
AN EDGEWORTH EXPANSION FOR

FINITE POPULATION U-STATISTICS

M. Bloznelis1 F. Götze1

Abstract. Suppose that U is a U -statistic of degree two based on N random ob-
servations drawn without replacement from a finite population. For the distribution
of a standardized version of U we construct an Edgeworth expansion with remain-
der O(N−1) provided that the linear part of the statistic satisfies a Cramér type
condition.

1. Introduction and results

Let A = {a1, . . . , an} denote a population of size n and let H : A × A → R
denote symmetric function of its two arguments. By X1, . . . , XN , N ≤ n, we
denote random variables with values in A such that X = {X1, . . . , XN} represents
a random sample from A of size N drawn without replacement, i.e., P{X = B} =(

n
N

)−1 for any subset B ⊂ A of size N . We shall investigate the second-order
asymptotics of the distribution of the statistic

U =
∑

1≤i<j≤N

H(Xi, Xj).

We assume that the statistic is centered. Write

U = L + Q, (1.1)

where

L =
N∑

i=1

g1(Xi) respectively Q =
∑

1≤i<j≤N

g2(Xi, Xj)
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is the linear, respectively the quadratic part of the statistic. Here

g1(x) = (N − 1) t(x), t(x) = n− 1

n− 2
E

(H(X1, X2) |X1 = x
)

and
g2(x1, x2) = H(x1, x2)− t(x1)− t(x2).

Since
E

(
g2(X1, X2) |X1 = x

)
= 0, for all x ∈ A, (1.2)

the random variables g1(Xi) and g2(Xj , Xk), 1 ≤ i ≤ N , 1 ≤ j < k ≤ N , (and
thus the parts L and Q) are uncorrelated.
If the linear part L dominates the statistic, for large N , the distribution of U

can be approximated by a Gaussian distribution using the Central Limit Theorem
(CLT).

The asymptotic normality of linear statistics based on samples drawn without
replacement from finite populations has been studied by a number of authors.
Erdös and Rényi (1959) proved the CLT under very mild conditions. The rate of
convergence in the CLT was first studied by Bikelis (1969). Berry–Esseen bounds
of order O(N−1/2) were obtained by Höglund (1978). Robinson (1978) proved the
validity of an Edgeworth expansion with a remainder of order O(N−3/2), see also
Bickel and van Zwet (1978).
Nandi and Sen (1963) studied the asymptotic behavior of finite population U -

statistics and showed that under proper regularity conditions the sequence of dis-
tributions of normalized U -statistics converges to the standard normal distribu-
tion. The rate of this convergence was investigated by Zhao and Chen (1987, 1990),
Kokic and Weber (1990, 1991) and, as a particular case of the rate of convergence
of general multivariate sampling statistics, by Bolthausen and Götze (1993). In
the case of independent and identically distributed observations the second order
asymptotic theory has been developed for U -statistics, see Bickel (1974), Götze
(1979), Callaert, Janssen and Veraverbeke (1980), Bickel, Götze and van Zwet
(1986), and for more general asymptotically normal symmetric statistics, see Ben-
tkus, Götze and van Zwet (1997) ([BGZ] for short). In contrast to the independent
case, there are only a few results concerned with higher order asymptotics of non-
linear finite population statistics. Babu and Singh (1985) proved the validity of an
Edgeworth expansion with a remainder o(N−1/2) for finite population multivariate
sample mean and applied this result to establish expansions for statistics that can
be represented as smooth functions of multivariate sample means, e.g. Student’s
t. Kokic and Weber (1990) established one term Edgeworth expansion with the
remainder o(N−1/2) for finite population U -statistics of degree 2.
In comparison to the results described above we shall provide an explicit re-

mainder term of order O(N−1) for finite population U -statistics which is optimal
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assuming a Cramér condition on the linear term only. The proof is based on a
finite population variant of Hoeffding’s decomposition as well as the Erdös-Rényi
representation and some ideas of [BGZ] like the data dependent smoothing.
Assume that

σ2 = N Eg2
1(X1) > 0.

The distribution function of the standardized statistic, F (x) = P{U ≤ xσ}, will
be approximated by the one term Edgeworth expansion,

G(x) = Φ
( x√

q

)− (q − p) q−1/2 α + 3 q1/2 κ

6 σ3 N1/2
Φ′′′

( x√
q

)
. (1.3)

Here Φ(x) is the standard normal distribution function,

p = N/n, q = 1− p

and
α = N3/2 Eg3

1(X1), κ = N5/2 Eg2(X1, X2) g1(X1) g1(X2). (1.4)

We shall derive bounds for the remainder

∆ = sup
x∈R

∣∣F (x)−G(x)
∣∣.

To prove the validity of an Edgeworth expansion, i.e., to establish bounds for ∆,
in addition to moment conditions one needs to impose a smoothness condition,
cf. Bickel and Robinson (1982). For instance, in the classical case of standard-
ized sums S = (Y1 + · · · + YN )/

√
N of independent and identically distributed

(i.i.d.) random variables Y1, . . . , YN such that EY1 = 0, EY 2
1 = 1 and EY 4

1 < ∞
asymptotic expansions for the distribution FS of S with the remainder O(N−1)
are obtained assuming Cramér’s condition (C),

sup
|t|>a

∣∣E exp{i t Y1}
∣∣ < 1. (C)

Bentkus, Götze and van Zwet (1997) introduced a local version of Cramér’s con-
dition (C), namely,

ρY1(a, b) := 1− sup
a≤|t|≤b

∣∣E exp{i t Y1}
∣∣ > 0. (C ′)

Condition (C ′) (with a = 1/E |Y1|3 and b = N1/2) is somewhat weaker than (C)
but still sufficient to prove the validity of Edgeworth expansions for FS up to an
order O(N−1). This modification is useful in more general situations, where Y1

depends on N in an implicit way, see [BGZ].
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For a sufficiently small absolute constant b1 like, e.g., b1 = 0.00144, we shall
assume that the distribution of the random variable Z =

√
N g1(X1)/σ satisfies

condition (C ′) with a′ = b1/E |Z|3 and b′ = N1/2, i.e.,

ρ = ρZ(a′, b′) > 0. (1.5)

Write

βr = E
∣∣N1/2 g1(X1)

∣∣r and γr = E
∣∣N3/2 g2(X1, X2)

∣∣r, r = 1, 2, . . . . (1.6)

Then the following estimate for the remainder ∆ holds.

Theorem 1.1. There exists an absolute constant A > 0 such that

sup
x∈R

∣∣F (x)−G(x)
∣∣ ≤ A

N

β4 + γ4

ρ2 q2 σ4
.

For linear statistics we obtain the following result.

Theorem 1.2. There exists an absolute constant B > 0 such that
∣∣P{L ≤ x} − Φ

( x√
q

)
+ (q − p) q−1/2 α

6 σ3 N1/2
Φ′′′

( x√
q

)∣∣ ≤ B

N

β4

ρ2 q σ4
.

The estimates in Theorems 1.1 and 1.2 hold for any fixed sample size N , pop-
ulation size n and functions H. If β4/σ4 and γ4/σ4 are bounded and q and ρ
are bounded away from 0 as N → ∞ and n → ∞, then these results establish
Edgeworth expansions with the remainder O(N−1).
The case where n →∞ and N is fixed corresponds to the i.i.d. situation. By the

law of large numbers we obtain a corollary for independent observations:
Let E denote a measurable space and let X1, X2, . . . be i.i.d. random variables

with values in E . Write
Ũ =

∑

1≤i<j≤N

H(Xi, Xj).

Here H : E×E → R denotes a measurable function symmetric in its two arguments
such that EH2(X1,X2) < ∞. We assume that E Ũ = 0 and decompose

Ũ =
N∑

i=1

g̃1(Xi) +
∑

1≤i<j≤N

g̃2(Xi,Xj).

Here g̃1 and g̃2 are defined in the same way as g1 and g2, but using t̃(x) =
E

(H(X1, X2) | X1 = x
)

instead of t(x). Let σ̃, α̃, β̃k, γ̃k, k = 2, 3, 4, and κ̃
denote the moments of g̃1(X1) and g̃2(X1,X2) corresponding to σ, α, βk, γk and
κ. We shall assume that

ρ̃ = ρZ
(
ã, b̃) > 0, where Z =

√
N g̃1(X1)/σ̃,

and where ã = b1/E |Z|3 and b̃ =
√

N . Then we have
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Corollary 1.3. There exists an absolute constant A > 0 such that

∣∣P{Ũ ≤ σ̃x} − Φ(x) + α̃ + 3κ̃

6 σ̃3 N1/2
Φ′′′(x)

∣∣ ≤ A

N

β̃4 + γ̃4

ρ̃2 σ̃4
.

Hence, Theorem 1.1 which yields this result as a special case may be regarded as a
partial extension of the result of [BGZ] to a simple random sampling model. They
proved the validity of an Edgeworth expansion with the remainder O(N−1) for
general symmetric asymptotically normal statistics based on i.i.d. observations.
In the case of U -statistics of degree two their result yields the estimate as in
Corollary 1.3 but with a lower moment γ̃3/σ̃3 instead of γ̃4/σ̃4 in the remainder.
An example given in Theorem 1.4 in [BGZ] shows that a Cramér type condition on

the linear part and the existence of moments of arbitrarily high order of the linear
and quadratic parts of the statistic (based on i.i.d. observations) are not sufficient
to obtain a higher order approximations (those with remainders o(N−1)) to the
distribution function of U . Hence, in this sense Corollary 1.3 and thus Theorem
1.1 are the best possible. To prove the validity of an Edgeworth expansion with
remainder o(N−1) one needs in addition to impose a smoothness condition on the
distribution of the quadratic part, see, e.g., Bickel, Götze and van Zwet (1986).
Let us compare our results with those of Robinson (1978) and Kokic and Weber

(1990). Robinson (1978) proved the validity of a two term Edgeworth expansion
with the remainder O(N−3/2) for linear statistics like L in (1.1) assuming the
following Cramér type condition. This condition, first used in Albers, Bickel and
van Zwet (1976), requires for a random variable Z that there exists an ε > 0 such
that

τZ(ε, a, b) = 1− sup
s∈R, a≤|t|≤b

P
{
t Z ∈ Lε + s

}
> 0. (c)

Here L = {2 π r, r = 0,±1, ±2, . . . } and Bε denotes the ε neighborhood of a set
B ⊂ R. Notice that ε1 ≤ ε2 implies τZ(ε1, a, b) ≥ τZ(ε2, a, b). Robinson assumed
that given C ′ > 0

there exist ε, δ > 0 and C > 0 such that τZ(ε, a, b) > δ, (1.7)

for

Z =
√

N g1(X1)/σ, a−1 = max
1≤i≤n

|zi|/C ′ and b−1 = pE |Z|5/(C N).

Here {z1, . . . , zn} denotes the set of values of the r.v. Z. Note that maxi |zi| =
maxi |zi|EZ2 ≥ E|Z|3, because of EZ2 = 1. For a sequence of finite population
linear statistics, say (Ln), Robinson’s (1978) Theorem establishes an Edgeworth
expansion with the remainder O(N−3/2) provided that β5/σ5 is bounded, p and q
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are bounded away from 0 and (1.7) holds with ε, δ and C not depending on n as
n → ∞. Robinson’s (1978) result was used by Kokic and Weber (1990) to show
∆ = o(N−1/2). The bounds for the remainders in these papers involve constants
which implicitly depend on p.
In Section 2 we compare conditions (c) and (1.5). Proofs of the Theorems 1.1, 1.2

and the Corollary 1.3 are given in Sections 3 and 4. Auxiliary results are collected
in Section 5.
Acknowledgment. The authors would like to thank V. Bentkus for discussions

and comments.

2. Smoothness conditions

Modifications of Cramér’s condition (C) that ensure the validity of Edgeworth
expansions for sums of random variables assuming a finite number of values only
were considered by Albers, Bickel and van Zwet (1976), van Zwet (1982), Does
(1983), Schneller (1989), see also Bickel and Robinson (1982). In this section we
show that a Cramér type condition used in Albers, Bickel and van Zwet (1976)
and Robinson (1978) is equivalent to that introduced in [BGZ], namely, that the
conditions (1.5) and (c) are equivalent. More specifically, given a random variable
Z and numbers 0 < a < b, (1.5) implies τZ(ρ, a, b) > ρ/4. Furthermore, if (c)
holds for some ε > 0, then ρZ(a, b) > ε2τZ(ε, a, b)/π2, see Lemma 2.1 below.
In order to check condition (c) one needs to maximize a bivariate function over

the set (s, t) ∈ [−π, π] × {a ≤ |t| ≤ b}. Such a (maximization) problem can be
difficult to solve numerically. A symmetrization argument suggests a version of
condition (c) which is easier to check. Let Z ′ denote an independent copy of Z
and let Z∗ = Z − Z ′ denote a symmetrization of Z. The condition

there exists ε > 0 such that τ∗Z(ε, a, b) = 1− sup
a≤|t|≤b

P
{
t Z∗ ∈ Lε

}
> 0 (c∗)

requires the estimation of the maximum of an univariate function only. Condi-
tion (c*) was proposed by V.Bentkus. Notice that ε1 < ε2 implies τ∗Z(ε2, a, b) ≤
τ∗Z(ε1, a, b). The following Lemma 2.1 shows that conditions (c∗) and (c) are equiv-
alent.
Write

δZ(a, b) = 1− sup
{
E cos

(
t Z + s

)
: s ∈ R, a ≤ |t| ≤ b}. (2.1)

Lemma 2.1. Let Z be a random variable. For 0 < a < b and 0 < ε < π write

ρ = ρZ(a, b), τε = τZ(ε, a, b), τ∗ε = τ∗Z(ε, a, b), u = π−1ε τ∗ε and v = π−1ε τε.

The following inequalities hold:
ε2τε

π2
≤ ρ ≤ 4 τρ,

ε2τ∗ε
π2

≤ ρ ≤ 4 τ∗ρ , τ∗v ≥
ε2τε

2 π2
, τu ≥ ε2 τ∗ε

4 π2
, δZ(a, b) ≥ ρ.

The proof of Lemma 2.1 is elementary, see Bloznelis and Götze (1997).
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3. Proofs

Throughout the proof we shall assume without loss of generality that β2 = 1.
Since the proof of our main result, Theorem 1.1, is rather complex and involved

we shall first outline the various steps. In the first step, choosing m ≈ ln N we
replace the statistic U by

U1 = L′+U ′, U ′ = g1(Xm+1)+ · · ·+ g1(XN )+
∑

m+1≤i<j≤N

g2(Xi, Xj), (3.1)

where

L′ = l(X1)+ · · ·+ l(Xm), with l(x) = g1(x)+ l0(x), l0(x) =
N∑

j=m+1

g2(x,Xj).

is a conditionally linear statistic given Xm+1, . . . , XN . Write

FX(x) = P{U1 ≤ x|Xm+1, . . . , XN}, f1(t) = E
(
exp{itU1}|Xm+1, . . . , XN

)
.

In the second step we construct upper/lower bounds for conditional probabilities

FX(x+) ≤ 1

2
+ V.P.

∫

R

e{−x t} 1

H
K

( t

H

)
f1(t) dt,

FX(x−) ≥ 1

2
−V.P.

∫

R

e{−x t} 1

H
K

( −t

H

)
f1(t) dt,

where F (x+) = limz↓x F (z), F (x−) = limz↑x F (z) and V.P. denotes Cauchy’s
Principal Value (Prawitz (1972) smoothing lemma). The bounded weight function
K(t/H), vanishing for |t| > H, and the cuttoff H = O(N) are specified below.
Taking expectations of the left and right hand sides respectively we obtain upper
and lower bounds for the distribution function F1(x) = P{U1 ≤ x}, see (3.7) and
(3.8) below.
In the third step we construct a bound for the integral of f1(t)K(t/H) over the

region cN1/2 ≤ |t| ≤ H. In the classical case of linear statistic the bounds for
characteristric function for large values of t, like c N1/2 ≤ |t| ≤ C N , are implied
by Cramer’s condition. We write

|f1(t)| ≤ |E(exp{it(l(X1) + · · ·+ l(Xm))}|Xm+1, . . . XN )|

and show that the Cramer condition |E exp{itg1(X1)}| < 1−ρ, (we do not require
|E exp{itl(X1)}| < 1 − ρ)! in combination with a suitable choice of the cuttoff
H = H(Xm+1, . . . , XN ) implies a bound like |f1| ≤ (1 − cρ)m, for some 0 <
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c < 1. The techniques are somewhat complicated by the fact that X1, . . . , Xm are
exchangeable only and we get the independence via the Erdös-Rényi decomposition
for (conditional and unconditional) characteristic functions.
In the next step we interchange the conditional characteristic function with the

unconditional one by changing the order of integration with respect to Lebesgue
measure and with respect to the distribution of Xm+1, . . . , XN , for |t| ≤ CN1/2.
Finally, by means of expansions we estimate the difference between the Fourier-
Stieltjes transforms of F and G.
Our proofs may be considered as an extension to the case of finite population

statistics of techniques used by Bentkus, Götze and van Zwet (1997) in the i.i.d.
case. We remark that the approach developed in the present paper applies as well
to more general nonlinear symmetric statistics based on samples drawn without
replacement from finite populations. These results will appear elsewhere.
3.1. Notation. By C, C0, C1, . . . and c, c0, c1, . . . we denote generic absolute

constants. We shall write A ¿ B if A < C B. The expression exp{i x} will be
abbreviated by e{x}. Write

Θ(t) =
( 2

π

π − t

π + t

)2
, K =

{
a ∈ A : H1|g1(a)| < b2

}
, H1 = b1N1/2

β3
. (3.2)

Here b1 is the same constant as in (1.5) and b2 denotes a sufficiently small absolute
constant like, e.g., b2 = 0.075.
Let ν = {ν1, . . . , νn} be a sequence of independent Bernoulli random variables

with probabilities P{νi = 1} = p and P{νi = 0} = q, for i = 1, 2, . . . , n. Write

β(t) = E e{(ν1 − p)t}, τ =
√

n p q, δ = δ(b1/β3, N1/2),

where δ(·, ·) is defined by (2.1). Let A =
(
A1, A2, . . . , An

)
denote random per-

mutation which is uniformly distributed on the permutations of the ordered set
(a1, . . . , an) of elements of A, independent of ν. By E∗ we denote the condi-
tional expectation given A, i.e., E∗(· · · ) = E(· · · |A). For k = 1, 2, . . . , write
Ωk = {1, . . . , k} and Dk = ΩN \Ωk. Given D = {i1, i2, . . . , ik} ⊂ Ωn, Ei1,...,ik and
ED denote the conditional expectation given Ai1 , . . . , Aik

.
3.2. Proof of Theorem 1.1
We may and shall assume, that for sufficiently small c0 > 0,

β4

q N
< c0,

ln N

δ N
< c0,

γ2

δ2q2N
< c0,

ln N

δ q n
< c0. (3.3)

Indeed, if (3.3) fails, then the bound of Theorem 1.1 follows from the inequalities
F (x) ≤ 1 and |G(x)| ¿ 1 + q−1/2β

1/2
4 /N1/2 + q1/2γ2/N

1/2 and ρ ≤ δ, see Lemma
2.1.
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Step 1. Fix an integer m ≈ C0δ
−1 ln N , with sufficiently large C0, and write

Λm =
∑

1≤k<l≤m

g2(Xk, Xl). (3.4)

Note that U = Λm+U1, where U1 is given by (3.1). Let F1 denote the probability
distribution function of U1 and ∆1 = supx

∣∣F1(x)−G(x)
∣∣. We have

∆ ≤ ∆1 + P
{|Λm| ≥ N−1δ−3/2

}
+ δ−3/2N−1 max

x
|G′(x)|.

By Chebyshev’s inequality and the inequality E|Λm|3 ¿ m6E |g2(X1, X2)|3,

P{|Λm| ≥ N−1δ−3/2} ≤ δ9/2N3E |Λm|3 ¿ δ−3/2 γ3 N−3/2 ln6 N.

Finally, using the bound |G′(x)| ¿ β4/q + γ2 we obtain

∆ ¿ ∆1 + N−1 δ−3/2
(
β4/q + γ2 + γ3

)
. (3.5)

Therefore, in order to prove the theorem it suffices to bound ∆1.
Smoothing. Let k be an integer approximately equal to (N + m)/2. Put I0 =
{m + 1, . . . , N} , J0 = Ωn \ I0, J1 = J0 ∪

{
m + 1, . . . , k

}
and J2 = J0 ∪{

k + 1, . . . , N
}
. Given A define (random) subpopulations Ai = {Ak, k ∈ Ji},

i = 0, 1, 2 and let A∗i be random variables uniformly distributed in Ai, i = 0, 1, 2,
independent of ν. Write

v1(a) =
N∑

j=k+1

g2(a,Aj), v2(a) =
k∑

j=m+1

g2(a,Aj), (3.6)

H = N δ/
(
32 q−1 N (Θ1 + Θ2) + 1

)
, Θi = E∗|vi(A∗i )|, i = 1, 2.

Notice, that Θ1 is a function of the r.v. Ak+1, . . . , AN , and Θ2 is a function of r.v.
Am+1, . . . , Ak.
Step 2. Split the sample as follows. Put Xj = Aj , for m < j ≤ N . The rest of the

sample, X1, . . . , Xm, is obtained by simple random sampling without replacement
from the (random) subpopulation A0.
An application of Prawitz’s (1972) smoothing lemma conditionally, given

Xm+1, . . . , Xm, or equivalently, given Am+1, . . . , AN , gives

F1(x+) ≤ 1

2
+ EV.P.

∫

R

e{−x t} 1

H
K

( t

H

)
f1(t) dt, (3.7)

F1(x−) ≥ 1

2
−EV.P.

∫

R

e{−x t} 1

H
K

( −t

H

)
f1(t) dt, (3.8)
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where 2 K(s) = K1(s) + iK2(s)/(π s), see, e.g., [BGZ]. Here

K1(s) = II{|s| ≤ 1} (1−|s|) and K2(s) = II{|s| ≤ 1} ((1−|s|)π s cot(π s)+ |s|).

Combining (3.7) and the inversion formula,

G(x) = 1

2
+ i

2 π
lim

M→∞
V.P.

∫

|t|≤M

e{−t x} Ĝ(t) dt

t
, (3.9)

we get, see e.g. [BGZ],

F1(x+)−G(x) ≤ EI1 + EI2 + EI3, (3.10)

I1 = 1

2
H−1

∫

R

e{−x t}K1

( t

H

)
f1(t) dt,

I2 = i

2 π
V.P.

∫

R

e{−x t}K2

( t

H

)(
f1(t)− Ĝ(t)

) dt

t
,

I3 = i

2 π
V.P.

∫

R

e{−x t}
(
K2

( t

H

)− 1
)
Ĝ(t) dt

t
,

where V.P. means also that one should take limM→∞, if it is necessary.
Combining (3.8) and (3.9) we obtain a bound for G(x)−F1(−x) similar to (3.10).

We shall bound F1(x+)−G(x) only. To this aim we prove that

|EI1|+|E(I2+I3)| ¿ N−1
(
β4/q+δ−1(δ−1+q−1)+δ−2q−2(γ1/2

2 +γ2)+γ4

)
. (3.11)

The analogous bound for G(x) − F1(x−) can be derived in the same way. Using
these bounds, (3.5) and the inequality δ ≥ ρ, see Lemma 2.1, we obtain the
estimate of the theorem. In the remaining part of the proof we verify (3.11).
Step 3. Estimate for |EI1|. We shall replace the random bound H in the

integral I1 by a non–random one and K1(t/H) by 1. We have |EI1| ≤ |EI4|+EI5

where,

I4 = H−1

∫

Z
e{−t x}K1

( t

H

)
f1(t)dt, Z = {t ∈ R : |t| ≤ H1},

I5 = H−1

∫

H1≤|t|
K1

( t

H

)∣∣f1(t)
∣∣dt ≤ H−1

∫

H1≤|t|≤H

∣∣f1(t)
∣∣dt.

Next we construct bounds for EI5 and |EI4|, see (3.12) and (3.19) below. It follows
from these bounds that |EI1| does not exceed the right-hand side of (3.11).
Let us show

EI5 ¿ N−2 β3. (3.12)
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For this purpose we represent f1(t) in Erdös-Rényi (1959) form conditionally, given
Am+1, . . . , AN . Let ν∗ = {ν∗1 , . . . , ν∗n} be a sequence of independent Bernoulli
random variables independent of A and with probabilities

P{ν∗i = 1} = p∗, P{ν∗i = 0} = q∗, p∗ = m

n− (N −m)
, q∗ = 1− p∗.

Write S∗ =
∑

k∈J0
(ν∗k − p∗) and L∗ =

∑
k∈J0

l(Ak)ν∗k . We have

f1(t) = P−1{S∗ = 0} 1

2π

∫ π

−π

Wds, W = E∗ e{t(L∗ + U ′) + sS∗}. (3.13)

We shall construct an upper bound for |W |. We have

|W | =
∏

k∈J0

|β∗(z(Ak) + tv(Ak))|, where β∗(x) = E e{(ν∗1 − p∗)x}.

Here we denote

z(a) = tg1(a) + s and v(a) = v1(a) + v2(a),

with vi(a) given by (3.6). Then we apply the identity |β∗(x)|2 = 1−2p∗q∗(1−cosx)
to x = z(a) + tv(a) and expand the cosine function in powers of tv(a) to get

|β∗(z(a) + tv(a))|2 ≤ u1(a) + u2(a), (3.14)

u1(a) = 1− 2p∗q∗
(
1− cos(z(a))

)
, u2(a) = 2 p∗ q∗ |t v(a)|.

Furthermore, we may assume that p∗ ≤ 8−1 (it is a consequence of the last inequal-
ity of (3.3) provided that c0 is small enough). This inequality implies u1(a) ≥ 1/2
and therefore,

u1(a) + u2(a) ≤ u1(a)(1 + 2u2(a)). (3.15)

Combining (3.14) and (3.15) we obtain

|W |2 ≤ W1W2, W1 =
∏

k∈J0

u1(Ak), W2 =
∏

k∈J0

(1 + 2u2(Ak)). (3.16)

To estimate W2 we apply the arithmetic-geometric mean inequality,

W2 ≤
(

1

|J0|
∑

k∈J0

(1 + 2u2(Ak))
)|J0|

=
(
E∗(1 + 2u2(A∗0))

)n−N+m (3.17)
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and use (5.2) to bound E∗|v(A∗0)| ≤ q−1(Θ1 + Θ2). Thus, for |t| ≤ H, we get

E∗(1 + 2u2(A∗0)) ≤ 1 + 4p∗q∗q−1H(Θ1 + Θ2) ≤ 1 + p∗q∗
δ

8
≤ exp{p∗q∗ δ

8
}.

This inequality in combination with (3.17) implies W
1/2
2 ≤ exp{mq∗δ/16}. Now

in view of (3.16) and (3.13) we obtain, for |t| ≤ H,

|f1(t)| ¿ W3W
1/2
1 , W3 = m1/2 exp{mq∗δ/16}.

Here we estimated P−1{S∗ = 0} ¿ m1/2, see (5.16). We have

EI5 ≤ 1

H1
E

∫

H1≤|t|≤H

|f1(t)|dt ≤ W3

H1

∫

H1≤|t|≤N

EW
1/2
1 dt. (3.18)

To bound EW
1/2
1 we apply Hölder’s inequality and Theorem 4 of Hoeffding (1963),

see Section 5 below,

(EW
1/2
1 )2 ≤ EW1 ≤

(
Eu1(A1)

)|J0|
.

Note that Eu1(A1) ≤ 1− 2p∗q∗δ, for H1 ≤ |t| ≤ N , by the choice of δ. Therefore,

EW
1/2
1 ≤ (1− 2p∗q∗δ)(n−N+m)/2 ≤ exp{−p∗q∗δ(n−N + m)} = exp{−mq∗δ}.

Combining this bound with (3.18) and using the inequality q∗ = 1− p∗ ≥ 7/8 we
obtain (3.12), provided that the constant C0 (in the definition of m) is sufficiently
large.
It remains to bound E I4. We shall show

|EI4| ¿ R0, R0 = N−1 δ−2 (1 + q−2 γ2) + N−1 δ−1 q−1(1 + q−1 γ
1/2
2 ). (3.19)

It follows from the inequality
∣∣K1(u)− 1

∣∣ ≤ |u| that

I4 = I6 + R, I6 = H−1

∫

Z
e{−t x}f1(t)dt, (3.20)

E|R| ≤ EH−1

∫

Z
|t|H−1dt = H2

1EH−2 ¿R0,

where in the last step we applied (5.1). Recall that U = U1 + Λm. Now, using the
inequality | e{tΛm} − 1| ≤ |tΛm| we obtain

I6 = I7 + R, I7 = H−1

∫

Z
e{−tx}f2(t)dt, f2(t) = EDm e{tU}, (3.21)

E|R| ≤ EH−1

∫

Z
EDm |tΛm|dt ≤ H2

1EH−1|Λm| ¿ R0,
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where in the last step we used the inequality |ΛmH−1| ≤ Λ2
m + H−2 and moment

inequalities (5.1) and (5.3). Next we replace I7 by

I8 = H−1

∫

Z0

e{−tx}f2(t)dt, Z0 = {C1q
−1 ≤ |t| ≤ H1}, (3.22)

where C1 is a sufficiently large constant. We have I7 = I8 + R with |R| ≤
2C1q

−1H−1. Hölder’s inequality in combination with (5.1) gives E|R| ¿ R0.
It remains to estimate EI8. Write I8 = 32q−1δ−1(J1 + J2) + δ−1J3, where

Ji =
∫

Z0

e{−tx}f2(t)Θidt, i = 1, 2, and J3 = N−1

∫

Z0

e{−tx}f2(t)dt.

In order to complete the proof of (3.19) we shall show

EJi ¿ N−1(1 + γ2), i = 1, 2, 3. (3.23)

Let us prove (3.23) for i = 1, 2. By the symmetry, it suffices to consider the case
where i = 1. Recall that the random variable Θ1 is a function of Xk+1, . . . , XN .
In view of the inequality k ≈ (N + m)/2 > m we can write

EΘ1f2(t) = EΘ1f3(t), where f3(t) = E
(
e{tU}|Xk+1, . . . , XN

)
. (3.24)

Given t ∈ Z0 choose an integer m1 = C2Nt−2 ln |t|. Here C2 is a sufficiently large
constant to be specified latter. Given C2 we may choose C1 in (3.22) large enough
so that m1 < 10−1qN < k, for t ∈ Z0. Write J3 = Ωm1 ∪ (Ωn \ ΩN ). We shall
represent our sample X1, . . . , XN as follows. For m1 + 1 ≤ j ≤ N , put Xj = Aj .
The remaining part of the sample (the observations X1, . . . , Xm1) represents a
simple random sample drawn without replacement form the set A3 = {Ak, k ∈
J3}. Let A∗3 be a random variable uniformly distributed in A3. Put

v3(a) =
N∑

k=m1+1

g2(a,Aj) and Θ3 = E∗|v3(A∗3)|. (3.25)

Notice that the random variable Θ3 is a function of Am1+1, . . . , AN .
Write U = U?

1 + Λm1 , where U?
1 = L′? + U ′

?, with

L′? = l?(X1)+ · · ·+ l?(Xm1), l?(x) = g1(x)+ l?0(x), l?0(x) =
N∑

j=m1+1

g2(x,Xj).

and with U ′
? defined by (3.1), but with m replaced by m1. Furthermore, Λm1 is

given by (3.4).
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Using the inequality | e{tΛm1} − 1| ≤ |tΛm1 | we obtain

EΘ1f3(t) = EΘ1f4(t) + R1, f4(t) = E
(
e{tU?

1 }|Xk+1, . . . , XN

)
, (3.26)

where |R1| ≤ E|tΛm1 |Θ1. Furthermore, combining (3.24) and (3.26) we get

EJ1 = EJ4 + R, J4 =
∫

Z0

e{−tx}f4(t)Θ1dt, (3.27)

|R| ≤
∫

Z0

E|tΛm1 |Θ1dt ¿ N−1γ2.

In the last step we invoke (5.1), (5.3) and apply Hölder’s inequality to get

E|Λm1 |Θ1 ≤ (EΛ2
m1

)1/2(EΘ2
1)

1/2 ¿ m1N
−5/2γ2 ¿ t−2 ln |t|N−3/2γ2

and bound the integral of the function |t|−1 ln |t| over the region Z0 by ln2 N .
To estimate EJ4 observe that, by the inequality m1 < k,

EΘ1f4 = EΘ1f5, f5 = E
(
e{tU ′

?}|Xm1+1, . . . , XN

)
.

Therefore, EJ4 = EJ5, where J5 is defined in the same way as J4, see (3.27), but
with f4 replaced by f5. Furthermore,

EJ5 = EJ6 + R, J6 =
∫

Z0

e{−tx}f5(t)Θ1IΘdt, (3.28)

IΘ = I{NΘ3 ≤ c1|t|}, |R| ≤
∫

Z0

EΘ1I{NΘ3 > c1|t|}dt ¿ NEΘ1Θ3.

Here c1 denotes a small positive constant to be determined below. Combining
(5.3) and Hölder’s inequality we get |R| ¿ N−1γ2.
In order to bound EJ6 we represent f5 in the Erdös-Rényi (1959) form, see (3.29).

Let ν? = {ν?
1 , . . . , ν?

n} be a sequence of independent Bernoulli random variables
independent of A and with probabilities

P{ν?
i = 1} = p?, P{ν?

i = 0} = q?, p? = m1

n− (N −m1)
, q? = 1− p?.

Write S? =
∑

k∈J3
(ν?

k − p?) and L? =
∑

k∈J3
l?(Ak)ν?

k and τ2
? = m1q

?. We have

f5(t) = λ?

∫ πτ?

−πτ?

W?ds, W? = E∗ e{t(L? + U ′
?) + s

τ?
S?}, (3.29)

with λ−1
? = 2πτ?P{S? = 0} satisfying λ? ¿ 1, by (5.16).
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Combining (3.28) and (3.29) we get

EJ6 ¿
∫

Z0

dt

∫ πτ?

−πτ?

EΘ1IΘ|W?|ds. (3.30)

In the next step we construct an upper bound for EΘ1IΘ|W?|. Note that the
inequality m1 < 10−1qN implies p? ≤ 10−1. The same argument as above, see
(3.16), gives

|W?|2 ≤ W ?
1 W ?

2 W ?
1 =

∏

k∈J3

u?
1(Ak), W ?

2 =
∏

k∈J3

(1 + 2u?
2(Ak)), (3.31)

where u?
1 and u?

2 are given by (3.14), but with p∗, q∗, z(a) and v(a) replaced by
p?, q?, z?(a) := tg1(a) + s/τ? and v3(a) (defined in (3.25)) respectively.
To bound W ?

2 we proceed as in (3.17) and obtain

W ?
2 ≤

(
1 + 2E∗u?

2(A
∗
3)

)n−N+m1 =
(
1 + 4p?q?|t|Θ3

)n−N+m1 ≤ exp{4m1q
?|t|Θ3}.

Furthermore, by our choice of m1, IΘ(W ?
2 )1/2 ≤ exp{2q?C2c1 ln |t|}. Therefore, in

view of (3.31),

EΘ1IΘ|W?| ≤ exp{2q?C2c1 ln |t|}EΘ1(W ?
1 )1/2. (3.32)

Now we apply Hölder’s inequality and invoke (5.1) to get,

EΘ1(W ?
1 )1/2 ≤ (EΘ2

1)
1/2(EW ?

1 )1/2 ¿ N−1γ
1/2
2 (EW ?

1 )1/2. (3.33)

To bound EW ?
1 we apply Theorem 4 of Hoeffding (1963) and obtain

EW ?
1 ≤

(
Eu?

1(A1)
)|J3| =

(
1− 2p?q?M

)n−N+m1 ≤ exp{−2m1q
?M}, (3.34)

where M = E
(
1− cos z?(A1)

)
. Combining the inequalities

M ≥ E
(
1− cos z?(A1)

)
IK(A1), IK(a) = I{a ∈ K},

1− cos z?(a) ≥ 2−1Θ(b2)z2
?(a), a ∈ K,

see (5.15), we get M ≥ 2−1Θ(b2)Ez2
?(A1)IK(A1). Now by Lemma 5.3,

M ≥ b3

(
t2N−1 + s2τ−2

?

)
, where b3 = 2−1Θ(b2)(1− 2b1b

−1
2 )



16 M. BLOZNELIS F. GÖTZE

is a positive constant (because of our choice of 0 < 2 b1 < b2 in (1.5) and (3.2)).
Substituting this inequality in (3.34) and using q? = 1− p? ≥ 9/10, we obtain

EW ?
1 ≤ exp{−2b3m1q

?(t2N−1 + s2τ−2
? )} ≤ exp{−2b3(

9

10
C2 ln |t|+ s2)}. (3.35)

Finally, collecting the inequalities (3.32), (3.33) and (3.35) in (3.30) we get

EJ6 ¿ N−1γ
1/2
2

∫

Z0

dt

∫ πτ?

−πτ?

exp{C2(2c1 − 9

10
b3) ln |t| − b3s

2}ds. (3.36)

Choosing c1 = b3/4 and C2 = 4/b3 we obtain bounded integrals in (3.36) and thus,
EJ6 ¿ N−1γ

1/2
2 ≤ N−1(1 + γ2). This inequality together with (3.27) and (3.28)

completes the proof of (3.23) in the case where i = 1.
The proof of (3.23) in the case where i = 3 is similar, but simpler: just write N−1

instead of Θ1 in the proof above.
Collecting the bounds (3.20), (3.21), (3.22) and (3.23) we obtain (3.19).
Step 4. Estimate for |E(I2 + I3)|. Write I2 + I3 = i (2π)−1(I9 + I10− I11 + I12),

I9 =
∫

|t|≤H1

e{−t x} f1(t)− Ĝ(t)

t
dt, I10 =

∫

H1≤|t|≤H

e{−t x}K2

( t

H

)
f1(t)

dt

t
,

I11 =
∫

|t|>H1

e{−t x} Ĝ(t) dt

t
, I12 =

∫

|t|≤H1

e{−t x} (
K2

( t

H

)− 1
)
f1(t)

dt

t
.

Using (3.3) it is easy to show that |EI11| ¿ q−1β4/N + γ2/N .
Using the inequality |K2(s)− 1| ≤ c s2, and invoking (5.1), we get

|EI12| ¿ EH−2 H2
1 ¿ δ−2 N−1 (1 + q−2γ2).

To bound |EI10| write

|EI10| ≤ EI13, I13 =
∫

H1≤|t|≤H

|f1(t)| dt

|t| .

The bound EI13 ¿ N−1β3 is obtained in a similar way as (3.12) above.
Collecting these inequalities we get

∣∣E (I2 + I3)
∣∣ ¿ |EI9|+ N−1q−1β4 + N−1δ−2(1 + q−2γ2). (3.37)

In order to complete the proof of (3.11) we shall show

|EI9| ¿ δ−2N−1(1 + γ2) + N−1(q−1β4 + γ4). (3.38)
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We have

E I9 =
∫

|t|≤H1

e{−t x} (
E e{t U1} − Ĝ(t)

) dt

t
.

Recall that U1 = U − Λm. Write e{tU1} = e{tU} e{−tΛm} and expand e{−tΛm}
in powers of −itΛm to get EI9 = I14 − i I15 + R, where

I14 =
∫ H1

−H1

e{−tx} F̂ (t)− Ĝ(t)

t
dt, I15 =

∫ H1

−H1

e{−tx}EΛm e{tU}dt,

and where |R| ≤ H2
1 EΛ2

m ¿ δ−2 N−1γ2, by (5.3). By the symmetry, EI15 =(
m
2

)
EI16, where I16 is defined in the same way as I15, but with Λm replaced by

g2(XN−1, XN ). The bound EI16 ¿ N−3/2(1 + γ2) is obtained in a similar way
as (3.23): just take f̃3 = E (e{t U}

∣∣XN−1, XN ) instead of f3 and g2(XN−1, XN )
instead of Θ1 in the proof of (3.23) (for i = 1). We obtain

|EI9 − I14| ¿ δ−2 N−1 (1 + γ2).

In the next section on expansions, see (4.1) below, we shall show
|I14| ¿ N−1 (β4/q + γ4) thus completing the proof of (3.38).

Proof of Theorem 1.2. The bound of the theorem follows from (3.11). Just note
that for a linear statistic we have g2(x, y) = 0, for any x, y ∈ A. In particular, we
do not need to assume that the last two inequalities of (3.3) hold.

Proof of Corollary 1.3. The corollary follows from Theorem 1.1, by the law of
large numbers (LLN) for U - statistics, see, e.g., Serfling (1980). Given N , the
functionH and a sequence of i.i.d. observations X1,X2, . . . , introduce the sequence
of finite populations An = {X1, . . . ,Xn} and the corresponding sequence of U -
statistics, (Un). Given x ∈ R, apply the bound of Theorem 1.1 to the sequence
of probabilities Pn{x} = P{Un ≤ x}. By LLN, we obtain limn Pn{x} = P{Ũ ≤
x}. Furthermore, the moments of the linear and quadratic parts of Un in the
expansion and in the remainder (in the estimate of Theorem 1.1) converge to the
corresponding moments of the statistics Ũ thus proving Corollary 1.3.

4. Expansions

Throughout the section we assume that β2 = 1 and that the inequalities (3.3)
hold. With H1 given in (3.2) we shall prove the inequality

∫

|t|≤H1

|t|−1
∣∣F̂ (t)− Ĝ(t)

∣∣dt ¿ R, R := 1

N

( β4

q
+ γ4

)
. (4.1)
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Introduce some notation. Let θ1, θ2, . . . denote independent random variables
uniformly distributed in [0, 1] and independent of all other random variables con-
sidered. For a vector valued smooth function H we use the Taylor expansion

H(x) = H(0) + H ′(0) x + · · ·+ H(n)(0) xn

n!
+ Eθ1H

(n+1)(θ1 x) (1− θ1)n xn+1

n!
.

Here Eθ1 denotes the conditional expectation given all the random variables but
θ1. In particular, we have the mean value formula, H(x)−H(0) = Eθ1H

′(θ1 x)x.
Given a sum S = s1+· · ·+sk denote S(i) = S−si and, similarly, S(i,j) = S−si−sj .
Using the fact that the distribution of U coincides with the conditional distribu-

tion of

U0 : =
∑

1≤i<j≤n

h(Ai, Aj)νiνj

=
n∑

i=1

g1(Ai)(νi − p) +
∑

1≤i<j≤n

g2(Ai, Aj)(νi − p)(νj − p),

conditioned on the event B := {S0 = N}, where S0 =
∑n

i=1 νi, we obtain

F̂ (t) = 1

2π P{B}

∫ π

−π

E e{t U0 + s(S0 −N)}ds,

see Erdös and Rényi (1959). Write

T =
n∑

i=1

Ti, Ti = zi(νi − p), zi = t xi + sτ−1, xi = g1(Ai), τ = (n p q)1/2,

Q =
∑

1≤i<j≤n

Qi,j , Qi,j = t yi,j(νi − p)(νj − p), yi,j = g2(Ai, Aj).

We have T + Q = t U0 + sτ−1(S0 −N) and, therefore,

F̂ (t) = λ

∫ πτ

−πτ

E e{T + Q}ds, λ−1 = 2 π τ P{B}.

Höglund (1978) showed that 2−1/2π ≤ λ−1 ≤ (2π)1/2, see (5.16).
We shall approximate the integrand E e{T + Q} by the sum h1 + h2, where

h1 = E e{T}, h2 = i3
(

n

2

)
E e{T (1,2)}V, V = Q1,2 T1 T2.



FINITE POPULATION 19

Proof of (4.1). Clearly, it suffices to prove the inequalities
∫

|t|≤H1

∣∣λ
∫

|s|≤π τ

(h1 + h2)ds− Ĝ(t)
∣∣ dt

|t| ¿R, (4.2)

I :=
∫

|t|≤H1

λ

∫

|s|≤π τ

∣∣E e{T + Q} − (h1 + h2)
∣∣ds

dt

|t| ¿ R. (4.3)

Note that in the i.i.d. case the inequality corresponding to (4.2) is proved in [BGZ],
Lemma 6.1. We prove (4.2) by combining the proof of this lemma with the proof
of the Berry–Esseen bound for finite population sample mean given in Höglund
(1978). For details we refer to Bloznelis and Götze (1997), Lemma 4.3.
To prove (4.3), we expand e{T + Q} in powers of Ti and Qi,j . In order to ensure

the integrability (with respect to the measure ds dt/|t|) of the remainders of these
expansions we split E e{T + Q} into a product of two functions (different for
different values of s and t) so that the first one is the characteristic function of a
sum of conditionally independent random variables and vanishes sufficiently fast
as s and t tends to infinity. This type of approach has been used earlier by Helmers
and van Zwet (1982), van Zwet (1984), Götze and van Zwet (1991), [BGZ] in the
i.i.d. situation.
Introduce the set Z = {(s, t) : |s| ≤ πτ, |t| ≤ H1}. For technical reasons it is

convenient to split the integral I in two parts I = I1 + I2 according to the regions
Z = Z1 ∪ Z2,

Z1 = Z ∩ {|t| ≤ C3q
−1} and Z2 = Z ∩ {C3q

−1 < |t| ≤ H1}. (4.4)

Here C3 denotes a sufficiently large absolute constant. We choose C3 = 600Θ−1(1).
In Lemma 4.1 we prove the bound I2 ¿ R. The proof of the bound I1 ¿ R is
similar but simpler. We skip it and refer to Bloznelis and Götze (1997), Lemma
4.2, for details. It remains to prove Lemma 4.1.

Note that, for any i, j, i1, . . . , ik ∈ Ωn such that {i, j} ∩ {i1, . . . , ik} = ∅ we have

Ei1,...,ik |yi,j |r ≤ c(k, r)E|yi,j |r, Ei1,...,ik |xj |r ≤ c(k, r)E|xj |r, r ≥ 0. (4.5)

We need to introduce some more notation. Given D = {i, j, . . . , k} ⊂ Ωn, let
E{D} = E{i,j,...,k} (respectively E[D] = E[i,j,...,k]) denote the conditional expecta-
tion given all the random variables but {νj , j ∈ D} (respectively the conditional
expectation given {νj , Aj , j ∈ D}). Given 1 ≤ m ≤ n, introduce the random
variables

ξi = t (νi − p)ζm(Ai), ζm(a) =
n∑

j=m+1

g2(a, Aj)(νj − p). (4.6)
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Here i ∈ Ωm and a ∈ A \ {Am+1, . . . , An}. Given B ⊂ Ωm, denote

YB =
∣∣E{B} e{

∑

i∈B

Ti}
∣∣, ZB =

∣∣E{B} e{
∑

i∈B

(Ti + ξi)}
∣∣.

Furthermore, given Ai, i ∈ B, let A∗B denote the random variable uniformly dis-
tributed in the set {Ai, i ∈ B} and let E∗B denote the conditional expectation
given all the random variables, but A∗B . Introduce the random variables

ΨB = gB(t)
∏

k∈B

u
1/2
[1] (zk), κB = αNE∗Bζ2

m(A∗B), IB = I{κB > δ}, (4.7)

where α = 2π(4Θ−1(1) + 1) and δ = Θ(1)/40, are constants,

gB(t) = exp{pq
δ

2

|B|
N

t2}, u[d](x) = 1− pq

2
Θ(d)x2I{|x| < d+π}, d > 0. (4.8)

In Lemma 5.4 below, for |t| ≤ H1 and |s| ≤ πτ , we prove the inequalities

ZB ¿ IB + ΨB , YB ¿ ΨB , Ei1,...,i4Ψr
B ¿ F r

B , r = 1, 2, (4.9)

where i1, . . . , i4 ∈ Ωn \B. Here we denote

FB = exp{−8 δ p q |B|N−1(t2 + s2/q)}.

We often take |B| ≥ m/4, with m given by (4.13). In this case we have

FB ≤ (t2 + s2/q)−10. (4.10)

Lemma 4.1. Assume that β2 = 1 and that (3.3) holds. Then

I2 = λ

∫

Z2

��E e{T + Q} − (h1 + h2)
��

|t| dsdt ¿R, (4.11)

where Z2 is given by (4.4).

Proof of Lemma 4.1. Given a positive number L and a complex valued function
f(s, t) we write f ≺ L, if

∫

Z2

|f(s, t)| |t|−1ds dt ¿ L.

Furthermore, for two complex valued functions f , g we write f ∼ g if f − g ≺ R.
In view of the inequality λ ≤ 21/2π−1, (4.11) can be written in short as follows,

E e{T + Q} ∼ h1 + h2. (4.12)
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Given (s, t) ∈ Z2 write u = t2 + s2/q and let

m = m(s, t) > C4q
−1nu−1 ln u, C4 = 300Θ−1(1), (4.13)

denote the smallest integer which is greater than C4q
−1n u−1 ln u. A simple cal-

culation shows that C4 ≤ m(s, t) ≤ C4C
−1
3 n, for (s, t) ∈ Z2. Since C4 = C3/2 we

have 10 ≤ m(s, t) ≤ n/2.
Write µ := mpqN−1 = C4u

−1 ln u. We shall often use the following fact,

(t2)α(s2)βµγ ≺ qβ+1/2c(α, β, γ), for γ > α + β + 1/2, α, β ≥ 0.

In what follows B always denote the set {4, . . . ,m}. Letters R, R1, R2 . . . will
denote random variables (remainders) which may be different in different places.
This will not cause any misunderstanding if we assume that R,R1, R2, . . . always
take the latest prescribed values.
Let us prove (4.12). Split Q = QA + QD + ξ and T = TA + TD, where

QA =
∑

1≤i<j≤m

Qi,j , QD =
∑

m<i<j≤N

Qi,j , ξ =
∑

1≤i≤m

ξi,

TA =
∑

1≤i≤m

Ti, TD =
∑

m<i≤N

Ti,

and where ξi are given by (4.6). Furthermore, write W = TD + QD. We have
T + Q = TA + QA + ξ + W and e{T + Q} = v e{QA}, with v = e{W + TA + ξ}.
Expanding in powers of iQA and using symmetry we obtain

E e{T + Q} = f∗1 + f∗2 + R, f∗1 = Ev, f∗2 = i

(
m

2

)
EvQ1,2, (4.14)

with |R| ≤ EQ2
A. By symmetry, we have

EQ2
A =

(
m

2

)
p2q2t2Ey2

1,2 ≤ µ2t2N−1γ2 ≺ R.

Now (4.14) implies e{T + Q} ∼ f∗1 + f∗2 .
The rest of the proof consists of two steps. In the first step we show that

f∗2 ∼ h3, h3 = i3
(

m

2

)
E e{T (1,2)}V. (4.15)

In the second step we prove

f∗1 ∼ h1 + h4, where h4 = h2 − h3. (4.16)
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Step 1. We start by showing

f∗2 ∼ f∗3 , f∗3 = i

(
m

2

)
Ev1Q1,2, v1 = e{W + TA + ξ(1,2)}. (4.17)

Write v = v1 e{ξ1 + ξ2}. Expanding the exponent in powers of (ξ1 + ξ2) we obtain

f∗2 = f∗3 + f∗4 + f∗5 + f∗6 , f∗j = i2
(

m

2

)
Ev1Q1,2lj , j = 4, 5, 6,

l4 = ξ1 + ξ2, l5 = (ξ2
1 + ξ2

2)v2, l6 = 2 ξ1ξ2v2, v2 = i2 e{θ1(ξ1 + ξ2)}(1− θ).

In order to prove (4.17) we shall show f∗i ∼ 0, for i = 4, 5, 6.
To show f∗6 ∼ 0 we bound |v1v2| ≤ 1 and obtain

|f∗6 | ≤ m2E|Q1,2ξ1ξ2| = m2p2q2|t|3E|y1,2ζm(A1)ζm(A2)|

Combining the inequalities |ζm(A1)ζm(A2)| ≤ ζ2
m(A1) + ζ2

m(A2) and

E|y1,2|ζ2
m(Ai) = pq(n−m)E|y1,2|y2

i,n ≤ qN−7/2γ3, i = 1, 2,

and the bound |t| ≤ N1/2 we get |f6| ¿ µ2t2γ3N
−1 ≺ R.

Let us show f∗5 ∼ 0. By symmetry, it suffices to show m2Ev1v2Q1,2ξ
2
1 ∼ 0.

Expanding the exponent in v2 in powers of iθξ2 and then the exponent in v1 in
powers of iT2 we obtain

|Ev1v2Q1,2ξ
2
1 | ≤ R1 + R2, R1 = E|Q1,2ξ2|ξ2

1 , R2 = E|Q1,2T2|ξ2
1 .

Invoking (4.45) and the inequality |t| ≤ N1/2, we get

m2R1 ¿ µ2t4N−5/2γ4 ≺ R, m2R2 ¿ µ2t2N−1(1 + γ4) ≺ R,

thus completing the proof of f∗5 ∼ 0.
Let us show f∗4 ∼ 0. By symmetry, it suffices to show m2R ∼ 0 with R =

Ev1Q1,2ξ1. Expanding v1 in powers of iT2 we can replace v1 by iT2v3, with
v3 = e{W +T

(2)
A + ξ(1,2) + θ1T2}. Now, using the simple bound |E{B}v3| ≤ ZB we

obtain
|R| ≤ ER1R2, R1 = |Q1,2T2|, R2 = E[1,2]|ξ1|ZB . (4.18)

At first we bound R2. By Hölder’s inequality,

R2 ≤ R3R4, R2
3 = E[1,2]ξ

2
1 , R2

4 = E[1,2]Z
2
B . (4.19)
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Furthermore, by (4.9), R2
4 ≤ 2R2

5 + 2R2
6, where

R2
5 = E[1,2]I

2
B ≤ δ−1E[1,2]κB ¿ E[1,2]κB , R2

6 = E[1,2]Ψ2
B ≤ F 2

B . (4.20)

Combining (4.20) with the relations (which follow from symmetry and (4.5))

E[1,2]ξ
2
1 = pq(n−m)(ν1 − p)2t2E1,2y2

1,n = q(ν1 − p)2t2NE1,2y2
1,n, (4.21)

E[1,2]κB = αNE[1,2]ζm(A4)2 = αN(n−m)pqE1,2y2
4,n ¿ qN−1γ2, (4.22)

we obtain

R3R5 ¿ q|ν1 − p||t|γ1/2
2 γ̃

1/2
2 and R3R6 ¿ N1/2q1/2|ν1 − p||t|γ̃1/2

2 FB . (4.23)

Here we denote γ̃2 = E1,2y2
1,n. Using the first inequality of (4.23) we obtain

m2ER1R3R5 ¿ m2p2q3t2γ
1/2
2 E|y1,2|γ̃1/2

2 |z2|

and invoking the second inequality of (4.47) we get

m2ER1R3R5 ¿ µ2t2N−1γ
3/2
2 ≺ R. (4.24)

Using the second inequality of (4.23) we obtain

m2ER1R3R6 ¿ m2p2q5/2N1/2FBt2E|y1,2|γ̃1/2
2 |z2|,

and invoking the first inequality of (4.47) and (4.10) we get

m2ER1R3R6 ¿ µ2N−1FBt2(|t|q1/2 + |s|)γ2 ≺ R. (4.25)

Since, by (4.18) and (4.19), |R| ¿ ER1R3R5 + ER1R3R6, it follows from (4.24)
and (4.25) that m2R ∼ 0.
In the next step we show that

f∗3 ∼ f∗7 , f∗7 = i3
(

m

2

)
Ev4V, v4 = e{W + T

(1,2)
A + ξ(1,2)}. (4.26)

Substitute v1 = v4 e{T1 + T2} in f∗3 . Furthermore, using the expansion

e{T1 + T2} =
(
1 + T2 + T 2

2 e θ1T2}(1− θ1)
)
e{T1} (4.27)

= e{T1}+ T2

(
1 + T1 + T 2

1 e{θ2T1}(1− θ2)
)

+ T 2
2 e{θ1T2}(1− θ1)(1 + T1 e{θ3T1}),
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we obtain Ev1Q1,2 = Ev4V +R1 +R2, with |Ri| ≤ EZB |V Ti|, i = 1, 2. Therefore,
in order to prove (4.26) it remains to show m2Ri ∼ 0, for i = 1, 2. By symmetry,
it suffices to show m2R1 ∼ 0.
It follows from (4.9) and (4.22) that

|R1| ≤ E|V T1|κB + E|V T1|ΨB ¿ (N−1qγ2 + FB)E|V T1|. (4.28)

Combining (4.46) and the inequalities |t| ≤ N1/2 and |s| ≤ (Nq)1/2 we obtain

E|V T1| ¿ p2q2|t|(|t|+ |s|q−1/2)N−2(β4 + γ4)1/2.

Therefore,

m2N−1qγ2E|V T1| ¿ µ2(t2 + s2)N−1(β4 + γ4) ≺ R.

Finally, (4.46) in combination with (4.10) yields m2FBE|V T1| ≺ R and this in-
equality in view of (4.28) completes the proof of (4.26).
Now we show

f∗7 ∼ f∗8 , f∗8 = i3
(

m

2

)
Ev5V, v5 = e{W + T

(1,2)
A }, (4.29)

Expanding v4 in powers of iξ(1,2) we obtain

Ev4V = Ev5V + iEv5V ξ(1,2) + R, with |R| ≤ E
(
ξ(1,2)

)2|V |. (4.30)

Write |R| ≤ E|V |E[1,2]

(
ξ(1,2)

)2. By symmetry and (4.5),

E[1,2]

(
ξ(1,2)

)2 = p2q2(m− 2)(n−m)t2E1,2y2
3,n ¿ µqt2N−1γ2.

Now invoking (4.31), see below, and the bound |t| ≤ N1/2 we get

m2|R| ¿ µ3t2(t2 + s2)N−1γ2(γ2 + 1) ≺ R.

This inequality together with (4.30) implies f∗7 ∼ f∗8 + f∗9 , where

f∗9 = i4
(

m

2

)
Ev5V ξ(1,2) = i4

(
m

2

)
(m− 2)Ev5V ξ3,

by symmetry. In order to prove (4.29) it remains to show f∗9 ∼ 0.
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Let us prove f∗9 ∼ 0. Expanding v5 in powers of iT3 we obtain
|Ev5V ξ3| ≤ EYB |V ξ3T3|. Now, using (4.9) we get

|f∗9 | ≤ m3E|v5V ξ3T3| ≤ m3FBE|V ξ3T3| ≤ m3FBE|V |E1,2|ξ3T3|.

Finally, invoking (4.10) and the following bounds (which follow from symmetry
and (4.5))

E|V | ≤ (EQ2
1,2)

1/2(ET 2
1 T 2

2 )1/2 ≤ p2q2|t|(t2 + s2/q)N−5/2γ
1/2
2 , (4.31)

E1,2|ξ3T3| ≤ (E1,2ξ2
3)1/2(E1,2T 2

3 )1/2 ≤ pq|t|(|t|+ |s|)N−3/2γ
1/2
2 ,

we obtain f∗9 ≺ R.
Let us show thatf∗8 ∼ h3. Expanding v5 in powers of iQD we get

Ev5V = Ev6V + iEv6V QD + R, v6 = e{T (1,2)}, (4.32)

with |R| ≤ EYB |V |Q2
D. Note, that by the symmetry,

EYB |V |Q2
D =

(
n−m

2

)
t2p2q2EYB |V |y2

n−1,n. (4.33)

Invoking (4.9) and then using (4.5) we get

EYB |V |y2
n−1,n ≤ FBE|V |y2

n−1,n ≤ FBN−3γ2E|V |. (4.34)

Combining (4.33) and (4.34) and then invoking (4.31) and (4.10) we obtain
m2R ≺ R. Now it follows from (4.32) that f∗8 ∼ h3 + f∗10, where

f∗10 = i4
(

m

2

)
Ev6V QD = i4

(
m

2

)
(n−m)Ev6V Qn−1,n,

by symmetry.
We complete the proof of (4.15) by showing that f∗10 ∼ 0. Expanding v6 in

powers of iTn−1 and iTn we get |Ev6V Qn−1,n

∣∣ ¿ E|V ∗V |YB , where we denote
V ∗ = Tn−1TnQn−1,n. Furthermore, using (4.9) and then invoking the simple
inequality E1,2|V ∗| ¿ E|V ∗| we obtain

E|V ∗V |YB ¿ FBE|V ∗V | ¿ FBE|V ∗|E|V | = FB(E|V |)2.

Therefore, |f∗10| ≤ m2(n − m)FB(E|V |)2. Finally, an application of (4.31), and
(4.10) yields f∗10 ≺ R thus completing the proof of (4.15).
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Step 2. In order to prove (4.16) it suffices to show

f∗1 ∼ f∗11 + f∗12, f∗11 = Ev7, f∗12 = iEv7ξ, v7 = e{T + QD},
(4.35)

f∗11 ∼ h1 + f∗13, f∗13 =
(

n−m

2

)
i3E e{T (1,2)}V, (4.36)

f∗12 ∼ f∗14, f∗14 = m(n−m)i3E e{T (1,2)}V. (4.37)

Let us prove (4.35). Expanding v in powers of iξ we obtain

f∗1 = f∗11 + f∗12 + f∗15, with f∗15 = i2Ev7ξ
2 e{θ1ξ}(1− θ1).

In order to prove (4.35) we shall show f∗15 ∼ 0. Split

Ωm = S1∪S2∪S3∪S4, with Si∩Sj = ∅, i 6= j, and |Sj | ≈ m/4, 1 ≤ j ≤ 4.

Split ξ = δ1 + · · ·+ δ4, where δj =
∑

i∈Sj
ξi. We have

f∗15 =
∑

1≤j,k≤4

rj,k, rj,k = i2Ev7δjδk e{θ1ξ}(1− θ1).

We shall show rj,k ∼ 0, for every 1 ≤ j, k ≤ 4. By symmetry, it suffices to prove
r1,1 ∼ 0 and r1,2 ∼ 0.
Let us show r1,1 ∼ 0. Expanding in powers of iθ1δ2 we obtain

e{θ1ξ} = v8 + iδ2v8ṽ, v8 = e{θ1(δ1 + δ3 + δ4)}, ṽ = θ1Eθ2 e{θ1θ2δ2}.

Substitution of this formula gives

r1,1 = R1 + R2, R1 = i2Ev7v8δ
2
1(1− θ1), R2 = i3Ev7v8ṽδ2

1δ2(1− θ1).

Similarly, expanding v8 in powers of iθ1δ3 we get R2 = R3 + R4, where

R3 = i3Ev7v9δ
2
1δ2ṽ(1− θ1), v9 = e{θ1(δ1 + δ4)}, |R4| ≤ Eδ2

1 |δ2δ3|.

Therefore, |r1,1| ≤ |R1| + |R2| + |R3|. Furthermore, invoking the inequalities
|E{S2}v7v8| ≤ YS2 and |E{S3}v7v9ṽ| ≤ YS3 we obtain

|r1,1| ≤ r1 + r2 + r3, r1 = Eδ2
1YS2 , r2 = Eδ2

1 |δ2|YS3 , r3 = Eδ2
1 |δ2δ3|. (4.38)

Now we show ri ∼ 0, for i = 1, 2, 3. Denote for brevity mi = |Si|, 1 ≤ |i| ≤ 4.
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Let us show r2 ∼ 0. By symmetry,

E{S1}δ
2
1 = m1pqt2ζ2

m(A1), E{S2}δ
2
2 = m2pqt2ζ2

m(Ai0), (4.39)

with i0 ∈ S2. Combining (4.39) and the inequality E{S2}|δ2| ≤ (E{S2}δ
2
2)1/2 and

using symmetry again we get

r2 = EYS3(E{S1}δ
2
1)E{S2}|δ2| ≤ m1m

1/2
2 (pq)3/2|t|3Eζ2

m(A1)|ζm(Ai0)|YS3

¿ m3/2(pq)3/2|t|3E|ζm(A1)|3YS3 . (4.40)

In the last step we applied (4.44) and used again symmetry. Furthermore, invoking
(5.4) and using symmetry and (4.9), we obtain

E|ζm(A1)|3YS3 ¿ N1/2pq(n−m)E|y1,n|3YS3 ≤ N−3FS3γ3.

This inequality in combination with (4.40) and (4.10) implies r2 ∼ 0.
To show r1 ∼ 0 we use the symmetry, and apply (4.9) and (4.10),

r1 = m1t
2p2q2(n−m)Ey2

1,nYS2 ¿ t2FS2N
−1γ2 ≺ R (4.41)

To show r3 ∼ 0 we first use (4.44) to get r3 ≤ Eδ2
1δ2

2 + Eδ2
1δ2

3 and then apply
(4.48). Finally, collecting the bounds ri ≺ R, i = 1, 2, 3 in (4.38) we get r1,1 ∼ 0.
Let us show r1,2 ∼ 0. Expanding in powers of iθ1δ3 and iθ1δ4 we get

e{θ1ξ} = v10 + v10v11iθ1δ3, v10 = e{θ1(δ1 + δ2 + δ4)}, v11 = Eθ2 e{θ1θ2δ3},
v10 = v12 + v12v13iθ1δ4, v12 = e{θ1(δ1 + δ2)}, v13 = Eθ3 e{θ1θ3δ4}.

Combining these expansions we obtain

e{θ1ξ} = v10 + v11v12iθ1δ3 + v11v12v13i
2θ2

1δ3δ4.

The last identity in combination with the bounds |E{S3}v7v10| ≤ YS3 and
|E{S4}v7v11v12| ≤ YS4 implies

r1,2 ≤ E|δ1δ2|YS3 + E|δ1δ2δ3|YS4 + E|δ1δ2δ3δ4|
≤ Eδ2

1YS3 + Eδ2
2YS3 + Eδ2

1 |δ2|YS4 + Eδ2
3 |δ2|YS4 + Eδ2

1δ2
2 + Eδ2

3δ2
4 .

(4.42)

In the last step we used the simple inequality ab ≤ a2 + b2 several times. Note,
that the quantities in (4.42) can be bounded in the same way as r1, r2 and r3
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above in the proof of r1,1 ∼ 0. Hence, r1,2 ∼ 0 and this completes the proof of
(4.35).
Let us prove (4.36). Expanding v7 in powers of iQD we get

f∗11 = h1 + f∗16 + R, f∗16 = iE e{T}QD, with |R| ≤ EYBQ2
D.

Furthermore, by symmetry,

f∗16 =
(

n−m

2

)
iE e{T}Q1,2 and EYBQ2

D =
(

n−m

2

)
p2q2t2EYBy2

n−1,n.

Combining (4.9) and (4.10) we obtain R ≺ R and, therefore, f∗11 ∼ h1 + f∗16.
Let us show f∗16 ∼ f∗13. Write e{T} = e{T (1,2)} e{T1 + T2} and use (4.27) to get

E e{T}Q1,2 = i2E e{T (1,2)}V + R1 + R2, with |Ri| ¿ E|V Ti|YB . (4.43)

By (4.9), |Ri| ¿ FBE|V Ti|. Furthermore, invoking (4.46) and (z.a5) we obtain
n2Ri ≺ R, i = 1, 2. These bounds together with (4.43) imply f∗16 ∼ f∗13, thus
completing the proof of (4.36).
Let us prove (4.37). By symmetry, f∗12 = miEv7ξ1. Expanding v7 in powers of

iT1 we get

f∗12 = f∗17 + R1, f∗17 = mi2E e{T (1) + QD}ξ1T1, |R1| ≤ mEYB |ξ1|T 2
1 .

Furthermore, expanding the exponent in powers of iQD we obtain

f∗17 = f∗18 + R2, f∗18 = mi2E e{T (1)}ξ1T1, |R2| ≤ mEYB |ξ1T1QD|.

Note, that by symmetry, f∗18 = m(n − m)i2E e{T (1)}Q1,2T1. Finally, expanding
the exponent in powers of iT2 we get

f∗18 = f∗14 + R3, with |R3| ≤ n(n−m)EYB |V T2|.

Therefore in order to prove (4.37) it remains to show Ri ≺ R, for i = 1, 2, 3.
To show R1 ≺ R use the inequality |ξ1|T 2

1 ≤ ξ2
1 + T 4

1 . We get |R1| ≤ R1,1 + R1,2,
with R1,1 = mEYBT 4

1 and R1,2 = mEYBξ2
1 . By (4.9) and (4.10), R1,1 ≺ R.

Furthermore, the bound R1,2 ≺ R is obtained in the same way as (4.41).
To show R2 ≺ R use the inequality |ξ1T1QD| ≤ ξ2

1 + T 2
1 Q2

D. We get |R2| ≤
R2,1 + R2,2, with R2,1 = mEYBξ2

1 ≺ R, cf. (4.41), and with

R2.2 = mEYBT 2
1 Q2

D = m

(
n−m

2

)
EYBT 2

1 Q2
n−1,n ≤ mn2FBET 2

1 Q2
n−1,n,
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by symmetry and (4.9). Now, combining (4.10) and the inequality

ET 2
1 Q2

n−1,n = p3q3t2Ez2
1E

1y2
n−1,n ¿ p3q3t2(t2 + s2/q)N−4γ2,

(here we use (4.5)) we obtain R2,2 ≺ R.
To show R3 ≺ R we apply (4.9) to get R3 ≤ nmFBE|V T2|. Then combining

(4.46) and (4.10) we obtain R3 ≺ R.
We arrive at (4.37), thus completing the proof of the lemma.

In the next lemma we collect some auxiliary inequalities used in Lemma 4.1.
We shall frequently use the inequalities

ab ≤ a2 + b2, a2b ≤ a3 + b3. (4.44)

Lemma 4.2. We have

E|Q1,2ξ2|ξ2
1 ¿ p2q3t4N−9/2γ4, E|Q1,2T2|ξ2

1 ¿ p2q3|t|3N−7/2(1 + γ4), (4.45)

E|Q1,2T2T
2
1 | ¿ p2q2|t|(|t|3 + |s|3q−3/2

)
N−3(β4 + γ4)1/2, (4.46)

E|y1,2x2|γ̃1/2
2 ¿ N−7/2γ2, E|y1,2z2|γ̃1/2

2 ¿ N−3γ2, γ̃2 = E1,2y2
1,n, (4.47)

Eδ2
Kδ2

M ¿ p2q2t2m2N−3γ4, for any K,M ⊂ Ωm, K ∩M = ∅, (4.48)

with |K|, |M | > 0. Here δK =
∑

i∈K ξi.

Proof. Let us prove (4.45). We have

E|Q1,2ξ2ξ
2
1 | ¿ p2q2t4E|y1,2ζm(A2)|ζ2

m(A1) ≤ 2p2q2t4E|y1,2ζ
3
m(A1)|,

where in the last step we apply (4.44) and use symmetry. Furthermore, writ-
ing E|y1,2ζ

3
m(A1)| = E|y1,2|E1,2|ζ3

m(A1)| and invoking (5.4) we obtain the first
inequality in (4.45). To prove the second inequality we apply (4.21),

E|Q1,2T2|ξ2
1 = E|Q1,2T2|E[1,2]ξ

2
1 ≤ p2q3N |t|3Ey2

1,n|y1,2z2|,

and use the inequality Ey2
1,n|y1,2z2| ≤ N−9/2(1 + γ4). To prove this inequality

combine (4.5), Hölder’s inequality and the bounds

|y1,2z2| ≤
√

N |y1,2x2|+ |y1,2|, |y1,2x2| ≤ Ny2
1,2 + N−1x2

2.

Let us prove (4.46). We have E|Q1,2T2|T 2
1 ≤ p2q2|t|E|y1,2z2|z2

1 . Now (4.46)
follows from the bound

E|y1,2z2|z2
1 ≤ (|t|3 + t2|s|q−1/2 + |t|s2/q + |s|3q−3/2)N−3(β4 + γ4)1/2
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which is a consequence of the following inequalities

z2
1 |z2| ≤ (t2x2

1 + s2/τ2)|z2|, E|y1,2x2| ≤ (Ey2
1,2)

1/2(Ex2
2)

1/2 ≤ N−2γ
1/2
2 ,

E|y1,2x2|x2
1 ≤ (Ey2

1,2x
2
1)

1/2(Ex2
1x

2
2)

1/2 ≤ N−1(Ey4
1,2Ex4

1)
1/4 ≤ N−3(β4 + γ4)1/2,

E|y1,2|x2
1 ≤ (Ey2

1,2x
2
1)

1/2(Ex2
1)

1/2 ≤ N−1/2(Ey4
1,2Ex4

1)
1/2 ≤ N−5/2(β4 + γ4)1/2.

Let us prove (4.47). By (4.44), |y1,2x2|γ̃1/2
2 ≤ N−1/2y2

1,2 + N1/2x2
2γ̃2. Now

invoking (4.5) we obtain the first inequality of (4.47). To prove the second one,
write

E|y1,2z1|γ̃1/2
2 ≤ N1/2E|y1,2x2|γ̃1/2

2 + E|y1,2|γ̃1/2
2 ,

(here we used the bounds |t| ≤ N1/2 and |s| ≤ τ) and apply Hölder’s inequality
to the second summand.
Let us prove (4.48). By symmetry,

Eδ2
Kδ2

M = |K| |M | p2q2t4Eζ2
m(A1)ζ2

m(A2). (4.49)

A simple calculation yields

Eζ2
m(A1)ζ2

m(A2) ≤ pq(n−m)N−6γ4 + p2q2(n−m)(n−m− 1)N−6γ2
2 ¿ N−4γ4.

Substituting this bound in (4.49) and using the inequalities |K|, |M | < m and
t2 ≤ N we obtain (4.48).

5. Auxiliary results

Lemma 5.1. For the random variables vi and Θi, i = 1, 2, 3, defined in (3.6) and
(3.25) above, the following inequalities hold

EΘ2
i ≤ N−2 γ2, i = 1, 2, 3, (5.1)

E∗|vi(A∗0)| ≤ q−1 Θi, i = 1, 2. (5.2)

For Λm =
∑

1≤i<j≤m g2(Ai, Aj), with 3 ≤ m ≤ n, we have

EΛ2
m = m (m− 1)

2 N3
(1− cΛ) γ2, cΛ = 2 (m− 2)

n− 2
− (m− 2)(m− 3)

(n− 2)(n− 3)
. (5.3)

For the random variable ζm(Ak) defined in (4.6) the following inequality holds

E{m+1,...,n}|ζm(Ak)|3 ¿ pq(npq)1/2
n∑

j=m+1

|g2(Ak, Aj)|3, k ≤ m ≤ n, (5.4)
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recall the definition of E{m+1,...,n} just before (4.6).

Proof of Lemma 5.1. We shall prove (5.1) in the case i = 1 only. For i = 2, 3 the
proof is similar. By Hölder’s inequality,

Θ2
1 ≤ E∗v2

1(A∗1) =
∑

k+1≤i,j≤N

E∗g2(A∗1, Ai) g2(A∗1, Aj).

By symmetry,

EE∗g2(A∗1, Ai) g2(A∗1, Aj) = Eg2(A1, Ai) g2(A1, Aj),

and therefore,

EΘ2
1 ≤ (N − k)Eg2

2(A1, A2) + (N − k) (N − k − 1)Eg2(A1, A2) g2(A1, A3).

Now, invoking the identity

Eg2(A1, A2) g2(A1, A3) = −(n− 2)−1 Eg2
2(A1, A2), (5.5)

(use (1.2)) we complete the proof of EΘ2
1 ≤ N−2γ2.

To prove (5.2) we combine the obvious inequality |Ji|/|J0| ≤ q−1 and the in-
equalities

E∗
∣∣vi(A∗0)

∣∣ = |J0|−1
∑

k∈J0

|vi(Ak)| ≤ |J0|−1
∑

k∈Ji

|vi(Ak)| ≤ Θi
|Ji|
|J0| , i = 1, 2.

Let us prove (5.3). By symmetry, EΛ2
m = 2−1(m − 1)mE g2(A1, A2)Λm. Fur-

thermore,

Eg2(A1, A2) Λm = Eg2
2(A1, A2) + 2 (m− 2)Eg2(A1, A2) g2(A1, A3)

+ 2−1 (m− 2) (m− 3)Eg2(A1, A2) g2(A3, A4).

Now, invoking (5.5) and the identity

Eg2(A1, A2) g2(A3, A4) = 2(n− 2)−1(n− 3)−1E g2
2(A1, A2),

(use (1.2)) we obtain (5.3).
In order to prove (5.4) we apply Rosenthal’s inequality,

E
∣∣Z1 + · · ·+ Zj

∣∣r ≤ c(r)
j∑

l=1

E |Zl|r + c(r)
( j∑

l=1

EZ2
l

)r/2

, r ≥ 2,
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where Z1, . . . , Zj are independent and centered random variables. We apply this
inequality to the sum ζm(Ak), cf. (4.15), conditionally given A,

E{m+1,...,n}|ζm(Ak)|3 ¿ pq

n∑

l=m+1

|g2(Ak, Al)|3 +
(
pq

n∑

l=m+1

g2
2(Ak, Al)

)3/2

.

Finally, using Hölder’s inequality, we bound the second sum above by

( n∑

l=m+1

g2
2(a,Al)

)3/2

≤ (n−m)1/2
n∑

l=m+1

|g2(a,Al)|3, a ∈ A,

thus arriving at (5.4).

Lemma 5.2. For each 0 < d < π and x, y ∈ R, and β(x) defined in Section 3.1,
we have

∣∣ β(x + y)
∣∣2 ≤ u[d](x)v[d](y), where v[d](y) = 1 + pq

2π

d
( 4

Θ(d)
+ 1)y2,

and where the function u[d] is defined in (4.8).

Proof of Lemma 5.2. In the case where |x| ≥ π + d, we have u[d](x) = 1 and the
desired inequality follows from the simple bound |β(x + y)| ≤ 1.
In the case where |x| < π + d we apply the mean value theorem to get

∣∣cos(x + y)− cos(x)
∣∣ ≤

∣∣E sin(x + θ1 y) y
∣∣

≤ (|x|+ |y|) |y| ≤ c x2 +
(
c−1 + 1

)
y2. (5.6)

In the last step we applied the inequality |x y| ≤ c x2 + c−1 y2, with c > 0. Com-
bining (5.6) and the identity |β(x + y)|2 = 1− 2pq(1− cos(x + y)) we get

|β(x + y)|2 ≤ 1− 2 p q
(
1− cos(x)− c x2 − (

c−1 + 1
)
y2

)
.

Now invoking (5.15) we obtain

|β(x + y)|2 ≤ w1 + w2, w1 = 1− p q
(
Θ(d)− 2 c

)
x2, w2 =

(
c−1 + 1

)
2 p q y2.

But 1 − p q x2 Θ(d) ≥ d/π, for |x| ≤ π + d. Hence, w1 > d/π and therefore
w1 + w2 ≤ w1

(
1 + π d−1 w2

)
. Choosing c = Θ(d)/4 completes the proof of the

lemma.
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Lemma 5.3. Assume that β2 = 1. For every s, t ∈ R and 0 < d < π, we have

EZ2(A1)I[d](A1) ≥
( t2

N
+ s2

)
(1− 2c[d]), c[d] = max

{ b1

d
;

b21
d2

}
.

Here Z(a) = tg1(a) + s and I[d](a) = I{H1|g1(a)| < d}, for a ∈ A.

Note, that a similar inequality was used already by Höglund (1978), where the
constant (corresponding to c[d]) was not specified. For our purposes the depen-
dence of cd on the parameters b1 and d is important and thus we include the
proof.

Proof of Lemma 5.3. Denote K[d] = {k : I[d](ak) = 0}. Clearly, for r > 0,

|K[d]| =
∑

k∈K[d]

1 ≤
∑

k∈K[d]

∣∣g1(ak)H1/d
∣∣r ≤ nβr β−r

3 br
1d
−r. (5.7)

Furthermore, since EZ2(A1) = t2N−1 + s2, we have

EZ2(A1)2I[d](A1) = t2

N
+ s2 −Wn−1, W =

∑

k∈K[d]

Z2(ak). (5.8)

The inequality (a + b)2 ≤ 2a2 + 2b2 implies W ≤ 2W1 + 2W2, where

W1 = s2|K[d]|, W2 = t2
∑

k∈K[d]

g2
1(ak) ≤ t2

N
n2/3β

2/3
3 |K[d]|1/3.

In the last step we applied Hölder’s inequality to get
∑

k∈K[d]

g2
1(ak) ≤ ( ∑

k∈K[d]

|g3
1(ak)|)2/3|K[d]|1/3.

Now, (5.7) (with r = 2) implies W1 ≤ s2ncd. Furthermore, (5.7) (with r = 3)
implies W2 ≤ t2N−1ncd. These inequalities combined with (5.8) complete the
proof of the lemma.

Lemma 5.4. Assume that β2 = 1 and that (3.3) holds. For |t| ≤ H1 and |s| ≤ πτ ,
the inequalities (4.9) hold true.

Proof of Lemma 5.4. Throughout the proof we use the notation introduced in
Section 4. Fix B ⊂ Ωm. By Lemma 5.2,

ZB =
∏

k∈B

|β(zk + tζm(Ak))| ≤ η1η2, η2
1 =

∏

k∈B

u[1](zk), η2
2 =

∏

k∈B

v[1](tζm(Ak)),
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Using the inequality 1 + x ≤ exp{x}, we obtain η2
2 ≤ exp{pqt2κB |B|/N} and

therefore, (1 − IB)η2 ≤ gB(t). Finally, combining the inequalities ZB ≤ 1 and
ZB ≤ η1η2, we get

ZB = IBZB + (1− IB)ZB ≤ IB + (1− IB)η1η2 ≤ IB + ΨB ,

thus proving the first inequality in (4.9). Here the random variables ΨB = η1gB(t),
κB and IB are defined in (4.7) and the function gB(t) is given by (4.8).
Clearly, Lemma 5.2 (with x = zk and y = 0) implies the second inequality of (4.9).

To prove the last one observe that by Hölder’s inequality we have Ei1,...,i4ΨB ¿
(Ei1,...,i4Ψ2

B)1/2 and thus, it suffices to show

Ei1,...,i4Ψ2
B ≤ F 2

B , for every i1, . . . , i4 ∈ Ωn \B. (5.9)

To prove (5.9) note that the inequalities |t| ≤ H1 and |s| ≤ πτ imply

u[1](zk) ≤ w(Ak), w(Ak) = 1− pq

2
Θ(1)z2

kI[1](Ak), k ∈ Ωn.

where we denote I[1](a) = I{H1|g1(a)| < 1}. Therefore,

Ψ2
B = g2

B(t)η2
1 ≤ g2

B(t)η, where η =
∏

k∈B

w(Ak). (5.10)

Denote D1 = {i1, . . . , i4} and D2 = Ωn \D1. By Theorem 4 of Hoeffding (1963),

Ei1,...,i4η ≤ w
|B|
∗ , where w∗ = 1− pq

2
Θ(1)Γ∗, Γ∗ = 1

|D2|
∑

k∈D2

z2
kI[1](Ak).

(5.11)
Below we construct the following lower bound for Γ∗,

Γ∗ ≥ 9

10
(t2 + s2/q) 1

N
. (5.12)

Combining (5.11), (5.12) and the inequality 1 + x ≤ exp{x} we get
η ≤ exp{−0.45pqΘ(1)(t2 + s2/q)|B|N−1}. Now (5.9) follows from (5.10).
Let us prove (5.12). We have

Γ∗ = n

n− 4
Ez2

1I[1](A1)− 1

n− 4
M, M =

∑

k∈D1

z2
kI[1](Ak). (5.13)

The simple inequality (a + b)2 ≤ 2a2 + 2b2 gives

M ≤ 8s2/τ2 + 2t2M1, M1 =
∑

k∈D1

g2
1(Ak). (5.14)
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By Hölder’s inequality and (3.3),

M1 ≤ 41/3
( ∑

k∈D1

|g1(Ak)|3)2/3 ≤ 41/3β
2/3
3 n2/3N−1 ≤ (4co)1/3 n

N
.

Here we estimated β2
3/n ≤ β4/n ≤ c0, see (3.3). This inequality in combination

with (5.14) implies M ≤ 100−1n(t2 + s2/q)N−1, provided that c0 in (3.3) is suffi-
ciently small. Substituting this bound in (5.13) and invoking Lemma 5.3 we obtain
(5.12) thus completing the proof of the lemma.

Theorem 4 of Hoeffding (1963) and Höglund’s inequalities. Consider a
population P of n numbers p1, . . . , pn. Let X1, . . . ,XN denote a random sample
without replacement from P and let Y1, . . . ,YN denote a random sample with
replacement from P. In particular, Y1, . . . ,YN are independent random variables.

Theorem (Hoeffding (1963)). If the function f(x) is continuous and convex
then

E f
( N∑

k=1

Xk

) ≤ E f
( N∑

k=1

Yk

)
.

The following inequalities are proved in Höglund (1978),

1− cos v ≥ 1

2
v2 Θ(u), for |v| ≤ π + u and 0 ≤ u ≤ π, (5.15)

π1/2

2
≤

(
n

N

)
sN (1− s)n−N

(
2 π s(1− s)n

)1/2 ≤ 1, with s = N

n
, (5.16)

where 1 ≤ N ≤ n.
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