
A BERRY–ESSEEN BOUND FOR FINITE

POPULATION STUDENT’S STATISTIC

M. Bloznelis

Abstract. A general and precise Berry–Esseen bound is proved for the Studentized
mean based on N random observations drawn without replacement from a finite
population. The bound yields the optimal rate O(N−1/2) under minimal conditions.
If Erdős–Rényi condition holds this bound implies the asymptotic normality of
Student’s statistic and the selfnormalized sum.

1. Introduction and results

Let {x} denote a sequence of real numbers x1, . . . , xn and let X1, . . . , XN , N < n,
denote random variables with values in {x} such that X = {X1, . . . , XN} represents
a simple random sample of size N drawn without replacement from {x}. We shall
assume that EX1 = 0 and σ2 = EX2

1 > 0.
Let

t = t(X) = X/σ̂

denote the Student statistic, where

X = N−1(X1 + · · ·+ XN ) and σ̂2 = σ̂2(X) = N−1
N∑

i=1

(Xi −X)2.

Put t = 0 if σ̂ = 0. By the finite population central limit theorem (CLT), see
Erdős and Rényi (1959), for large N , the distribution of

√
N t can be approxi-

mated by a normal distribution. In this paper we estimate the rate of the normal
approximation. We construct a bound for

δN = supx

∣∣∣P
{√

N/q t(X) < x
}− Φ(x)

∣∣∣,

where Φ(x) denotes the standard normal distribution function,

p = N/n and q = 1− p.
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Theorem 1.1. There exists an absolute constant c > 0 such that

(1.1) δN ≤ c√
q

β3√
N σ3

, β3 := E |X1|3.

A similar Berry–Esseen bound but for the finite population sample mean was
proved by Höglund (1978). The estimate of Theorem 1.1 holds for any fixed
sample size N and population size n. If β3/σ3 is bounded and q is bounded away
from 0 as N →∞ and n → ∞, then (1.1) establishes a Berry–Esseen bound of
order O(N−1/2). Note that the factor 1/

√
q in the right hand side of (1.1) can not

be removed or replaced by qα with α > −1/2, cf. one term Edgeworth expansion
for P

{√
N/q t(X) < x

}
given in Babu and Singh (1985).

Write w =
√

n p q.

Theorem 1.2. There exists an absolute constant c > 0 such that

(1.2) δN ≤ c

σ2
EX2

1 I|X1|>σw + c

w σ3
E |X1|3 I|X1|≤σw.

Theorems 1.1 and 1.2 can be considered as a particular extension to the case
of simple random sampling of Berry–Esseen bounds for Student’s statistic based
on i.i.d. observations, proved recently by Bentkus and Götze (1996). Indeed, the
case where n → ∞ and N is fixed corresponds to the i.i.d. situation and in this
way we obtain Theorems 1.1 and 1.2 of Bentkus and Götze (1996) as corollaries
of Theorems 1.1 and 1.2. It could be mentioned that our techniques are related
to those of Bentkus and Götze (1996), Bloznelis and Götze (1997) and Höglund
(1978).
Next we apply Theorem 1.2 to prove the CLT for Studentized mean. Consider a

sequence of populations {x}n = {xn 1, . . . , xn n} such that
∑

i xn i = 0, for every
n = 2, 3, . . . . Let Xn N = {Xn 1, . . . , Xn N} denote a sample of size N = Nn drawn
without replacement from {x}n. Write σ2

n = EX2
n 1 and assume that σ2

n > 0, for
every n = 2, 3, . . . . Write pn = Nn/n and qn = 1 − pn. Erdős and Rényi (1959)
proved that if

(1.3) ∀ε > 0, lim
n→∞

σ−2
n EX2

n 1I|Xn 1|≥εσnwn
= 0, w2

n = n pn qn,

then the sequence Sn = S({x}n) = (Xn 1 + · · · + Xn Nn)/(σnwn) converges in
distribution to the standard normal distribution as n → ∞. Note that (1.3)
implies Nn → ∞ as n → ∞. Hajek (1960) showed that Erdős–Rényi condition
(1.3) is also necessary for the asymptotic normality of Sn. One consequence of
Theorem 1.2 is that this condition is sufficient also for the asymptotic normality
of the Studentized mean.
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Corollary 1.3. Assume that (1.3) holds. Then
√

Nn/qn t
(
Xn Nn

)
converges in

distribution to the standard normal distribution.

May be more interesting is the fact that it may happen that
√

Nn/qn t(Xn Nn)
is asymptotically standard normal when Sn doesn’t. Such a situation is exhibited
in the following example.
Example. Let {x}n be a sequence of populations as above. Assume that this

sequence satisfies (1.3) and that σn = 1. Construct a new sequence of populations
{x̃}n+2 by putting {x̃}n+2 = {x}n ∪ {−n, n}. Choose the sequence Nn so that
Nnpn → 0 and let X̃n Nn

denote a simple random sample of size Nn drawn from
the population {x̃}n. It is easy to see that in this case (1.3) fails and S({x̃}n)
converges to a degenerate distribution. Furthermore, since

P{{−n, n} ⊂ X̃n+2 Nn+2} ≤ 2Nn+2pn+2 → 0

the limiting behavior (as n →∞) of distributions of t(Xn Nn) and t(X̃n+2 Nn+2) is
the same, i.e., both are asymptotically standard normal.
Remark. All the results stated above remain valid if instead of the standardized

Student statistic
√

Nt one considers the selfnormalized sums

X1 + · · ·+ XNq
X2

1 + · · ·+ X2
N

.

In particular Theorems 1.1 and 1.2 hold with δN replaced by δ′N , where

δ′N := sup
x

∣∣∣P
{ X1 + · · ·+ XNq

X2
1 + · · ·+ X2

N

<
√

q x
}− Φ(x)

∣∣∣.

In contrast to the case of independent and identically distributed observations,
where the normal approximation of the Studentized mean and related statis-
tics was studied by a number of authors, see, for instance, Chung (1946), Efron
(1969), Logan, Mallows, Rice and Shepp (1973), Chibisov (1980), Helmers and van
Zwet (1982), van Zwet (1984), Slavova (1985), Bhattacharya and Ghosh (1978),
Hall (1988), Griffin and Mason (1991), Sharakhmetov (1995), Bentkus and Götze
(1996), Bentkus, Bloznelis and Götze (1996), Gine, Götze and Mason (1997), Ben-
tkus, Götze and van Zwet (1997), Putter and van Zwet (1998) etc. there are only
few results concerned with the rate of the the normal approximation of finite pop-
ulation Student’s statistic. Praškova (1989) constructed a Berry–Esseen bound for
the Studentized mean based on the observations drawn without replacement from
a finite set of random variables, assuming that each of them is of zero mean. Rao
and Zhao (1994) proved the Berry–Esseen bound,

δN ≤ c√
q

E |X1|4√
N σ4

,
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which establishes the rate O(N−1/2) but involves the fourth moment. Babu and
Singh (1985) studied a higher order asymptotics of the distribution function of√

N t. Berry–Esseen bounds for some other nonlinear finite population statistics
were obtained by Zhao and Chen (1990), Kokic and Weber (1990) and, as a par-
ticular case of the rate of convergence of general multivariate sampling statistics,
by Bolthausen and Götze (1993).
Acknowledgments. I would like to thank V. Bentkus for discussions and comments.

A part of this work was done when I was visiting Leiden University. I would like
to thank J. Mijnheer for kind hospitality.

2. Proofs

The section is organized as follows. In the beginning we formulate a general
result, see Theorem 2.1 below. Then we give proofs of Theorems 1.1 and 1.2
and Corollary 1.3 which are simple consequences of Theorem 2.1. The proof of
Theorem 2.1, is postponed to the end of the section.
Define the number a ≥ 0 by the truncated second moment equation,

a2 = sup
{
b : EX2

1 IX2
1≤b w2 ≥ b

}
.

It is easy to check that a ≤ σ and a is the largest solution of the equation

a2 = EX2
1 I|X1|≤aw.

In the case where a is positive we write

γ = a−2σ2 − 1, α = w2|EY1|, µ = w2E|Y1|3, Y1 = a−1w−1X1I|X1|≤aw.

and note that |Y1| ≤ 1, EY 2
1 = w−2 and N−1/2 ≤ w−1 ≤ µ, by Lyapunov’s

inequality (EY 2
1 )3 ≤ (E|Y1|3)2.

Theorem 2.1. There exists an absolute constant c > 0 such that

(2.1) δN ≤ c w2P{|X1| > a w}+ c(R+ γ Ip>q), R = α + µ,

whenever a > 0.

Proof of Theorem 1.1. Theorem 1.1 is an immediate consequence of Theorem 1.2.

Proof of Theorem 1.2. We may and shall assume without loss of generality that
σ = 1. This implies a ≤ 1.
In the case where a2 ≥ 1/4 we derive (1.2) from (2.1). Introduce the events

∆1 = {|X1| > aw}, ∆2 = {aw < |X1| ≤ w} and ∆3 = {|X1| > w}. Combining
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the identity I∆1 = I∆2 + I∆3 (here I∆ denotes the indicator function of the event
∆) and Chebyshev’s inequality we get

P{|X1| > a w} = EI∆2 + EI∆3 ≤
1

a3w3
E|X1|3I∆2 + 1

w2
EX2

1 I∆3 ,

a2γ = σ2 − a2 = EX2
1 I∆1 = EX2

1 I∆2 + EX2
1 I∆3 ≤

1

aw
E|X1|3I∆2 + EX2

1 I∆3 ,

aw|EY1| = |EX1I∆1 | ≤ E|X1|I∆2 + E|X1|I∆3 ≤
1

a2w2
E|X1|3I∆2 + 1

w
EX2

1 I∆3 .

In the last step we used EX1 = 0. Using these inequalities we obtain bounds for
P{|X1| > aw}, α, γ and µ. Substitution of these bounds in the right hand side of
(2.1) yields (1.2).
In the case where a2 < 1/4 we have EX2

1 I|X1|≤w/2 < 1/4 and therefore,
EX2

1 I|X1|>w/2 ≥ 3/4. Furthermore,

3/4 ≤ EX2
1 I|X1|>w/2 ≤ 2w−1E |X1|3Iw/2<|X1|≤w + EX2

1 I|X1|>w.

Since δN ≤ 1, we obtain

δN ≤ 1 ≤ 8

3
w−1E |X1|3Iw/2<|X1|≤w + 4

3
EX2

1 I|X1|>w,

thus completing the proof of Theorem 1.2.

Proof of Corollary 1.3. We may and shall assume without loss of generality that
σn = 1, for n = 2, 3, . . . .
Introduce the events ∆n 1 = {|Xn 1| > wn} and ∆n 2 = {|Xn 1| ≤ wn}. In view of

Theorem 1.2 it suffices to show that for every ε > 0,

(2.2) lim sup
n

(
EX2

n 1I∆n 1 + w−1
n E|Xn 1|3I∆n 2

) ≤ ε.

Let us show (2.2). Given ε > 0 introduce the events ∆n 3 = {|Xn 1| > εwn} and
∆n 4 = {|Xn 1| ≤ εwn}. We have

EX2
n 1I∆n 1 + w−1

n E|Xn 1|3I∆n 2 ≤ EX2
n 1I∆n 3 + εEX2

n 1I∆n 4 ≤ EX2
n 1I∆n 3 + ε.

Now (2.2) follows from (1.3).

It remains to prove Theorem 2.1. We shall assume that a > 0 in what follows.
Before the proof we introduce some notation. In what follows c, c1, . . . denote
generic absolute constants. By c(α1, α2, . . . ) we denote constants which may de-
pend only on the parameters α1, α2, . . . . We write A ¿ B if A ≤ cB. The
expression exp{ix} is abbreviated by e{x}.
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For k = 1, 2, . . . , write Ωk = {1, . . . , k}. Given a sum S = s1 + · · · + sk, denote
S(i) = S − si. Given A ⊂ Ωk write SA =

∑
j∈A sj .

Let θ1, θ2, . . . denote independent random variables uniformly distributed in [0, 1]
and independent of all other random variables considered. For a complex valued
smooth function h we use the Taylor expansion

h(x) = h(0) + h′(0)x + · · ·+ h(n)(0) xn

n!
+ Eθ1h

(n+1)(θ1x)(1− θ1)n xn+1

n!
.

Here Eθ1 denotes the conditional expectation given all the random variables but
θ1. In particular, we have the mean value formula, h(x)− h(0) = Eθ1h

′(θ1x)x.
Let g be a three times differentiable real function with bounded derivatives such

that

g(x) = x−1/2, for |x− 1| ≤ c1, and |g(x)− 1| ≤ c1, for x ∈ R.

The (small) constant 0 < c1 < 1 will be specified later.
Let X∗ = (X1, . . . , Xn) denote a random permutation uniformly distributed over

permutations of the sequence {x1, . . . , xn}. In particular, X1, . . . , XN represents
a simple random sample of size N drawn without replacement from {x}. Let
ν = (ν1, . . . , νn) denote a sequence of independent Bernoulli random variables
independent of X∗ and having probabilities

P{νi = 1} = p, P{νi = 0} = q, 1 ≤ i ≤ n.

Given A = {i1, . . . , ik} ⊂ Ωn let E{i1,...,ik} = EA (respectively E(i1,...,ik)) de-
note the conditional expectation given all the random variables, but νi1 , . . . , νik

(respectively Xi1 , . . . , Xik
).

Write

(2.3) Yi = 1

aw
XiI|Xi|≤aw, Zi = Y 2

i −EY 2
i , 1 ≤ i ≤ n,

Y =
N∑

i=1

Yi, Z =
N∑

i=1

Zi, Y ′ =
n∑

i=N+1

Yi, Z ′ =
n∑

i=N+1

Zi,

S = (Y −EY )g(1 + qZ), S′ = −(Y ′ −EY ′)g(1− qZ ′),

and note that

(2.4) EZ2
i ¿ E|Zi|3/2 ¿ E|Yi|3 = w−2µ, E|Yi −EYi|3 ≤ 8E|Yi|3 = 8w−2µ.

Below we shall use the following simple inequality. Given {i1, . . . , ik} ⊂ Ωn and
j ∈ Ωn \ {i1, . . . , ik} let X∗

j be a measurable function of Xj . We have

(2.5) E(i1,...,ik)|X∗
j |α ≤

n

n− k
E|X∗

j |α, for α > 0.
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We shall apply this inequality to random variables Yj , Zj , Yj −EYj , etc.
Given a random variable W , write ∆W = supx |P{W ≤ x} −Φ(x)|. Let W ′ be a

random variable defined on the same probability space as W . Then

(2.6) ∆W ≤ ∆W ′ + ε max
x
|Φ′(x)|+ P{|W −W ′| > ε}, ∀ε > 0,

(2.7) |∆W −∆W ′ | ≤ P{|W 6= W ′|}.

The proof of Theorem 2.1 consists of two steps. In the first step (see Lemma 2.1)
we replace X1, . . . , XN by truncated random variables Y1, . . . , YN and replace the
statistic

√
N/qt by S (respectively by S′) in the case where p ≤ q (respectively

p > q), see (2.3). Furthermore, the Berry–Esseen smoothing lemma reduces the
problem of estimation |P{S ≤ x} − Φ(x)| to that of the estimation the difference
|E exp{itS}−exp{−t2/2}|. In the second step we estimate this difference by means
of expansions. For p > q, we estimate |P{S′ ≤ x} − Φ(x)| in much the same way.

Lemma 2.1. Assume that a > 0 and N ≥ 2. Then

(2.8) δN ≤ ∆SIp≤q + ∆S′Ip>q + cR1, R1 = w2P{|X1| > a w}+ α + µ + γ Ip>q.

Proof of Lemma 2.1. We may and shall assume that α < 1 and µ < 1. Otherwise
(2.8) follows from the inequality δN ≤ 1.
Let us prove (2.8) in the case where p ≤ q, i.e. 1/2 ≤ q. Introduce the statistic S̃ =

Y g(1 + qZ − qY 2/N) based on the sample Y = (Y1, . . . , YN ). Since
√

N/qt(X) =√
N/qt(Y) on the event A1 = {X = awY} and

√
N/qt(Y) = S̃ on A2 = {q|Z −

Y 2/N | ≤ c1}, we have

(2.9) P{
√

N/qt(X) 6= S̃} ≤ 1−P{A1 ∩A2} ≤ 1−P{A1}+ 1−P{A2} ¿ R1.

Indeed, 1−P{A1} ≤ N P{|X1| > a w} ≤ 2w2P{|X1| > a w} and

1−P{A2} ≤ P{|Z| > c1

2
}+ P{ Y 2

N
>

c1

2
} ≤ cE|Z|3/2 + c

N
EY 2 ¿ µ.

In the last step we used the inequalities

(2.10) EY 2 ≤ c, E|Z|3/2 ≤ c µ

and N−1/2 ≤ w−1 ≤ µ. To prove (2.10) we combine Hoeffding’s (1963) Theorem
4 and the Marcinkiewicz-Zygmund inequality. It follows from (2.9) and (2.7) that

(2.11) |δN −∆S̃ | ¿ R1.
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Decompose S̃ = S +R1 +R2, where R1 = g(1+qZ)EY and R2 = S̃−Y g(1+qZ)
satisfy

|R1| ≤ N |EY1|(1 + c1) ≤ 4α and |R2| ≤ c|Y |3N−1,

by the mean value theorem. Fix ε = 5α + N−1/2 and note that

(2.12) P{|S − S̃| ≥ ε} ≤ P{|R2| ≥ N−1/2} ≤ N−1/2E|Y |3 ¿ N−1/2 ≤ µ.

Here we used the inequality E|Y |3 ≤ c, which is proved in much the same way as
(2.10). Finally, (2.6) applied to S̃ and S in combination with (2.12) and the simple
bound maxx |Φ′(x)| ≤ c implies ∆S̃ ≤ ∆S +cα+cµ. This inequality together with
(2.11) yields (2.8), for p ≤ q.
Let us prove (2.8) in the case, where p > q. We may and shall assume that

2γ < c1/2. Otherwise, (2.8) follows from the inequalities δN ≤ 1 ¿ γ.
It follows from the identities

∑n
i=1 Xi = 0 and

∑n
i=1 X2

i = nσ2 that

X = −X′

N
, σ̂2 = σ2

p
− 1

N

n∑

i=N+1

X2
i −

(X′)2

N2
, where X ′ =

n∑

i=N+1

Xi.

Therefore, on the event A3 = {(XN+1, . . . , Xn) = aw(YN+1, . . . , Yn)} we have

√
N/qt(X) = −Y ′(1− qZ ′ + R3)1/2, where R3 = γ/p− qN−1(Y ′)2.

Furthermore, on the event A4 = {q|Z ′+(Y ′)2/N | ≤ c1/2} we have −Y ′(1− qZ ′−
R3)1/2 = S̃′, where S̃′ = −Y ′g(1 − qZ ′ + R3). Hence,

√
N/qt(X) = S̃′ on the

event A3∩A4. It is easy to show, cf. (2.9), that 1−P{A3∩A4} ¿ R1. Therefore,
by (2.7), |δN −∆S̃′ | ¿ R1. The remaining part of the proof is much the same as
that of the case where p ≤ q.

Proof of Theorem 2.1. By Lemma 2.1, it suffices to show ∆SIp≤q ¿ R and
∆S′Ip>q ¿ R. We give the proof of the first inequality only. The proof of the
second inequality is much the same.
We shall assume that p ≤ 1/2 ≤ q in what follows and show that ∆S ¿ R. We

may and shall assume that for a small constant c2,

(2.13) α < c2, µ < c2.

Indeed, if at least one of these inequalities fails we obtain ∆S ≤ 1 ¿R.
Denote

ϕ(t) = E e{tS}, ψ(t) = E e{t(Y −EY )}, φr(t) = exp{−t2r2/2}, r > 0.
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Given two complex valued functions f and h write

I[d,e](f, h) =
∫

|t|∈(d;e]

|t|−1|f(t)− h(t)|dt, e > d ≥ 0.

The Berry-Esseen smoothing inequality, see Feller (1971), 538 p., yields

(2.14) ∆S ¿ I[0;H](ϕ, φ1) + H−1, H = c3b
2µ−1

0 .

Here we denote

b2 = w2E(Y1 −EY1)2 = 1− α2w−2, µ0 = w2E|Y1 −EY1|3.

The (small) constant c3 will be specified later. Since µ0 ¿ µ and, by (2.13),
b−2 ≤ c, we have H−1 ¿ R. It remains to show I[0;H](ϕ, φ1) ¿R. Write

I[0;H](ϕ, φ1) ≤ I[0;H](ϕ,ψ) + I[0;H](ψ, φb) + I[0;H](φb, φ1).

Clearly, I[0;H](φb, φ1) ¿ (1−b2) ¿R, by (2.13). It follows from Höglund’s (1978),
formula (8), that I[0;H](ψ, φb) ¿ b−3µ0, provided that c3 is sufficiently small. By
(2.13), b−3µ0 ¿ µ0 ¿ µ. Therefore, it remains to bound I[0;H](ϕ,ψ). We split
I[0;H](ϕ,ψ) = I[0;c4](ϕ,ψ) + I[c4;H](ϕ,ψ) and estimate the summands separately.
Let us show

(2.15) I[c4;H](ϕ,ψ) ¿R.

To this aim we represent the characteristic functions ϕ and ψ in Erdős-Rényi
(1959) form, see (2.16) below. Write

T =
n∑

i=1

Ti, Q =
n∑

i=1

Qi, S =
n∑

i=1

Si,

Ti = (Yi −EYi)(νi − p), Qi = qZi(νi − p), Si = w−1(νi − p).

We have

(2.16) ϕ = λ

∫ πw

−πw

E e{tTg(1 + Q) + sS}ds, ψ = λ

∫ πw

−πw

E e{tT + sS}ds,

with λ−1 = 2πwP{S = 0}. Höglund (1978) showed that 2−1/2π ≤ λ−1 ≤ (2π)1/2.
Given a number L > 0 and a complex valued bivariate function f write f ≺ L if

∫

Z
|t|−1|f(s, t)|dsdt ¿ L, where Z = {(s, t) : c4 ≤ |t| ≤ H, |s| ≤ πw}.
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Given two complex valued functions f , h write f ∼ h if f − h ≺ R.
Introduce the integer valued function

(2.17) m = m(s, t) ≈ 2−1c4nu−1 ln u, u = t2 + s2, (s, t) ∈ Z.

A simple calculation shows that 10 ≤ m(s, t) ≤ n/2, for (s, t) ∈ Z, provided that
c4 is sufficiently large. Write z := mpqw−2 = m/n ¿ u−1 ln u. We shall often use
the following fact. For α1, α2, α3, α4 ≥ 0 satisfying α3 + α4 > α1 + α2 + 1/2,

(t2)α1(s2)α2zα3u−α4 ≺ c(α1, α2, α3, α4).

Denote

A = Ωm, B = Ωn \ Ωm, g0 = g(1 + QB), g1 = g′(1 + QB).

Split

(2.18) T = TA +TB , Q = QA +QB , TAQA = DA +UA, TBQB = DB +UB ,

where, we denote

(2.19) DG =
∑

j∈G

TjQj , UG =
∑

i,j∈G, i 6=j

TiQj , G ⊂ Ωn.

Introduce the random variables

vj = v∗j − 2−1tTjQj , v∗j = tTjg0 + sSj , v?
j = tTj + sSj , 1 ≤ j ≤ n,

V =
n∑

j=1

vj , V ∗ =
n∑

j=1

v∗j , V ? =
n∑

j=1

v?
j ,

HG = |EG e{VG}|, H∗
G = |EG e{V ∗

G}|, H?
G = |EG e{V ?

G}|, G ⊂ Ωn.

Several useful inequalities to be used below are collected in the next two lemmas.

Lemma 2.2. Assume that (2.13) holds. We have

(2.20) Hµ ¿ 1, H2E(Y1 −EY1)2 ≤ c2
3,

(2.21) EU2
A ¿ z2µ, E|UAQA| ¿ z3/2µ,

(2.22) E|TBQ2
A|3/4 ¿ zµ, E|TBQA|3/2 ¿ zµ,

(2.23) E|
∑

j∈A

TjQ
2
j | ¿ zµ E|

∑

j∈A

TjQjQ
(j)
A | ¿ z3/2µ3/2.

For any G ⊂ Ωn and i1, i2, i3 ∈ Ωn \G, we have

(2.24) E(i1,i2,i3)|TG|r ¿ c, 0 < r ≤ 6.
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Lemma 2.3. Let G ⊂ Ωn and |G| ≥ m/4. There exists a small constant c∗ > 0
such that the inequality c1, c2, c3, c

−1
4 < c∗ implies

(2.25) E(i,j)H2
G < u−10, E(i,j)(H∗

G)2 < u−10, E(i,j)(H?
G)2 < u−10,

(2.26) E(i,j)HG < u−5, E(i,j)H∗
G < u−5, E(i,j)H?

G < u−5,

for any i, j ∈ Ω \G.

These lemmas are proved in Section 3. We shall assume that c1, c2, c3 and c−1
4

are choosen small enough so that (2.25) and (2.26) hold.
In view of the inequality λ ≤ 21/2π−1, (2.15) can be written as follows,

(2.27) f ∼ f∗, where f = E e{tTg(1 + Q) + sS}, f∗ = E e{tT + sS}.
Let us prove (2.27). The proof consists of the following steps,

(2.28) f ∼ f1, f1 = E e{W1}, W1 = V ∗ + tTQAg1,

(2.29) f1 ∼ f2, f2 = E e{W2 + tTBQAg1}, W2 = VA + V ∗
B ,

(2.30) f2 ∼ f3, f3 = E e{VA + V ∗
B},

(2.31) f3 ∼ f4, f4 = E e{V ∗},
(2.32) f4 ∼ f5, f5 = E e{V ?

A + V ∗
B},

(2.33) f5 ∼ f∗.

Proof of (2.28). Expanding in powers of QA we get g(1+Q) = g0 +QAg1 +Q2
Ar,

where r is a bounded function of QA, QB . Substituting this expansion we obtain
tTg(1 + Q) + sS = W1 + tTQ2

Ar and therefore,

(2.34) |f − f1| ≤ E| e{tTQ2
Ar} − 1|.

By (2.18), TQ2
A = R1+R2+R3, where R1 = TBQ2

A, R2 = UAQA and R3 = DAQA.
Split

R3 = R3.1 + R3.2, R3.1 =
∑

j∈A

TjQjQ
(j)
A , R3.2 =

∑

j∈A

TjQ
2
j .

Now, applying the inequality

(2.35) | e{x} − 1| ≤ 2|x|τ , 0 ≤ τ ≤ 1, x ∈ R,

several times, with τ = 1 and τ = 3/4, we get from (2.34)

|f − f1| ¿ |t|(E|R2|+ E|R3.1|) + |t|3/4(E|R1|3/4 + E|R3.2|3/4)

¿ |t|(z3/2µ + z3/2µ3/2) + |t|3/4zµ,
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by Lemma 2.2. We obtain |f − f1| ≺ R, thus proving (2.28).
Proof of (2.29). Write TQA = TBQA + DA + UA, see (2.18), and expand g1 =

g′(1+QB) = −2−1+QBr to get DAg1 = −2−1DA+DAQBr, where r is a bounded
function of QB . Now we have

W1 = W2 + tTBQAg1 + w1 + w2, w1 = tUAg1, w2 = tDAQBr.

Firstly we shall show f1 ∼ f6, where f6 = E e{W2 + tTBQAg1 + w1}. By (2.35),
|f1 − f6| ¿ E|w2|. Let us show E|w2| ≺ R. By the symmetry,

(2.36) E|w2| ≤ m|t|E|T1Q1QB | = m|t|E|T1Q1|E(1)|QB |.

Since νj − p, 1 ≤ j ≤ n, are independent centered random variables, we have

E(1)Q2
B =

∑

j∈B

E(1)Q2
j = |B|pqE(1)Z2

n,

by the symmetry. Furthermore, combining (2.5) and (2.4) we obtain E(1)Q2
B ¿ µ

and therefore, E(1)|QB | ¿ µ1/2. Substituting this bound in (2.36) and estimating
E|T1Q1| ¿ pqE|Y1|3 we obtain E|w2| ¿ |t|zµ3/2 ¿ |t|1/2zµ ≺ R. In the last step
we used the inequality |t|µ ¿ 1, which holds for |t| ≤ H, see (2.20).
Let us show f6 ∼ f2. Expanding the exponent in powers of iw1 we get

f6 = f2 + f7 + R, f7 = E e{W2 + tTBQAg1}iw1, with |R| ¿ t2EU2
A.

By (2.21), |R| ¿ t2z2µ ≺ R. Therefore, f1 ∼ f2 + f7. Next we show

(2.37) f7 ∼ f8, f8 = E e{W2}iw1.

An application of (2.35) with τ = 3/4 gives

|f7 − f8| ¿ |t|7/4E|TBQA|3/4|UA| ≤ |t|7/4(E|TBQA|3/2)1/2(EU2
A)1/2,

by Cauchy–Schwarz. Invoking inequalities of Lemma 2.2 we obtain |f7 − f8| ¿
|t|7/4z3/2µ ≺ R and thus, (2.37) follows.
We complete the proof of (2.29) by showing f8 ≺ R. By the symmetry,

(2.38) f8 = it(m2 −m)f9, f9 = E e{W2}T1Q2g1,

Recall that W2 = VA + V ∗
B and write

f9 = E e{VA′′ + V ∗
B} e{v1 + v2}T1Q2g1, A′′ = A \ {1, 2}.
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Expanding

e{v1 + v2} = (1 + v1r1) e{v2} = e{v2}+ v1r1(1 + v2r2), rj = iEθj e{θjvj},

and using the fact that the conditional expectation of T1 (respectively Q2) given
all the random variables, but ν1 (respectively ν2) is zero, we obtain

f9 = −E e{VA′′ + V ∗
B}Rg1, R = T1Q2v1v2r1r2.

Since |g1| ≤ c and R is a function of ν1, ν2, X1, X2 and HA′′ is a function of
X3, . . . , Xm we can write

|f9| ≤ E|R|HA′′ ¿ E|R|E(1,2)HA′′ ,

Combining the inequality E(1,2)HA′′ < u−5, see Lemma 2.3, and the simple bound
E|R| ¿ p2q2w−4uµ, we obtain |f9| ¿ n−2u−4µ. Substituting this inequality in
(2.38) we get f8 ≺ R thus completing the proof of (2.29).
Proof of (2.30). Split A = A1 ∪ A2 ∪ A3 so that Ai ∩ Aj = ∅, for i 6= j, and
|Aj | ≈ m/3 and j ∈ Aj , for j = 1, 2, 3. Write

tTBQAg1 = w1 + w2 + w3, wj = tTBQAj g1, j = 1, 2, 3,

and denote W3 = W2 + w2 + w3. Firstly we show

(2.39) f2 ∼ f10 + f11, f10 = E e{W3}, f11 = E e{W3}iw1.

Expanding the exponent in f2 = E e{W3 + w1} in powers of iw1, we obtain

f2 = f10 + f11 + f12, f12 = E e{W3}w2
1r1,

where r1 is a bounded function of w1.
Let us show f12 ≺ R. Expanding

e{w2 + w3} = (1 + w2r2) e{w3} = e{w3}+ w2r2(1 + w3r3),

where rj is a bounded function of wj , for j = 2, 3, we obtain

f12 = f12.1 + f12.2 + f12.3, f12.1 = E e{W2 + w3}w2
1r1,

f12.2 = E e{W2}w2
1w2r1r2, f12.3 = E e{W2}w2

1w2w3r1r2r3.

We shall show that f12.j ≺ R, for j = 1, 2, 3. Clearly,

|f12.1| ¿ EHA2w
2
1, |f12.2| ¿ EHA3w

2
1|w2|, |f12.3| ¿ Ew2

1|w2w3|.
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Using the symmetry and the fact that conditionally, given X∗, the random variables
Qj , j ∈ Ωn are uncorrelated we construct bounds for f12.j , j = 1, 2, 3. We have

|f12.3| ≤ t4ET 4
BQ2

A1
|QA2QA3 | = t4|A1|ET 4

BQ2
1|QA2QA3 | ≤ t4m3ET 4

BQ2
1|Q2Q3|,

Combining the bound E(1,2,3)T 4
B ≤ c, see (2.24), and the inequalities

EQ2
1|Q2Q3| ¿ p3q3EZ2

1 |Z2Z3| ¿ p3q3(E|Z1|3/2)(E|Z2|)(E|Z3|) ¿ p3q3w−6µ

(here we use (2.4) and (2.5)) we obtain f12.3 ¿ t4z3µ ≺ R.
Similarly,

(2.40) |f12.2| ¿ |t|3m2EHA3 |TB |3Q2
1|Q2| ¿ |t|3m2p2q2EZ2

1 |Z2|E(1,2)HA3 |TB |3.

By Hölder’s inequality, (2.25) and (2.24),

(2.41) E(1,2)HA3 |TB |3 ≤ (E(1,2)H2
A3

)1/2(E(1,2)T 6
B)1/2 ¿ u−5.

Substituting (2.41) in (2.40) and then using the inequalities

EZ2
1 |Z2| ¿ EZ2

1E|Z2| ¿ w−4µ,

(here we apply (2.5) and (2.4)) we obtain f12.2 ¿ |t|3u−5µ ≺ R. Finally,

|f12.1| ¿ t2|A1|EHA3T
2
BQ2

1 ¿ t2mpqEZ2
1E

(1)HA3T
2
B .

Combining the inequalities E(1)HA3T
2
B ¿ u−5, cf. (2.41), and EZ2

1 ¿ w−2µ, see
(2.4), we obtain |f12.1| ¿ t2u−5zµ ≺ R, thus completing the proof of (2.39).
Let us show

(2.42) f11 ≺ R, where f11 = E e{W3}iw1, W3 = VA + V ∗
B + w2 + w3.

By the symmetry, f11 = it|A1|E e{W3}TBg1Q1. Expanding the exponent in pow-
ers iv1 and using the fact that the conditional expectation of Q1 given all the
random variables but ν1 is zero, we get

f11 = i2t|A1|E e{VA′ + V ∗
B + w2 + w3}TBg1Q1v1r1, A′ = A \ {1},

where r1 is a bounded function of v1. Clearly,

|f11| ¿ |t|mE|Q1v1TB |HA′1 ≤ |t|mE|Q1v1|E(1)TB |HA′1 , A′1 = A1 \ {1}.
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Combining the inequality E(1)HA′1 |TB | ¿ u−5, cf. (2.41), and the simple bound
E|Q1v1| ¿ pq(|t| + |s|)w−3 we obtain |f11| ¿ (|t| + |s|)u−5w−1 ≺ w−1 ≤ µ, thus
proving (2.42).
Let us show f10 ∼ f3. Write w4 := w2 + w3. We have W3 = VA + V ∗

B + w4.
Expanding the exponent in f10 in powers of iw4 we obtain

f10 = f3 + f13 + f14, f13 = E e{VA + V ∗
B}iw4, f14 = E e{VA + V ∗

B}w2
4r,

where r is a bounded function of w4. The proof of f13 ≺ R (respectively f14 ≺ R)
is much the same as that of f11 ≺ R (respectively f12.1 ≺ R) above. Therefore,
f10 ∼ f3. Now, invoking (2.39) and (2.42), we obtain (2.30).
Proof of (2.31). Split A = A1 ∪A2 so that

(2.43) A1 ∩A2 = ∅ and |Aj | ≈ m/2 and j ∈ Aj , for j = 1, 2.

Write DA = DA1 + DA2 , see (2.19), and denote wj = tDAj g1, for j = 1, 2/ We
have f3 = E e{V ∗ + w1 + w2}. Expanding the exponent in powers of iw1 and iw2

we get

f3 = f4 + f15 + f16, f15 = E e{V ∗}w1r1, f16 = E e{V ∗ + w1}w2r2,

where rj is a bounded function of wj , j = 1, 2. By the symmetry,

|f15| ¿ |t|E|DA1 |H∗
A2
≤ |t||A1|E|T1Q1|H∗

A2
.

Similarly, |f15| ≤ |t||A2|E|T2Q2|HA1 . Combining the inequalities E(1)H∗
A2
¿ u−5

and E(2)HA1 ¿ u−5, see Lemma 2.3, and the simple bound E|TiQi| ¿ pqw−2µ
we obtain f15 ≺ R and f16 ≺ R thus proving (2.31).
Proof of (2.32). Split V ∗ = V ∗

A + V ∗
B and V ∗

A = V ∗
A1

+ V ∗
A2

, where A1 ∪ A2 = A
satisfy (2.43). In order to prove (2.32) we shall show

(2.44) f4 ∼ f17, f17 = E e{W4}, W4 = V ?
A1

+ V ∗
A2∪B ,

and f17 ∼ f5.
Let us prove (2.44). Expanding g0 = g(1 + QB) = 1−QB/2 + Q2

Br we get

V ∗
A1

= V ?
A1

+ w1 + w2, with w1 = −tTA1QB/2, w2 = tTA1Q
2
Br,

where r is a bounded function of QB . Furthermore, expanding the exponent in
f4 = E e{W4 + w1 + w2} and in powers of iw2 and iw1 to obtain

f4 = f17 + f18 + f19 + f20, f18 = E e{W4}iw1,

f19 = E e{W4}iw2
1r1, f20 = E e{W4 + w1}iw2r2,
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where rj is a bounded function of wj , j = 1, 2.
To show f19 ≺ R we use symmetry, and the fact that conditionally, given all the

random variables but νi, i ∈ B, the random variables Qi, i ∈ B are uncorrelated,

|f19| ¿ t2EQ2
BT 2

A1
H∗

A2
= t2|B|pqEZ2

nT 2
A1

H∗
A2

.

Combining the bounds EZ2
n ¿ w−2µ and E(n)T 2

A1
H∗

A2
¿ u−5, cf. (2.41), we

obtain f19 ≺ R. The proof of f20 ≺ R is much the same.
Let us show f18 ≺ R. By the symmetry,

f18 = −2−1it|A1||B|E e{W4}T1Qn.

Write V ?
A1

= V ?
A′1

+ v?
1 , where A′1 = A1 \ {1} and V ∗

A2∪B = V ∗
A2∪B′ + v∗n, where

B′ = B \ {n}. Expanding g0 = g(1 + QB′ + Qn) = g(1 + QB′) + Qnrn we get
V ∗

A2∪B′ = W5 + w3, where

W5 = tTA2∪B′g(1 + QB′) + sSA2∪B′ and w3 = v∗n + tTA2∪B′Qnrn.

Here rn is a bounded function of Qn. We have W4 = V ?
A′1

+ W5 + v?
1 + w3 and

therefore,
f18 = −2−1it|A1||B|E e{V ?

A′1
+ W5 + v?

1 + w3}T1Qn.

Expanding the exponent in powers of iv?
1 and then in powers of iw3 and using the

fact that the conditional expectation of T1 (respectively Qn) given all the random
variables, but ν1 (respectively νn) is zero, we get

f18 = 2−1it|A1||B|E e{V ?
A′1

+ W5}T1v
?
1Qnw3r3,

where r3 is a bounded function of v?
1 and w3. Clearly,

|f18| ¿ |t||A1||B|E|T1v
?
1 | |Qnw3|H?

A′1
.

Combining the bound E(1,n)H?
A′1

< u−5, see (2.26), and the simple inequality

E|T1v
?
1 | |Qnw3| ¿ p2q2(|t|+ |s|)w−4µ

we obtain f18 ≺ R thus completing the proof of (2.44). The proof of f17 ∼ f5 is
much the same. We arrive at (2.32).
Proof of (2.33). Expanding

g0 = g(1 + QB) = 1 + QBg2(QB), g2(QB) = Eθ1g
′(1 + θ1QB),
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we obtain V ∗
B = V ?

B + tTBQBg2(QB). Split TBQB = UB + DB and write

V ∗
B = V ?

B + w1 + w2, w1 = tUBg2(QB), w2 = tDBg2(QB).

We have f5 = E e{V ? + w1 + w2}. Expanding in powers of iw1 and iw2 we get

f5 = f∗ + f21 + f22 + f23, f21 = E e{V ?}iw1,

f22 = E e{V ?}w2
1r1, f23 = E e{V ? + w1}w2r2,

where rj is a bounded function of wj , j = 1, 2.
Let us show f22 ≺ R and f23 ≺ R. Using the fact that given X∗, the random

variables Ti1Qj1 and Ti2Qj2 , for i1 6= j1, i2 6= j2, are conditionally uncorrelated
unless the sets {i1, j1} and {i2, j2} coincide, we get

(2.45) EBU2
B =

∑

i,j∈B, i 6=j

EBZ̃i,j , Z̃i,j = T 2
i Q2

j + TiQjTjQi.

Therefore, by the symmetry,

|f22| ¿ t2EU2
BH?

A = t2(|B|2 − |B|)EZ̃n,n−1H
?
A.

Furthermore,
|f23| ¿ |t|E|DB |H?

A ≤ |t||B|E|TnQn|H?
A.

Combining the bound E(1,2)H?
A < u−5, see (2.26), and the inequalities

E|TnQn| ¿ pqw−2µ and E|Z̃| ¿ p2q2w−4µ we obtain f22 ¿ |t|u−5µ ≺ R and
f23 ¿ t2u−5µ ≺ R.
We complete the proof of (2.33) by showing f21 ≺ R. By the symmetry,

(2.46) f21 = (|B|2 − |B|)itf24, f24 = E e{V ?}TnQn−1g2(QB).

Write QB = QB′ + Qn, B′ = B \ {n}. Expanding g2 in powers of Qn we get

f24 = f25 + R1, f25 = E e{V ?}TnQn−1g2(QB′), |R1| ¿ E|TnQnQn−1|H?
A.

Combining (2.26) and the simple bound E|TnQnQn−1| ¿ p2q2w−4µ, we obtain
|R1| ¿ n−2u−5µ.
Expanding the exponent in powers of v?

n and using the fact that the conditional
expectation of Tn given all the random variables, but νn is zero, we obtain

f25 = f26, f26 = E e{V ?
Ωn−1

}TnQn−1g2(QB′)v?
nr?

n,

where r?
n is a bounded function of v?

n.
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Write B′′ = B′\{n−1}. Expanding g2 in powers of Qn−1 we obtain f26 = f27+R2,
where f27 is defined in the same way as f26, but with g2(QB′) replaced by g2(QB′′)
and

|R2| ¿ E|Tnv?
n|Q2

n−1H
?
A ¿ u−5(|t|+ |s|)n−2µ.

In the last inequality we apply (2.26) and the simple bound E|Tnv?
n|Q2

n−1 ¿
(|t|+ |s|)p2q2w−4µ.
Finally, expanding the exponent in f27 in powers of v?

n−1 and using the fact that
the conditional expectation of Qn−1 given all the random variables, but νn−1 is
zero, we obtain

(2.47) |f27| ¿ E|Tnv?
nQn−1v

?
n−1|H?

A ¿ (|t|+ |s|)2u−5n−2µ,

by (2.26) and the simple bound E|Tnv?
nQn−1v

?
n−1| ¿ (|t|+ |s|)2p2q2w−4µ.

It follows from (2.47) and the bounds for R1, R2 that |f24| ¿ u−4n−2µ. Now, by
(2.46), f21 ≺ R. We obtain (2.33) and, thus, complete the proof of (2.27).
We arrive at (2.15). The proof of the inequality I[0;c4] ¿R is similar to the proof

of (2.15), but simpler. We have I[0;H] ¿ R and this completes the proof of the
theorem.

3. Auxiliary inequalities

Denote, for brevity, Y ?
j = Yj −EYj , 1 ≤ j ≤ n.

Proof of Lemma 2.2. Let us prove (2.20). It follows from the inequalities E|Y1|3 ≤
4E|Y ?

1 |3 + 4|EY1|3 and E|Y ?
1 |3 ≥ (E|Y ?

1 |2)3/2 = w−3b3 that µ ≤ 4µ0 + 4w−4α3

and µ0 ≥ w−1b3. Therefore, µ−1
0 µ ≤ 4+4w−3b3α3 and µ−2

0 E|Y ?
1 |2 ≤ b−4. Finally,

by (2.13),

Hµ = c3b
2µ−1

0 µ ≤ c and H2E|Y ?
1 |2 = c2

3b
4µ−2

0 E|Y ?
1 |2 ≤ c2

3.

Let us prove (2.21). We have, see (2.45),

(3.1) EU2
A = (|A|2 − |A|)E(T 2

1 Q2
2 + T1Q2T2Q1).

Combining the bounds

(3.2) E(Y ?
i )2 ¿ w−2, EZ2

i ¿ E|Zi|3/2 ¿ w−2µ, E|Y ?
i Zi| ¿ w−2µ,

and (2.5) we obtain

ET 2
1 Q2

2 = p2q4E(Y ?
1 )2Z2

2 ¿ zµ, E|T1Q2T2Q1| = p2q4E|Y ?
1 Z1Y

?
2 Z2| ¿ z2µ2.

These inequalities in combination with (3.1) and (2.13) give EU2
A ¿ z2µ.
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The second inequality in (2.21) follows from EU2
A ¿ z2µ and EQ2

A ¿ zµ, by
Cauchy–Schwarz. To prove EQ2

A ¿ zµ we use the identity EAQ2
A =

∑
i∈A EAQ2

i ,
the symmetry and (3.2):

(3.3) EQ2
A = E(EAQ2

A) = |A|EQ2
1 = mpq3EZ2

1 ¿ mpqw−2µ = zµ.

Let us prove (2.22). An application of Marcinkiewicz–Zygmund inequality con-
ditionally given all the random variables, but νi, i ∈ A, gives EA|QA|3/2 ¿∑

i∈A EA|Qi|3/2. Therefore, by the symmetry,

E|TB |3/4|QA|3/2 ¿ |A|E|Q1|3/2|TB |3/4 ¿ mpqE|Z1|3/2E(1)|TB |3/4.

Finally, combining (2.24) and (3.2) we obtain the first inequality of (2.22). The
proof of the second one is much the same.
Let us prove (2.23). By the symmetry and (3.2),

E|
∑

j∈A

TjQ
2
j | ≤ mE|T1Q

2
1| ¿ mpq3E|Y ?

1 |Z2
1 ¿ mpqE|Y ?

1 ||Z1| ¿ zµ,

E|
∑

j∈A

TjQjQ
(j)
A | ≤ mE|T1Q1||Q(1)

A | = mpq2E|Y ?
1 Z1|E(1)|Q(1)

A | ¿ z3/2µ3/2.

In the last step we used the bound E(1)|Q(1)
A | ¿ z1/2µ1/2, which follows from

E(1)(Q(1)
A )2 ¿ zµ, cf. (3.3), by Cauchy–Schwarz.

It remains to prove (2.24). The proof for r = 6 is straightforward. Using (2.24),
with r = 6, and Lyapunov’s inequality we obtain (2.24) for 0 < r < 6.

Proof of Lemma 2.3. The inequalities (2.26) follows from (2.25), by Cauchy-
Schwarz. Let us prove (2.25). We shall prove the first inequality only. The
proof of the remaining two inequalities is similar, but simpler. Write

(3.4) H2
G ≤

∏

k∈G

ξk, ξk = |E{k} e{vk}|2.

We shall majorize ξk by a random variable, say ζk, which is a function of Xk,
and apply Hoeffding’s (1963) Theorem 4 to the expectation of the product of ζk,
k ∈ G.
Since ν2

k = νk, we can write (νk − p)2 = νk − 2νkp + p2. Therefore,

TkQk = (νk − p)2Y ?
k qZk = (νk − p)(1− 2p)Y ?

k qZk + r, r = (p− p2)Y ?
k qZk,

and we write

vk = (νk − p)bk − 2−1tr, bk = takY ?
k + sw−1 ak = g0 − 2−1(1− 2p)qZk.
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Since r does not depend on νk, we have

ξk ≤ |β(bk)|2, where β(x) = E e{x(ν1 − p)}, x ∈ R.

Höglund (1978) showed that, for any z0 ∈ [0, π) and z satisfying |z| ≤ π + z0,

|β(z)|2 ≤ 1− pq(z)2Θ(z0), Θ(z0) =
( 2

π

π − z0

π + z0

)2
.

We apply this inequality to those bk satisfying |akY ?
k | ≤ H−1. We have |bk| ≤ π+1

and therefore, ξk ≤ 1 − pqb2
kΘ(1). Combining this inequality with the obvious

bound ξk ≤ 1, k = 1, 2, . . . , n, we obtain

(3.5) ξk ≤ 1− pq b2
kΘ(1)Ik, Ik = I|HakY ?

k |≤1, 1 ≤ k ≤ n.

Write b?
k = tY ?

k + sw−1. The simple inequality (x + y)2 ≥ x2/2− y2 gives

(3.6) b2
k ≥ (b?

k)2/2− (bk − b?
k)2 ≥ (b?

k)2/2− d2
k, dk = |tY ?

k |(c1 + |Zk|).

Here we estimated |bk − b?
k| ≤ dk, using |g0 − 1| ≤ c1. Furthermore, since |Zk| ≤ 2

and |g0| ≤ 1 + c1 ≤ 2, we have |ak| ≤ 3, and therefore Ik ≥ I?k := I|3HY ?
k |≤1. This

inequality in combination with (3.6) and (3.5) gives

(3.7) ξk ≤ ζk, ζk = 1− 2−1pq
(
(b?

k)2 − 2d2
k

)
Θ(1)I?k, 1 ≤ j ≤ n.

Assume without loss of generality that 1 ∈ G. By Hoeffding’s (1963) Theorem 4,

(3.8) E(i,j)
∏

k∈G

ζk ≤
∏

k∈G

E(i,j)ζk =
(
E(i,j)ζ1

)|G|
.

In the last step we used the symmetry. Next we show that, for some c5 > 0,

(3.9) E(i,j)ζ1 < 1− c5n
−1u, u = t2 + s2.

Note that by (3.9) and (2.17), the right-hand side of (3.8) is less than

(1− c5n
−1u)m/4 ≤ exp{− c5

4

m

n
u} ≤ exp{− 1

8
c5c4 ln u} < u−10,

provided that the constant c4 in the definition of m is sufficiently large. This
bound in combination with (3.7) and (3.4) implies E(i,j)H2

G < u−10.
In order to prove (3.9) we show that

(3.10) I1 := E(i,j)(b?
1)

2I?1 ≥ 2−1uw−2 and E(i,j)d2
1 ≤ t28−1w−2.



BERRY–ESSEEN BOUND 21

The second inequality follows from the crude bound Ed2
1 ≤ 32t2w−2(c2

1 + µ) and
(2.13), provided that c1 and c2 are sufficiently small. To prove the first inequality
write

I1 = n

n− 2
I2 − 1

n− 2
I3, I2 = E(b?

1)
2I?1, I3 = (b?

i )
2I?i + (b?

j )
2I?j ,

I2 = I4 − I5, I4 = E(b?
1)

2 = uw−2 − t2w−4α2, I5 = E(b?
1)

2I|3HY ?
1 |>1.

Now it is easy so see that the first inequality of (3.10) follows from

(3.11) I3 ≤ 20−1u(pq)−1, I5 ≤ 20−1uw−2

and the inequality t2w−4α2 ≤ t2w−4c2
2, provided that c2 is sufficiently small.

Let us prove the bound for I3. It follows from the inequalities

(3.12) (b?
k)2 ≤ 2t2(Y ?

k )2 + 2s2w−2,

(Y ?
i )2 + (Y ?

j )2 ≤ 21/3
(|Y ?

i |3 + |Y ?
j |3

)2/3 ≤ 21/3(nE|Y ?
1 |3)2/3 ≤ 8( µ

pq
)2/3.

that I3 ≤ 16u(µ2/3(pq)−2/3 + w−2). This bound in combination with (2.13) yields
the first inequality of (3.11) provided that c2 is sufficiently small.
To prove the bound (3.11) for I5 we combine (3.12) and Chebyshev’s inequality,

I5 ≤ 2 t2

w2
I6 + 2 s2

w2
I7, I6 = w2E(Y ?

1 )2|3HY ?
1 |, I7 = E|3HY ?

1 |2.

By the definition of H, see (2.14), I6 = 3c3b
2 ≤ 3c3. By (2.20), I7 ≤ 9c2

3. Choosing
c3 small enough we obtain the second inequality of (3.11) thus, completing the
proof of the lemma.

References

Babu, J.G. and Singh, K., Edgeworth expansions for sampling without replacement from finite
populations, J. Multivar. Analysis. 17 (1985), 261–278.

Bentkus, V. Bloznelis, M. and Götze, F., The Berry–Esseen bound for Student’s Statistic in the
non-i.i.d. case, J. Theoret. Probab. 9 (1996), 765-796.

Bentkus, V. and Götze, F., The Berry–Esseen bound for Student’s Statistic, Ann. Probab. 24
(1996), 491–503.

Bentkus. V., Götze, F. and van Zwet, W. R., An Edgeworth expansion for symmetric Statistics,,
Ann. Statist. 25 (1997), 851–896.

Bhattacharya, R.N. and Ghosh, J.K., On the validity of the formal Edgeworth expansion, Ann.
Statist. 6 (1978), 434–451.

Bloznelis, M. and Götze, F., An Edgeworth expansion for finite population U-statistics (1997),
Preprint 97 - 012, SFB 343, Universität Bielefeld., Publication available at the internet:
http://www.mathematik.uni-bielefeld.de/sfb343/Welcome.html.



22 M. BLOZNELIS

Bolthausen, E. and Götze, F., The rate of convergence for multivariate sampling statistics, Ann.
Statist. 21 (1993), 1692–1710.

Chibisov, D.M., Asymptotic expansion for the distribution of a statistic admitting a stochastic
expansion I, Theor. Probab. Appl. 25 (1980), 732–744.

Chung K.L., The approximate distribution of Student’s statistic, Ann. Math. Stat. 17 (1946),
447-465.

Efron B., Student’s t-test under symmetry conditions, J. Amer. Statist. Assoc. (1969), 1278–1302.
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