ONE TERM EDGEWORTH EXPANSION
TO STUDENT’S ¢t STATISTIC

M. BLozNELIS , H. PUTTER

Abstract. We evaluate the rate of approximation of the distribution function of Stu-
dent’s t statistic based on N iid observations by its one term Edgeworth expansion.
The rate is o(N~1/2) if the distribution of observations is non-lattice and has finite

third absolute moment. If the fourth absolute moment is finite and Cramér’s condition
holds the rate is O(N~1).

1. INTRODUCTION AND RESULTS

Let X1,...,Xn,... be independent identically distributed random variables.
Write E X7 = pu. Let

t=t(X1,...,Xn) = (X — p)/6

denote the Student statistic, where
_ N _
X=N"YX;+ -+ Xn), &Q:N—lz,_l(xi—)()?

Assume that 02 := E (X; — p)? is finite and positive. Then the statistics Ty = v Nt
is asymptotically standard normal as N — oo.

The rate of the normal approximation and asymptotic expansions to the distribu-
tion function

F(z)= P{VNt <z}

were studied by a number of authors, Chung (1946), Bhattacharya and Ghosh (1978),
Chibisov (1980), Helmers and van Zwet (1982), Babu and Singh (1985), Helmers
(1985), Slavova (1985), Hall (1987), Hall (1988), Praskova (1989), Friedrich (1989),
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Bentkus and Gotze (1996), Bentkus, Bloznelis and Gotze (1996), Bentkus, Gotze and
van Zwet (1997), Gine, Gotze and Mason (1997), Putter and van Zwet (1998), etc.

It is interesting to note that some fundamental problems in this area were solved
only recently. The necessary and sufficient conditions for the asymptotic normality
of Ty were found by Gine, Go6tze and Mason (1997). The Berry-Esseen bound
sup, |F(x) — ®(z)| < cN~Y263/03, was constructed by Bentkus and Gotze (1996).
Here ®(x) denotes the standard normal distribution function and g5 := E|X; — pl3.

The problem of establishing the asymptotic expansions under optimal moment
and smoothness conditions so far remains open. Probably the most general and
precise result concerned with a higher order asymptotics of Student’s ¢ statistic is
due to Hall (1987) who proved the validity of a k-term Edgeworth expansion of F'(x)
with remainder o(N~%/2), for every integer k, provided that E|X;|F*? < oo and
the distribution Fj of X; is non-singular. The moment conditions in Hall (1987)
are the minimal ones, but the smoothness condition on the distribution Fy of the
observations is too restrictive.

The aim of the present paper is to prove the validity of one term Edgeworth ex-
pansion under optimal conditions. We approximate F'(x) by the one-term Edgeworth
expansion (also called the second order approximation)

K3

G(x) = ®(x) + TN

(222 +1)d'(x), k3 = E (X1 — p)?/o?

and construct bounds for the remainder

Ay = sgp |F(x) — G(z)].

The best rate that can be achieved by the second order approximation is O(N~1).
Write s = E| X7 — pl®, for s > 1, and

pr =1 —sup{|E exp{it (X1 —p)}|: 02/(983) < |t| < x/o}, pP=pPyN

Theorem 1. There exists an absolute constant ¢ > 0 such that, for every N =
2,3,...,

c P
(1.1) Ay < 2N ot

whenever p > 0.

Note that the Cramér condition

(C) limsup | E exp{itX;}| < 1

|t|—o0
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implies liminfy p 5 > 0. Therefore, if 3, < oo, under Cramér’s (C) condition
Theorem 1 implies Ay = O(N~1). This result was conjectured by Bentkus, Gotze
and van Zwet (1997). In their fundamental work Bentkus, Gotze and van Zwet
(1997) constructed a second order approximation to a general (nonlinear) symmetric
statistic with the remainder O(N~!). This general result was applied to a number
of important statistics and established the validity of one term Edgeworth expansion
with the remainder O(N ') under optimal conditions for each case considered with
the sole exception of the Student statistic. For this particular statistic the bound

AN < c(e) ( B3B84+e ﬂz )

= pJQVN oTte +F

was obtained which implies Ay = O(N~1) under Cramér’s (C) condition provided
that E|X|*T¢ < oo, for some ¢ > 0, see Bentkus, Gotze and van Zwet (1997).

The minimal smoothness condition which allows to prove the validity of one-term
Edgeworth expansion, i.e., to prove the bound Ay = o(N_l/Q), is the non-latticeness
of the distribution Fj. Note that for a non-lattice distribution F{, we have p, > 0,
for every x > 0.

Theorem 2. Assume that for some decreasing functions fi and fo with f;(z) — 0
as r — —+00,

(12)  p(2) > fix),  BIXi—pPH{(X1—p)?®>a} < folz), @ >,

for some xy > 0. Then there exists a sequence €y (depending only on fi and fs)
with ey — 0 as N — oo such that

Ay < N7 YV2ey, forr N=2,3,....

Theorem 2 provides a bound for A ; which is uniform over the class of distributions
satisfying (1.2) with given functions f; and f,. An immediate consequence of Theo-
rem 2 is the following result. If the distribution of X7 is nonlattice and E|X;|® < oo
then

(1.3) Ay =0o(N"Y?) as N — .

Theorem 2 improves earlier results of Babu and Singh (1985), Helmers (1991) and
Putter and van Zwet (1998) where the bound (1.3) was established assuming that Fj
is non-lattice and increasingly sharp moment conditions, the sharpest to date being
E | X3¢ < oo, for some € > 0, obtained in the latter paper.

Our approach differs from that used by Hall (1987) and that of Putter and van
Zwet (1998). We use and elaborate some ideas and techniques, e.g. ”data depending
smoothing” from Bentkus and G&tze (1996) and Bentkus, Gotze and van Zwet (1997).

The rest of the paper is organized as follows. In Section 2 we present proofs of our
results. Some more technical steps of the proofs are given in Section 3. Auxiliary
results are collected in Section 4.
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2. PROOFS

The proofs are rather technical and involved. The only excuse for such complex
proofs is that the results obtained are optimal.

We may and shall assume that E X; =0 and 02 = 1.

In what follows ¢, ¢1, ca,... denote generic absolute constants. We write ¢(a, b, ...)
to denote a constant that depends only on the quantities a,b,.... We shall write
A < B to denote the fact that A < ¢ B. Furthermore, exp{itx} is abbreviated by
e{z}.

In what follows 61, 62, ... denote independent random variables uniformly dis-
tributed in [0, 1] and independent of all other random variables considered below.
For a vector valued smooth function H, we shall use the mean value formula, H(z) —
H(0) = EH'(0; x) z and write ||H| = sup, |H(z)|.

Let g : R — R denote a function which is infinitely many times differentiable with
bounded derivatives and such that

8
75

forall z€ R, and g(z)= L for L

8 9
— < < — < x< =
9 <g(z) < ~ g STS o

Write ¢g = ||gll + '] + 9”1l + llg""|
Let a denote the largest nonnegative solution of the equation

o> = EX?T{X? <ad®N}.
For 1 <i,j <N and1<k<4, writeY; = a_lN_l/QXiJI{XZ-2 < a?N} and denote
Y=Y+ --+Yn, n=mn+--+nn, D=d+- - +dp,

=Y — EY?, d; = Yin, Qi =Y d;,
b, = E|Y1/*, M=Nby, y=N|EYy|, v =N"'2E|X,’{X?> N/2}.

Note that |Y;| < 1. By Hélder’s inequality, 33 < 0284 = (34 and
(21)  by>bWP=N32 M>NBE=N"',  (b3N)% < N2byby = M.

If @ denotes the sum q; +- - - + g then write Q7)) = Q — ¢; — ¢;. Similarly, Q¥ =
Q—q;. Givenasubset A C {1,... k} write Qa = >, 4 qj. Given A = {i1,...,in} C
{1,...,N} we write E4 or E; ; to denote the conditional expectation given

{X;, 7 ¢ A}

Proof of Theorem 1. For clarity we start by outlining the main steps of the proof.
Firstly, we use Lemma 4.3 below to replace the statistic Ty by a statistic Sy, which
is conditionally linear in the first m observations Xi,...,X,,, given the remaining
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observations of the sample, X,,11,..., Xny. With Fi(x) = P {S; < x} denoting the
distribution function of S7, an application of ”data depending smoothing” procedure
then reduces the problem of bounding | F} (z)—G(x)| to that of bounding the difference
|y (t)—G(t)], where F} and G denote the Fourier transforms of Fy and G respectively.
The (conditional) linearity of S; produces a multiplicative component in Fy and in
combination with the smoothness condition (p > 0) guarantees an exponential decay
of |Fy(t)|, for large ¢, |t| > ¢(F)v/N. Finally we bound the difference |F} (t) — G(t)],
for |t| < ¢(F)V/'N.

We were not able to prove the bound Ay = O(N~!) under Cramér’s (C) condition
(the minimal smoothness condition that ensures such rate) using the conventional
Esseen’s (1945) smoothing lemma.

We may assume that for a sufficiently small ¢ > 0,

(2.2) ﬁg/\/ﬁ < ¢, 54/]\7 < ¢y, p]_vl In N < ¢oN.

Indeed, if the first inequality fails, the bound (1.1) follows from the simple inequalities
An < 14+833/V/N < 32/N < B4/N. Hence, without loss of generality we may assume
that ﬁg/\/ﬁ < ¢p. Then Ay < 1+ﬁ3/\/ﬁ < 1 and the inequality 54/N > ¢¢ implies
AN < [4/N. We obtain (1.1) again. Finally, if the last inequality of (2.2) fails we
have py°N~! > ¢ and this in combination with A < 1 and 34 > 1 implies (1.1).
Thus, we may and shall assume that (2.2) holds. Note that now, by Lemma 4.2,
a > 3/4. Therefore (2.2) implies

(2.3) v < (4/3)*84/N, M < (4/3)*B4/N < 4co, Nbs < (4/3)3Bs N2 < 3.
Let m be the smallest integer greater than 18p~!In N. By (2.2), m < N. Put

A={l,...om}and B={m+1,...,N} and split Y =Y, + Yp and n = na + n5.

Write

(24) S1=Yg(V)+Ynagd (Ve) +2 'Yenigd"(Ve), Ve=1+ns—Yj/N,

and denote Fy(z) = P{S; < z}. By Lemma 4.3, see below, the probability
P {|S; — t| > M} is not greater than cp=234/N. Then Slucky’s argument gives

Ay <sup|Fi(x) — G(x)| + eM max |G’ (x)| + cp~?B4/N.

But max, |G'(z)| < ¢, by (2.2). Hence in order to prove (1.1) it remains to show that

(2.5) Sup |F1(7) — G(x)| < p~2Bs/N.

We are going to apply the ”"data depending smoothing”. This smoothing procedure
was introduced by Bentkus, Gotze and van Zwet (1997). To make the proof shorter
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we shall refer to Lemma 5.1 of Bentkus, Gotze and van Zwet (1997). An inspection
of the proof of this lemma shows that Pravitz’s (1972) smoothing lemma applied to
the conditional distribution function of S given Y;,11,..., YN, yields

sup |Fi(z) = G(2)| < c(EJ + | ER|+ Tz + EJu + Ts),

\71 :/ |F1*(t)| dt, jQ — e{_x}Fl*(t) dt, j?) — |G(t)| dt,
m<pt<a M It <H, H t>m, |
Gmf M g [ B-Gw,
<, 1 1 <H, i
Here
G(t) = exp{—t?/2} — 6\”“/% (2(it)® + 3it) exp{—t?/2}  and  Fi(t) = E e{S}

denote the Fourier transforms of G(x) and F}(x) respectively, and
Fr(t)=Eae{S} and H, =1/(4Nbs), H =pN/(168, " c,(1+ O, +Oy)),

where ©1 = Y41+ -+ Yi| and O = |Yiy1 + -+ Yy| and k= m + (N —m)/2.

It remains to estimate E J, for k =1,2,...,5.

Estimation of J3 and E Jy. It follows from the inequality 3/4 < a <1 that

Hy > N'2/(EIXiPHX? <a®NY) 2y, y:=NY?/p;.
Furthermore, by (2.2), |G(t)| < exp{—t2/2}(1 + |t|*) and, therefore, J3<exp{—cy?}.
Note that y is sufficiently large, by (2.2). The inequality exp{—u} < u~! (which
holds for sufficiently large u) applied to u = cy? implies
Js < fB3/N < B4/N.

Consider Jy. By (2.1),
(2.6) Hy <471 /(NbY?) = 47'NV/2,
It follows from (2.6) and (4.1) that

EJ,=H}EH ?><p ?N%
Estimation of E J;. We shall show that

(2.7) IEJ| < p 2 M.
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Split Yana = Dy + Ua, where

DA:Zdiy Upa = Z Yin;.

icA i,jEA, i#]

Write also n124 =D A4+ U A, Where

Da=Y i, Ua= >  nay

icA i JEA, i#]
Denote L = Ly + -+ Ly, where L; = l; 1 + Lo+ i3+ li 4,
lii=Yig(Ve), lLi2=nYsg' (Ve), lisz=dig(Ve), lia=2""0Ysg"(Vs).

Furthermore, write Z = L+Uag (V) + W, where W = Ypg(Vg). Then S1 = Z+X,
where X = 271U,Ygpg"(Vp). Expanding e{Z + X} in powers of itX we obtain

EZ|<EL+EL+R =/ 1BactZY] gy
Hi<|t|<H ¢
I = / |E 4 e{Z}X]|dt, R=2"1 EXQ/ |t|dt.
H\<|t|<H H\<|t|<H
A simple calculation shows E Aﬁf‘ < m2bi. Invoking the inequality

H? < /)2]\/'254_1/2 we obtain
R < p°N?8; 1 2m22 < M3/2 < M.

Let us show E I, < p~2M. Expanding e{Z} = e{L + W + Uag'(V5)} in powers
of itUag' (V) we get EI; < E I3+ R, where

I :/ |Eae{l+W}X|dt, R=E|XUxg (V)| 1#|dt.
H. <|t|<H H.<|t|<H

We have R < 102N2ﬁ4_1/2 E |XUa| < M. Here we estimated
E|XUu| < E|UsUA| < m2N72M3/2,
To prove the last inequality we combine the bounds

(2.8) EU3 < m?b3, EU32 < (m/N)?>M,
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(see Lemma 4.1 for the second inequality) and the inequality ab < a?7+b%7~! applied
to a = |Ua|, b= |Ua| and 7 = M~1/2,

Let us show E I3 < N~!. By the symmetry,

E ae{L}X = m(m —1)Ypg"(VB) E ae{Ly + Ls}nansh™ %, h= Eie{L.1}.
We shall prove below that

(2.9) B <1—p/2.

Since W is independent of X;, i € A, we have |E 4 e{L+ W }X| <|E 4e{L}X]| and
combining (2.9) and the expression for E 4 e{L}X given above we obtain

IEae{lL+W}X| < c,m?Yp|N2(1—p/2)" 2
Finally, the inequalities (4.1) and
(1—p/2)""2 < exp{—p(m — 2)/2} < e’ exp{—pm/2} < e N~*
complete proof of the bound E I3 < N1

Let us prove (2.9). Expanding the exponent in powers of it(l1 2 + l1 3+ l1.4) we
get

(2.10) = Ere{lii}| < cgH(E1(ni| +n7)[Vs| + Eldi]) < p/4.
In the last step we estimated E|n;| < 2/N and
Emi<bi=N"'M<N'  Eld|<(EY)?(En)/? <N,
see (2.3). In (2.11) below we show that E|e{li1} — e{z1}| < p/5, where 23 =
a"'N~Y2X,g(Vp). Furthermore, the inequalities 3/4 < a < 1 and 8/9 < |g| < 8/7

imply |Eqe{z1}| <1—p, for H; <|t| < H and invoking (2.10) we obtain (2.9). For
|t| < H, we have

(2.11) |E1e{lii} — Ere{z1}| <a "N"2tg(Vp)| E1|X1[I{X] > a®N}

< (8/T)a *N"2Hps < (8/7)(4/3)*16 ' pBs/N
< (co/3)p < p/5.

Recall that ¢g is (sufficiently) small absolute constant and 3/4 < a < 1, by Lemma
4.2.
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Let us show that EI; <« 4/N. Split A = A; U Ay U As, so that A,N A, =0, for
p # ¢, and |Ap| ~ m/3, for every p. Write

Up,q = Z ymjg/(VB): U* = Z Up,q-

€Ay, JEA, i#] 1<p,q<3, p#q
Then Uag' (V) = Uiy + Usp + Usz + U* and e{Z} = e{W + L + U*}g19293,

where we denote g, = e{Up,}. By the mean value theorem, g, = 1+ ,, where
5y =1tUp, Ege{0U,,}. Write

a1 =1, a2 =—g1, a3 = —ga, a4 = —g3, as = gig2, G = gi193, a7 = g2g3.

The identity g1g293 = (a1 + « - + ay) + 31 323¢3 implies

EL <(EL:+ -+ E@L:) +R, IM:/ |EA9{L+W+U}az|dt
Hi<|t|<H ||

R S E/ |{1{2{3| S (Np/64_1/4)3 /N.
H1<‘t|<H

It]
In the last step we used the inequalities

Es [[ Wnl= ] EalUpsl < [] (BaUZ)?, EAU;, < cgm®bs/N,

1<p<3 1<p<3 1<p<3

cf. (2.8). In order to complete the proof of (2.7) it remains to show |EI; ;| < M,
for i = 1,2,...,7. We shall prove that |E I 7| < p~?M since the proof for the rest

1 =1,...,6 is almost the same or simpler. Write
n"i=1na — N4, Y* =Yy, — Yy, Ua, :=Ya,n" +na,Y".
We have
(2.12) |Eae{L+W +U"}ar| < E4|E 4,7, v=e{La, +Ua, ¢ (VB)}.

Write I, = I{100¢4|n*| < 1} and Iy = I{100cy|Y*| < 1}. Then
(2.13) EA|EA1¢|= EA|EA1?7/J]L7HZ/|+R, R < EA|1—]177|+EA|1—]IY'|.

By Chebyshev’s inequality, R < E (n*)? + E (Y*)* < m?bs. Therefore,

(2.14) E/ —dt<<m byln N < p72M.
m<it<m |
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It remains to estimate E 4,9l Iy. Write Write m; = |A;|. By the symmetry
E 4, ¢L, Iy = hi", hy = Eqve{Li + (Yin" +mY™)g' (Vs)}L,Iy.
We shall show that
(2.15) hi| < 1—p/2.

Then
| E A, 91Ty | < exp{—mip/2} < exp{—pm/6} < N7°

and this inequality in combination with (2.12), (2.13) and (2.14) gives EI; 7 <
p~2M. Tt remains to prove (2.15). Proceeding as in (2.10) we obtain

|h1 — ho| < p/4, where hy = Eqe{li 1+ (Yin"+mY™)g (Ve)},Iy.
Furthermore, expanding the exponent in hy in powers of it7, Y™ we obtain
|ho — hs| < cgH Eq|mY ™|y < p/100, hs= Eie{lis+Yin"¢' (Vs)}L,ly.
We complete the proof of (2.15) by showing that |hs| < 1 — (4/5)p. We have
|Eie{zll,| <1-p, 2=a'N2Xi(9(Va)+n"g (V).
But |hs — Eqe{z2}| < p/5, cf. (2.11). Hence, |hg| < 1 — (4/5)p and this completes
the proof of (2.15). We arrive at (2.7).

Estimation of E J5. Write

o(t) = exp{—t*/2} — (N/6) EY} (3it + 2(it)®) exp{—t*/2}
f(t) = E e{S}, S=Yg(V), V=1+n-Y?/N.

We have

I
0u(t) = f(t) —e(t),  Ga(t)=Fi(t) = f(t),  &(1) = () - G(t).

The inequality I; < 34/N is proved in Section 3.
The bound I3 < B4/N is a consequence of the inequalities

B <hi+lhtly I =/ LI
[t|<H;

E (Y2 —a3N32X3) =a3N32E | X, PI{X? > ¢’ N} < N2,
1 1 1

14+ a+ a?

-3
a’—1=
a3

(1 —a) < B4/N.
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In the last step we used (4.2) and the inequality 3/4 < a < 1, see Lemma 4.2.
Let us show that Io < p~23;/N. Write

(2.16) W, = —Y3/N, Wo = —2YaYp/N.

Then V = Vg + na + W1 + Ws. Expanding g in powers of W7 + W5 and then in
powers of 74 we obtain S = 57 + (Q1 + -+ + Q4), where

Q1 :=2""YaniEog" (Vs +0na),  Q2:=6"'YpniEeg" (Vs +0na),
Q3 :=Q31+ W32, Q3::=YaW;(, Qu:=0Qu1+Qu2, Qu,:=YpW(, i=12,

where we denote ( = E g (Vs +n4 + 6(W1 + Ws)). The inequality
(2.17) le{z} — 1| < 2|z|9, for zeR, 0<a<l,
implies
F(B) = BefSi+Qu}| < Ri,  Ri=E ([tQu|*" + [t(Q2 + Qs1)[* + [tQs.0).

Write
h=E e{S1}itQ4.2, hi = E e{S2}itQs2, S2=Yg(Vp).

Expanding e{Q} in powers of itQ)4 1 and then in powers of itQ4 o we get
Ee{Si+Qi}=Fi(t)+h+ Ry,  where |Ro|< E[tQu1|+ E(tQ42)?.
Furthermore, by (2.17),
[e{S1} — e{Sa}| < [tYnal + [tYpni[**
and therefore
|h—hi| < Rz, Rz = E|Qua|(t*|Yna|+ ‘t|7/4’YB77,24|3/4)-

Combining these inequalities we obtain |f(t) — Fy(t) — h1| < Ry 4+ R2 + Rs. A direct
calculation shows

Ry < |t[*>m2by + |t|?/3 (mbs + m2N75/3) + |t|m N2,
|Ro| <mltIN"24+mt?N73, Ry <m>*MEN32 4 |t|/AN—2).

Write

ho = E e{S2}itQs5, Qs =YpWag'(Ve), and Qs = Qi2— Qs.
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By the mean vakue theorem |Qg| < |YsWa| (|na| +|W1+ Wal). A simple calculation
shows that

|y — ho| < [t|E|Qs| < Ra, Ry =|t{ N72(1+m(Nbs)"/?).
Furthermore, we shall show below that
(2.18)  |he| < Rs,  Rs = [t{N"1(m/N)/2? exp{—c(m/N)t?}, for |t| < H;.
Collecting the estimates for R;, i = 1,...,5, given above we get

Ri1+ R R R R _
I2<</ 1 2+ R3+ Ra + 5dt<<p 2B4/N.
0<|t|<H, ¢

It remains to prove (2.18). Split
hg = hg’l + hg’g, hg,j = (—th/N) EYA]YBg e{Sg}g'(VB)7

where A1 ={1,...,k} and Ay = A\ Ay, and where k ~ m/2. It suffices to show that
|he,j| < Rs. We have

hoi| < Nt EYECGG,  Gi=Ea[Yal G :=]|Eae{S}

By Holder’s inequality, ¢ < k/N < m/N. Furthermore, by the symmetry, o < |u|™,
where u = E,,, e{Y,,9(Vs)}, and where n := |As|. The inequality

[Ee{r}? <1-*E(r— E7)* + (4/3)tP E|7]%,

see, e.g., Petrov (1995), applied to the random variable 7 = Y,,g(Vp) conditionally,
given Y, 41,..., Yy, implies
(219)  Jul?<1-2@(Ve)( = — (BYm)?) + S 1tPbalg(Ve)P <1 -

. > 9 VB m 3 319\VB)|" > IN
for |t| < Hy, provided that ¢y is sufficiently small. Here we estimated |EY,,| <
a~*N~2834 < 4cy/N, by Chebyshev’s inequality and (2.2), and used the inequalities
8/9 < g < 8/7. We obtain

G2 < (1—=1%/(4N)"/? < exp{—c(m/N)t*}

thus completing the proof of the bound |hg ;| < Rs. Clearly, the same bound holds
for ho o as well. We arrive to (2.18).
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Estimation of E J5. We shall show that
|E Jo| < p~'fa/N.

Write K = {1,...,r} and denote ©® = |Y;.41 + --- + Yu/|. It suffices to show that for
any r > N/2,

51/4

H,
4
a éo Bk o{S1}](1 + ©)dr.

(2.20) EI <cp 'B4/N, where I; =

Let us prove (2.20). In the first step we replace S; by S. It follows from (4.5), see
below, and (2.17) that

|e{S} — e{S1} < [t|(R1+ -+ Ry) + [t|*/PR2® + |t|'/3RY® =: Ly,

where the random variables R; are defined in the proof of Lemma 4.3, see below. A
simple calculation gives

ELi(1+0) < [{|{NTTE (YA + YZ+|Yal) + [t1PE (Y3 + nal) + |t|** E |nal
< [t{NTH( V2 (m/N)Y? 4 (m/N)Y2) + (1t1*® + [¢[**) (m/N).

Furthermore, invoking the inequality H; < 4 'N'/2 see (2.6), we obtain

v ot < BEA
—— EL(1 dt < ———— <p~ N.
i | B e < AT <ty

It remains to show that
1/4

H,y
i / B« o[S}(1 + O)dt < p~B4/N.
PN Joo

Let mg = mg(t) be the smallest integer greater than 20 Nt~2In|t|. Clearly, mo <
N/2, for |t| > 20. We may and shall assume that mg > 10, since N is sufficiently
large, by (2.2). Write

Ao={1,...,mo}, Bo={mo+1,...,N}, and Vg, =1+ng, — Y5, /N,

Then V = Vg, + 14, — W, where W = Y3 /N+2Y4,Yp,/N. Expanding g in powers
of W and then in powers of N4, We get

S =S83+7r;+10+1r3+714, Ss=Ya,9(Vp,) + 14, YB,9 (VB,)
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where
| < YW fro] < [Yagnaols  Irsl < [Yaolnk,,  [ral < Vol
An application of (2.17) gives
|e{S} = e{Sa}| < YW |+ [tYagma0|*® + [1Ypyna, |/ + [tYayn, [
Finally, combining the inequalities

ElYW|1+0)< N, E|Ygni,|Y*(1+0) < mo/N <t 2nlt,
E |Ya,n4,72(1 4+ 0) < E (Y], + [n4,]) < mo/N <t 2Inlt,
E |Ya,n4,*°(1+0) < E(YZ, + [n4,]) < mo/N <t 2Inlt],

we obtain

B /2: E|e{S} — e{Ss}/(1+ ©)dt < p~'Gi/N.

We complete the proof of (2.20) by showing

(2.21) |E 4, {83} < [t| 72+ ceyg N385 4y, |P/2.

In order to prove (2.21) write Ip = I{100¢,NY3 B4 < 1}. We have
|E {83} < ¢+ (1 —-1g),  ¢:=|Ea,e{Ss}5].

But
1—1Ip < cgN 31834 vy, |32,

Therefore, it suffices to estimate (. By the symmetry
¢ < |ulg|™, vi=Eq1e{Y19(Vp,) + mYB,9'(VB,)}-
Expanding the exponent in powers of it Yp,9'(Vp,) we obtain
v=u+R, u=E e{Y1g(Vs,)}, with |R| <t?EniY5 ¢ (Va,) < cgt’baY3,.
Note that |R|Ip < t2N~1/100. Then

t? t2 t2
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Here we used the inequality |u| < 1 — #2/(8N) which follows from the inequality
(2.19) applied to 7 = Y19(Vg,), for |[t| < H; < 47'NY2 use also (2.6). It follows
from (2.22) that

¢ < (1—12/(9N)™ < exp{—t>mo/(ON)} < [t| 2% <172,

We arrive to (2.21) thus completing the proof of (2.20).
Collecting the estimates of E Jy, for k = 1,...,5 we arrive to (2.5) thus completing
the proof of the theorem.

Proof of Theorem 2. Theorem 2 is a consequence of the following bound. For each
N =2,3,...and each 1 < z < NV% we have An < ¢W, where

1 + 1 2
zV/N P2N oSN

The scheme of the proof of this bound is similar to that of the proof of Theorem 1.
Only now we use the conventional Esseen’s (1945) smoothing lemma, what makes
the proof considerably simpler, see Bloznelis and Putter (1998) for details.

+

4 2 2 3 2 2
W::( E X‘{X* <o N}+ E | XPH{X? >0 N}>.

otp2N o3V N

3. EXPANSIONS

In this section we prove the inequality

him [ EefS}-wlljr < 5. HT'=aNEMP,
[t|<H;

NEY? 3it+ 2(it)3 )

S=Yo(V), V=ltn- "0, ot)=en{-/2)(1- !

It is convenient to split the integral I = J; + J2, where

dt

si= [ Be(s) el =12

and where A7 = {|t| < 1} and Ay = {1 < |[¢t| < Hy}. The inequality I < (34/N is
a consequence of the two inequalities J; < B4/N, i = 1,2. The bound J; < B4/N
follows form Lemma 3.1 applied to the smooth function H(u) = exp{itu}. The bound
Ja < (4/N can be obtained by combining the proof of Lemma 3.1 and some ideas
of the proof of the Berry-Esseen bound for Student’s ¢ statistic given in Bentkus and
Gotze (1996). Detailed calculations yielding the inequality Jo < 34/N can be found
in Bloznelis and Putter (1998).

Let £,&1,&9, ... be asequence of independent standard normal r.v. We assume that
this sequence is independent of X1,..., Xn. By f we denote the sum 51 4+ 4 5 N,

& = N-12%,.
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Lemma 3.1. Let H : R — C be a bounded infinitely many times differentiable
function with bounded derivatives. Assume that (2.2) holds. Then
__N

|E H(S)- EH() -T| < cuR, I=-- bs(3EH'(§)+2EH"(¢)),

where R = M+~ and cgy = ||H'|| + -+ + ||HY||.

Proof of Lemma 3.1. We shall write g ~ h if |g — h| < ¢y R. A simple calculation
shows that I' ~ 'y +1'5 4+ I's,

NN -1

N N
I= - EH"(Y’, Te=---EH(&)d, Ts= 5

E H" (€)Y{ds.
Therefore, the lemma is a consequence of the following two facts,
(3.1) EHY)~ EH() +T, EH(S)~EH(Y)+Ty+7Ts.

For the proof of the first part of (3.1) we refer to Bentkus, Gotze, Paulauskas and
Rackauskas (1990), where the inequality |EH(Y; +---+Yy) — EH(§)| < cg(M +
(b3N)?) was proved in the case of centered summands Y;. It remains to prove the
second part of (3.1).

Expanding in powers of Y2/N and using the bound E |Y|? < 1, see Lemma 4.1,
we get E H(S) ~ hy, where hy = E H(Yg(1+n)). Write

gi(n)=Beg'(L+06n), Yn=U+D, U=>Ym, D= d.
1#£] 7

By the mean value theorem, g(1+n) = 1+g¢1(n)n. ThenY g(14+n) = Y+(U+D)g1(n).
Expanding H in powers of U g1(n) we get hy = ho + hs + R,
hy = E H(W), hs = E H(W)Ugi(n) where W =Y + Dgi(n)

and where |R| < cg EU?. By Lemma 4.1, EU? < R. Therefore, hy ~ hy + hs.
Let us show that hg ~ I's. The inequality |g1(n) — ¢'(1)| < |n| implies

N(N -1
- MY BB (W) Yine,

’hg—h4’<<CHE|U?7‘, ha = EHI(W)Ug/(l):
Furthermore, the inequalities |Un| < U?+n?, EU? < R and En? < M, see Lemma
4.1, imply hsg — hy ~ 0. Hence, h3y ~ hy. Next we show that

N(N —

(3.2) hamo = M g by = ER(YO)Yd,.
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By the mean value theorem, g1(n) — g1(n™")) = wn, with some |w| < 1. Then
Dgi(n) = DVgi(n) + digi(n) = Wi + Wy,

where we denote W = D(l)gl(n(l)) and Wy = dyg1(n) + DMwn;. We have W =
Y + W7 + Ws. Expanding H' in powers of W5 we get

|EH' (W)Yins — h| < cuRy, he = EH'(Y + W1)Yin, Ri= E|[YigWal.
Furthermore, expanding H' in powers of Y; we obtain |hg — h7 — hg| < ¢y Ra, where
hy = BEH"(YY + W)Y, hs = EH" (YW + W)Y,
and Ry = E|n|(EY] + |EYi|). A simple calculation shows that N?|R;| < R,
1 = 1,2. We obtain

N(N —1)

5 (h7 + hsg).

hy ~ —
We complete the proof of (3.2) by showing that
(3.3) N?hg~0 and  N?(hy — hs) ~ 0.

By the mean value theorem, g1 (n(") — g1(n"?)) = w1, with some w < 1. Then we
can write W7 = W3 + Wy, where

Wy = D12 gy (n12) and Wy = dagi (n™D) + DD w .
Expanding H” and H"' in powers of W, we get

\h7 — hg| < cgRy, ho=EH"(YW + W3)Y2n,, Ry = EYZnWa,
|h8 — h10| <K CHRQ, hl() = EHIH(Y(D + Wg)Yigng, Ry, = EY13|?72W4|.

Furthermore, expanding in powers of Y3 we get |hig| < cgR3, with Rz = E|Y3ds|.
Finally, expanding H” in powers of Y5 and then in powers of W3 we obtain

|hg — hs| < cu Ry, with Ry = (EY?YZ | + EY?|daWs)).

A straightforward calculation shows N?R; < R, i = 1,2,3,4. Hence, N?hg ~
N2hyg ~ 0 and N2h; ~ N?hg ~ N2hs. We arrive to (3.3) thus completing the proof
of (3.2).

Next we replace Y(1:2) by é (1.2) in hys. The error of this replacement,

(3.4) IEH" (Y3 + -+ Yy) — EH" (V)| < cu(bsN + N7).
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For the proof of this inequality we refer to Bentkus, Gotze, Paulauskas and Rackaus-
kas (1990), where a similar bound was proved in the case of centered summands Y;.
Combining (3.4) and the inequalities

(35) |EH"(EDD) - EH"(€)| < caEl& +&| < N7V2 EY2|dy| < bs/N
we obtain
N%|hs — EH"(§)Y{ds| < ey (3N + Ny + N~V N < ey R.

Hence, —N(N — 1)hs5/2 ~ I's and this completes the proof of hg ~ I's.
It remains to show that ho ~ E H(Y) + I';. We start by showing

(3.6) hy~ EH(Y)+hn,  where hyy = EH(YV)d.
Expanding ¢g; and then H in powers of n we get
|ha — h1a| < cuR, hiz2 = E H(Y + Dg'(1)), |R| = E [nD|.

The inequalities [nD| < n? + D?, En? < M and E D? < R, see Lemma 4.1, imply
R ~ 0. Therefore, ho ~ his. Furthermore, expanding H in powers of Dg’(1) we get

(3.7) hia=EHY)+hs+R,  hiz=EH(Y)Dg(1),

where |R| < cg E D? ~ 0, see Lemma 4.1. Hence, h12 ~ EH(Y) + hi3. By the
symmetry, hi3 = —27'N E H'(Y)d;. Now, expanding H' in powers of Y; we obtain
his ~ hy1. This together with (3.7) yields (3.6). Finally, we replace YW in hyy by
€M The error this replacement, |hy; — Is| < e¢gR, of (3.4) and (3.5). We obtain
h11 ~ G5 thus completing the proof of the lemma.

4. AUXILIARY RESULTS

Lemma 4.1. Assume that (2.2) holds. Then
(4.1) E|Ys|® < c(s),
for each s > 0 and each subset B C {1,..., N}. Furthermore, for every m < n,

ED?><mby+m?3 <M, D= Y dj
1<j<m
EU? < (m/NPM, U= Y Yo

1<i,j<m, i#j
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Write A = {1,...,m}, where m < n. We have En% < mby,

Proof of Lemma 4.1. The last inequality is trivial. The inequality E[Yg|® < c(s) is
proved in Bentkus and Go6tze (1996).
To estimate E D? write

ED’<ET+E[D), Ti= > d, Th= Y  dd;.

1<i<m 1<i,j<m, i#]

Using the inequality |Y;| < 1 we get ET} < mby. Furthermore, E|Th| < m?bj.
Finally, by (2.1), (Nb3)? < M.
Let us estimate EU?. Write

U=Ur+Uy, U= Y  EYiy, U= >  (Yi-EY)y.

1<i,j<m,i#j 1<i,j<m,i#j

A simple calculation shows

EUE = ((m—1)EYi) E(n + -+ +1m)* < (m/N)*2M,
EU; =m(m—-1)E(Y;, - EY))?En3 < (m/N)>M.
Clearly, the bound EU? < (m/N)?M is an easy consequnce of these inequalities.
The last inequality, En% < m by, is trivial.
Lemma 4.2. Assume that (2.2) holds. Then

(4.2) 1-28/N<a<l.

In particular we have 3/4 < a < 1.

Proof of Lemma 4.2. Clearly, a® < 02 < 1. Furthermore, write »(u) = E X?I{X? <
u N}, for u > 0. We have

(4.3) 7:=1-x(1/2) = EX?I{X} > N/2} <2p34/N.

Note that 26,/N < 1/4, by (2.2). We have 7 < 1/2. The function »(u) is nonde-
creasing. Therefore, (4.3) implies »(1 — 7) > 3(1/2) = 1 — 7. But, »(1) < 0? = 1.
Then there exists a solution of the equation u = s(u) in the interval 1 — 7 < u < 1.
This implies a? > 1 —7 and we obtain @ > a? > 1 — 7. This inequality in combination
with (4.3) yields (4.2) thus completing the proof of the lemma.
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Lemma 4.3. Assume that (2.2) holds. Let Sy be given by (2.4). Then

(4.4) P{|S1 —t| > M} < p *N'5,.
Proof of Lemma 4.3. The inequalities

P{VNt# p } <N P{X?>a’N} < (4/3)%y < Bu/N,

—W/N
45} < P{ln| > 1/4} + P{Y*/N > 1/4}

P S
and
P {|n| > 1/4} <1671* < 32N E Y}, P{Y?/N>1/4} <4N'EY?=4/N

imply P {t # S} < R.

In order to prove (4.4) it suffices to show P {|S — S1| > M} < cp™2N~134. We
have V = Vg 4+ na — W1 — Wa, where W7 and W5 are given by (2.16). Expanding g
in powers of W7 + W5 and then in powers of n4 we get

(4.5) |S —S1| <cg(Ri+ -+ Re), where Ry = |YAW1|, Ry = |YaWs|,
Ry =|YgWi|, Ry=|YpWas|, Rs=|Yalnh, Re=|Ypnil

We complete the proof by showing P; := P{|R;| > M/6} < p~2M, where we
abbreviate py by p. In what follows we use the inequalities NM > 1 and E |Yp|* <
c(s), see (2.1) and Lemma 4.1. By Chebyshev’s inequality,

P < (MN)™BEY! < BY{ < m®b, < p72M,

Po< (MN)?EYFEY i< EY i <p M, i=1,2,

P, < (MN)EYSY} < EY] < p72M,

Ps < MY E [Yana|'? <« MTYVP(EYS + Enj) < M™YPmPby < p72M,

Here we applied the inequality ab* < a® +b° to a = |Y4| and b = |na|'/2. Finally,
the inequalities

Ps < M72BE|YenS| <« MT2PERS <« M~ 23mby, < p~*M

complete the proof of (4.4). Lemma is proved.
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