Z_2\Theta(b)$,

Clearly, this bound extends to $\Psi_{i,j}$ with $i = 2, 3$ as well. In order to prove (5.4), it remains to show that

$$
Z \le c_1 (ns^2 + (pq)^{-1} t^2). \tag{5.8}
$$

Höglund [10] showed that $\mathbf{E}X_1 = 0$ and $\mathbf{E}X_1^2 = \tau^{-2}$ imply

$$
2\left|\sum_{k=1}^{j}x_{k}\right| \leq \left(\frac{n}{pq}\right)^{1/2}, \quad j \in \Omega_{n}.
$$

This inequality, combined with (3.1), gives

$$
(n-j)s^{2}+Z_{1}=(n-1)s^{2}+2st\sum_{k=1}^{j-1}x_{k}+t^{2}\sum_{k=1}^{j-1}x_{k}^{2} \leq (n-1)s^{2}+|st|\left(\frac{n}{pq}\right)^{1/2}+\frac{t^{2}}{pq}.
$$

Finally, invoking the inequality $|ab| \leq (a^2 + b^2)/2$, we obtain

$$
(n-j)s2 + Z1 \le \frac{3}{2} \left(ns2 + \frac{t2}{pq} \right)
$$
 (5.9)

To estimate Z_2 , we invoke the bounds

$$
|\mathcal{K}| \le n \frac{b_1}{b} \quad \text{and} \quad \sum_{x_k \in \mathcal{K}} x_k^2 \le \frac{b_1}{pqb} \tag{5.10}
$$

that follow from Lemma 5.4. The inequality $(a + b)^2 \leq 2a^2 + 2b^2$, combined with (5.10), gives

$$
Z_2 \le 2s^2 |\mathcal{K}| + 2t^2 \sum_{x_k \in \mathcal{K}} x_k^2 \le 2 \frac{b_1}{b} \left(n s^2 + \frac{t^2}{pq} \right).
$$

This bound, in combination with (5.9), yields (5.8), thus, completing the proof.

Lemma 5.4. For subset $\mathcal{K} \subset \mathcal{X}$, we have

$$
|\mathcal{K}| \le n \frac{b_1^r}{b^r} \frac{\beta_r}{\beta_3^r}, \qquad \sum_{x_j \in \mathcal{K}} x_j^2 \le \frac{b_1}{b} \frac{1}{pq}.
$$
 (5.11)

In particular, every $x_k \in \mathcal{K}$ satisfies $x_k^2 \leq b_1 (pqb)^{-1}$. Recall that the subset $\mathcal{K} \subset \mathcal{X}$ is introduced in the beginning of Appendix II.

Proof of Lemma 5.4. To prove the first inequality, we write

$$
|\mathcal{K}| \leq \sum_{x_j \in \mathcal{K}} \left(\frac{H|x_j|}{b} \right)^r \leq \frac{H^r}{b^r} n \mathbf{E} |X_1|^r = n \frac{b_1^r}{b^r} \frac{\beta_r}{\beta_3^r}.
$$

To prove the second inequality, we apply Hölder's inequality:

$$
\sum_{x_j \in \mathcal{K}} x_j^2 \le \left(\sum_{x_j \in \mathcal{K}} |x_j|^3\right)^{2/3} |\mathcal{K}|^{1/3} \le \left(n\mathbf{E}|X_1|^3\right)^{2/3} |\mathcal{K}|^{1/3}.
$$

Furthermore, writing $nE|X_1|^3 = n\beta_3 \tau^{-3}$ and substituting the bound (5.11) for |K| with $r = 3$, we see that the right-hand side is bounded by $b_1(pqb)^{-1}$.

Lemma 5.5. Let $Z \ge 0$ be a random variable satisfying $EZ^2 = 1$. Then

$$
(\mathbf{E}Z^3)^2 \le \mathbf{E}Z^4, \qquad (\mathbf{E}Z^3)^3 \le \mathbf{E}Z^5, \qquad \mathbf{E}Z^4 \mathbf{E}Z^3 \le \mathbf{E}Z^5. \tag{5.12}
$$

Proof of Lemma 5.5. The first inequality follows from the Cauchy–Schwartz inequality:

$$
\mathbf{E}Z^3 = \mathbf{E}Z Z^2 \leq (\mathbf{E}Z^2)^{1/2} (\mathbf{E}Z^4)^{1/2}.
$$

This implies $(\mathbf{E}Z^3)^3 \leq \mathbf{E}Z^4\mathbf{E}Z^3$. It remains to prove the last inequality of (5.12). By Hölder's inequality, we have

$$
\mathbf{E}Z^4 = \mathbf{E}Z^{2/3}Z^{10/3} \leq (\mathbf{E}Z^2)^{1/3}(\mathbf{E}Z^5)^{2/3} = (\mathbf{E}Z^5)^{2/3},
$$

$$
\mathbf{E}Z^3 = \mathbf{E}Z^{4/3}Z^{5/3} \leq (\mathbf{E}Z^2)^{2/3}(\mathbf{E}Z^5)^{1/3}.
$$

Clearly, these inequalities yield (5.12).

Lemma 5.6. Let k and l be positive integers. We have

$$
\mathbf{E} X_1^k X_2^l = \frac{n}{n-1} \varkappa_k \varkappa_l - \frac{1}{n-1} \varkappa_{k+l}.
$$

Proof of Lemma 5.6. The lemma follows from the identities

$$
\mathbf{E} X_1^k X_2^l = \mathbf{E} X_1^k \mathbf{E} (X_2^l | X_1), \qquad \mathbf{E} (X_2^l | X_1) = \frac{n}{n-1} \varkappa_l - \frac{1}{n-1} X_1^l.
$$

Lemma 5.7. For all $k \in \Omega_n$ and $|s| \leq \pi$, we have

$$
|\gamma^{k}(s) - 1| \ll kpq|s|^{3}\delta_{k-1} \ll r_{1}^{*}, \qquad r_{1}^{*} = \tau^{2}|s|^{3}\exp\{\frac{c_{1}}{2}\zeta_{0}\}, \qquad (5.13)
$$

$$
\left|\gamma^{k}(s) - 1 - k\frac{\gamma^{(3)}(0)}{6}s^{3}\right| \ll kpqs^{4}(1 + kpqs^{2})\delta_{k-1} \ll r_{2}^{*} \qquad (5.14)
$$

$$
\delta_{k} = \exp\{\frac{kpq}{2}s^{2}(1 - \Theta(b))\}, \qquad r_{2}^{*} = \tau^{2}s^{4}(1 + \tau^{2}s^{2})\exp\{-\frac{c_{1}}{2}\zeta_{0}\}.
$$

where c_1 is given in (4.1).

Proof of Lemma 5.7. By (3.20), we have

$$
\gamma^{k}(s) - 1 = (\gamma(s) - 1) \sum_{j=1}^{k} \gamma^{j-1}(s).
$$
 (5.15)

Expanding $\gamma(s)$ in powers of s and using the fact that $\gamma(0) = 1$ and $\gamma'(0) =$ $\gamma''(0) = 0$ (see Lemma 5.1), we get

$$
\gamma(s) - 1 = r_1 \qquad \gamma(s) - 1 = \frac{\gamma^{(3)}(0)}{6} s^3 + r_2, \qquad r_i = \mathbf{E}_{\theta} \gamma^{(i+2)}(\theta s) s^{i+2} \frac{(1-\theta)^{i+1}}{(i+1)!},
$$

for $i = 1, 2$. Invoking the inequality $|\gamma^{(i+2)}(\theta s)| \ll pq$ (see (5.2)), we obtain

$$
|r_i| \ll pq|s|^{i+2}, \qquad i = 1, 2. \tag{5.16}
$$

To prove the first inequality of (5.13), we construct a bound for the right-hand side of (5.15). Using (5.16) with $i = 1$, we bound $|\gamma(s) - 1|$. To bound $|\gamma^{j-1}(s)|$, $j = 2, \ldots, r$, we use (5.5). The second inequality of (5.13) is trivial.

To prove (5.14) we replace the right-hand side of (5.15) by $k\gamma^{(3)}(0)s^3/6$ and show that the error of this replacement does not exceed $k p q s^4 (1 + k p q) \delta_{k-1}$. In the first step, we replace $(\gamma(s)-1)$ by $\gamma^{(3)}(0)s^3/6$ in (5.15). The error of this replacement

$$
|r_2| \sum_{j=1}^{k} |\gamma^{j-1}(s)| \ll k p q s^4 \delta_{k-1}, \tag{5.17}
$$

by (5.5) and (5.16). In the second step, using (5.13), we replace $\gamma^{j-1}(s)$ in the right-hand side of (5.15) by 1, for $j = 2, ..., k$. The error of the second replacement

$$
\left| \frac{\gamma^{(3)}(0)s^3}{6} \right| \sum_{j=2}^k |\gamma^{j-1}(s) - 1| \ll \left| \frac{\gamma^{(3)}(0)s^3}{6} \right| (k-1) \max_{2 \le j \le k} |\gamma^{j-1}(s) - 1|
$$

$$
\ll p^2 q^2 k^2 s^6 \delta_{k-1}.
$$
 (5.18)

The first inequality of (5.14) follows from (5.17) and (5.18). The second inequality of (5.13) is trivial.

REFERENCES

- [1] Albers, W., Bickel, P.J. and van Zwet, W.R., Asymptotic expansions for the power of distribution free tests in the one-sample problem, Ann. Statist. 4 (1976), 108–156.
- [2] Babu, Gutti Jogesh and Bai, Z., D., Mixtures of global and local Edgeworth expansions and their applications, J. Multivariate Anal. 59 (1996), 282-307..
- [3] Bikelis, A., On the estimation of the remainder term in the central limit theorem for samples from finite populations, Studia Sci. Math. Hungar. 4 (1974), 345–354..
- [4] Bloznelis, M., A Berry–Esseen bound for finite population Student's statistic, Ann. Probab. 27 (1999), 2089–2108.
- [5] Bloznelis, M., One- and two-term Edgeworth expansions for finite population sample mean. Exact results. I, Liet. Matem. Rink 40 (2000), 213–227.
- [6] Bloznelis, M. and Götze, F., An Edgeworth expansion for finite population U -statistics, Bernoulli 6 (2000).
- $[7]$ Erdös, P. and Rényi, A., On the central limit theorem for samples from a finite population, Publ. Math. Inst. Hungar. Acad. Sci. 4 (1959), 49–61.
- [8] Feller, W., An Introduction to Probability Theory and Its Applications. Vol II. (1971), John Wiley & Sons, New York.
- [9] Hoeffding, W., Probability inequalities for sums of bounded random variables, J. Amer. Stat. Assoc. 58 (1963), 13–30.
- [10] Höglund, T., Sampling from a finite population. A remainder term estimate, Scand. J. Statist. 5 (1978), 69–71.
- [11] Kokic P.N. and Weber N.C., An Edgeworth expansion for U-statistics based on samples from finite populations, Ann. Probab. 18 (1990), 390-404.
- [12] Petrov, V.V., Limit Theorems in Probability Theory. Sequences of Independent Random Variables (1995), Oxford University Press, New York.
- [13] Rao, C.R. and Zhao, L.C., Berry–Esseen bounds for finite-population t-statistics, Stat.& Probab. Letters 21 (1994), 409–416.
- [14] Robinson J., An asymptotic expansion for samples from a finite population, Ann. Statist. 6 (1978), 1005–10011.
- [15] Zhao Lin Cheng and Chen Xi Ru, Normal approximation for finite-population U-statistics, Acta Mathematicae Applicatae Sinica 6 (1990), 263–272.