
ONE– AND TWO–TERM EDGEWORTH EXPANSIONS FOR A

FINITE POPULATION SAMPLE MEAN. EXACT RESULTS. I

M. Bloznelis

Abstract. We prove the validity of one– and two–term Edgeworth expansions
under optimal conditions (a Cramer type smoothness condition and the minimal
moment conditions) and provide precise bounds for the remainders of expansions.
The bounds depend explicitly on the ratio p = N/n, where N and n denote the
sample size and the population size, respectively.

1. Introduction and results

1. Main results. Let X1, . . . , XN be a simple random sample drawn with-
out replacement from the set X = {x1, . . . , xn} ⊂ R, where N < n, that is,
P{ {X1, . . . , XN} = B} =

(
n
N

)−1 for every subset B ⊂ X of size |B| = N . Note
that X1, . . . , XN are identically distributed and symmetrically dependent. Denote

S = X1 + · · ·+ XN , p = N

n
, q = 1− p, τ2 = npq.

Assume that EX1 = 0 and σ2 > 0, where σ2 = EX2
1 . A simple calculation shows

that VarS = σ2τ2(1 + (n − 1)−1). By the central limit theorem (see Erdős and
Rényi [6]), for large N , the distribution of S/(στ) can by approximated by the
standard normal distribution. We approximate the distribution function

F (x) = P
{
S ≤ xτσ

}

by the one– and two–term Edgeworth expansions in powers of τ−1

G1(x) = Φ(x) + τ−1P1(x), G2(x) = Φ(x) + τ−1P1(x) + τ−2P2(x) + τ−2P̃2(x),

and give explicit bounds for the remainders

∆j = sup
x∈R

|F (x)−Gj(x)|, j = 1, 2.
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Here Φ(x) denotes the standard normal distribution function,

P1(x) =− φ(x)H2(x) q − p

6
α3,

P2(x) =− φ(x)H3(x)
(

4pq − 1

8
+ 1− 6pq

24
α4

)
− φ(x)H5(x) 1− 4pq

72
α2

3,

P̃2(x) =− φ(x)H1(x) pq

2
,

where φ(x) = Φ(1)(x) denotes the standard normal density function, Hi(x)φ(x) =
(−1)iφ(i)(x), and where we denote

αi = σ−iEXi
1, βi = σ−iE|X1|i, i = 1, 2, . . . . (1.1)

Given a random variable Z with 0 < VarZ < +∞, write

ρZ(A,B) = 1− sup
{∣∣E exp

{
it

Z

σZ

}∣∣ : A ≤ |t| ≤ B
}
, 0 < A < B,

where σ2
Z = VarZ. Denote

ρ(x) = ρX1(b1/β3, x), where b1 = 0.001. (1.2)

Theorem 1. There exists an absolute constant c > 0 such that, for n = 3, 4, . . .
and 1 < N < n,

∆1 ≤ c
β4

τ2
+ c exp

{−τ2ρ(τ)
}
τ ln τ, (1.3)

∆2 ≤ c
β5

τ3
+ c exp

{−τ2ρ(τ2)
}
τ ln τ. (1.4)

The constant b1 = 0.001 is not the optimal one. No effort was made to find
the optimal (the largest) value of b1, for which (1.3) and (1.4) hold. However,
we prefer to give a concrete constant instead of writing “there exists a (small)
absolute constant b1...”.
Using Theorem 1, we easily obtain one– and two–term Edgeworth expansions for

the distribution function

F?(x) = P{S ≤ x(VarS)1/2} = F
(
x(1 + (n− 1)−1)1/2

)
.

Corollary 1. Theorem 1 remains true if we replace ∆j by ∆?
j , j = 1, 2. Here

∆?
j = sup

x
|F?(x)−G?

j (x)|, j = 1, 2,

G?
1(x) = G1(x), G?

2(x) = Φ(x) + τ−1P1(x) + τ−2P2(x).
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Since the absolute constant in (1.3) and (1.4) is not specified, the results of
Theorem 1 and Corollary 1 are purely asymptotic (as N and n →∞).
To be more precise, consider a sequence of sets Xn = {x1,n, . . . , xn,n} ⊂ R and a

sequence of integers Nn ∈ N, with Nn < n, for n = 3, 4, . . . . Denote

τ2
n = npnqn, pn = Nn/n, qn = 1− pn.

Given n, let X1,n, . . . , XNn,n denote a simple random sample of size Nn drawn
without replacement from Xn. Assume that EX1,n = 0 and σ2

n := EX2
1,n > 0,

and let αi,n and βi,n denote the i th moments of X1,n corresponding to (1.1). Let
Gj,n, G?

j,n, ∆j,n, ∆?
j,n and ρn(·) be defined as Gj , G?

j , ∆j , ∆?
j and ρ(·) above, but

with respect to the sum Sn = X1,n + · · ·+ XNn,n and the random variable X1,n.
If β4,n respectively β5,n remain bounded as n →∞ and

lim inf
n

ρn(τn) > 0 respectively lim inf
n

ρn(τ2
n) > 0 (1.5)

then the results of Theorem 1 and Corollary 1 yield the bounds O(τ−2
n ) respectively

O(τ−3
n ) as τn →∞.

Observe that (1.5) are Cramer type conditions. Recall that the distribution of a
random variable Z is said to satisfy Cramer’s condition if, for some δ > 0,

1− sup
|t|>δ

|E exp{itZ}| > 0. (C)

In the case where N remains fixed and n →∞, the simple random sample model
approaches the i.i.d. situation. In this way, Theorem 1 yields the well–known
bounds O(N−1) and O(N−3/2) for the rate of the approximation of the distribution
function of a sum of i.i.d. random variables (satisfying (C) and proper moment
conditions) by one– and two–term Edgeworth expansions (see., e.g., Petrov [11]).
The goal of our Theorem 1 and Corollary 1 is that the bounds (1.3) and (1.4)

depend explicitly (and in an optimal way) on the parameters p = pn and q = qn.
This is important for the applications in the cases where pn or qn tend to zero as
n → ∞. Another advantage of our results is the use of the minimal smoothness
conditions (1.5).
Earlier asymptotic expansions for the distribution function of finite population

sample mean were constructed by Robinson [13] and, in the multivariate case, by
Babu and Bai [2]).
Let us compare our results with those of Robinson [13] who proved the bound

∆?
2,n ≤ C(p)β5,n/n3/2, (1.6)

with some constant C(p) depending on p, subject to the condition
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(c) Given C1 > 0, there exist ε > 0, C2 > 0 and δ > 0 not depending on n such
that, for any fixed x, the number of indices k, for which

∣∣ xk,n

σn
t− x− 2rπ

∣∣ > ε for all t ∈ ( C1

β0,n
,

C2 n

β5,n

)

and all integers r, is greater than n δ for all n. Here β0,n = σ−1
n maxk |xk,n|.

We show in Sec. 2 that Robinson’s condition (c) is more restrictive than
lim infn ρn(τ2

n) > 0, see (1.5). In particular, in (1.5), we avoid the use of the
unpleasant quantity β0,n. Furthermore, the constant C(p) in (1.6) depends on
p and this restricts the area of possible applications of (1.6) to the cases where
p = pn remains unchanged as n →∞.
Babu and Bai [2]) constructed j-term Edgeworth expansion with the remainder

o(n−j/2), j = 1, 2, . . . , for the distribution function of a sum of Rk valued random
observations drawn without replacement from a finite population of size n under
the additional condition lim infn min{pn, qn} > 0.
The approach used in our paper differs from those used by Robinson [13] and Babu

and Bai [2]) and allows us to prove the validity of j-term Edgeworth expansions
for F (x) with the remainders O(τ−j−1) and o(τ−j) for j = 3, 4, . . . as well. We
do not consider the case j ≥ 3 here because of the following reasons: for typical
applications, one– and two–term expansions are sufficient; the consideration of the
general case j = 1, 2, 3, . . . requires no new ideas, but rather involved calculations.
The closeness between F and the standard normal distribution was studied by

Bikelis [3]. The Berry–Essen bound was proved by Höglund [9]. Furthermore,
Kokic and Weber [10] and Zhao and Chen [14] investigated the rate of the normal
approximation of a nonlinear finite population statistic ( U -statistics). Berry-
Esseen bounds for the finite population Student’s t statistic were constructed by
Rao and Zhao [12] and Bloznelis [4]. One–term Edgeworth expansions for U -
statistics were established by Kokic and Weber [10] with the remainder o(N−1/2),
and in Bloznelis and Götze [5] with the remainder O(N−1).
2. Remainders of orders o(τ) and o(τ2). Denote

β?
j,n(ε) = σ−j

n E|X1,n|jI{X2
1,n ≥ εσ2

nτ2
n}, ε > 0.

Theorem 2. Let j = 1, 2. The conditions

lim sup
n

βj+2,n < ∞, (1.7)

∀ε > 0, lim sup
n

β?
j+2,n(ε) = 0, (1.8)

∀δ > 0, ∀B > 1, lim inf
n

ρX1,n(δ, τ j−1
n B) > 0, (1.9)

imply
∆j,n = o(τ−j

n ), ∆?
j,n = o(τ−j

n ) as τn →∞.
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The conditions of Theorem 2 are quite natural. Note that if we take j = 0,
(1.8) becomes the Erdős-Rényi condition, the weakest sufficient condition for the
asymptotic normality of σ−1

n τ−1
n (X1,n + · · · + XNn,n). Furthermore, in this case,

βj+2,n = 1 and, therefore, condition (1.7) is automatically satisfied.
Note that the smoothness condition (1.9) is somewhat weaker than the condition

∀B > 1, lim inf
n

ρX1,n

( b1

β3,n
, τ j−1

n B
)

> 0, (1.10)

where b1 is given in (1.2). However, it is easy to verify that if (1.7) holds, then
conditions (1.9) and (1.10) are equivalent.
The remaining part of the paper is organized as follows. In Sec. 2 we study

several modifications of Cramer’s (C) condition. In Sec. 3 we prove Theorems 1,
2 and Corollary 1. Some technical steps of the proofs are given in Sec. 4. Auxiliary
lemmas are collected in Sec. 5.
The paper is divided in two parts. Secs. 1, 2 and the proofs of Theorem 1 and

Corollary 1 are given in the first part. The second part containing the proof of
Theorem 2 and Secs. 4, 5 will appear in a subsequent issue of this journal under
the title ”One– and two–term Edgeworth expansions for a finite population sample
mean. Exact results. II”.

2. Smoothness conditions

Let Z1,n, . . . , ZNn,n, n = 3, 4, . . . , be an array of random variables such that, for
every n, the random variables Zk,n, k = 1, . . . , Nn, are identically distributed.
Assume that Nn → ∞ and that the sequence of the sums Sn(Z) = Z1,n + · · · +
ZNn,n is asymptotically standard normal as n → ∞. In order to establish a
higher order approximations, i.e., to prove the validity of asymptotic expansions of
P{Sn(Z) ≤ x} with the remainders o(N−j/2

n ), j = 1, 2, . . . , one needs (in addition
to the moment conditions) to impose a smoothness condition on the distributions
of Z1,n, n = 3, 4, . . . , like the Cramer condition (C) is imposed in the classical
case of a sum of i.i.d. random variables. However, the requirement that, for every
n = 3, 4, . . . , the random variable Z1,n satisfy the classical Cramer condition (C)
is too restrictive in the case of an array of random variables which, in addition,
may have discrete distributions. One useful modification of condition (C) was
introduced by Albers, Bickel and van Zwet [1] (see also Robinson [13]) and was
later used in a number of papers. This condition requires that there exists ε > 0
such that

lim inf
n

τZ1,n(ε, an, bn) > 0 (2.1)

for appropriately chosen sequences 0 < an < bn. Here, for a random variable Z
(with VarZ = σ2

Z > 0), we write

τZ(ε, a, b) = 1− sup
s∈R, a≤|t|≤b

P
{
t

Z

σZ
∈ Lε + s

}
, L = {2 π r, r = 0,±1, ±2, . . . },
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where Bε denotes the ε–neighborhood of a set B ⊂ R.
Now Robinson’s condition (c) can by formulated as follows: given C1, there exists

ε > 0 and C2 > 0 such that the sequence of random variables X1,n satisfies
condition (2.1) with an = C1/β0,n and bn = C2 n/β5,n.
Let an and bn be sequences of positive numbers. We will show below that the

condition

∃ ε > 0 such that lim inf
n

τZ1,n
(ε, an, bn) > 0 (2.2)

implies
lim inf

n
ρZ1,n(an, bn) > 0. (2.3)

Furthermore, (2.3) implies (2.2), by Lemma 2.1 below. That is, conditions (2.2)
and (2.3) are equivalent. In particular, Robinson’s condition (c) is equivalent to

lim inf
n

ρX1,n(a′n, b′n) > 0. (2.4)

Note that β0,n ≥ β3,n. To show that (2.4) is somewhat more restrictive than
the second inequality of (1.5), consider the case where limn β0,n = +∞ and
lim supn β3,n < ∞, simultaneously. In this case, (2.4) fails, but the second in-
equality of (1.5) still can hold.
In Bloznelis and Götze [5], the following version of (2.1) was introduced. Let

Z ′1,n denote an independent copy of Z1,n. That is, random variables Z1,n and Z ′1,n

are independent and identically distributed. Let Z∗1,n = Z1,n − Z ′1,n denote the
symmetrization of Z1,n. The condition

∃ ε > 0 such that lim inf
n

τ∗Z1,n
(ε, an, bn) > 0,

where
τ∗Z(ε, a, b) = 1− sup

a≤|t|≤b

P
{
t

Z∗

σZ
∈ Lε

}
> 0,

is equivalent to (2.1). This fact is a consequence of Lemma 2.1 below. Lemma 2.1
(without proof) is formulated in Bloznelis and Götze [5]. For convenience, we give
the proof here.
Write

δZ(a, b) = 1− sup
{
E cos

(
t

Z

σZ
+ s

)
: s ∈ R, a ≤ |t| ≤ b}.

Lemma 2.1 (Bloznelis and Götze [5]. Let Z be a random variable with
VarZ > 0. For 0 < a < b and 0 < ε < π, write

ρ = ρZ(a, b), τε = τZ(ε, a, b), τ∗ε = τ∗Z(ε, a, b), u = π−1ε τ∗ε and v = π−1ε τε.
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The following inequalities hold:

ε2τε

π2
≤ ρ ≤ 4 τρ, (2.5)

ε2τ∗ε
π2

≤ ρ ≤ 4 τ∗ρ , (2.6)

τ∗v ≥
ε2τε

2 π2
, τu ≥ ε2 τ∗ε

4 π2
, (2.7)

2ρ ≥ δZ(a, b) ≥ ρ. (2.8)

Proof of Lemma 2.1. We can assume, without loss of generality, that VarZ = 1.
For a random variable Y denote τδ(Y ) = P{cosY < cos δ}, δ > 0. Clearly,
τδ1(Y ) ≤ τδ2(Y ) for 0 < δ2 < δ1 < π. We shall show that, for any 0 < δ < π and
0 < d < 1,

E (1− cos Y ) ≥ 2 π−2δ2 τδ(Y ), (2.9)

τd′(Y ) >
1

2

(
E (1− cos Y )− d

)
, d′ =

√
2 d. (2.10)

The first inequality follows from Chebyshev’s inequality

E (1− cos Y ) ≥ (1− cos δ)P{1− cos Y > 1− cos δ},

the identity τδ(Y ) = P{1− cos Y > 1− cos δ} and the inequality

1− cos u ≥ 2 π−2 u2, 0 ≤ u ≤ π.

To get (2.10) combine the inequalities arccos(1− d) >
√

2 d and

E (1− cos Y ) ≤ dP{1− cos Y ≤ d}+ 2P{1− cos Y > d}
= d + (2− d)P{cos Y < 1− d}.

Write Ys,t = t Z + s. We have

τε = inf{τε(Ys,t) : s ∈ R, a < |t| < b} and τ∗ε = inf{τε(t Z∗) : a < |t| < b}.

Recall that Z∗ = Z − Z ′, where Z ′ denotes a random variable independent of Z
and having the same distributions as Z. Denote

κ = sup
{
E cosYs,t : s ∈ R, a ≤ |t| ≤ b

}
, κ∗ = sup

{
E cos

(
t Z∗

)
: a ≤ |t| ≤ b

}

and κ̃ = sup
{∣∣E exp{i t Z}∣∣ : a ≤ |t| ≤ b

}
. Note that 0 ≤ κ,κ∗, κ̃ ≤ 1.

Furthermore,
κ∗ = κ̃2, κ∗ ≤ κ, κ2 ≤ κ∗. (2.11)
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The first inequality is obvious. The second one follows from the inequality

(
E cos(t Z + s)

)2

≤ E cos
(
(t Z + s)− (t Z ′ + s)

)

which is a consequence of the identity cos(x−y) = cosx cos y+sin x sin y (applied
to x = t Z + s and y = t Z ′ + s) and the independence of x and y.
Let us prove (2.5). Assume that τε > 0. It follows from (2.9) that

E cosYs,t ≤ 1− 2 π−2ε2 τε(Ys,t) ≤ 1− 2 π−2ε2 τε.

Hence, we have
1− κ ≥ 2 π−2ε2 τε. (2.12)

By (2.11), 1− κ̃2 ≥ 1− κ. Therefore, ρ = 1− κ̃ = (1− κ̃2)/(1 + κ̃) ≥ (1− κ)/2
and, by (2.12), we obtain

ρ ≥ (1− κ)/2 ≥ π−2ε2 τε. (2.13)

Let us prove the second inequality of (2.5). Assume that ρ > 0. By (2.11), κ ≤ κ̃.
Hence, we have

ρ = 1− κ̃ ≤ 1− κ. (2.14)

An application of (2.10) gives

τd′(Ys,t) ≥ 1

2

(
1−E cos Ys,t − d

) ≥ 1

2
(1− κ − d).

Hence, we have
τd′ ≥ 1

2
(1− κ − d), d′ =

√
2 d. (2.15)

Taking d = ρ/2 we obtain τd′ ≥ ρ/4 and using d′ = ρ1/2 ≥ ρ we get τρ ≥ ρ/4.
Let us prove (2.6). Assume that τ∗ε > 0. Using (2.9) with Y = t Z∗, we get

1− κ∗ ≥ 2 π−2 ε2 τ∗ε . (2.16)

Since κ∗ = κ̃2, we have 1− κ∗ ≤ 2 ρ. Therefore, ρ ≥ π−2 ε2 τ∗ε . Now assume that
ρ > 0. We have ρ ≤ 1− κ̃2 = 1− κ∗. An application of (2.10) with Y = t Z∗ and
d = ρ/2 gives τ∗d′ ≥ ρ/4, where d′ = ρ1/2. It follows that τ∗ρ ≥ ρ/4.
Let us prove (2.7). Assume that τε > 0. Put d = π−2 ε2 τε. It follows from (2.12)

and the inequality κ∗ ≤ κ (see (2.11)) that

1− κ∗ ≥ 2 π−2 ε2 τε = 2 d.
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Invoking (2.10) with Y = t Z∗ we get

2d ≤ 1− κ∗ ≤ 1−E cos Y ≤ d + 2τd′(Y ), d′ =
√

2 d.

This implies τd′(Y ) ≥ d/2 and, therefore, τ∗d′ ≥ d/2 = 2−1π−2ε2τε. Since d′ ≥
d1/2 ≥ v, we obtain τ∗v ≥ 2−1 π−2ε2τε. The proof of the second inequality of (2.7)
is similar. We use (2.16) and the inequalities 1−κ ≥ (1−κ2)/2 ≥ (1−κ∗)/2 (see
(2.11)) to get 1 − κ ≥ 2d, where d = 2−1π−2ε2τ∗ε . Now an application of (2.15)
gives τd′ ≥ d/2, where d′ =

√
2 d. Since d′ ≥ u, we obtain τu ≥ τd′ ≥ 4−1π−2ε2 τ∗ε .

Finally, (2.8) is a consequence of (2.13) and (2.14): just note that δZ(a, b) = 1−κ.

Remark. The lemma remains true if we replace Z σ−1
Z by Z in the definition

of ρZ(a, b), τZ(ε, a, b), τ∗Z(ε, a, b) and δZ(a, b). With this change of notation, the
lemma applies as well to random variables without finite second moments.

3. Proofs

The section is organized as follows. We first prove Theorem 1. Then we prove
Corollary 1 and Theorem 2.
Assume, without loss of generality, that EX2

1 = τ−2. Then

F (x) = P{S ≤ x},
n∑

j=1

x2
j = 1

pq
. (3.1)

Write Ωk = {1, 2, . . . , k}, and denote

κk = EXk
1 , κk = E|X1|k, k ∈ Ωn.

Note that αk = τkκk, βk = τkκk. Below we shall use the inequalities

1 = β2 ≤ β3 ≤ β4 ≤ β5, β2
3 ≤ β4, β3β4 ≤ β5, β3

3 ≤ β5. (3.2)

The last three inequalities are proved in Lemma 5.5 below.
Let us introduce some more notation. By c, c1, c2, . . . we denote absolute con-

stants. We will write A ¿ B if A ≤ cB. By c(V1, V2, . . . ) we denote a positive
number, which depends only on the quantities V1, V2, . . . . Given a real function
g, we denote ‖g(x)‖ = supx |g(x)|. Let θ, θ1, θ2, . . . be independent random vari-
ables uniformly distributed in [0, 1] and independent of all other random variables
considered. For a complex valued smooth function h, we use the Taylor expansion

h(x) = h(0) + h(1)(0)x + · · ·+ h(n)(0) xn

n!
+ Eθ1h

(n+1)(θ1x)(1− θ1)n xn+1

n!
.
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Here Eθ1 denotes the conditional expectation given all random variables but θ1,
and h(j) denotes the j th derivative of h.

Proof of Theorem 1. We assume, without loss of generality, that β3/τ < b1. Oth-
erwise, (1.3) and (1.4) follow from the inequalities ∆j ≤ 1 + maxx |Gj(x)|, where
j = 1, 2, and the inequalities

|G1(x)| ¿ 1 + β3

τ
, |G2(x)| ¿ 1 + β3

τ
+

1 + β4 + β2
3

τ2

and (3.2).
Given a complex–valued function f , denote

I[a,d](f) :=
∫

|t|∈(a,d]

|f(t)|
|t| dt, 0 ≤ a < d.

By the Berry – Esseen smoothing lemma (see, e.g., Feller [7], 538 p.) we have

∆j ¿ I[0,T ]

(
F̂ − Ĝj

)
+ T−1‖G(1)

j (x)‖, T > 0, j = 1, 2. (3.3)

where F̂ and Ĝj denote the Fourier-Stieltjes transforms of F and Gj , j = 1, 2,
respectively. A straightforward calculation shows that

Ĝ1(t) = e−t2/2 + e−t2/2(it)3 q − p

6

α3

τ

Ĝ2(t) = Ĝ1(t) + e−t2/2 (it)4

τ2

( 4pq − 1

8
+ 1− 6pq

24
α4

)
(3.4)

+ e−t2/2 (it)6

τ2

1− 4pq

72
α2

3 + e−t2/2 (it)2

τ2

pq

2
.

In order to estimate the first summand on the right side of (3.3), we write

I[0,T ]

(
F̂ − Ĝj

) ≤ I[0,H]

(
F̂ − Ĝj

)
+ I[H,T ]

(
F̂

)
+ I[H,T ]

(
Ĝj

)
, H = b1τ

β3
,

thus, obtaining

∆j ¿ T−1 max
x
|G(1)

j (x)|+ I[0,H]

(
F̂ − Ĝj

)
+ I[H,T ]

(
F̂

)
+ I[H,T ]

(
Ĝj

)
. (3.5)

Note that the assumption β3/τ < b1 implies H > 1.
Let us prove (1.4). To this aim, we choose T = τ3 and construct the following

bounds for the quantities on the right side of (3.5),

T−1‖G(1)
2 (x)‖ ¿ β5τ

−3, (3.6)

I[H,T ]

(
Ĝ2

) ¿ β5τ
−3, (3.7)

I[0,H]

(
F̂ − Ĝ2

) ¿R, R = β5

τ3
, (3.8)

I[H,T ]

(
F̂

) ¿ τe−τ2ρ(τ2) ln τ. (3.9)
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To show (3.6) we bound

‖G(1)
2 (x)‖ ¿ 1 + β3 + β2

3 + β4 ¿ β4 ¿ β5 (3.10)

using (3.2).
In order to prove (3.7), we estimate

|Ĝ2(t)| ¿ e−t2/2
(
1 + |t|3β3

τ
+ t4

τ2
+ t4β4

τ2
+

t6β2
3

τ2
+ t2

τ2

)
(3.11)

using (3.4), and then apply the bounds

∫

|t|≥H

|t|ke−t2/2dt ≤ c(k, j)H−j , k, j = 0, 1, 2, . . . , (3.12)

combined with (3.2).
For convenience, the remaining part of the proof is divided into two steps.
Step 1. Proof of (3.8). In the proof, we use some ideas and techniques of Höglund

[9].
It is convenient to write Ĝ2 in the following form

Ĝ2 = exp{− t2

2
}(1 + g1 + g2 + g3

)
, gi = gi,1 + gi,2, i = 1, 2, 3,

g1,1 = (it)2 1− 4pq

4
τ−2, g1,2 = (it)3 q − p

6
τ2κ3,

g2,1 = (it)2 6pq − 1

4
τ−2, g2,2 = (it)4 1− 6pq

24
τ2κ4,

g3,1 = (it)4 4pq − 1

8
τ−2, g3,2 = (it)6 1− 4pq

72
τ4κ2

3 .

Let us write the Erdős – Rényi representation for E exp{itS}:

E exp{itS} = 1

2πλ

∫ π

−π

n∏

j=1

β(s + txj)ds, λ =
(

n

N

)
pNqn−N , (3.13)

where λ satisfies λ−1 ¿ τ , by Lemma 1 of Höglund [9]. Here β(u) = peiuq+qe−iup,
u ∈ R, denotes the Fourier transform of the distribution of the random variable
ν − p, where ν has the Bernoulli distribution with P{ν = 1} = 1−P{ν = 0} = p.
Denote

γ(u) = β(u) exp{ pq

2
u2}, aj = γ(s + txj), Aj = a1 · · · aj , 1 ≤ j ≤ n.
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It follows from (3.1) that
∑n

j=1(s+txj)2 = ns2+p−1q−1t2. In view of this identity,
we can write

n∏

j=1

β(s + txj) = An exp{− ζ0

2
}, ζ0 = τ2s2 + t2. (3.14)

Furthermore, we have

1

2πλ

∫ π

−π

γn(s) exp{− τ2s2

2
}ds = 1

2πλ

∫ π

−π

βn(s)ds = 1,

since E exp{itS} = 1 for t = 0. In particular, we can write

Ĝ2 = 1

2πλ

∫ π

−π

γn(s) exp{− ζ0

2
}(1 + g1 + g2 + g3)ds. (3.15)

For two complex valued functions f and g, we write f ∼ g if

τ

∫

|t|≤H

dt

|t|

∫

|s|≤π

|f(s, t)− g(s, t)| exp{− ζ0

2
}ds ¿R.

In view of (3.13), (3.14), (3.15) and the bound λ−1 ¿ τ , the inequality (3.8) is a
consequence of

An − γn(s) ∼ γn(s)(g1 + g2 + g3). (3.16)

We prove (3.16) in two steps. We first show (3.17) and thwn we prove (3.31); see
below.
Step 1.1. Let us show that

An − γn(s) ∼ γn−1(s)(S1 + S2) + γn−2(s)S3. (3.17)

Here we denote

Si =
n∑

j=1

v̂i,j , i = 1, 2, and S3 =
n∑

j=2

j−1∑

k=1

v̂1,j v̂1,k,

v̂i,j = txjEθvi(ξj), vi(ξj) = γ(i+2)(0)
ξi+1
j

(i + 1)!
, ξj = s + θtxj , 1 ≤ j ≤ n.

To prove (3.17) we write

An − γn(s) = γn−1(s)(S1 + S2) + γn−2(s)S3 + R1 + R2 + R3, (3.18)
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and show that
Ri ∼ 0, i = 1, 2, 3. (3.19)

Here

R1 =
n∑

j=1

Ψ1,j v̂
∗
3,j , R2 =

n∑

j=2

j−1∑

k=1

Ψ2,k

(
v̂2,j v̂

∗
1,k + v̂1,j v̂

∗
2,k

)
,

R3 =
n∑

j=3

j−1∑

k=2

k−1∑
r=1

Ψ3,rv̂1,j v̂1,kv̂∗1,r, Ψi,j = Aj−1γ
n−j−i+1(s),

v̂∗i,j = txjEθv
∗
i (ξj), v∗i (ξj) = Eθiγ

(i+2)(θiξj)
ξi+1
j (1− θi)

i

i!
.

Let us prove (3.18). For this purpose, we use identities (3.20)-(3.25). An appli-
cation of the simple identity

r∏

j=1

sj −
r∏

j=1

tj =
r∑

j=1

(j−1∏

k=1

sk

)( r∏

k=j+1

tk

)
(sj − tj) (3.20)

gives

Ar − γr(s) =
r∑

j=1

Aj−1γ
r−j(s)

(
aj − γ(s)

)
, (3.21)

where, by the mean value theorem,

aj − γ(s) = γ(s + txj)− γ(s) = txjEθγ
(1)(ξj), ξj = s + θtxj . (3.22)

Expanding γ(1)(ξ) in powers of ξ and using the fact that γ(1)(0) = γ(2)(0) = 0 we
obtain

γ(1)(ξ) = v∗1(ξ), (3.23)

γ(1)(ξ) = v1(ξ) + v∗2(ξ), (3.24)

γ(1)(ξ) = v1(ξ) + v2(ξ) + v∗3(ξ). (3.25)

Now take r = n in (3.21) and combine (3.22) with (3.25) to get

An−γn(s) = S′1 +S′2 +R1, where S′i =
n∑

j=1

Aj−1γ
n−j(s)v̂i,j , i = 1, 2. (3.26)
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Here we set A0 = 1. Furthermore, we apply (3.21) to Aj−1−γj−1(s) and combine
(3.22) with (3.23) (respectively with (3.24)) to get (3.27) (respectively (3.28)):

Aj−1 = γj−1(s) +
j−1∑

k=1

Ak−1γ
j−1−k(s)v̂∗1,k, j ≥ 2, (3.27)

Aj−1 = γj−1(s) +
j−1∑

k=1

Ak−1γ
j−1−k(s)(v̂1,k + v̂∗2,k), j ≥ 2.

(3.28)

Substituting (3.27) (respectively (3.28) into S′2 (respectively, S′1) one obtains

S′2 = γn−1(s)S2 + R2,1, S′1 = γn−1(s)S1 + S∗1 + R2,2, (3.29)

S∗1 =
n∑

j=2

j−1∑

k=1

Ak−1γ
n−k−1v̂1,kv̂1,j ,

R2,1 =
n∑

j=2

j−1∑

k=1

Ψ2,kv̂2,j v̂
∗
1,k, R2,2 =

n∑

j=2

j−1∑

k=1

Ψ2,kv̂1,j v̂
∗
2,k.

Substitution of the expression (3.27) into S∗1 gives

S∗1 = γn−2(s)S3 + R3. (3.30)

Collecting (3.29) and (3.30) in (3.26) and using the identity R2,1 + R2,2 = R2, we
obtain (3.18).
The proof of (3.19) is postponed to Appendix I.
Step 1.2. Let us prove

γn−1(s)(S1 + S2) + γn−2(s)S3 ∼ γn(s)(g1 + g2 + g3). (3.31)

We first show that

γn−1(s)(S1 + S2) + γn−2(s)S3 ∼ γn−1(s)(S?
1 + S?

2 ) + γn−2(s)S?
3 , (3.32)

where S?
j = S?

j,1 + S?
j,2, for j = 1, 2, 3, and

S?
1,1 = γ(3)(0)

2pq
t2s = i3

q − p

2
t2s, S?

1,2 = γ(3)(0)

6
t3nκ3 = (it)3 q − p

6
τ2κ3,

S?
2,1 = γ(4)(0)

4pq
s2t2 = 1− 6pq

4
t2s2, S?

2,2 = γ(4)(0)

24
t4nκ4 = 1− 6pq

24
t4τ2κ4,

S?
3,k =

(
γ(3)(0)

2

)2
(

n

2

)
n

n− 1
Lk = 4pq − 1

8
τ4Lk, k = 1, 2,

L1 = s2t4κ2
2 , L2 = t6

9
κ2

3 .
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Clearly, (3.32) is a consequence of

S1 = S?
1 , S2 = S?

2 + R?
2, S3 = S?

3 + R?
3 (3.33)

and
γn−1(s)R?

2 ∼ 0, γn−2(s)R?
3 ∼ 0. (3.34)

Here

R?
2 = γ(4)(0)

6
st3nκ3, R?

3 =
(

γ(3)(0)

2

)2
(

n

2

)
(R?

3,1 + R?
3,2 + R?

3,3),

with R?
3,k given in (3.36) and (3.37) below.

Let us prove (3.33). The first two identities follow from (3.1). To prove the last
one note that

S3 =
(

n

2

)
EV̂1,1V̂1,2, V̂1,j = tXjEθv1(s + θtXj), j = 1, 2. (3.35)

A simple calculation shows that

EV̂1,1V̂1,2 =
(

γ(3)(0)

2

)2(
L̂ + R?

3,1 + R?
3,2

)
, (3.36)

L̂ = s2t4EX2
1X2

2 + 1

9
t6EX3

1X3
2 , R?

3,1 = 2

3
st5EX3

1X2
2 ,

R?
3,2 = s4t2EX1X2 + 2s3t3EX2

1X2 + 2

3
s2t4EX3

1X2.

Finally, by Lemma 5.6, we have

L̂ = n

n− 1
(L1 + L2) + R?

3,3, R?
3,3 = − s2t4

n− 1
κ4 − t6

9

{6

n− 1
. (3.37)

Collecting the expressions (3.36) and (3.37) in (3.35), we obtain (3.33). The proof
of (3.34) is given in Appendix I. We arrive at (3.32).
We next show that

γn−2(s)S?
3 ∼ γn(s)S?

3 , γn−1(s)S?
j ∼ γn(s)S?

j , j = 1, 2,
(3.38)

γn(s)S?
j,k ∼ γn(s)gj,k, j = 1, 2, 3, k = 1, 2. (3.39)

Clearly, (3.32), (3.38) and (3.39) imply (3.31). The proof of (3.38) is given in
Appendix I.
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Let us prove (3.39). For k = 2, (3.39) is obvious, since S?
j,2 = gj,2, j = 1, 2, 3. In

order to prove (3.39), for k = 1 and j = 1, 2, 3, we show that

γn(s)S?
1,1 ∼ S?

1,1 + S∗1,1, γn(s)S?
j,1 ∼ S?

j,1, j = 2, 3,
(3.40)

S?
1,1 ∼ 0, S∗1,1 ∼ g1,1, S?

j,1 ∼ gj,1, j = 2, 3, (3.41)

gj,1 ∼ γn(s)gj,1, j = 1, 2, 3. (3.42)

Here we denote
S∗1,1 = (it)2 1− 4pq

12
τ2s4.

The proof of (3.40) and (3.42) is based on the inequalities of Lemma 5.7 and is
given in Appendix I. Here we prove (3.41). Before the proof, we introduce some
notation. For k = 0, 1, 2, . . . , denote

ξk = Ik(R), ξ∗k = Ik({|s| ≤ π}), ξ?
k = Ik({|s| > π}),

where
Ik(A) =

∫

A

sk exp{−s2τ2/2}ds.

Let ηk denote the k th moment of a standard normal random variable. Clearly,
for any k = 0, 1, 2, . . . , we have

ξk = ξ∗k + ξ?
k, ξk = ηkτ−k−1(2π)1/2, |ξ?

k| ≤ c(k)τ−k−3, (3.43)

where c(k) denotes a number depending only on k.
To prove the first equivalence relation of (3.41), note that

∫

|s|≤π

S?
1,1e

−ζ0/2ds = i3t2e−t2/2 q − p

2
ξ∗1

and use the bound |ξ∗1 | ¿ τ−4, which follows from (3.43) and the equality η1 = 0.
Furthermore, since η0 = 1, we obtain from (3.43)

ξ∗k = ηkτ−k−1(2π)1/2 − ξ?
k, τ−1(2π)1/2 = ξ∗0 + ξ?

0 .

Substitution of the second identity into the first one gives

ξ∗k = ηkτ−kξ∗0 + rk, rk = ηkτ−kξ?
0 − ξ?

k, |rk| ¿ τ−k−3. (3.44)

The last inequality follows from bounds (3.43) for |ξ?
j |.
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To prove the second equivalence relation of (3.41), note that
∫

|s|≤π

S∗1,1e
−ζ0/2ds = (it)2e−t2/2 1− 4pq

12
τ2ξ∗4 ,

∫

|s|≤π

g1,1e
−ζ0/2ds = (it)2e−t2/2 1− 4pq

4
τ−2ξ∗0 ,

and, by (3.44), ξ∗4 − η4τ
−4ξ∗0 = r4 with η4 = 3. We obtain

∫

|s|≤π

(S∗1,1 − g1,1)e−ζ0/2ds = (it)2e−t2/2 1− 4pq

12
τ2r4.

Since, by (3.44), |r4| ¿ τ−7, the integral of the right side with respect to the
measure dt/|t| is ¿ τ−5. This implies S∗1,1 ∼ g1,1.
The proof of the last two equivalence relations of (3.41) is similar: using (3.44)

with k = 2, we replace s2 in S?
j,1 by η2τ

−2 = τ−2 for j = 2, 3. The proof of (3.41)
is complete.
Step 2. Proof of (3.9). In view of (3.13) and the inequalities λ−1 ¿ τ , I[1,T ](1) ¿

ln T , it suffices to show that

n∏

j=1

|β(s + txj)| ≤ e−τ2ρ(τ2), for |s| ≤ π, H ≤ |t| ≤ T. (3.45)

The identity |β(u)|2 = 1− 2pq(1− cos(u)) combined with 1 + x ≤ ex gives

n∏

j=1

|β(s + txj)| ≤ exp{−τ2E
(
1− cos(s + tX1)

)}. (3.46)

By Lemma 2.1, we have

inf
{
E

(
1− cos(s + tX1)

)
: |s| ≤ π, H ≤ |t| ≤ τ3

} ≥ ρ(τ2).

Therefore, (3.45) follows from (3.46). The proof of (1.4) is complete.
Let us prove (1.3). To this aim, we apply (3.5) to G1 and T = τ2. Therefore, in

order to prove (1.3), it suffices to show that

1

T
max

x
|G(1)(x)| ¿ β4

τ2
, I[H,T ](Ĝ1) ¿ β4

τ2
, I[H,T ](F̂ ) ¿ τe−τ2ρ(τ) ln τ

and
I[0,H](F̂ − Ĝ1) ¿ β4

τ2
. (3.47)
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The first three inequalities are proved in much the same way as (3.6), (3.7) and
(3.9), respectively. The proof of (3.47) is almost the same as that of (3.8), but
simpler. To avoid the repetition, we do not present the proof of (3.47) here. The
theorem is proved.

Proof of Corollary 1. Denote a2
n = 1 + (n− 1)−1. We have

∆∗
j ≤ ∆j + ∆̃j , ∆̃j = sup

x
|Gj(x an)−G?

j (x)|, j = 1, 2. (3.48)

Expanding
Gj(x an) = Gj(x) + G

(1)
j (x)x(an − 1) + . . .

and using the inequality |an − 1 + n−1/2| ¿ n−2, one obtains

∆̃1 ¿ 1

n
+ β3

τn
, ∆̃2 ¿ 1

n2
+ β3

τn
+

1 + β4 + β2
3

τ2n
.

These inequalities combined with (3.2) imply ∆̃1 ¿ β4/τ2 and ∆̃2 ¿ β5/τ3.
Collecting the bounds for ∆̃j and ∆j (Theorem 1) in (3.48) we complete the proof
of the corollary.

The proof of Theorem 2 and Secs. 4 and 5 will appear in a subsequent issue of
this journal under the title ”One– and two–term Edgeworth expansions for a finite
population sample mean. Exact results. II”.

References

Albers, W., Bickel, P.J. and van Zwet, W.R., Asymptotic expansions for the power of distribution
free tests in the one-sample problem, Ann. Statist. 4 (1976), 108–156.

Babu, Gutti Jogesh and Bai, Z., D., Mixtures of global and local Edgeworth expansions and their
applications, J. Multivariate Anal. 59 (1996), 282–307..

Bikelis, A., On the estimation of the remainder term in the central limit theorem for samples
from finite populations, Studia Sci. Math. Hungar. 4 (1974), 345–354..

Bloznelis, M., A Berry–Esseen bound for finite population Student’s statistic, Ann. Probab. 27
(1999), 2089–2108.

Bloznelis, M. and Götze, F., An Edgeworth expansion for finite population U-statistics (1997),
To appear in Bernoulli.
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