
ONE TERM EDGEWORTH EXPANSION

TO STUDENT’S t STATISTIC

M. Bloznelis , H. Putter

Abstract. We evaluate the rate of approximation of the distribution function of Stu-
dent’s t statistic based on N iid observations by its one term Edgeworth expansion.
The rate is o(N−1/2) if the distribution of observations is non-lattice and has finite
third absolute moment. If the fourth absolute moment is finite and Cramér’s condition
holds the rate is O(N−1).

1. Introduction and Results

Let X1, . . . , XN , . . . be independent identically distributed random variables.
Write EX1 = µ. Let

t = t(X1, . . . , XN ) = (X − µ)/σ̂

denote the Student statistic, where

X = N−1(X1 + · · ·+ XN ), σ̂2 = N−1
∑N

i=1
(Xi −X)2.

Assume that σ2 := E (X1−µ)2 is finite and positive. Then the statistics TN =
√

Nt
is asymptotically standard normal as N →∞.

The rate of the normal approximation and asymptotic expansions to the distribu-
tion function

F (x) = P {
√

Nt ≤ x}
were studied by a number of authors, Chung (1946), Bhattacharya and Ghosh (1978),
Chibisov (1980), Helmers and van Zwet (1982), Babu and Singh (1985), Helmers
(1985), Slavova (1985), Hall (1987), Hall (1988), Praskova (1989), Friedrich (1989),
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Bentkus and Götze (1996), Bentkus, Bloznelis and Götze (1996), Bentkus, Götze and
van Zwet (1997), Gine, Götze and Mason (1997), Putter and van Zwet (1998), etc.

It is interesting to note that some fundamental problems in this area were solved
only recently. The necessary and sufficient conditions for the asymptotic normality
of TN were found by Gine, Götze and Mason (1997). The Berry-Esseen bound
supx |F (x) − Φ(x)| < cN−1/2β3/σ3, was constructed by Bentkus and Götze (1996).
Here Φ(x) denotes the standard normal distribution function and β3 := E |X1−µ|3.

The problem of establishing the asymptotic expansions under optimal moment
and smoothness conditions so far remains open. Probably the most general and
precise result concerned with a higher order asymptotics of Student’s t statistic is
due to Hall (1987) who proved the validity of a k-term Edgeworth expansion of F (x)
with remainder o(N−k/2), for every integer k, provided that E |X1|k+2 < ∞ and
the distribution F0 of X1 is non-singular. The moment conditions in Hall (1987)
are the minimal ones, but the smoothness condition on the distribution F0 of the
observations is too restrictive.

The aim of the present paper is to prove the validity of one term Edgeworth ex-
pansion under optimal conditions. We approximate F (x) by the one-term Edgeworth
expansion (also called the second order approximation)

G(x) = Φ(x) + κ3

6
√

N
(2 x2 + 1)Φ′(x), κ3 = E (X1 − µ)3/σ3

and construct bounds for the remainder

∆N = sup
x
|F (x)−G(x)|.

The best rate that can be achieved by the second order approximation is O(N−1).
Write βs = E |X1 − µ|s, for s ≥ 1, and

ρx = 1− sup
{|E exp{i t (X1 − µ)}| : σ2/(9β3) ≤ |t| ≤ x/σ

}
, ρ = ρ√N

Theorem 1. There exists an absolute constant c > 0 such that, for every N =
2, 3, . . . ,

(1.1) ∆N ≤ c

ρ2N

β4

σ4
,

whenever ρ > 0.

Note that the Cramér condition

(C) lim sup
|t|→∞

|E exp{itX1}| < 1
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implies lim infN ρ√N > 0. Therefore, if β4 < ∞, under Cramér’s (C) condition
Theorem 1 implies ∆N = O(N−1). This result was conjectured by Bentkus, Götze
and van Zwet (1997). In their fundamental work Bentkus, Götze and van Zwet
(1997) constructed a second order approximation to a general (nonlinear) symmetric
statistic with the remainder O(N−1). This general result was applied to a number
of important statistics and established the validity of one term Edgeworth expansion
with the remainder O(N−1) under optimal conditions for each case considered with
the sole exception of the Student statistic. For this particular statistic the bound

∆N ≤ c(ε)

ρ2
NN

( β3β4+ε

σ7+ε
+

β3
4

σ6

)

was obtained which implies ∆N = O(N−1) under Cramér’s (C) condition provided
that E |X1|4+ε < ∞, for some ε > 0, see Bentkus, Götze and van Zwet (1997).

The minimal smoothness condition which allows to prove the validity of one-term
Edgeworth expansion, i.e., to prove the bound ∆N = o(N−1/2), is the non-latticeness
of the distribution F0. Note that for a non-lattice distribution F0 we have ρx > 0,
for every x > 0.

Theorem 2. Assume that for some decreasing functions f1 and f2 with fi(x) → 0
as x → +∞,

(1.2) ρ(x) ≥ f1(x), E |X1 − µ|3I{(X1 − µ)2 > x} ≤ f2(x), x > x0,

for some x0 > 0. Then there exists a sequence εN (depending only on f1 and f2)
with εN → 0 as N →∞ such that

∆N ≤ N−1/2εN , for N = 2, 3, . . . .

Theorem 2 provides a bound for ∆N which is uniform over the class of distributions
satisfying (1.2) with given functions f1 and f2. An immediate consequence of Theo-
rem 2 is the following result. If the distribution of X1 is nonlattice and E |X1|3 < ∞
then

(1.3) ∆N = o(N−1/2) as N →∞.

Theorem 2 improves earlier results of Babu and Singh (1985), Helmers (1991) and
Putter and van Zwet (1998) where the bound (1.3) was established assuming that F0

is non-lattice and increasingly sharp moment conditions, the sharpest to date being
E |X1|3+ε < ∞, for some ε > 0, obtained in the latter paper.

Our approach differs from that used by Hall (1987) and that of Putter and van
Zwet (1998). We use and elaborate some ideas and techniques, e.g. ”data depending
smoothing” from Bentkus and Götze (1996) and Bentkus, Götze and van Zwet (1997).

The rest of the paper is organized as follows. In Section 2 we present proofs of our
results. Some more technical steps of the proofs are given in Section 3. Auxiliary
results are collected in Section 4.
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2. Proofs

The proofs are rather technical and involved. The only excuse for such complex
proofs is that the results obtained are optimal.

We may and shall assume that EX1 = 0 and σ2 = 1.
In what follows c, c1, c2,... denote generic absolute constants. We write c(a, b, ...)

to denote a constant that depends only on the quantities a, b, .... We shall write
A ¿ B to denote the fact that A ≤ cB. Furthermore, exp{itx} is abbreviated by
e{x}.

In what follows θ1, θ2, . . . denote independent random variables uniformly dis-
tributed in [0, 1] and independent of all other random variables considered below.
For a vector valued smooth function H, we shall use the mean value formula, H(x)−
H(0) = EH ′(θ1 x)x and write ‖H‖ = supx |H(x)|.

Let g : R → R denote a function which is infinitely many times differentiable with
bounded derivatives and such that

8

9
≤ g(x) ≤ 8

7
, for all x ∈ R, and g(x) = 1√

x
, for 7

8
≤ x ≤ 9

8
.

Write cg = ‖g‖+ ‖g′‖+ ‖g′′‖+ ‖g′′′‖.
Let a denote the largest nonnegative solution of the equation

a2 = EX2
1 II {X2

1 ≤ a2N}.

For 1 ≤ i, j ≤ N and 1 ≤ k ≤ 4, write Yi = a−1N−1/2XiI{X2
i ≤ a2N} and denote

Y = Y1 + · · ·+ YN , η = η1 + · · ·+ ηN , D = d1 + · · ·+ dN ,

ηi = Y 2
i − E Y 2

i , di = Yi ηi, Qi,j = Y 2
i dj ,

bk = E |Y1|k, M = Nb4, γ = N |EY1|, γ0 = N−1/2 E |X1|3I{X2
1 ≥ N/2}.

Note that |Yi| ≤ 1. By Hölder’s inequality, β2
3 ≤ σ2β4 = β4 and

(2.1) b3 ≥ b
3/2
2 = N−3/2, M≥ N b2

2 = N−1, (b3N)2 ≤ N2b2b4 = M.

If Q denotes the sum q1 + · · ·+qk then write Q(i,j) = Q−qi−qj . Similarly, Q(i) =
Q−qi. Given a subset A ⊂ {1, . . . , k} write QA =

∑
j∈A qj . Given A = {i1, . . . , im} ⊂

{1, . . . , N} we write E A or E i1,...,im to denote the conditional expectation given
{Xj , j /∈ A}.
Proof of Theorem 1. For clarity we start by outlining the main steps of the proof.
Firstly, we use Lemma 4.3 below to replace the statistic TN by a statistic S1, which
is conditionally linear in the first m observations X1, . . . , Xm, given the remaining
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observations of the sample, Xm+1, . . . , XN . With F1(x) = P {S1 ≤ x} denoting the
distribution function of S1, an application of ”data depending smoothing” procedure
then reduces the problem of bounding |F1(x)−G(x)| to that of bounding the difference
|F̂1(t)−Ĝ(t)|, where F̂1 and Ĝ denote the Fourier transforms of F1 and G respectively.
The (conditional) linearity of S1 produces a multiplicative component in F̂1 and in
combination with the smoothness condition (ρ > 0) guarantees an exponential decay
of |F̂1(t)|, for large t, |t| ≥ c(F )

√
N . Finally we bound the difference |F̂1(t)− Ĝ(t)|,

for |t| ≤ c(F )
√

N .
We were not able to prove the bound ∆N = O(N−1) under Cramér’s (C) condition

(the minimal smoothness condition that ensures such rate) using the conventional
Esseen’s (1945) smoothing lemma.

We may assume that for a sufficiently small c0 > 0,

(2.2) β3/
√

N ≤ c0, β4/N ≤ c0, ρ−1
N ln N < c0N.

Indeed, if the first inequality fails, the bound (1.1) follows from the simple inequalities
∆N ¿ 1+β3/

√
N ¿ β2

3/N ≤ β4/N . Hence, without loss of generality we may assume
that β3/

√
N ≤ c0. Then ∆N ¿ 1+β3/

√
N ¿ 1 and the inequality β4/N ≥ c0 implies

∆N ¿ β4/N . We obtain (1.1) again. Finally, if the last inequality of (2.2) fails we
have ρ−2

N N−1 > c0 and this in combination with ∆ ¿ 1 and β4 ≥ 1 implies (1.1).
Thus, we may and shall assume that (2.2) holds. Note that now, by Lemma 4.2,
a > 3/4. Therefore (2.2) implies

(2.3) γ ≤ (4/3)4β4/N, M≤ (4/3)4β4/N ≤ 4c0, Nb3 ≤ (4/3)3β3N
−1/2 ≤ 3c0.

Let m be the smallest integer greater than 18ρ−1 ln N . By (2.2), m < N . Put
A = {1, . . . ,m} and B = {m + 1, . . . , N} and split Y = YA + YB and η = ηA + ηB .
Write

(2.4) S1 = Y g(VB) + Y ηAg′(VB) + 2−1YBη2
Ag′′(VB), VB = 1 + ηB − Y 2

B/N,

and denote F1(x) = P {S1 ≤ x}. By Lemma 4.3, see below, the probability
P {|S1 − t| ≥ M} is not greater than cρ−2β4/N . Then Slucky’s argument gives

∆N ≤ sup
x
|F1(x)−G(x)|+ cM max

x
|G′(x)|+ cρ−2β4/N.

But maxx |G′(x)| ≤ c, by (2.2). Hence in order to prove (1.1) it remains to show that

(2.5) sup
x
|F1(x)−G(x)| ¿ ρ−2β4/N.

We are going to apply the ”data depending smoothing”. This smoothing procedure
was introduced by Bentkus, Götze and van Zwet (1997). To make the proof shorter
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we shall refer to Lemma 5.1 of Bentkus, Götze and van Zwet (1997). An inspection
of the proof of this lemma shows that Pravitz’s (1972) smoothing lemma applied to
the conditional distribution function of S1 given Ym+1, . . . , YN , yields

sup
x
|F1(x)−G(x)| ≤ c

(
EJ1 + |EJ2|+ J3 + EJ4 + J5

)
,

J1 =
∫

H1≤|t|≤H

|F̂ ∗1 (t)|
|t| dt, J2 =

∫

|t|≤H1

e{−x}F̂ ∗1 (t)

H
dt, J3 =

∫

|t|≥H1

|Ĝ(t)|
|t| dt,

J4 =
∫

|t|≤H1

|t|
H2

dt, J5 =
∫

|t|≤H1

|F̂1(t)− Ĝ(t)|
|t| dt.

Here

Ĝ(t) = exp{−t2/2} − κ3

6
√

N

(
2(it)3 + 3it

)
exp{−t2/2} and F̂1(t) = E e{S1}

denote the Fourier transforms of G(x) and F1(x) respectively, and

F̂ ∗1 (t) = E A e{S1} and H1 = 1/(4N b3), H = ρN/
(
16β

1/4
4 cg(1 + Θ1 + Θ2)

)
,

where Θ1 = |Ym+1 + · · ·+ Yk| and Θ2 = |Yk+1 + · · ·+ YN | and k ≈ m + (N −m)/2.
It remains to estimate EJk, for k = 1, 2, . . . , 5.
Estimation of J3 and EJ4. It follows from the inequality 3/4 ≤ a ≤ 1 that

H1 ≥ N1/2/(E |X1|3I{X2
1 ≤ a2N}) ≥ y, y := N1/2/β3.

Furthermore, by (2.2), |Ĝ(t)| ≤ exp{−t2/2}(1 + |t|3) and, therefore, J3≤exp{−cy2}.
Note that y is sufficiently large, by (2.2). The inequality exp{−u} < u−1 (which
holds for sufficiently large u) applied to u = cy2 implies

J3 ¿ β2
3/N ≤ β4/N.

Consider J4. By (2.1),

(2.6) H1 ≤ 4−1/(Nb
3/2
2 ) = 4−1N1/2.

It follows from (2.6) and (4.1) that

EJ4 = H2
1 EH−2 ¿ ρ−2N−1.

Estimation of EJ1. We shall show that

(2.7) |EJ1| ¿ ρ−2M.
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Split YAηA = DA + UA, where

DA =
∑

i∈A

di, UA =
∑

i,j∈A, i 6=j

Yiηj .

Write also η2
A = D̃A + ŨA, where

D̃A =
∑

i∈A

η2
i , ŨA =

∑

i,j∈A, i 6=j

ηiηj .

Denote L = L1 + · · ·+ Lm, where Li = li,1 + li,2 + li,3 + li,4,

li,1 = Yig(VB), li,2 = ηiYBg′(VB), li,3 = dig
′(VB), li,4 = 2−1η2

i YBg′′(VB).

Furthermore, write Z = L+UAg′(VB)+W , where W = YBg(VB). Then S1 = Z +X,
where X = 2−1ŨAYBg′′(VB). Expanding e{Z + X} in powers of itX we obtain

|EJ1| ≤ E I1 + E I2 + R, I1 =
∫

H1≤|t|≤H

|E A e{Z}|
|t| dt,

I2 =
∫

H1≤|t|≤H

|E A e{Z}X|dt, R = 2−1 EX2

∫

H1≤|t|≤H

|t|dt.

A simple calculation shows E AŨ2
A ¿ m2b2

4. Invoking the inequality
H2 ≤ ρ2N2β

−1/2
4 we obtain

R ¿ ρ2N2β
−1/2
4 m2b2

4 ¿M3/2 ¿M.

Let us show E I2 ¿ ρ−2M. Expanding e{Z} = e{L + W + UAg′(VB)} in powers
of itUAg′(VB) we get E I2 ≤ E I3 + R, where

I3 =
∫

H1≤|t|≤H

|E A e{L + W}X|dt, R = E |XUAg′(VB)|
∫

H1≤|t|≤H

|t|dt.

We have R ¿ ρ2N2β
−1/2
4 E |XUA| ¿ M. Here we estimated

E |XUA| ¿ E |ŨAUA| ¿ m2N−2M3/2.

To prove the last inequality we combine the bounds

(2.8) E Ũ2
A ¿ m2b2

4, EU2
A ¿ (m/N)2M,
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(see Lemma 4.1 for the second inequality) and the inequality ab ≤ a2τ+b2τ−1 applied
to a = |ŨA|, b = |UA| and τ = M−1/2.

Let us show E I3 ¿ N−1. By the symmetry,

E A e{L}X = m(m− 1)YBg′′(VB)E A e{L2 + L3}η2η3h
m−2, h = E 1 e{L1}.

We shall prove below that

(2.9) |h| ≤ 1− ρ/2.

Since W is independent of Xi, i ∈ A, we have |E A e{L + W}X| ≤ |E A e{L}X| and
combining (2.9) and the expression for E A e{L}X given above we obtain

|E A e{L + W}X| ¿ cgm
2|YB |N−2(1− ρ/2)m−2.

Finally, the inequalities (4.1) and

(1− ρ/2)m−2 ≤ exp{−ρ(m− 2)/2} ≤ eρ exp{−ρm/2} ≤ eN−3

complete proof of the bound E I3 ¿ N−1.
Let us prove (2.9). Expanding the exponent in powers of it(l1,2 + l1,3 + l1,4) we

get

(2.10) |h− E 1 e{l1,1}| ¿ cgH
(
E 1(|η1|+ η2

1)|YB |+ E |d1|
) ≤ ρ/4.

In the last step we estimated E 1|η1| ≤ 2/N and

E 1η
2
1 ≤ b4 = N−1M≤ N−1, E |d1| ≤ (EY 2

1 )1/2(E η2
1)1/2 ≤ N−1,

see (2.3). In (2.11) below we show that E | e{l1,1} − e{z1}| ≤ ρ/5, where z1 =
a−1N−1/2X1g(VB). Furthermore, the inequalities 3/4 ≤ a ≤ 1 and 8/9 ≤ |g| ≤ 8/7
imply |E 1 e{z1}| ≤ 1− ρ, for H1 ≤ |t| ≤ H and invoking (2.10) we obtain (2.9). For
|t| ≤ H, we have

(2.11)
∣∣E 1 e{l1,1} − E 1 e{z1}

∣∣ ≤ a−1N−1/2|tg(VB)|E 1|X1|I{X2
1 > a2N}

≤ (8/7)a−4N−2Hβ4 ≤ (8/7)(4/3)416−1ρβ4/N

≤ (c0/3)ρ ≤ ρ/5.

Recall that c0 is (sufficiently) small absolute constant and 3/4 ≤ a ≤ 1, by Lemma
4.2.
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Let us show that E I1 ¿ β4/N . Split A = A1 ∪A2 ∪A3, so that Ap ∩Aq = ∅, for
p 6= q, and |Ap| ≈ m/3, for every p. Write

Up,q =
∑

i∈Ap, j∈Aq, i 6=j

yiηjg
′(VB), U∗ =

∑

1≤p,q≤3, p 6=q

Up,q.

Then UAg′(VB) = U1,1 + U2,2 + U3,3 + U∗ and e{Z} = e{W + L + U∗}g1g2g3,
where we denote gp = e{Up,p}. By the mean value theorem, gp = 1 + κp, where
κp = i t Up,p E θ e{θUp,p}. Write

a1 = 1, a2 = −g1, a3 = −g2, a4 = −g3, a5 = g1g2, a6 = g1g3, a7 = g2g3.

The identity g1g2g3 = (a1 + · · ·+ a7) + κ1κ2κ3 implies

E I1 ≤ (E I1,1 + · · ·+ E I1,7) + R, I1,i =
∫

H1≤|t|≤H

|E A e{L + W + U∗}ai|
|t| dt,

R ≤ E
∫

H1≤|t|≤H

|{1{2{3|
|t| ≤ (

Nρβ
−1/4
4

)3
E |U1,1U2,2U3,3| ¿ β4/N.

In the last step we used the inequalities

E A

∏

1≤p≤3

|Up,p| =
∏

1≤p≤3

E A|Up,p| ≤
∏

1≤p≤3

(E AU2
p,p)

1/2, E AU2
p,p ≤ cgm

2b4/N,

cf. (2.8). In order to complete the proof of (2.7) it remains to show |E I1,i| ¿ M,
for i = 1, 2, . . . , 7. We shall prove that |E I1,7| ¿ ρ−2M since the proof for the rest
i = 1, . . . , 6 is almost the same or simpler. Write

η∗ := ηA − ηA1 , Y ∗ := YA − YA1 , UA1 := YA1η
∗ + ηA1Y

∗.

We have

(2.12) |E A e{L + W + U∗}a7| ≤ E A|E A1ψ|, ψ = e{LA1 + UA1g
′(VB)}.

Write Iη = I{100cg|η∗| < 1} and IY = I{100cg|Y ∗| < 1}. Then

(2.13) E A|E A1ψ| = E A|E A1ψIηIy|+ R, R ≤ E A|1− Iη|+ E A|1− IY |.

By Chebyshev’s inequality, R ¿ E (η∗)2 + E (Y ∗)4 ¿ m2b4. Therefore,

(2.14) E
∫

H1≤|t|≤H

R

|t| dt ¿ m2b4 ln N ¿ ρ−2M.
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It remains to estimate E A1ψIηIY . Write Write m1 = |A1|. By the symmetry

E A1ψIηIY = hm1
1 , h1 = E 1 e{L1 + (Y1η

∗ + η1Y
∗)g′(VB)}IηIY .

We shall show that

(2.15) |h1| ≤ 1− ρ/2.

Then ∣∣E A1ψIηIY
∣∣ ≤ exp{−m1ρ/2} ¿ exp{−ρm/6} ≤ N−3

and this inequality in combination with (2.12), (2.13) and (2.14) gives E I1,7 ¿
ρ−2M. It remains to prove (2.15). Proceeding as in (2.10) we obtain

|h1 − h2| ≤ ρ/4, where h2 = E 1 e{l1,1 + (Y1η
∗ + η1Y

∗)g′(VB)}IηIY .

Furthermore, expanding the exponent in h2 in powers of itη1Y
∗ we obtain

|h2 − h3| ≤ cgH E 1|η1Y
∗|IY ≤ ρ/100, h3 = E 1 e{l1,1 + Y1η

∗g′(VB)}IηIY .

We complete the proof of (2.15) by showing that |h3| ≤ 1− (4/5)ρ. We have
∣∣E 1 e{z2}Iη

∣∣ ≤ 1− ρ, z2 = a−1N−1X1

(
g(VB) + η∗g′(VB)

)
.

But |h3 − E 1 e{z2}| ≤ ρ/5, cf. (2.11). Hence, |h3| ≤ 1 − (4/5)ρ and this completes
the proof of (2.15). We arrive at (2.7).

Estimation of EJ5. Write

ϕ(t) = exp{−t2/2} − (N/6)EY 3
1

(
3it + 2(it)3

)
exp{−t2/2}

f(t) = E e{S}, S = Y g(V ), V = 1 + η − Y 2/N.

We have

EJ5 ≤ I1 + I2 + I3, Ik =
∫

|t|≤H1

|δk(t)|
|t| dt,

δ1(t) = f(t)− ϕ(t), δ2(t) = F̂1(t)− f(t), δ3(t) = ϕ(t)− Ĝ(t).

The inequality I1 ¿ β4/N is proved in Section 3.
The bound I3 ¿ β4/N is a consequence of the inequalities

E
(
Y 3

1 − a−3N−3/2X3
1

)
= a−3N−3/2 E |X1|3I{X2

1 > a2N} ¿ N−2β4,

a−3 − 1 = 1 + a + a2

a3
(1− a) ¿ β4/N.
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In the last step we used (4.2) and the inequality 3/4 ≤ a ≤ 1, see Lemma 4.2.
Let us show that I2 ¿ ρ−2β4/N . Write

(2.16) W1 = −Y 2
A/N, W2 = −2 YAYB/N.

Then V = VB + ηA + W1 + W2. Expanding g in powers of W1 + W2 and then in
powers of ηA we obtain S = S1 + (Q1 + · · ·+ Q4), where

Q1 := 2−1YAη2
A E θg

′′(VB + θηA), Q2 := 6−1YBη3
A E θg

′′′(VB + θηA),
Q3 := Q3.1 + Q3.2, Q3.i := YAWiζ, Q4 := Q4.1 + Q4.2, Q4.i := YBWiζ, i = 1, 2,

where we denote ζ = E θg
′(VB + ηA + θ(W1 + W2)). The inequality

(2.17) | e{x} − 1| ≤ 2|x|α, for x ∈ R, 0 ≤ α ≤ 1,

implies

|f(t)− E e{S1 + Q4}| ¿ R1, R1 = E
(|tQ1|4/5 +

∣∣t(Q2 + Q3.1)
∣∣2/3 + |tQ3.2|

)
.

Write
h = E e{S1}itQ4.2, h1 = E e{S2}itQ4.2, S2 = Y g(VB).

Expanding e{Q4} in powers of itQ4.1 and then in powers of itQ4.2 we get

E e{S1 + Q4} = F̂1(t) + h + R2, where |R2| ¿ E |tQ4.1|+ E (tQ4.2)2.

Furthermore, by (2.17),

| e{S1} − e{S2}| ¿ |tY ηA|+ |tYBη2
A|3/4

and therefore

|h− h1| ¿ R3, R3 = E |Q4.2|
(
t2|Y ηA|+ |t|7/4|YBη2

A|3/4
)
.

Combining these inequalities we obtain |f(t)− F̂1(t)−h1| ¿ R1 +R2 +R3. A direct
calculation shows

R1 ≤ |t|4/5m2b4 + |t|2/3
(
mb4 + m2N−5/3

)
+ |t|mN−2,

|R2| ≤ m|t|N−2 + mt2N−3, R3 ≤ m2M(t2N−3/2 + |t|7/4N−2).

Write

h2 = E e{S2}itQ5, Q5 = YBW2g
′(VB), and Q6 = Q4.2 −Q5.
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By the mean vakue theorem |Q6| ¿ |YBW2| (|ηA|+ |W1 +W2|). A simple calculation
shows that

|h1 − h2| ≤ |t|E |Q6| ¿ R4, R4 = |t|N−2(1 + m(Nb4)1/2).

Furthermore, we shall show below that

(2.18) |h2| ¿ R5, R5 = |t|N−1(m/N)1/2 exp{−c(m/N)t2}, for |t| ≤ H1.

Collecting the estimates for Ri, i = 1, . . . , 5, given above we get

I2 ¿
∫

0≤|t|≤H1

R1 + R2 + R3 + R4 + R5

|t| dt ¿ ρ−2β4/N.

It remains to prove (2.18). Split

h2 = h2,1 + h2,2, h2,j = (−2it/N)EYAj Y
2
B e{S2}g′(VB),

where A1 = {1, . . . , k} and A2 = A\A1, and where k ≈ m/2. It suffices to show that
|h2,j | ¿ R5. We have

|h2,1| ¿ N−1|t| EY 2
Bζ1ζ2, ζ1 := E A1 |YA1 |, ζ2 :=

∣∣E A2 e{S2}
∣∣.

By Hölder’s inequality, ζ2
1 ≤ k/N < m/N . Furthermore, by the symmetry, ζ2 ≤ |u|n,

where u = E m e{Ymg(VB)}, and where n := |A2|. The inequality

|E e{τ}|2 ≤ 1− t2 E (τ − E τ)2 + (4/3)|t|3 E |τ |3,

see, e.g., Petrov (1995), applied to the random variable τ = Ymg(VB) conditionally,
given Ym+1, . . . , YN , implies

(2.19) |u|2 ≤ 1− t2g2(VB)( 1

N
− (EYm)2) + 4

3
|t|3b3|g(VB)|3 ≤ 1− t2

4N
,

for |t| ≤ H1, provided that c0 is sufficiently small. Here we estimated |EYm| ≤
a−4N−2β4 ≤ 4c0/N , by Chebyshev’s inequality and (2.2), and used the inequalities
8/9 ≤ g ≤ 8/7. We obtain

ζ2 ≤ (1− t2/(4N))n/2 ≤ exp{−c(m/N)t2}

thus completing the proof of the bound |h2,1| ¿ R5. Clearly, the same bound holds
for h2,2 as well. We arrive to (2.18).
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Estimation of EJ2. We shall show that

|EJ2| ¿ ρ−1β4/N.

Write K = {1, . . . , r} and denote Θ = |Yr+1 + · · ·+ YN |. It suffices to show that for
any r ≥ N/2,

(2.20) E I1 ≤ cρ−1β4/N, where I1 =
β

1/4
4

ρN

∫ H1

20

|E K e{S1}|(1 + Θ)dt.

Let us prove (2.20). In the first step we replace S1 by S. It follows from (4.5), see
below, and (2.17) that

| e{S} − e{S1}| ¿ |t|(R1 + · · ·+ R4) + |t|2/5R
2/5
5 + |t|1/3R

1/3
6 =: L1,

where the random variables Ri are defined in the proof of Lemma 4.3, see below. A
simple calculation gives

EL1(1 + Θ) ¿ |t|N−1 E
(|YA|3 + Y 2

A + |YA|
)

+ |t|2/5 E (Y 2
A + |ηA|) + |t|1/3 E |ηA|

¿ |t|N−1
(
β

1/2
4 (m/N)3/2 + (m/N)1/2

)
+

(|t|2/5 + |t|1/3
)
(m/N).

Furthermore, invoking the inequality H1 ≤ 4−1N1/2, see (2.6), we obtain

β
1/4
4

ρN

∫ H1

20

EL1(1 + Θ)dt ¿ β
3/4
4 + β

1/4
4

ρN
≤ ρ−1β4/N.

It remains to show that

β
1/4
4

ρN

∫ H1

20

|E K e{S}|(1 + Θ)dt ¿ ρ−1β4/N.

Let m0 = m0(t) be the smallest integer greater than 20 N t−2 ln |t|. Clearly, m0 ≤
N/2, for |t| ≥ 20. We may and shall assume that m0 > 10, since N is sufficiently
large, by (2.2). Write

A0 = {1, . . . ,m0}, B0 = {m0 + 1, . . . , N}, and VB0 = 1 + ηB0 − Y 2
B0

/N,

Then V = VB0 +ηA0 − W̃ , where W̃ = Y 2
A0

/N +2YA0YB0/N . Expanding g in powers
of W̃ and then in powers of ηA0 we get

S = S3 + r1 + r2 + r3 + r4, S3 = YA0g(VB0) + ηA0YB0g
′(VB0)
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where

|r1| ¿ |Y W̃ |, |r2| ¿ |YA0ηA0 |, |r3| ¿ |YA0 |η2
A0

, |r4| ¿ |YB0 |η2
A0

.

An application of (2.17) gives

| e{S} − e{S3}| ¿ |tY W̃ |+ |tYA0ηA0 |2/3 + |tYB0η
2
A0
|1/2 + |tYA0η

2
A0
|2/5.

Finally, combining the inequalities

E |Y W̃ |(1 + Θ) ¿ N−1, E |YB0η
2
A0
|1/2(1 + Θ) ¿ m0/N ¿ t−2 ln |t|,

E |YA0ηA0 |2/3(1 + Θ) ¿ E (Y 2
A0

+ |ηA0 |) ¿ m0/N ¿ t−2 ln |t|,
E |YA0ηA0 |2/5(1 + Θ) ¿ E (Y 2

A0
+ |ηA0 |) ¿ m0/N ¿ t−2 ln |t|,

we obtain
β

1/4
4

ρN

∫ H1

20

E | e{S} − e{S3}|(1 + Θ)dt ¿ ρ−1β4/N.

We complete the proof of (2.20) by showing

(2.21) |E A0 e{S3}| ¿ |t|−2 + c cgN
−3/4β

3/4
4 |YB0 |3/2.

In order to prove (2.21) write IB = I{100cgNY 2
B0

β4 < 1}. We have

|E A0 e{S3}| ≤ ζ + (1− IB), ζ := |E A0 e{S3}IB |.

But
1− IB ¿ cgN

−3/4β
3/4
4 |YB0 |3/2.

Therefore, it suffices to estimate ζ. By the symmetry

ζ ≤ |vIB |m0 , v := E 1 e{Y1g(VB0) + η1YB0g
′(VB0)}.

Expanding the exponent in powers of itη1YB0g
′(VB0) we obtain

v = u+R, u = E 1 e{Y1g(VB0)}, with |R| ≤ t2 E 1η
2
1Y 2

B0
g′(VB0) ≤ cgt

2b4Y
2
B0

.

Note that |R|IB ≤ t2N−1/100. Then

(2.22) |vIB | ≤ |u|+ |R|IB ≤ 1− t2

8N
+ t2

100N
≤ 1− t2

9N
.
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Here we used the inequality |u| ≤ 1 − t2/(8N) which follows from the inequality
(2.19) applied to τ = Y1g(VB0), for |t| ≤ H1 ≤ 4−1N1/2, use also (2.6). It follows
from (2.22) that

ζ ≤ (
1− t2/(9N)

)m0 ≤ exp{−t2m0/(9N)} ≤ |t|−20/9 < t−2.

We arrive to (2.21) thus completing the proof of (2.20).
Collecting the estimates of EJk, for k = 1, . . . , 5 we arrive to (2.5) thus completing

the proof of the theorem.

Proof of Theorem 2. Theorem 2 is a consequence of the following bound. For each
N = 2, 3, ... and each 1 < x < N1/6, we have ∆N ≤ cW , where

W :=
( 1

x
√

N
+ 1

ρ2
xN

+
β2
3

σ6N
+ E X4I{X2 < σ2 N}

σ4ρ2
xN

+ E |X|3I{X2 ≥ σ2 N}
σ3
√

N

)
.

The scheme of the proof of this bound is similar to that of the proof of Theorem 1.
Only now we use the conventional Esseen’s (1945) smoothing lemma, what makes
the proof considerably simpler, see Bloznelis and Putter (1998) for details.

3. Expansions

In this section we prove the inequality

I1 :=
∫

|t|≤H1

|E e{S} − ϕ(t)| dt

|t| ¿
β4

N
, H−1

1 = 4N E |Y1|3,

S = Y g(V ), V = 1 + η − Y 2

N
, ϕ(t) = exp{−t2/2}

(
1− N EY 3

1

�
3it + 2(it)3

�

6

)
.

It is convenient to split the integral I1 = J1 + J2, where

Ji =
∫

Ai

|E e{S} − ϕ(t)| dt

|t| , i = 1, 2,

and where A1 = {|t| ≤ 1} and A2 = {1 ≤ |t| ≤ H1}. The inequality I1 ¿ β4/N is
a consequence of the two inequalities Ji ¿ β4/N , i = 1, 2. The bound J1 ¿ β4/N
follows form Lemma 3.1 applied to the smooth function H(u) = exp{itu}. The bound
J2 ¿ β4/N can be obtained by combining the proof of Lemma 3.1 and some ideas
of the proof of the Berry-Esseen bound for Student’s t statistic given in Bentkus and
Götze (1996). Detailed calculations yielding the inequality J2 ¿ β4/N can be found
in Bloznelis and Putter (1998).

Let ξ, ξ1, ξ2, . . . be a sequence of independent standard normal r.v. We assume that
this sequence is independent of X1, . . . , XN . By ξ̃ we denote the sum ξ̃1 + · · ·+ ξ̃N ,
ξ̃i = N−1/2ξi.
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Lemma 3.1. Let H : R → C be a bounded infinitely many times differentiable
function with bounded derivatives. Assume that (2.2) holds. Then

∣∣E H(S)− E H(ξ)− Γ
∣∣ ¿ cHR, Γ = − N

6
b3

(
3EH ′(ξ) + 2EH ′′′(ξ)

)
,

where R = M+ γ and cH = ‖H ′‖+ · · ·+ ‖Hvi‖.
Proof of Lemma 3.1. We shall write g ∼ h if |g − h| ¿ cH R. A simple calculation
shows that Γ ∼ Γ1 + Γ2 + Γ3,

Γ1 = N

6
EH ′′′(ξ)Y 3

1 , Γ2 = − N

2
EH ′(ξ)d1, Γ3 = − N(N − 1)

2
EH ′′′(ξ)Y 2

1 d2.

Therefore, the lemma is a consequence of the following two facts,

(3.1) EH(Y ) ∼ EH(ξ) + Γ1, EH(S) ∼ EH(Y ) + Γ2 + Γ3.

For the proof of the first part of (3.1) we refer to Bentkus, Götze, Paulauskas and
Račkauskas (1990), where the inequality |EH(Y1 + · · ·+ YN )− EH(ξ)| ¿ cH(M+
(b3N)2) was proved in the case of centered summands Yi. It remains to prove the
second part of (3.1).

Expanding in powers of Y 2/N and using the bound E |Y |3 ¿ 1, see Lemma 4.1,
we get E H(S) ∼ h1, where h1 = E H(Y g(1 + η)). Write

g1(η) = E θg
′(1 + θη), Y η = U + D, U =

∑

i 6=j

Yiηj , D =
∑

i

di.

By the mean value theorem, g(1+η) = 1+g1(η) η. Then Y g(1+η) = Y +(U+D)g1(η).
Expanding H in powers of U g1(η) we get h1 = h2 + h3 + R,

h2 = E H(W ), h3 = E H ′(W )Ug1(η) where W = Y + Dg1(η)

and where |R| ¿ cH EU2. By Lemma 4.1, EU2 ¿R. Therefore, h1 ∼ h2 + h3.
Let us show that h3 ∼ Γ3. The inequality |g1(η)− g′(1)| ¿ |η| implies

|h3 − h4| ¿ cH E |Uη|, h4 = EH ′(W )U g′(1) = − N(N − 1)

2
EH ′(W )Y1η2.

Furthermore, the inequalities |Uη| ≤ U2+η2, EU2 ¿R and E η2 ¿M, see Lemma
4.1, imply h3 − h4 ∼ 0. Hence, h3 ∼ h4. Next we show that

(3.2) h4 ∼ − N(N − 1)

2
h5, h5 = EH ′′′(Y (1,2))Y 2

1 d2.
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By the mean value theorem, g1(η)− g1(η(1)) = w η1 with some |w| ¿ 1. Then

D g1(η) = D(1)g1(η) + d1g1(η) = W1 + W2,

where we denote W1 = D(1)g1(η(1)) and W2 = d1g1(η) + D(1)wη1. We have W =
Y + W1 + W2. Expanding H ′ in powers of W2 we get

|EH ′(W )Y1η2 − h6| ¿ cHR1, h6 = EH ′(Y + W1)Y1η2, R1 = E |Y1η2W2|.

Furthermore, expanding H ′ in powers of Y1 we obtain |h6− h7− h8| ¿ cHR2, where

h7 = EH ′′(Y (1) + W1)Y 2
1 η2, h8 = EH ′′′(Y (1) + W1)Y 3

1 η2,

and R2 = E |η2|(EY 4
1 + |EY1|). A simple calculation shows that N2|Ri| ¿ R,

i = 1, 2. We obtain
h4 ∼ − N(N − 1)

2
(h7 + h8).

We complete the proof of (3.2) by showing that

(3.3) N2h8 ∼ 0 and N2(h7 − h5) ∼ 0.

By the mean value theorem, g1(η(1))− g1(η(1,2)) = w η2, with some w ¿ 1. Then we
can write W1 = W3 + W4, where

W3 = D(1,2)g1(η(1,2)) and W4 = d2g1(η(1)) + D(1,2) w η2.

Expanding H ′′ and H ′′′ in powers of W4 we get

|h7 − h9| ¿ cHR1, h9 = EH ′′(Y (1) + W3)Y 2
1 η2, R1 = EY 2

1 |η2W4|,
|h8 − h10| ¿ cHR2, h10 = EH ′′′(Y (1) + W3)Y 3

1 η2, R2 = EY 3
1 |η2W4|.

Furthermore, expanding in powers of Y2 we get |h10| ¿ cHR3, with R3 = E |Y 3
1 d2|.

Finally, expanding H ′′ in powers of Y2 and then in powers of W3 we obtain

|h9 − h5| ¿ cHR4, with R4 =
(
EY 2

1 Y 2
2 |η2|+ EY 2

1 |d2W3|
)
.

A straightforward calculation shows N2Ri ¿ R, i = 1, 2, 3, 4. Hence, N2h8 ∼
N2h10 ∼ 0 and N2h7 ∼ N2h9 ∼ N2h5. We arrive to (3.3) thus completing the proof
of (3.2).

Next we replace Y (1,2) by ξ̃(1,2) in h5. The error of this replacement,

(3.4)
∣∣EH ′′′(Y3 + · · ·+ YN )− EH ′′′(ξ̃(1,2))

∣∣ ¿ cH(b3N + Nγ).
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For the proof of this inequality we refer to Bentkus, Götze, Paulauskas and Račkaus-
kas (1990), where a similar bound was proved in the case of centered summands Yi.
Combining (3.4) and the inequalities

(3.5) |EH ′′′(ξ̃(1,2))− EH ′′′(ξ)| ¿ cH E |ξ̃1 + ξ̃2| ¿ N−1/2, EY 2
1 |d2| ¿ b3/N

we obtain

N2
∣∣h5 − EH ′′′(ξ)Y 2

1 d2

∣∣ ¿ cH(b3N + Nγ + N−1/2)b3N ¿ cHR.

Hence, −N(N − 1)h5/2 ∼ Γ3 and this completes the proof of h3 ∼ Γ3.
It remains to show that h2 ∼ EH(Y ) + Γ2. We start by showing

(3.6) h2 ∼ E H(Y ) + h11, where h11 = − N

2
E H ′(Y (1))d1.

Expanding g1 and then H in powers of η we get

|h2 − h12| ¿ cHR, h12 = E H(Y + D g′(1)), |R| = E |ηD|.

The inequalities |ηD| ≤ η2 + D2, E η2 ¿M and ED2 ¿R, see Lemma 4.1, imply
R ∼ 0. Therefore, h2 ∼ h12. Furthermore, expanding H in powers of Dg′(1) we get

(3.7) h12 = E H(Y ) + h13 + R, h13 = E H ′(Y )D g′(1),

where |R| ¿ cH E D2 ∼ 0, see Lemma 4.1. Hence, h12 ∼ EH(Y ) + h13. By the
symmetry, h13 = −2−1N EH ′(Y )d1. Now, expanding H ′ in powers of Y1 we obtain
h13 ∼ h11. This together with (3.7) yields (3.6). Finally, we replace Y (1) in h11 by
ξ̃(1). The error this replacement, |h11 − Γ2| ¿ cHR, cf (3.4) and (3.5). We obtain
h11 ∼ G2 thus completing the proof of the lemma.

4. Auxiliary Results

Lemma 4.1. Assume that (2.2) holds. Then

(4.1) E |YB |s ≤ c(s),

for each s > 0 and each subset B ⊂ {1, . . . , N}. Furthermore, for every m ≤ n,

ED2 ¿ mb4 + m2b2
3 ¿M, D =

∑

1≤j≤m

dj ,

EU2 ¿ (m/N)2M, U =
∑

1≤i,j≤m, i 6=j

Yiηj .
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Write A = {1, . . . , m}, where m < n. We have E η2
A ¿ mb4,

Proof of Lemma 4.1. The last inequality is trivial. The inequality E |YB |s ≤ c(s) is
proved in Bentkus and Götze (1996).

To estimate ED2 write

ED2 ≤ ET1 + E |T2|, T1 =
∑

1≤i≤m

d2
i , T2 =

∑

1≤i,j≤m, i 6=j

didj .

Using the inequality |Yi| ≤ 1 we get ET1 ¿ mb4. Furthermore, E |T2| ¿ m2b4
3.

Finally, by (2.1), (Nb3)2 ≤M.
Let us estimate EU2. Write

U = U1 + U2, U1 =
∑

1≤i,j≤m, i 6=j

EYiηj , U2 =
∑

1≤i,j≤m, i 6=j

(Yi − EYi)ηj .

A simple calculation shows

EU2
1 =

(
(m− 1)EY1

)2
E (η1 + · · ·+ ηm)2 ¿ (m/N)3γ2M,

EU2
2 = m(m− 1)E (Y1 − EY1)2 E η2

2 ¿ (m/N)2M.

Clearly, the bound EU2 ¿ (m/N)2M is an easy consequnce of these inequalities.
The last inequality, E η2

A ¿ mb4, is trivial.

Lemma 4.2. Assume that (2.2) holds. Then

(4.2) 1− 2β4/N ≤ a ≤ 1.

In particular we have 3/4 ≤ a ≤ 1.

Proof of Lemma 4.2. Clearly, a2 ≤ σ2 ≤ 1. Furthermore, write κ(u) = EX2
1 I{X2

1 ≤
u N}, for u ≥ 0. We have

(4.3) τ := 1− κ(1/2) = EX2
1 I{X2

1 > N/2} ≤ 2β4/N.

Note that 2β4/N < 1/4, by (2.2). We have τ < 1/2. The function κ(u) is nonde-
creasing. Therefore, (4.3) implies κ(1 − τ) ≥ κ(1/2) = 1 − τ . But, κ(1) ≤ σ2 = 1.
Then there exists a solution of the equation u = κ(u) in the interval 1− τ ≤ u ≤ 1.
This implies a2 ≥ 1−τ and we obtain a ≥ a2 ≥ 1−τ . This inequality in combination
with (4.3) yields (4.2) thus completing the proof of the lemma.
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Lemma 4.3. Assume that (2.2) holds. Let S1 be given by (2.4). Then

(4.4) P {|S1 − t| > M} ¿ ρ−2N−1β4.

Proof of Lemma 4.3. The inequalities

P
{√

N t 6= Yp
1 + η − Y 2/N

} ≤ N P {X2
1 > a2N} ≤ (4/3)3γ0 ¿ β4/N,

P
{ Yp

1 + η − Y 2/N
6= S

} ≤ P {|η| > 1/4}+ P {Y 2/N > 1/4}

and

P {|η| > 1/4} ≤ 16 η2 ≤ 32N E Y 4
1 , P {Y 2/N > 1/4} ≤ 4 N−1 E Y 2 = 4/N

imply P {t 6= S} ¿ R.
In order to prove (4.4) it suffices to show P {|S − S1| > M} ≤ cρ−2N−1β4. We

have V = VB + ηA −W1 −W2, where W1 and W2 are given by (2.16). Expanding g
in powers of W1 + W2 and then in powers of ηA we get

(4.5) |S − S1| ≤cg

(
R1 + · · ·+ R6

)
, where R1 = |YAW1|, R2 = |YAW2|,

R3 = |YBW1|, R4 = |YBW2|, R5 = |YA|η2
A, R6 = |YBη3

A|.

We complete the proof by showing Pi := P {|Ri| > M/6} ¿ ρ−2M, where we
abbreviate ρN by ρ. In what follows we use the inequalities NM≥ 1 and E |YD|s ≤
c(s), see (2.1) and Lemma 4.1. By Chebyshev’s inequality,

P1 ¿ (MN)−4/3 EY 4
A ¿ EY 4

A ¿ m3b4 ¿ ρ−2M,

Pi ¿ (MN)−2 EY 2
B EY 4

A ¿ EY 4
A ¿ ρ−2M, i = 1, 2,

P4 ¿ (MN)−4 EY 8
BY 4

A ¿ EY 4
A ¿ ρ−2M,

P5 ¿M−4/5 E |YAηA|4/5 ¿M−4/5
(
EY 4

A + E η2
A

) ¿M−4/5m3b4 ¿ ρ−2M,

Here we applied the inequality a b4 ≤ a5 + b5 to a = |YA| and b = |ηA|1/2. Finally,
the inequalities

P6 ¿M−2/3 E |YBη3
A| ¿ M−2/3 E η2

A ¿M−2/3mb4 ¿ ρ−1M

complete the proof of (4.4). Lemma is proved.
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