A BERRY-ESSEEN BOUND FOR FINITE
POPULATION STUDENT’S STATISTIC

M. BLOZNELIS

Abstract. A general and precise Berry—Esseen bound is proved for the Studentized
mean based on N random observations drawn without replacement from a finite
population. The bound yields the optimal rate O(N_l/z) under minimal conditions.
If Erdés—Rényi condition holds this bound implies the asymptotic normality of
Student’s statistic and the selfnormalized sum.

1. INTRODUCTION AND RESULTS

Let {z} denote a sequence of real numbers z1, ..., z, and let Xq,..., Xy, N <n,
denote random variables with values in {«} such that X = { X1, ..., Xy} represents
a simple random sample of size N drawn without replacement from {x}. We shall
assume that EX; =0 and 02 = E X? > 0.

Let

t=t(X)=X/6

denote the Student statistic, where
X=NYX,+ -+ Xn) and 67 =52(X)=N"") (X;-X)%.

Put t = 0 if 6 = 0. By the finite population central limit theorem (CLT), see
Erdés and Rényi (1959), for large N, the distribution of VNt can be approxi-
mated by a normal distribution. In this paper we estimate the rate of the normal
approximation. We construct a bound for

P{V/N/qt(X) <z} — ®(z)

where ®(z) denotes the standard normal distribution function,

dN = sup,

Y

p=N/n and g=1-—np.
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2 M. BLOZNELIS

Theorem 1.1. There exists an absolute constant ¢ > 0 such that

(1.1) oy < o P

S & Tner: Pe=EIXKP

A similar Berry—Esseen bound but for the finite population sample mean was
proved by Hoglund (1978). The estimate of Theorem 1.1 holds for any fixed
sample size N and population size n. If 33/03 is bounded and ¢ is bounded away
from 0 as N — oo and n — oo, then (1.1) establishes a Berry—Esseen bound of
order O(N~Y/2). Note that the factor 1/,/7 in the right hand side of (1.1) can not
be removed or replaced by ¢* with a > —1/2, cf. one term Edgeworth expansion
for P{\/N/qt(X) < z} given in Babu and Singh (1985).

Write w = \/npq.
Theorem 1.2. There exists an absolute constant ¢ > 0 such that

c

(12) 5N < 0702 ]'3)(12 H|X1|>aw + E‘X1’3H|X1|§0w'

w o3

Theorems 1.1 and 1.2 can be considered as a particular extension to the case
of simple random sampling of Berry—Esseen bounds for Student’s statistic based
on i.i.d. observations, proved recently by Bentkus and Gotze (1996). Indeed, the
case where n — oo and N is fixed corresponds to the i.i.d. situation and in this
way we obtain Theorems 1.1 and 1.2 of Bentkus and Gé&tze (1996) as corollaries
of Theorems 1.1 and 1.2. It could be mentioned that our techniques are related
to those of Bentkus and Gotze (1996), Bloznelis and Gotze (1997) and Hoglund

(1978).
Next we apply Theorem 1.2 to prove the CLT for Studentized mean. Consider a
sequence of populations {z}, = {%n1,...,2nn} such that > . x,,; = 0, for every

n=23,.... Let X;, v = {Xn1,..., X, v} denote a sample of size N = N,, drawn
without replacement from {z},. Write 02 = E X2, and assume that o2 > 0, for
every n = 2,3,.... Write p,, = N,,/n and ¢, = 1 — p,. Erdés and Rényi (1959)
proved that if

(1.3) Ve > 0, lim o, ?E X? 10,1 1>eonwn, = 0, w2 =np, g,

n—oo

then the sequence S, = S({z},) = (Xn1+ -+ Xun,)/(0nwy) converges in
distribution to the standard normal distribution as n — oo. Note that (1.3)
implies N,, — oo as n — oo. Hajek (1960) showed that Erd6és—Rényi condition
(1.3) is also necessary for the asymptotic normality of S,. One consequence of
Theorem 1.2 is that this condition is sufficient also for the asymptotic normality
of the Studentized mean.
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Corollary 1.3. Assume that (1.3) holds. Then /N, /qy t(Xn Nn) converges in
distribution to the standard normal distribution.

May be more interesting is the fact that it may happen that /N, /¢, t(X, )
is asymptotically standard normal when .S,, doesn’t. Such a situation is exhibited
in the following example.

Ezample. Let {z}, be a sequence of populations as above. Assume that this
sequence satisfies (1.3) and that o, = 1. Construct a new sequence of populations
{Z}n+2 by putting {Z},+2 = {z}, U {—n, n}. Choose the sequence N,, so that
Nppn — 0 and let Xn ~, denote a simple random sample of size N,, drawn from
the population {Z},. It is easy to see that in this case (1.3) fails and S({Z},)
converges to a degenerate distribution. Furthermore, since

P{{_n7 TL} - XH-FQ Nn+2} < 2Nn+2pn+2 — 0

the limiting behavior (as n — oo) of distributions of t(X,, n,,) and t(X, 12N, ) is
the same, i.e., both are asymptotically standard normal.

Remark. All the results stated above remain valid if instead of the standardized
Student statistic v/ Nt one considers the selfnormalized sums

X1+ + Xy
X244 X2

In particular Theorems 1.1 and 1.2 hold with dx replaced by d’, where

X e+ X
P{ G AN qx}—@(x)‘.
X2+ 4+ X%

§’y 1= sup

In contrast to the case of independent and identically distributed observations,
where the normal approximation of the Studentized mean and related statis-
tics was studied by a number of authors, see, for instance, Chung (1946), Efron
(1969), Logan, Mallows, Rice and Shepp (1973), Chibisov (1980), Helmers and van
Zwet (1982), van Zwet (1984), Slavova (1985), Bhattacharya and Ghosh (1978),
Hall (1988), Griffin and Mason (1991), Sharakhmetov (1995), Bentkus and Gotze
(1996), Bentkus, Bloznelis and Gotze (1996), Gine, Gotze and Mason (1997), Ben-
tkus, Gotze and van Zwet (1997), Putter and van Zwet (1998) etc. there are only
few results concerned with the rate of the the normal approximation of finite pop-
ulation Student’s statistic. Praskova (1989) constructed a Berry—Esseen bound for
the Studentized mean based on the observations drawn without replacement from
a finite set of random variables, assuming that each of them is of zero mean. Rao
and Zhao (1994) proved the Berry—Esseen bound,

c E|X1|4

o < —
N_\/a\/ﬁa‘l’
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which establishes the rate O(N~'/2) but involves the fourth moment. Babu and
Singh (1985) studied a higher order asymptotics of the distribution function of
VN t. Berry-Esseen bounds for some other nonlinear finite population statistics
were obtained by Zhao and Chen (1990), Kokic and Weber (1990) and, as a par-
ticular case of the rate of convergence of general multivariate sampling statistics,
by Bolthausen and Gotze (1993).

Acknowledgments. T would like to thank V. Bentkus for discussions and comments.
A part of this work was done when I was visiting Leiden University. I would like
to thank J. Mijnheer for kind hospitality.

2. PROOFS

The section is organized as follows. In the beginning we formulate a general
result, see Theorem 2.1 below. Then we give proofs of Theorems 1.1 and 1.2
and Corollary 1.3 which are simple consequences of Theorem 2.1. The proof of
Theorem 2.1, is postponed to the end of the section.

Define the number a > 0 by the truncated second moment equation,

a’ = Sup{b : EX%JIXbewz > b}.
It is easy to check that a < o and a is the largest solution of the equation
a®> = E X7Ix, | <aw-
In the case where a is positive we write
y=a"?0"-1, a=w’|EYi|, p=w’EYi]’, Yi=a v " Xi]x,|<auw-

and note that |Y;| < 1, EY? = w™2 and N-1Y2 < w=' < pu, by Lyapunov’s
inequality (EY?)? < (E|Y1[|?)%

Theorem 2.1. There exists an absolute constant ¢ > 0 such that
(2.1) on < cw?P{|X1] > aw} + (R +71psq), R=a+pu,

whenever a > 0.
Proof of Theorem 1.1. Theorem 1.1 is an immediate consequence of Theorem 1.2.

Proof of Theorem 1.2. We may and shall assume without loss of generality that
o = 1. This implies a < 1.

In the case where a? > 1/4 we derive (1.2) from (2.1). Introduce the events
Ay = {|X1] > aw}, Ay = {aw < |X;| < w} and Az = {|X;] > w}. Combining
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the identity Ian, = Ia, 4+ Ia, (here Ia denotes the indicator function of the event
A) and Chebyshev’s inequality we get

1 1
P{|X\| > aw} = Ela, + Ela, < — 5 E[Xi I, + —5 EX{la,,
a’y = 0% — a* = EX?Ia, = EX{Ia, + EX?IA, < ﬁ E|X1*Ta, + EXZIA,,

aw|EY:| = [EXila,| < E[Xy[Ia, + B[X[la, € — — E[Xi[’Ia, + — EX7la,.
In the last step we used EX; = 0. Using these inequalities we obtain bounds for
P{|X;| > aw}, a, v and p. Substitution of these bounds in the right hand side of
(2.1) yields (1.2).

In the case where a®> < 1/4 we have EXIZI[|X1|§M/2 < 1/4 and therefore,
EX12]I|X1|>U,/2 > 3/4. Furthermore,

3/4 S EX12H|X1|>w/2 S Zw_lE |X1|3Hw/2<\X1\§w + EX12]I\X1|>w
Since dy < 1, we obtain
8 _ 4
oy <1< —w 'E |1 X1 Ly o< x1 <0 + EEX%H|X1|>W

thus completing the proof of Theorem 1.2.

Proof of Corollary 1.3. We may and shall assume without loss of generality that
on=1forn=23,....

Introduce the events A, 1 = {|X,,1| > w,} and A, 2 = {| Xy 1| < wy,}. In view of
Theorem 1.2 it suffices to show that for every ¢ > 0,

(2.2) limsup(EX? 1A, , +w, 'E|X,1’Ia,,) <e.

n

Let us show (2.2). Given € > 0 introduce the events A, 3 = {| X, 1| > ew,} and
Apy = {|Xn1] < ew,}. We have

Now (2.2) follows from (1.3).

It remains to prove Theorem 2.1. We shall assume that a > 0 in what follows.

Before the proof we introduce some notation. In what follows c¢,cq,... denote
generic absolute constants. By c¢(aq, ag,...) we denote constants which may de-
pend only on the parameters aq,as,.... We write A < B if A < ¢B. The

expression exp{ix} is abbreviated by e{z}.
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For k =1,2,..., write Qx = {1,...,k}. Given a sum S = s; + - -- + s, denote
S =8 — s, Given A C Qj write S4 = ZjeA 55.

Let 61,0, ... denote independent random variables uniformly distributed in [0, 1]
and independent of all other random variables considered. For a complex valued
smooth function h we use the Taylor expansion

xn—i—l

h(z) = h(0) + A/ (0)z + -~ + h™(0) = + Eg, k") (1) (1 - 01)" —
Here Ep, denotes the conditional expectation given all the random variables but
1. In particular, we have the mean value formula, h(z) — h(0) = Eg, b/ (612)z.

Let g be a three times differentiable real function with bounded derivatives such
that

glx) =272 for |z—1]<e¢;, and |g(z)—1]<e¢, for zeR.

The (small) constant 0 < ¢; < 1 will be specified later.

Let X* = (X1,...,X,) denote a random permutation uniformly distributed over
permutations of the sequence {x1,...,z,}. In particular, Xi,..., Xy represents
a simple random sample of size N drawn without replacement from {z}. Let
v = (11,...,V,) denote a sequence of independent Bernoulli random variables
independent of X* and having probabilities

P{y, =1} =p, P{y;, =0} =g, 1<i<n.

Given A = {i1,...,ix} C Qp let Ey, 5,3y = E4 (respectively E(il""’i’“)) de-

.....

note the conditional expectation given all the random variables, but v;,,...,v;,
(respectively X; ,..., X, ).
Write
(2.3) Y, = ﬁxiﬂwgaw, Z;=Y?-EY?, 1<i<n,
N N n n
Y =)V, Z=>Z, Y=Y Y, zZ'= Y z,
i=1 i=1 i=N+1 i=N+1

S=(Y -EY)g(1+qZ), S =-(Y'-EY')g(1-qZ'),
and note that
(24) EZ2 < E|Z]’? < E|Y;? =w %y, E|Y; — EY;® <S8E|Y;]® = 8w 2.

Below we shall use the following simple inequality. Given {iy,... it} C £, and
J € Qu \{i1,..., i} let X7 be a measurable function of X;. We have

T1,enyd * | n * |
(2.5) E(i) | x| < “CE[X;0 for a>0.

n
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We shall apply this inequality to random variables Y}, Z;,Y; — EY;, etc.
Given a random variable W, write Ay = sup, |P{W <z} — ®(x)|. Let W’ be a
random variable defined on the same probability space as W. Then

(26) Aw < Awr +6max|<1>’(ac)|+P{|W—W’| >E}, Ve > 0,
(2.7) Aw — Awr| < PAW £ W
The proof of Theorem 2.1 consists of two steps. In the first step (see Lemma 2.1)
we replace X1,..., Xy by truncated random variables Y7, ..., Yy and replace the
statistic \/N/qt by S (respectively by S’) in the case where p < ¢ (respectively
p > q), see (2.3). Furthermore, the Berry—Esseen smoothing lemma reduces the
problem of estimation |P{S < x} — ®(z)| to that of the estimation the difference

|E exp{itS} —exp{—t2/2}|. In the second step we estimate this difference by means
of expansions. For p > ¢, we estimate |P{S’ < 2} — ®(z)| in much the same way.

Lemma 2.1. Assume that a > 0 and N > 2. Then

(2.8) dn < Agll<g+Aglysq+cRi, Ri= w?P{|X1| > aw} +oa+p+vls,.

Proof of Lemma 2.1. We may and shall assume that a < 1 and g < 1. Otherwise
(2.8) follows from the inequality oy < 1.

Let us prove (2.8) in the case where p < ¢, i.e. 1/2 < ¢. Introduce the statistic S =
Yg(1+ qZ — qY?/N) based on the sample Y = (Y7,...,Yx). Since \/N/qt(X) =
V/N/qt(Y) on the event A; = {X = awY} and \/N/qt(Y) = S on Ay = {¢|Z —

Y?2/N| < ¢1}, we have
(2.9) P{/N/qt(X) £S5} <1-P{A; N4y} <1-P{A;} +1—-P{A} < R;.
Indeed, 1 — P{A;} < NP{|Xy| > aw} < 2w?P{|X:| > aw} and

1 - P{A,} <P{|Z| > %}JFP{)% > S} <CEIZPP+ SEY? <
In the last step we used the inequalities
(2.10) EY? <c, E|ZP? <cp

and N=1/2 < w1 < p. To prove (2.10) we combine Hoeffding’s (1963) Theorem
4 and the Marcinkiewicz-Zygmund inequality. It follows from (2.9) and (2.7) that

(2.11) 6y — Ag| < Ry.
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Decompose S = S+ Ry + Ry, where Ry = g(14+¢Z)EY and Ry = S—Yg(1+qZ)
satisfy
|IRi| < NEYi|(14+¢) <4a  and  |Ro| <c|Y]PN1,

by the mean value theorem. Fix € = 5o + N~/2 and note that
(2.12)  P{|S—S|>c} <P{|Ro| >N V2 < N'PE|YP < N2 <.

Here we used the inequality E|Y|? < ¢, which is proved in much the same way as
(2.10). Finally, (2.6) applied to S and S in combination with (2.12) and the simple
bound max, |®'(z)| < ¢ implies Ag < Ag+ca+cp. This inequality together with
(2.11) yields (2.8), for p < gq.

Let us prove (2.8) in the case, where p > ¢. We may and shall assume that
29 < ¢1/2. Otherwise, (2.8) follows from the inequalities dy < 1 < 7.

It follows from the identities > | X; =0 and >, X? = no? that

n
v _ —X 2 o? 2 (X )2
X = N 0—7 ZX , where X':ZXi.
i=N+1 i=N+1

Therefore, on the event As = {(Xn41,-..,Xpn) = aw(Yn41,-.., Yn)} we have
N/qt(X) = =Y'(1 —qZ' + Rs)Y/?,  where  Rs=r/p—qgN*(Y")2

Furthermore, on the event Ay = {q|Z’ + (Y')?/N| < ¢1/2} we have —Y’(l —qZ' —
R3)Y/? = 8, where §' = —Y'g(1 — ¢Z' + Rs). Hence, /N/qt(X) = S’ on the
event Az N A,. It is easy to show, cf. (2.9), that 1 — P{A3 F‘IA4} << R1 Therefore,
by (2.7), |6 — Ag/| < Ri. The remaining part of the proof is much the same as
that of the case where p < q.

Proof of Theorem 2.1. By Lemma 2.1, it suffices to show Agll,<, < R and
Agl,~, < R. We give the proof of the first inequality only. The proof of the
second inequality is much the same.

We shall assume that p < 1/2 < ¢ in what follows and show that Ag < R. We
may and shall assume that for a small constant co,

(2.13) a < o, u < co.

Indeed, if at least one of these inequalities fails we obtain Ag <1 < R.
Denote

o(t) = Ee{tS}, Y(t) =Ee{t(Y —EY)}, b, (t) = exp{—t*r?/2}, 7> 0.
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Given two complex valued functions f and h write

Taa(fW = [ 7SO - Ol e>dz0,

It|€(dse]
The Berry-Esseen smoothing inequality, see Feller (1971), 538 p., yields
(2.14) As < Iom(p, 1) +H',  H=csb’pgy .
Here we denote
v’ = w?E(Y; —EY])? =1 - w2, po = w?E|Y; — EY; 2.

The (small) constant c3 will be specified later. Since pg < p and, by (2.13),
b=2 < ¢, we have H~! < R. It remains to show Tio; 1 (0, 1) < R. Write

Lo ) (@, #1) < Lo (0,0) + Ljo; 11 (%5 d6) + i) (D6, P1)-

Clearly, Ijo, i) (dp, ¢1) < (1—-b%) < R, by (2.13). It follows from Hoglund’s (1978),
formula (8), that Ijo.m) (¢, dp) < b=3 10, provided that cs is sufficiently small. By
(2.13), b?po < po < p. Therefore, it remains to bound Iy, gi(w,v). We split
Tio; 11 (0, ¥) = Lj0;e,1 (0, %) + I1eys 1) (9, 70) and estimate the summands separately.
Let us show

(215) I[C4;H}(907w) <R.

To this aim we represent the characteristic functions ¢ and v in Erdos-Rényi
(1959) form, see (2.16) below. Write

T=YT, Q=) Qs S=) 5,
i=1 i=1 ;
T; = (Y — EY;)(vi — p), Qi =qZ;i(v; — p), S; =w (v —p).

We have

(2.16) = )\/ﬂw Ee{tTg(1+ Q)+ sS}ds, Y = )\/ﬂw Ee{tT + sS}ds,

—TTw —Tw

with A™! = 27wP{S = 0}. Hoglund (1978) showed that 271/27 < \=1 < (27)1/2.
Given a number L > 0 and a complex valued bivariate function f write f < L if

/ [t|7 | f(s,t)|dsdt < L, where Z = {(s,t): cs < |t| < H, |s| < 7w}
z
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Given two complex valued functions f, h write f ~ h if f —h <R.
Introduce the integer valued function

(2.17) m =m(s,t) ~ 2 tegnu~ Inw, u=t*+ 5%, (s,t) € Z.

A simple calculation shows that 10 < m(s,t) < n/2, for (s,t) € Z, provided that
c4 is sufficiently large. Write z := mpqw=2 = m/n < v~ Inu. We shall often use
the following fact. For oy, as, as, ay > 0 satisfying az + ay > a3 + az +1/2,

(t2)21 (s2)*2 2%~ < (g, ag, as, o).
Denote
A=Qpy, B =Qp \ Qp, go =9(1+Qp), 91 =9 (1+QBp).
Split
(218) T=Ta+Tp, Q=Qa+Qp, TaQa=Da+Us, TpQp= Dp+Us,
where, we denote
(2.19) Deg=> T,Q;, Us= Y TiQ; GCQy,.
jEG ,§EG, i#]
Introduce the random variables

v = U;f - 2_1tTjQ]‘, U; = tTjgo + SS]‘, ’U; = tTj + SS]‘, 1<53<n,

V=) v, Ve=3 o, Vi=> ",
j=1 j=1 j=1
Hg = |Ege{Vg}|, Hg=|Ege{V}, HE =|Ece{Vi}], G CQ,.

Several useful inequalities to be used below are collected in the next two lemmas.

Lemma 2.2. Assume that (2.13) holds. We have

(2.20) Hu < 1, H?E(Y; — EY1)? < ¢,

(2.21) EU2 < 2%u,  E|UsQa| < 2%/%y,

(2.22) E[TpQ% P < zu,  E[TQal*’? < zu,

(2.23) B> TQ3 <z Bl TQQ0| < 222,

JjEA JEA
For any G C Q,, and iy,12,i3 € Q, \ G, we have

(2.24) E(126) | T, |7 « o, 0<r<6.



BERRY-ESSEEN BOUND 11

Lemma 2.3. Let G C Q, and |G| > m/4. There exists a small constant c, > 0
such that the inequality cq, co, c3, ch < ¢, implies

(2.25)  EWIHZ <o BOI(HE)? <00 ECD(HE)? < u 0,
(2.26)  EUWHG <u™®, ECIDHL <u™® EOIHE <0,
for any i,5 € Q\ G.

These lemmas are proved in Section 3. We shall assume that ¢y, c2, c3 and ch
are choosen small enough so that (2.25) and (2.26) hold.
In view of the inequality A < 2%/27~1, (2.15) can be written as follows,

(2.27) f~ f7, where f=Ee{tTg(1+Q)+sS}, [f*=Ee{tT+sS}.

Let us prove (2.27). The proof consists of the following steps,

(2.28) I~ fi fi=Ee{W1}, Wi =V"+1TQag,
(2.29) J1~ fa, fo=Ee{Wy +tTpQag1}, Wz =Va+ Vpg,
(2.30) fo~ f3, fs=Ee{Va+ Vz},

(2.31) f3 ~ fa, fa=Ee{V*},

(2.32) Ja~ fs, fs =Ee{Vi+Vg},

(2.33) fs~ f*.

Proof of (2.28). Expanding in powers of Q4 we get g(1+ Q) = go + Qag1 + Q47
where r is a bounded function of Q) 4, @ p. Substituting this expansion we obtain
tTg(1+ Q) + sS = W1 + tTQ%r and therefore,

(2.34) |f = Al < Ele{tTQ%r} —1].

By (218), TQ2A = R1+R2—|—R3, where R1 = TBQ2A, RQ = UAQA and Rg = DAQA.
Split

R3 = R3.1 + R3.2, Rz, = ZTij (j), R3o = Z TjQ?-
jeEA jEA

Now, applying the inequality
(2.35) le{z} — 1| < 2|z|, 0<7<1, xr € R,
several times, with 7 =1 and 7 = 3/4, we get from (2.34)

If = fil < [tI(E[Ra| + E[Rs1l) + [t[**(E[R1[*/* + E|Rs.2|**)
< (22 + 22222 + [t 2,
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by Lemma 2.2. We obtain |f — f1| < R, thus proving (2.28).

Proof of (2.29). Write TQa = TpQa + Da + Ua, see (2.18), and expand g; =
g (1+Qp) = —2714+Qprtoget Dagi = —271Da+D4Qpr, where r is a bounded
function of ). Now we have

Wi = Wa +tTQag1 + w1 + wa, wy = tUag1, wy =tDAQ BT

Firstly we shall show f; ~ fg, where fg = Ee{Ws + tTpQag1 + w1}. By (2.35),
|f1 — f6| < E|ws|. Let us show E|ws| < R. By the symmetry,

(2.36) E|w,y| < m|t|E|T1Q:1Q5| = m|t|E|T1Q:|EV Q5.

Since v; — p, 1 < j < n, are independent centered random variables, we have

BUQh - Y EVQE - [BlpgE 22,
JjEB

by the symmetry. Furthermore, combining (2.5) and (2.4) we obtain E(l)QQB <L p
and therefore, EM|Qp| < p/2. Substituting this bound in (2.36) and estimating
E|T1Q:| < pgE|Y1|? we obtain E|wsy| < |t|zp®/? < [t|'/?2u < R. In the last step
we used the inequality |¢|u < 1, which holds for [t| < H, see (2.20).

Let us show fg ~ fo. Expanding the exponent in powers of iw; we get

fo=fo+ fr+R, fr=Ee{Wy+tTpQag:}iw,, with |R| < t*EU3.
By (2.21), |R| < t?2%u < R. Therefore, f1 ~ fo + f7. Next we show
(2.37) fr~ [s, fs = Ee{Ws}iw;.
An application of (2.35) with 7 = 3/4 gives
[fr = fsl < [t EITaQal* ! |Ual < |t (BIT5Qal**)"/*(EUZ) "2,
by Cauchy—Schwarz. Invoking inequalities of Lemma 2.2 we obtain |f; — fg| <

t|7/423/2 1, < R and thus, (2.37) follows.
We complete the proof of (2.29) by showing fs < R. By the symmetry,

(2.38) fs = it(m® —m) fo, fo = Ee{W2}T1Q291,
Recall that Wy = V4 4 VZ and write

fo=Ee{Var + Vi}te{vr + 02}T1Q291, A" = A\ {1,2}.
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Expanding
e{vl - UQ} = (1 - UlTl) e{vg} = e{vg} -+ U17"1(1 -+ UQT‘Q), Tj = iEgj e{ijj},

and using the fact that the conditional expectation of T3 (respectively Q2) given
all the random variables, but v; (respectively 1) is zero, we obtain

fo=—-Ee{Var + V3}Re, R =T1Qv1vam172.

Since |g1] < ¢ and R is a function of vy,1v5, X7, Xo and Ha» is a function of
X3,...,X,, we can write

|fo| < E|R|H» < E|REMH 0,
Combining the inequality EYYH 0 < u?, see Lemma 2.3, and the simple bound
E|R| < p?¢*wtup, we obtain |fg| < n~2u"%u. Substituting this inequality in
(2.38) we get fs < R thus completing the proof of (2.29).
Proof of (2.30). Split A = A; U Ay U A3 so that A, N A; = 0, for i # j, and
|Aj| ~m/3 and j € Aj, for j =1,2,3. Write

tTpQag1 = w1 + w2 + ws, w; =tTpQA; 91, J=1,2,3,

and denote W3 = Wy + wsy + ws. Firstly we show
(2.39) f2 ~ fio + fi1, fio = Ee{Ws}, f11 = Ee{Ws}iw;.
Expanding the exponent in fo = Ee{W5 4 w;} in powers of iw;, we obtain

fa = fio + fi1 + fi2, fi2 = Ee{Ws}w?ry,

where r; is a bounded function of wj.
Let us show fi2 < R. Expanding

e{wg + w3} = (1 + ’(UQ’I“Q) e{wg} = e{wg} + U)27°2(1 + U}37°3),
where r; is a bounded function of w;, for j = 2,3, we obtain

fi2 = fi2.1 + fi22 + fi2.3, fi2.1 = Ee{Wy + w3 }wir,

fi2.2 = Ee{Wywiwarire, fi2.3 = Ee{W }wiwawsrirars.
We shall show that fi2; <R, for j = 1,2,3. Clearly,

| f12.1] < EH g,w7, | f12.2] < EHa,wi|ws], | f12.3] < Ewi|waws|.
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Using the symmetry and the fact that conditionally, given X*, the random variables
Qj, j € §,, are uncorrelated we construct bounds for fi2;, j = 1,2,3. We have

|f12.3] SHETEQ%,Q4,Qa,] = 11| A1 [ETEQT1Q4,Q,] < t'm’ET5QTQ2Qs],
Combining the bound E(1’2’3)T§ < ¢, see (2.24), and the inequalities
EQT|Q2Qs| < p*¢*EZ}|Z2 25| < p*¢*(B|Z1[*?)(E| Z2|) (E| Zs|) < p*q*w S

(here we use (2.4) and (2.5)) we obtain fi23 < t*23u < R.
Similarly,

(2.40) |fi2.2] < [tPMPEHA,|T5PQ%|Qa| < [t1Pm?p?PEZE| Zo|ESD H 4 |Ts |2
By Hélder’s inequality, (2.25) and (2.24),
(2.41) EM2D H,, | Ts? < (BT HL)VHEDDTEH Y2 < us.
Substituting (2.41) in (2.40) and then using the inequalities
EZ}|Z:| < EZTE|Zo| < w™p,

(here we apply (2.5) and (2.4)) we obtain fi2.2 < [t]>u=%u < R. Finally,

|fioa]| < 2| A EHA,TRQ3 < tQmpqEleE(l)HA3T§.
Combining the inequalities E(l)HAgTé < u”? cf. (2.41), and EZ? < w2y, see

(2.4), we obtain |f12.1| < t?u"°zu < R, thus completing the proof of (2.39).
Let us show

(2.42) fi1r <R, where fi11 =Ee{Wsliwy, Ws3=Vs+VE+ ws+ ws.
By the symmetry, f1; = it|A1|Ee{W3}Tpg:1Q1. Expanding the exponent in pow-
ers 1v; and using the fact that the conditional expectation of ()1 given all the
random variables but 14 is zero, we get

fi1 = Pt AL Ee{Va + Vj + w2 + w3} Tpg1Q1v171, A= A\ {1},

where r; is a bounded function of v;. Clearly,

|fi1] < [tmE|Quui Tp|Ha, < |t]mE|Q1v1|E(1)TB\HA/1, A= A\ {1}
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Combining the inequality E(I)HA/1 Ts| < u™?, cf. (2.41), and the simple bound
E|Qqv1| < pq(|t] + |s])w™3 we obtain |fi1| < ([t| + |s)u 5w < w™! < p, thus
proving (2.42).

Let us show fi9 ~ f3. Write wsy := wy + w3. We have W3 = V4 + V5 + wa.
Expanding the exponent in fi¢ in powers of 7w, we obtain

fio = f3 + fiz + fia, f13 = Ee{Va + V3 }iwy, fia :EG{VA+V§}UJ§T,

where r is a bounded function of wy. The proof of f13 < R (respectively f14 < R)
is much the same as that of f1; < R (respectively fi21 < R) above. Therefore,
fio ~ f3. Now, invoking (2.39) and (2.42), we obtain (2.30).

Proof of (2.31). Split A = A; U Az so that

(2.43) AiNAs =0 and |Aj|~m/2 and jeA;, for j=1,2.

Write Dy = Da, + Da,, see (2.19), and denote w; = tDy, g1, for j = 1,2/ We
have f3 = Ee{V* + w; + wy}. Expanding the exponent in powers of iw; and iws
we get

f3 = fa+ fi5 + fis, fis = Ee{V ' wiry, fie = Ee{V" 4+ w; }wars,

where 7; is a bounded function of wj, j = 1,2. By the symmetry,
|[f15| < [¢{E[Da, [H}, < [t][A[E[T1Q1[H},.

Similarly, |fi5| < |t||A2|E|T2Q2|H 4,. Combining the inequalities E(l)HZ2 <L ud
and E(Q)HA1 < u~%, see Lemma 2.3, and the simple bound E|T;Q;| < pqw2u
we obtain fi5 < R and f15 < R thus proving (2.31).
Proof of (2.32). Split V* = Vi + Vg and Vi = Vi + V) , where AjUA; = A
satisfy (2.43). In order to prove (2.32) we shall show

(244) f4 ~ f17a f17 - EG{W4}, W4 = VX1 + VZQUB7

and fi7 ~ fs.
Let us prove (2.44). Expanding go = g(1+ Qp) =1 — Qp/2 + Q%r we get

Vi =Vi +w +wy,  with  w = —tTa,Qp/2, ws=tTa, Q%

where 7 is a bounded function of Qp. Furthermore, expanding the exponent in
fa = Ee{W, + w; +wy} and in powers of iw, and iw; to obtain

fa= fir + fis + fio + foo, fis = Ee{W4}iwy,
f19 = EG{W4}’L'U)%T’1, f20 = Ee{W4 + wl}inTQ,
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where 7; is a bounded function of w;, j =1, 2.
To show f19 < R we use symmetry, and the fact that conditionally, given all the
random variables but v;, ¢« € B, the random variables ();, 7« € B are uncorrelated,

|fro] < *EQETA, H, = t*|BlpgEZ; T4, H,.

Combining the bounds EZ? < w2y and E(")Tthj‘2 < w5, cf. (2.41), we
obtain fi9 < R. The proof of fg < R is much the same.
Let us show figs < R. By the symmetry,

fis = —27Yit| Ay || B|E e{W,} T1Q,..

Write Vi = VI, + vf, where Ay = A\ {1} and V) 5 = Vi yp + v);, where

B’ = B\ {n}. Expanding g0 = g(1 + Qp + Qn) = (1 + Qp') + Q.7 we get
Vi,up = W5+ w3, where

Ws =tTa,upg(1+Qpr) + sSa,up and w3 = vy, + tTa,u8' Qnrn.

Here r,, is a bounded function of @,,. We have W, = VX& + W5 + v7 + ws and

therefore,
fis = =27 Yit| A1 || BIE e{V, + W5 + v} + w3} T1Qn.

Expanding the exponent in powers of iv] and then in powers of 1w3 and using the
fact that the conditional expectation of T} (respectively Q) given all the random
variables, but v (respectively v,,) is zero, we get
f18 = 2_1Z't‘A1 ’ ’B’E e{lel + W5}T1'U1(an37’3,
where 73 is a bounded function of v and ws. Clearly,
|frs| < [t]|Av|| BIE|Tyo7 | |@nws| H, -

Combining the bound E(l””b)Hj‘,1 < u~5, see (2.26), and the simple inequality

E|Tiv7] |Quws| < p*q*(|t] + [s)w™
we obtain fig < R thus completing the proof of (2.44). The proof of fi7 ~ f5 is

much the same. We arrive at (2.32).
Proof of (2.33). Expanding

9o =9(1+Qp)=1+Qpg9(Qs), 92(QB) = Eg,¢g'(1+6:Qp),
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we obtain V3 = V4 +tTpQpg2(Qp). Split TsQp = Up + Dp and write

Vi = Vi + w1 + we, wy = tUpg2(@B), wy =tDpg2(QB).
We have f; = Ee{V* + w; + ws}. Expanding in powers of iw; and iwy we get
fs = "+ for + foo + fos, for = Ee{V"*}iwy,
foo = Ee{V*}wir, fos = Ee{V* + w Jwars,

where 7; is a bounded function of w;, j =1, 2.

Let us show fas < R and fo3 < R. Using the fact that given X*, the random
variables T, Q;, and T;,Q;,, for i1 # ji, i2 # j2, are conditionally uncorrelated
unless the sets {i1, 71} and {iz, j2} coincide, we get

(245) EBU% = Z EBZ’i,jJ ZiJ = TfQ? + TZQJTJQZ
i,jEB, i#£]
Therefore, by the symmetry,
| foz| < PEBUEHY = t*(|B|? — |B))EZy 1 H}.

Furthermore,
| fas| < [t|E[Dp|H} < [t||BIE[T,Qn|H}.

Combining the bound E(172)H2 < u7® see (2.26), and the inequalities
E|T,Q,| < pqw2u and E|Z| < p?¢®w~*u we obtain fay < [tju=%u < R and
fos < t2u%u < R.

We complete the proof of (2.33) by showing fo; < R. By the symmetry,

(2.46) for = (IB|* = | B)it foa, foa =Ee{V}T,Qn-192(@B).
Write Qp = Qp + Qn, B’ = B\ {n}. Expanding g, in powers of Q,, we get

foa = fos + R1,  fos =Ee{V*}1,Qn-192(Qp'), |Ri| <E|T,Q,Qn-1|H}.
Combining (2.26) and the simple bound E|T,Q,Q,_1| < p?¢*w~*u, we obtain
|Ri| < n”?u"p

Expanding the exponent in powers of v} and using the fact that the conditional
expectation of T;, given all the random variables, but v, is zero, we obtain

Jos = fa6, fas = Ee{V3 1T1.Qn-192(Qp )T,

where 77 is a bounded function of v} .
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Write B” = B’\{n—1}. Expanding g, in powers of ,,_1 we obtain fog = for+Ra,
where fo7 is defined in the same way as fog, but with go(Q p/) replaced by g2(Qp5)
and

|Ra| < E[Toup| Q1 Hi < u™>(Jt] + [s)n™?p.

In the last inequality we apply (2.26) and the simple bound E|T,v%|Q? | <
(It + |shp?g*w = pu.

Finally, expanding the exponent in fs7 in powers of v};_; and using the fact that
the conditional expectation of ), _1 given all the random variables, but v,,_; is
zero, we obtain

(2.47) | for] < B|T0vnQuooy o |HA < ([t + [s])*u™"n"2p,

by (2.26) and the simple bound E|T,v%Q,_1v:_;| < ([t| + |s])?p?¢>w*p.

It follows from (2.47) and the bounds for Ry, Rs that |fo4] < u=*n=2u. Now, by
(2.46), fa1 < R. We obtain (2.33) and, thus, complete the proof of (2.27).

We arrive at (2.15). The proof of the inequality Ijo,.,] < R is similar to the proof
of (2.15), but simpler. We have Ijp,z; < R and this completes the proof of the
theorem.

3. AUXILIARY INEQUALITIES
Denote, for brevity, Y =Y; —EY;, 1 <j <n.
Proof of Lemma 2.2. Let us prove (2.20). It follows from the inequalities E|Y;|? <
4E|Y{]? + 4|EY1)? and E|Yy |3 (E|Y7]?)3/2 = w3b% that u < 4po + 4w *a?
and 1o > w3, Therefore, ug 'y < 444w =3b3a? and ug *E|Y|? < b~%. Finally,
by (2.13),
Hp = c3b’ugtp <c and H?E|Y7|? = b ug *E|YF]? < 2.
Let us prove (2.21). We have, see (2.45),
(3.1) EUL = (AP — [ADE(T{ Q3 + T1Q2T2Q1).
Combining the bounds
(3.2) E(Y)? < w™? EZ?<E|Z]?<w?u, BlY}Z|<w ?p,
and (2.5) we obtain

ET7Q3 = p°¢"E(Y?)?Z3 < zp, ET1Q2TQq| = p*¢*E|Y 21 Y5 Zo| < 2212

These inequalities in combination with (3.1) and (2.13) give EU% < 22p.
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The second inequality in (2.21) follows from EU% < z?u and EQ% < zu, by
Cauchy—Schwarz. To prove EQ124 < zu we use the identity EAQ?4 = ica EAQ?,
the symmetry and (3.2):

(3.3) EQ% = E(EAQ%) = |A|EQ? = mpg®EZ? < mpquw ™2 = zpu.

Let us prove (2.22). An application of Marcinkiewicz—Zygmund inequality con-
ditionally given all the random variables, but v;, i € A, gives E4|Q A\?’/ 2«
> ica EalQi[>/%. Therefore, by the symmetry,

E|Ts%41Qa*? < |A|E|Q1[>?|Ts>* < mpqE|Z, [*PEW | Tp|3/4.

Finally, combining (2.24) and (3.2) we obtain the first inequality of (2.22). The
proof of the second one is much the same.
Let us prove (2.23). By the symmetry and (3.2),

E| ) T,Q3| < mEITiQ}| < mpg®B|Y|Z] < mpqE[Y}||Z1] < zu,

JEA
E Y T,Q;Q0| < mEITiQ1]|QY| = mpa®ElYy Zi [ED QY| < 2%/243/2.
JEA

In the last step we used the bound E(l)]QS” < 2Y21/2 which follows from

E(l)(Qg))2 < zp, cf. (3.3), by Cauchy—Schwarz.
It remains to prove (2.24). The proof for r = 6 is straightforward. Using (2.24),
with » = 6, and Lyapunov’s inequality we obtain (2.24) for 0 < r < 6.

Proof of Lemma 2.3. The inequalities (2.26) follows from (2.25), by Cauchy-
Schwarz. Let us prove (2.25). We shall prove the first inequality only. The
proof of the remaining two inequalities is similar, but simpler. Write

(3.4) H¢ < H &k &k = By e{ve .
kEG

We shall majorize & by a random variable, say (, which is a function of Xj,
and apply Hoeffding’s (1963) Theorem 4 to the expectation of the product of (y,

ked.

Since v = vy, we can write (v — p)? = vy, — 2vkp + p?. Therefore,

TQr = (v — p)*YaZr = (v —p) (1 = 20)YSqZk +1, v = (p—p°)Y)qZ,
and we write

v = (v — p)br — 27 M, b = tapYy + sw™? ar = go — 2" (1 — 2p)qZ.
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Since r does not depend on v, we have

&k < B(be)]?, where  ((z) = Ee{z(v1 —p)}, z€R

Hoglund (1978) showed that, for any zg € [0,7) and z satisfying |z| < 7 + 2o,

B <1-pg(2)°0(20),  O(z0) = (= T-20)%

T T+ 20

We apply this inequality to those by, satisfying |axY;*| < H~!. We have |bg| < m+1
and therefore, £ < 1 — pgb2©(1). Combining this inequality with the obvious
bound & < 1, k=1,2,...,n, we obtain

(3.5) & <1—pgbiOM)y, Iy =ljga,vri<1, 1<k<n
Write b = tY;* + sw™!. The simple inequality (z + y)? > 22/2 — y? gives
(3.6) b 2 (03)%/2 — (b = b})* > (b7)?/2 — diy, i, = [tYy|(er + | Zx)).

Here we estimated |by, — b | < d, using |go — 1| < ¢;. Furthermore, since |Z| < 2
and |go| < 1+ ¢1 <2, we have |ag| < 3, and therefore I, > I} := ]I|3Hyk*‘§1. This
inequality in combination with (3.6) and (3.5) gives

(3.7) &k < Ck, Ce =1—2""pq((b})* — 2d3) O (1)L}, 1<j<n.

Assume without loss of generality that 1 € G. By Hoeffding’s (1963) Theorem 4,

(3.8) E(®9) H G < H EI) ¢, = (E(i’j)gl)lGl,

keG keG

In the last step we used the symmetry. Next we show that, for some c5 > 0,
(3.9) EC)¢ <1 —csntu, u=1t>+ s
Note that by (3.9) and (2.17), the right-hand side of (3.8) is less than

m/4 10

(1 —csn™tu)™* < exp{— % % u} < exp{— %0504 Inu} <u™ ™,

provided that the constant ¢4 in the definition of m is sufficiently large. This
bound in combination with (3.7) and (3.4) implies B¢ HZ < 4,10,

In order to prove (3.9) we show that

(3.10) I =E®D )T > 27 w2 and  EOD@? <28 w2
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The second inequality follows from the crude bound Ed? < 32t2w~2(c? + u) and
(2.13), provided that ¢; and ¢y are sufficiently small. To prove the first inequality
write

n 1

L = 2 —

n—2 I3, I, = E(b})%I1, I3 = (b7)°IF + (b§)2ﬂ§’

L=Li—I5, I =B’ =uww? w5 = Bb]) Tanyy o1

n—2

Now it is easy so see that the first inequality of (3.10) follows from
(3.11) I3 <20 tu(pg) !, I5 <20 tuw 2

and the inequality t>w~*a? < t2w~*c2, provided that cy is sufficiently small.
Let us prove the bound for I3. It follows from the inequalities

(3.12) (b5)? < 262(Y)? + 252w ™2,

(V) + () < 2302 P + Y7 P) ™ < 2 S mBIY;[P)/® < (L )2/

that I3 < 16u(u?/3(pq)~2/3 +w=2). This bound in combination with (2.13) yields
the first inequality of (3.11) provided that ¢ is sufficiently small.
To prove the bound (3.11) for I5 we combine (3.12) and Chebyshev’s inequality,

t2 s2 * * *
<25 Is+2—51In, Is = w?E(Y)?|3HYY|, I; = BI3HY} |

By the definition of H, see (2.14), Is = 3c3b? < 3c3. By (2.20), Iy < 9¢3. Choosing
cs small enough we obtain the second inequality of (3.11) thus, completing the
proof of the lemma.
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