ONE- AND TWO-TERM EDGEWORTH EXPANSIONS FOR
FINITE POPULATION SAMPLE MEAN. EXACT RESULTS. II

M. BLOZNELIS

Abstract. We prove the validity of one- and two-term Edgeworth expansions un-
der optimal conditions (a Cramer-type smoothness condition and the minimal mo-
ment conditions) and provide precise bounds for the remainders of expansions. The
bounds depend explicitly on the ratio p = N/n, where N respectively n denotes the
sample size respectively the population size.

3. PrROOFS

Here we prove Theorem 2 formulated in Sec. 1 of the first part of the paper.

Proof of Theorem 2. Given j € {1,2}, we shall show that
Ay =o(r,?) as Ty — O0. (3.49)

The bounds A%, = o(7,7) are derived from (3.49) using the same argument as
that of the proof of Corollary 1.
Let us prove (3.49). We can assume without loss of generality that

2 -2
Var Xy , = EX{, =7,

Then A, ,, = [|P{S, < 2}—G; ()|, where S,, = X; ,+-- -+ X, ». Furthermore,
we can assume that the sum S,, consists of no more than n/2 summands, i.e., that
Pn < qpn. Indeed, for p,, > ¢, we have S,, = 5, since EX; ,, = 0. Here

Sp=Xin+-+Xg , with Xpp=-Xp tp1n and N, =n—N,.
In this way, we represent S,, by the sum S,, consisting of less than n /2 summands.
It is easy to verify that one- and two-term Edgeworth expansions of P{S,, < =}
(written in terms of the moments of X;, and with the parameter p,(= g¢»))
coincide with G, and G, respectively.
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In order to prove (3.49), we shall show that, for every € > 0,

limsup I A, < e, j=12. (3.50)

We shall prove (3.50) for j = 2 only. The proof for j =1 is almost the same.
Assume that (1.7), (1.8), and (1.9) hold for j = 2. Since p, < g¢,, we have
N, < qugl < 27'721-

In the first step, we replace S,, by S’ defined by

S'=X{+-+Xy,  Xp=Xe{XP, <1}
Note that, by Chebyshev’s inequality and (1.8),

P{X: # X1} <P{X{, > 1} <7, '8;,,(1) = o(r; ") as T — 00.

n

Therefore,
Nn
P{S# 8} <Y P{X) # X;} < N, P{X1 # X{} = 27P{X1 # X[} = o[, ),
k=1
and we obtain
[P{S <z} —P{S" <a}|| <P{S# S} = o(r,?). (3.51)

In the next step, we replace S’ by S = S5" — ES’. Since ES’ = N, EX] and, by
EX,, =0,

[EX]| = [BEX1nI{X7, > 1} < 77901 ,(1) = o(7,%), (3.52)
we have |ES’| = o(7,;2). Therefore,

|P{S" < @} = Gan(@)|| <|PLS" < 2} = Gou(@)| + [ES'| max |GS,), ()
—||P{S" < 2} = Gan(2)| +o(r%).  (3.53)

In the last step, we used the relation

lim sup HGglzL(x)H < limsup fy,, < 00,
n n

which follows from (3.10) and (1.7).
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Now we replace S” by Sy defined by

Sy =Y, + -+ Yy Y = o 'n Y (X, —EX}), 02 = Var X/,
n k k 1

n’

Clearly, S” = Sy 0.7, and, thus,
P{S" <z} =P{Sy < x + sz}, =0t~ 1.
Therefore, we can write

|P{S" <z} —Gon(x)]| <L + 12+ I3, I, =||Gy(x) — Gan()], (3.54)
I = [|[P{Sy <z} — Gy(z)]], I3 = [|Gopn(x + 2x) — G ()]

Here Gy is defined in the same way as G2 but with «; replaced by o) = 7',ZLEY1Z
In the remaining part of the proof, we show that

I = o(7, %), I3 = o(7,?), (3.55)
and that there exists ¢ > 0 such that, for every 0 < € < 1, we have

limsup Ip72 < ce. (3.56)

Note that (3.55), (3.56), and (3.54), in combination with (3.51) and (3.53), yield
(3.50) for j = 2. Therefore, it remains to prove (3.55) and (3.56).

Write 3j = 7JE|Y1)7, j = 1,2,.... In the first step of the proof of (3.55) and
(3.56), we show that

o = ajn + o(ti=%), j =34, (3.57)
By <2735 +o(r?), =34, (3.58)
B < 2%ernBum + 2Bl (e) +o(r,Y), ¥V 0<e<l. (3.59)

Note that (1.8) implies

o2 =12 +o(r ), o) — 1) =o(ri7?), j=1,2,.... (3.60)
To prove the first relation of (3.60), note that, by (3.52),

7.2 =BX}, > ol = E(X])’ - (EX])* = E(X])* + o(7, %),
and, by Chebyshev’s inequality and (1.8),

E(X])? = EX?, - EX{,I{X?, > 1} 2 EX}, —7,"01,(1) = 7% + o(7,%).

n
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The second relation of (3.60) follows from the first one.
In order to prove (3.57), we write a; = a;n + R + Ry + R3, where

Ry = 7EY] —0 B(X]), Ry = (0,7 —m)E(X]), Rs=miB((X]) - Xi,),
and show that
Ry = o(7,,?), Ry = o(7,, %), Ry = o(ti7%). (3.61)
Note that the relation (which follows from (1.7))
E(X})| < BIXj] SEXyl =70, = 0r7),  j=12,34, (3.6

in combination with (3.60), yields Ry = o(7,,2).
The bound Rz = o(7~%) follows from (1.8) by Chebyshev’s inequality:

’R?” - TYJL|EX{,nH{X12,n > 1}| < ij;_A‘ﬁZ,n(l) = 0<7'7J;_4).
To prove Ry = o(7;,;3), write Ry = o5 EV, where
V= (X{ — EX{)J _ (X{)J — (_EXi)j (X{ _ G*EX{)j_l

for some 0 < 6* < 1, by the mean value theorem. Furthermore, invoking the
inequality

(a+b)F <281k +0%),  a,b>0, k=1,2,..., (3.63)
and using (3.52) and (3.62), we obtain
BIV| < [BX]|(BIX{P "+ [BX{ ) = o(r; ) (O(r3~) +o(ri0=D)) = ofr* ).
This relation together with (3.60) implies
R =0’EV = (7'731 + 0(7’7{_2))EV = o(1,?),

n

thus completing the proof of (3.61). We arrive at (3.57).
Let us prove (3.58). Note that (3.60) implies

ot =1+0(r,?). (3.64)
Combining (3.63) with (3.64), (3.62), and (3.52), we obtain, for j = 3,4, 5,

E|Y:) <2770 77 (EIX ) + [BX(Y) <2777 50 +o(r,777). (3.65)
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Since 3 = TJE|Y1}, from (3.65) we obtain (3.58).
In order to prove (3.59), we combine the first inequality of (3.65) with (3.64) and
(3.52) and obtain

By = ToBY1[° < 28 (1 + (7)) E|X{|” + o(1, ).
Finally, invoking the inequality (which holds for an arbitrary 0 < ¢ < 1)

E|X{|° =E|X1,"I{X], <1} <eEX{, + EX{,l{X], > ¢}

< o7y Bam + 1, B0 (2),

we obtain
B5 < 2*m (1 + o(7,, %)) (eBam + B1,.(€)) + o(7,, ™).

This inequality together with (1.7) implies (3.59).
Now we are going to prove (3.55). The bound I; = o(r,?) is an immediate
consequence of (3.57). To prove the second bound of (3.55), note that, by the
mean value theorem and the exponential decay of Ggli(x) as |z| — 400, we have,
for |5 <1,

Iy < |3 max |Gy (2)](1 + |a]). (3.67)

It is easy to show (see (3.10)) that |||Gé17)1(x)|(1 +|2|)|| < Ba,n. This inequality, in
combination with (3.67) and (3.64), yields I3 < o(7,;%)B4.n = o(7,,2) by (1.7).

In order to prove (3.56), we fix € € (0,1) and apply (3.5) with T' = T,, = 72¢~!
and H = H,, = by7,,/3%. Therefore, it suffices to show that

lim sup 72T |G (2] < ce (3.68)
lim sup T31[07Hn}(ﬁy — Gy) < ce, (3.69)
Iig, 7,)(Gy) = o(1,?), (3.70)
I, 1, (Fy) = o(1,, ). (3.71)

Here Gy and Fy denote the Fourier-Stieltjes transforms of Gy (z) and
Fy (z) = P{Sy < z}, respectively.

Let us prove (3.68) — (3.71). Note that (3.69) is a consequence of (3.8) combined
with (3.59) and (1.7), (1.8).

The relation (3.68) follows from the inequalities

lim sup ||G§,1)(a:)|| < limsup ) < limsup By, < o,
n n n
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using (3.10), (3.58), and (1.7).
Let us prove (3.70). It follows from (3.11) and (3.12) that

Ia, 1, (Gy) < H? (14 (83)° + B1) = O(7,,%).

In the last step, we used the inequality lim sup,, ﬂ; < oo for j = 3,4, which follows
from (3.58) and (1.7).
To prove (3.71) we proceed as in proof of (3.9) and obtain

Iig, 7,)(Fy) < 7, InT,, exp{—72p,}, (3.72)
ph, =1 —sup{|Eexp{itr,Y1}|: b1/B < |t| < e "}

Note that (3.72) and
liminf p, > 0 (3.73)

imply (3.71). It remains to show (3.73). For this purpose, we replace Y1 by X ,
and then apply (1.9). Note that, for every ¢,

|E exp{itr,Y1}| = |Eexp{ito; ' X1}| < |Eexp{itr, X1.,}| + Rn(t),
R, (t) = ‘E(exp{ita*_lX{} - exp{itTnXl,n})’ < |HE|o; ' X] — T X1nl

Therefore, with p! defined in the same way as p/,, but with Y7 replaced by X,
in the exponent, we have

liminf p/, > liminf p;, — limsup R,, R, = sup |R,(¢)|. (3.74)
" " n [t|<Tn/e

We claim that (1.9) implies
lim inf p!! > 0. (3.75)

Indeed, (3.75) follows from (1.9) and the fact that by > liminf,, b1 /85 > 0, where
the last inequality is a consequence of limsup,, /5 < limsup,, B3, < oo by (3.58)
and (1.7).
Finally, we shall show that
limsup R,, = 0. (3.76)

Clearly, (3.76) together with (3.75) yield (3.73) via (3.74). In order to prove (3.76),

we write

Elo,'X] — 7. X1, < 0. 'EIX] — Xy0| + oyt — 70 |E[ X1 0] (3.77)
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To estimate the first summand, we apply Chebyshev’s inequality and use (3.60)
and (1.8) to get

o' BIX] — Xia| = 07 ' BIX 10 |{XT, > 1} <ot 18], (1) = o(7,0). (3.78)
Furthermore, by (3.60) and (1.7), we have
o7t — T B X n| = ot — Tl7y  Brn = o7, ). (3.79)

Collecting (3.78) and (3.79) in (3.77), we obtain | R, (t)| < |t|o(r,;?), thus, proving
(3.76). The proof of Theorem 2 is complete.

. APPENDIX I
Introduce the function O(x <% : > and write

2b1

% (1-0()+ =L Oo®), b=0.075.  (4.1)

b
02:271 + c1, cl =

Note that the constants b; < b (see also (1.2)) are chosen so that ¢; < 1 and
co < 1.
Given a number L > 0 and a function f(s,t), we write f < L if

7/ v 1 (s,t)|e=%0/2ds < L.
<r 1 Jjsi<n

Recall that (o = 7252 + 2.
Proof of (3.19). In order to prove (3.19), we shall show that

R; <R, i=1,2,3, R = Bs7 3. (4.2)

Let us prove (4.2) for i = 1. By the inequality (5.2) below, we have

. b
05,51 < pa(L+ [t”) exp{ - 7}t &5

This bound, in combination with the inequality (5.4) below, gives
|R1| < pg(1+ [t]° eXp{*Co}Z [t €5 (4.3)
The inequalities £} < s* + 'z} and s*|z;] < |s]° + |z;]° imply

th%é“ < Itlz (Isl° + (1 + )2, °) = [tln(ls]” + (1 +t*)5s).

j=1
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Combining this bound with (4.3), we obtain
|[Ra| < P21+ [¢) (Is” + (1 + *)r5) exp{ S~ Go}-
This inequality, in combination with ¢y < 1, implies Ry < 773 + 72k5 < R.

Let us prove (4.2) for i = 3. Since |7(*)(0)| < pq by Lemma 5.1, we have |9 ;| <
pqltz;|€7. Furthermore, by (5.2) we have

N b
05 ;1 < palta; €5 (L + |t1°) exp{ -2}

From these inequalities, (5.4), and the simple inequality |xj\£]2 < wj = |zj|(s?
t?x3), it follows that

n j—1k-—1

|[Ra| < @[t (1+ [t) exp{ - Go} DD Y wjwpw,. (4.4)

j=3 k=2r=1

Note that the (triple) sum equals the expectation
(g) EW,W)oWs,  where  W; = |X;|(s®> +t2X?), i=1,2,3.
To bound this expectation, note that
E(W3|X1X2) < %EW& E(Wz|X,) < %sz- (4.5)
Furthermore, by the inequality |ad?| < |a|® + |d|?, we have

EW, <« E(\s|3 + X2 + t2|X1|3) = |s]® + (1 + t?)ks. (4.6)
From (4.5) and (4.6) it follows that
(g) EW, WyWs < n(EW))? < n?(|s] + (1 +t2)rs)” < n?([s]® + (1 + £2)%43).
Combining these inequalities with (4.4), we obtain

|Ra| < 7Ot (1+ [t1%) exp{ - Co} (Is]” + (1 +1%)°43).
Now a simple calculation shows that R3 < 773 + 79x3 < R. In the last step, we

estimated x5 < 85779 using (3.2).
The proof of (4.2) for i = 2 is much the same.
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Proof of (3.34). In order to prove (3.34), we shall show that
7" H(s)RE < R, 72 (s)RE < R, R = Bs7 5. (4.7)
Let us prove the first inequality of (4.7). By the inequality (5.13) below, we have
Y"1 (s)Ry = Ry +r  with 7| < |R3|rT.
Invoking the inequality |y()(0)| < pg of Lemma 5.1, we obtain
Ir] < s |t]2 k3 exp{ %1 Cot}-
Now a straightforward calculation gives |r| < k3 < R. The proof of R} < R is

much the same as that of S7; ~ 0 in (3.41) above. We obtain (4.7) for k = 2.
In order to prove the second inequality of (4.7), we show that

(3) 2 n
nOR; A" (s) <R, =123, whee 5= (20) 2 s)

2 n2
satisfies § < p%¢®. To prove (4.8) for j = 1, we apply (5.13) and obtain
n’6R% "3 (s) =n’6RE, +r with  [r| < n?6| R, |r}.
A simple calculation gives

Ir| < T s4|t| |IEX; X3| exp{ —Co} < T?EX} X3 < R.

In the last step, we estimated |[EX3 X2| < k5 using Holder’s inequality.

To show n?éR5; < R, we proceed as in the proof of Sf; ~ 0 in (3.41) above.
The proof of (4.8) for j =1 is complete.

Let us prove (4.8) for j = 2,3. By Lemma 5.6, we have

* 442 {2 _ 94343 sz 2 244 {4 ' (4.9)

= —S —_
3,2 n—1 n—1 3 n—1

By (3.1), 2% < (pq)~'/?ks5 and, therefore,

6
AR . (4.10)

9 nl/2f

[R5 5] < 52754

Finally, we estimate n2dv"2(s) < 7% exp{c1{p/2} using (5.5), and apply (4.9)
and (4.10) to obtain (4.8) for j = 2, 3.
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Proof of (3.38). By (5.13) and (5.5) we have, for j = 1,2,
" (s) =" (s)] = V()1 = (s)] < pals|® exp{ 5 o}
This implies

" (s) =" ()IIST] < pals® exp{ T-Go}IST = 1.2,
"2 (5) = 7" (9)11S5] < pals|® exp{ 5 Co}1S3].

A simple calculation shows that the right hand sides are < R. We obtain (3.38).
Proof of (3.40) and (3.42). By (5.14) we have

Y ($)STL = ST+ ST+ ] < ST (4.11)
Furthermore, by (5.13) we have

S50 =" (8)S5al < rilS5al, 5 =23 (4.12)
950 =" (8)gj1]l < rilgjal,  7=1,2,3. (4.13)

A simple calculation shows that
’SI,1|T; = RJ |S;,1|TT = RJ |gk,1|7ﬁ = R7 j = 1727 k= 17 2; 3.

These bounds, in combination with (4.11), (4.12), and (4.13), yield (3.40) and
(3.42).

5. APPENDIX II

Recall that

_ 2
by =0.001, b=0075, O(z)= (3 i x) R 3

T m4+x

B(x) = pexpligr} + gexp{—ipx}, v(x) = Bla) exp{ 5 2%},

Denote
K ={xp: |[Hxy| > b}, H = b6

Below we use the following inequality proved in Hoglund [10]. For all zo € [0, )
and z satisfying |z| < 7 + zg, we have

B(2)° <1~ pa(2)*6(20). (5.1)
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Lemma 5.1. The function = satisfies

70)=1, +(0)=7"(0)=0, ~*(0)=1:pg(q—p), ¥ (0)=pqg(1—6pqg),
|’7(k)(u)| < a( )(pq + |u|k F k) k= 3,4,5.

Proof of Lemma 5.1. The proof is elementary.

Lemma 5.2. Assume that |t| < H. For all 0 < 67,05 <1 and j € §,,, we have

Y9 (07 (s + O3ty )| < exp{ 2 =t} (g + 8 (00)™ ), k=345, (5.2)

Proof of Lemma 5.2. We prove the lemma only in the case where k = 5. Write,
for short,

E=0(s+ Btms),  alx) = explpar/2)
and note that v(z) = B(x)a(x?).
By the inequality |a + b|* < 2¢71(|a|® + |b]*), we have
€1" < 277 (Is]" + [t ),
Since |s| < 7 and, by (3.1), || < (pg)~'/2, we obtain

P < 1+ tP(pg) %2, € < 27% + 2t}

The second inequality implies «(£?) < a(2t?z%). Therefore, by Lemma 5.1, we
have

VB (©)] < a(2t?2R) (pq + [t° (pg)*/?).
It remains to show that
a(2t*x3) < exp{t?b; /b}. (5.3)

For z ¢ K, we have [tx| < b. Therefore, a(2t?r?) < 1, and (5.3) is satisfied.
For z;, ¢ K, we have 27 < bi(pgb)~! by Lemma 5.4. Therefore, a(2t?z3) <
exp{t?b; /b}. We obtain (5.3), thus, proving the lemma.

Lemma 5.3. Assume that |t| < H. For every i =1,2,3 and j € §2,,, we have

j—1

|W; ;| < exp{ % Co}, where W, =~""I71F1(y) H (s + tay), (5.4)
k=1

7 (s) < exp{ =~ Jpq (1 -0(b)s*} < exp{ 5 o}, (5.5)
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where c; is given in (4.1).

Proof of Lemma 5.3. Write
I, = ]I{.%’k € ’C}, i = ]I{:Ck ¢ }C}

Recall that the subset L C X is introduced in the beginning of Appendix II. Let
us show that

j—1
g7(3+txk) < exp{ ' (Z1(1 - ©()) + Z20(b)}, (5.6)
7, = i(s +tay)?,  Zy = i(s + tay )1,

k=1 k=1

Clearly, |s + txi| < 7™+ H|xg| < 7+ b for xz, ¢ K. An application of (5.1) gives
1B(s+txp)? < 1—pg(s+txy)?0(b) < exp{—pq(s+txy)*O(b)}, xr & K. (5.7)
Therefore, for arbitrary k € €),,, we can write
16(s + tay)| < exp{— £ (s + tay,)*O (D)5 ).

This inequality implies (5.6).
Using (5.1) we construct a bound for 47"~/ (s) as well. As in (5.7), we can write

B(s)] < exp{—2""pgs*O(b)}.
This inequality implies (5.5). It follows from (5.6) and (5.5) that
Wil <exp{ 5L 2}, Z=(s’(n—j) + Z1)(1 - O(b)) + Z:0(b),
Clearly, this bound extends to ¥; ; with ¢ = 2,3 as well. In order to prove (5.4),

it remains to show that
Z < c1(ns® + (pg)~'t?). (5.8)

Hoglund [10] showed that EX; = 0 and EX? = 772 imply

1/2
2| | < <;7> . jeq.
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This inequality, combined with (3.1), gives

1/2 2
N2
- z 1) + 25t t Ds?+fstl( =)+ =
(n—7)s*+2, = (n—1)s*+2s Zxk+ Zxk (n—1)s%+|st| + -
Finally, invoking the inequality |ab| < (a? + b%)/2, we obtain
(PP 7 < 2 (ns?v L) (5.9)
-2 Pq
To estimate Z5, we invoke the bounds
K| < n L and Z 2 < b (5.10)
- b - g

TR €L

that follow from Lemma 5.4. The inequality (a + b)? < 2a? + 2b?, combined with
(5.10), gives

Zy < 28%|K| + 2t2 Z r: <2—(ns + —2)
e

This bound, in combination with (5.9), yields (5.8), thus, completing the proof.
Lemma 5.4. For subset K C X, we have

bt By b 1
Kl <n - F doal< ot —. (5.11)

In particular, every z), € K satisfies 3 < by(pgb)~'. Recall that the subset K C X
is introduced in the beginning of Appendix II.

Proof of Lemma 5.4. To prove the first inequality, we write

. r r br -
K< 3 (L) < A appa =gk 2
;€L

To prove the second inequality, we apply Holder’s inequality:
2 3\ %/3 1/3 3\2/34~11/3
S a? < (X Jal?) K < (nEIX )
{EjE’C l‘jE’C

Furthermore, writing nE|X;|> = nf37~3 and substituting the bound (5.11) for
|| with r = 3, we see that the right-hand side is bounded by by (pqb)~!
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Lemma 5.5. Let Z > 0 be a random variable satisfying EZ? = 1. Then

(EZ*? <EZ', (EZ°)’<EZ’, EZ'EZ’<EZ. (5.12)

Proof of Lemma 5.5. The first inequality follows from the Cauchy—Schwartz in-
equality:
EZ3 =EZ 7% < (EZ>)Y2(EZ4)Y/?

This implies (EZ3)? < EZ*EZ3. It remains to prove the last inequality of (5.12).
By Holder’s inequality, we have

EZ E22/3210/3 (EZ2>1/3(EZ5)2/3 (EZ5)2/3,
EZ Ez4/3z5/3 (EZ2)2/3(EZ5)1/3

Clearly, these inequalities yield (5.12).
Lemma 5.6. Let k and | be positive integers. We have

1
-1

k vyl n
EXl X2 = m A A — A1

Proof of Lemma 5.6. The lemma follows from the identities

n 1
n — ——
_1 n —

EX{X} = EX{E(X3| X)),  B(X3X)) = Xi.

Lemma 5.7. For all k € Q,, and |s| < m, we have
V¥ (s) = 1] < kpals®6p1 <7, rp =PsPexp{ TG}, (5.13)
VE(s) =1 =k ——+ ek ( ) 5 < kpgs*(1 + kpgs®)o,_1 < 15 (5.14)

5y, = exp{ 221 2(1—@<b>>}, ry =241+ 7257 expf— - o).

where ¢y Is given in (4.1).

Proof of Lemma 5.7. By (3.20), we have

k
Y(s) = 1= (y(s) = 1) D+ (s): (5.15)

=1
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Expanding ~(s) in powers of s and using the fact that v(0) = 1 and ~/(0) =
7v"(0) = 0 (see Lemma 5.1), we get

3) (0 ' o (1—6)!
2 v K
Vs)—l=r1  ~(s)—-1= %33+T27 ri = Bgy 2 (0s)s +2((i+)1)!’

for i = 1,2. Invoking the inequality |y("+2)(6s)| < pq (see (5.2)), we obtain
il < pgls|t?, i=1,2. (5.16)

To prove the first inequality of (5.13), we construct a bound for the right-hand
side of (5.15). Using (5.16) with i = 1, we bound |y(s) — 1]. To bound |y7~1(s)|,
j=2,...,r, we use (5.5). The second inequality of (5.13) is trivial.

To prove (5.14) we replace the right-hand side of (5.15) by kv(*)(0)s%/6 and show
that the error of this replacement does not exceed kpgs*(1+ kpq)dy_1. In the first
step, we replace (y(s) — 1) by 73 (0)s%/6 in (5.15). The error of this replacement
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by (5.5) and (5.16). In the second step, using (5.13), we replace 4/ ~1(s) in the
right-hand side of (5.15) by 1, for j = 2,..., k. The error of the second replacement
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< PPk %0, 1. (5.18)

The first inequality of (5.14) follows from (5.17) and (5.18). The second inequality
of (5.13) is trivial.
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