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ABSTRACT. We construct a precise Berry–Esseen bound for least squares error
variance estimators of regression parameters. Our bound depends explicitly on the
sequence of design variables and is of order O(N−1/2) if this sequence is ”regular”
enough.
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1. Introduction and results

Consider the linear model

Yi = α + β Xi + εi, i = 1, . . . , N, (1.1)

where Y1, . . . , YN is the observed response to given variables (design points) X =
(X1, . . . , XN ), and where α and β are unknown regression parameters to be esti-
mated. Here ε1, . . . , εN are unobservable errors. We assume that ε1, . . . , εN are
independent identically distributed mean zero random variables.
The ordinary least squares (OLS) estimators of the parameters α and β are defined

by
α̂ = Y − β̂ X and β̂ = V−2(x1y1 + · · ·+ xNyN ),

see Malinvaud (1970). Here xk = Xk−X, yk = Yk−Y and V = (x2
1+· · ·+x2

N )1/2.
We are interested in the rate of the normal approximation of α̂− α and β̂ − β in

the case where the variance σ2 = Eε2
1 is unknown. In this case σ2 is estimated by

s2 = (ε̂2
1 + · · ·+ ε̂2

N )/(N − 2), ε̂k = Yk − α̂− β̂ Xk,
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see Malinvaud (1970), and is used to normalize α̂ − α and β̂ − β. By the central
limit theorem, for large N , distributions of the statistics

θ1 = θ1(X) = α̂− α

Q s
, θ2 = θ2(X) = β̂ − β

V s
, where Q =

( X
2

V2
+ 1

N

)1/2
,

can be approximated by the standard normal distribution. We construct a bound
for the rate of the normal approximation of these statistics.
The Berry–Esseen bound given in Theorem 1.1 below is precise and depends only

on the ratio β3/σ3 and the fraction

E = EX =
PN

k=1 |xk|3
V3

.

If V = 0 put E = 1 and θi = 0.

Theorem 1.1. Assume that σ2 > 0. Then there exists an absolute constant c > 0
such that

sup
x

∣∣P{θi ≤ x} − Φ(x)
∣∣ ≤ c E β3

σ3
, i = 1, 2,

where Φ(x) denotes the standard normal distrubution function.

Here and below c, c0, c1, . . . denote generic absolute constants. By c(T1, T2, . . . )
we denote a constant which depends only on the quantities indicated in the brack-
ets.
If the sequence X is regular enough, e.g., the design points are regularly spaced,

Xk = a+k t, k = 1, . . . , N , for some a, t, then Theorem 1.1 yields the Berry–Esseen
bound

sup
x

∣∣P{θi ≤ x} − Φ(x)
∣∣ ≤ c

β3√
N σ3

, for i = 1, 2.

The rate O(N−1/2) is achieved also when the design points are taken at random
and independently of the errors. Consider the linear model (1.1) in the case where
the design points X = (X1,. . . , XN ) are i.i.d. random variables independent of
ε1, . . . , εN . Write γ3 = E |X1 − EX1|3 and τ2 = VarX1. Theorem 1.1 implies the
following bound.

Corollary 1.1. Assume that σ2 > 0 and τ2 > 0. Then

sup
x

∣∣P{θi(X ) ≤ x} − Φ(x)
∣∣ ≤ c

β3 γ3√
Nσ3 τ3

, for i = 1, 2.

It is easy to recognize the structural similarity between the statistics θ1 and θ2

and the Student statistics, based on non-identically distributed observations. The
Berry-Esseen bound for the Student test was proved by Bentkus and Götze (1996)
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and extended to the non-i.i.d. case in Bentkus, Bloznelis and Götze (1996) ([BBG]
for short). In order to obtain the optimal results for error variance estimators of
regression parameters we extend the methods developed in these papers and then
apply them to the statistics θ1 and θ2.
It seems that the traditional technique, see, e.g., Lahiri (1992), does not allow to

obtain the optimal results: it involves moments of order which is higher than the
optimal one.
The rest of the paper is divided in two sections. In Section 2 we present a general

Berry–Esseen bound for the statistics like θ1 and θ2 which is obtained without the
assumption that the second moment of the errors εi is finite. Theorem 1.1 is a
simple consequence of this result. Proofs are given in Section 3.

2. A general result

Given two sequences of real numbers w = {w1, . . . , wN} and z = {z1, . . . , zN}
such that

N∑

i=1

w2
i = 1 and

N∑

i=1

z2
i = 1 (2.1)

write

T = T (w, z) = S(w)/s(z), S(w) =
N∑

i=1

wiεi, s2(z) = σ̂2 −N−1S2(z),

where as usual

ε =
(
ε1 + · · ·+ εN

)
/N and σ̂2 = N−1

N∑

i=1

(
εi − ε

)2
.

Write E(w) =
∑N

i=1 |wi|3 and note that by (2.1),

E(w) ≥ N−1/2 and
N∑

i=1

|wi| ≤ N1/2. (2.2)

Clearly the same inequalities hold for E(z) and
∑N

i=1 |zi| as well.
Define the number a2 = a2

N by the truncated second moment equation,

a2 = sup
{
b : E ε2

11{ε2
1 ≤ b N} ≥ b

}
, a ≥ 0.

It is known (and easy to show) that for any random variable ε1 and any N such
a number a exists, and a is the largest solution of the equation a2 = E ε2

11{ε2
1 ≤

a2N}. Moreover, if σ < ∞ then a ≤ σ. If σ = ∞ then aN →∞ as N →∞.
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In order to formulate the general result we introduce truncated random variables

τi = a−1N−1/2εi1{ε2
i ≤ a2N}, for 1 ≤ i ≤ N.

Note that |τi| ≤ 1 and E τ2
i = 1/N .

The result formulated below provides a bound for

δN = sup
x

∣∣P{T ≤ x} − Φ(x)
∣∣

in the general case, where the existence of the second moment of r.v. ε1 is not
assumed.

Theorem 2.1. Assume that a > 0. Then

δN ≤ cN P{ε2
1 > a2N}+ cN

∣∣E τ1

∣∣ + cN3/2
(E(w) + E(z)

)
E |τ1|3. (2.3)

3. Proofs

Proof of Theorem 1.1. A simple calculation shows that θ̂2 = (1 − 2/N)1/2T (z, z)
and θ̂1 = (1− 2/N)1/2T (w, z), where z = {z1, . . . , zN}, zi = xi/V and where

w = {w1, . . . , wN}, wi = vi/W, vi = N−1 − xiX/V2, W 2 = X
2
/V2 + N−1.

By Theorem 2.1 and inequalities (2.2),

sup
x

∣∣P{θi ≤ x} − Φ(x)
∣∣ ≤ c

β3

σ3

(E(w) + E(z)
)
, for i = 1, 2.

Furthermore, by Hölder’s inequality, X
2 ≤ V2/N . Therefore,

N∑

i=1

|vi|3 ≤ cN−2 + c (|X|/V2)3
N∑

i=1

|xi|3 ≤ cN−3/2
(
N−1/2 + E(z)

)

and we obtain E(w) ≤ cE(z). But E(z) = E and this completes the proof.

Proof of Corollary 1.2. The result follows from Theorem 1.1 and the inequality

E EX ≤ c
γ3√
N τ3

.

Let us prove this inequality. We asume without loss of generality that EX1 = 0.
Write χi = Xi − X , for i = 1, . . . , N , where X = N−1(X1 + · · · + XN ), and
vs = E |χ1|s and L = v3 v

−3/2
2 . Denote the event

A =
{
χ ≤ Eχ/2

}
, where χ = χ2

1 + · · ·+ χ2
N .
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Note that EX ≤ 1 and thus, E EX ≤ P{A} + 23/2N−1/2 L. By Chebyshev’s
inequality and Rosenthal’s inequality, see, e.g. Petrov (1995),

P{A} ≤ cE |χ−Eχ|3/2/(N v2)3/2 ≤ cN−1/2 L.

We obtain E EX ≤ c N−1/2L. Finally, using the inequalities

Eχ2
1 = (1−N−1) τ2 ≥ τ2/2 and E |χ1|3 ≤ c γ3.

we obtain L ≤ c γ3/τ3 thus completing the proof.

Proof of Theorem 2.1. The proof goes along the lines of the proof of Theorem 1.2
in [BBG]. Therefore we give only a general scheme of the proof. These steps of
the proof which are new are presented with detail calculations.
Write

κi = wi(τi −E τi), ηi = τ2
i −N−1, 1 ≤ i ≤ N,

κ =
N∑

i=1

κi, τ =
N∑

i=1

τi and η =
N∑

i=1

ηi.

Let α = (α1, . . . , αN ) denote a sequence of i.i.d. Bernoulli random variables such
that P{α1 = 1} = 1 − P{α1 = 0} = p, with some p ≤ 1. By ξ we shall denote a
standard normal random variable. By (2.1), we can write ξ = ξ1 + · · ·+ ξN , where
ξ1, . . . , ξN are independent centered normal random variables with E ξ2

i = w2
i , i =

1, 2, . . . , N . We shall assume that the sequences α, (τ1, . . . , τN ) and (ξ1, . . . , ξN )
are independent. Furthermore, we may and shall assume that

N
∣∣E τ1

∣∣ < c0 and
(E(w) + E(z)

)
N3/2E |τ1|3 < c0, (3.1)

for a sufficiently small c0 > 0. If at least one of these inequalities fails then (2.3)
follows from the obvious estimate δN ≤ 1. Note that the second inequality in (3.1)
implies N E |τ1|3 < c0.
Let g : R → R denote a function which is infinitely many times differentiable

with bounded derivatives and such that

1/8 ≤ g(x) ≤ 2, for all x ∈ R, and g(x) = |x|−1/2, for 1/4 ≤ |x| ≤ 7/4.

For a statistic W write δ(W ) = supx

∣∣P{W ≤ x} − Φ(x)
∣∣.

The proof is divided in two steps. In the first step we replace the statistic T by the
statistics V =

√
Nκg(1 + η), which is a smooth function of the random variables

κi and ηi. In the second step we construct estimates for the difference between the
characteristic functions f(t) = E exp{i t V } and φ(t) = E exp{i t ξ} = exp{−t2/2}
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and then give a bound for δ(V ) using Esseen’s smoothing lemma, see, e.g., Feller
(1971).
Step 1. We shall show that

δ(T ) ≤ δ(V )+cR1, where R1 = N P{ε2
1 > a2N}+N |E τ1|+N E |τ1|3. (3.2)

Write V ′ =
√

N S1 g(1 + A) and V ′′ =
√

Nκg(1 + A), where

S1 =
N∑

i=1

wiτi, S2 =
N∑

i=1

ziτi, and A = η + τ2/N + S2
2 .

Let us show that δ(T ) ≤ δ(V ′) + cR1. We have

P{T 6= V ′} ≤ N P{ε2
1 ≥ a2N}+ P{|A| ≥ 3/4}.

By Chebyshev’s inequality, Lemma 3.1 (see below) and the inequality N−1/2 ≤
N E |τ1|3,

P{|η| ≥ 1/4} ≤ cE |η|3/2 ≤ cR1, P{τ2/N ≥ 1/4} ≤ cN−1 ≤ cR1,

and P{S2
2 ≥ 1/4} ≤ cES2

2 . Furthermore, by (2.2) and (3.1),

ES2
2 ≤ E τ2

1 + |E τ1|2
∑

i6=j

|zi| |zj | ≤ N−1 + N |E τ1|2 ≤ R1.

We obtain P{|A| > 3/4} ≤ cR1 and therefore
∣∣δ(T )− δ(V ′)

∣∣ ≤ cR1.
Furthermore, |V ′ − V ′′| ≤ 2 R1(w), where R1(w) =

√
N |E τ1|

∑N
i=1 |wi|. It

follows from (2.2) that R1(w) ≤ R1 := N |E τ1| and thus δ(V ′) ≤ δ(V ′′) + cR1.
It remains to show that δ(V ′′) ≤ δ(V ) + cR1. Expanding g in powers of Q =

N−1τ2 + S2
2 we obtain V ′′ = V + R2, where |R2| ≤ c

√
N |κQ|. By Chebyshev’s

inequality,

P{|R2| ≥ N−1/2} ≤ cN E |κQ| ≤ c
(
E |κ|3)1/3(

E |τ |3)2/3 + c N E |κ|S2
2 . (3.3)

By Lemma 3.1, the first summand is bounded by c N−1/2. To estimate the second
one let us write u =

∑N
i=1 zi (τi −E τi) and R1(z) =

√
N |E τ1|

∑N
i=1 |zi|. Clearly,

E |N1/2u|3 ≤ c, cf. Lemma 3.1, and R1(z) ≤ R1. Since NS2
2 ≤ 2 N u2 + 2 R2

1(z)
and |κ|R2

1(z) ≤ |κ|3 + |R1|3 and u2|κ| ≤ |u|3 + |κ|3, the last summand in (3.3)
is bounded by cN−1/2 + cR3

1. We obtain P{|R2| ≥ N−1/2} ≤ cR1. Therefore,
δ(V ′′) ≤ δ(V ) + cR1. We arrive to (3.2).
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Step 2. Here we show that

δ(V ) ≤ cR2, R2 = N |E τ1|+ N3/2E(w)E |τ1|3. (3.4)

It follows from Esseen’s smoothing lemma that

δ(V ) ≤
∫

0≤|t|≤T1

|t|−1|f(t)− φ(t)|dt + c

T1
, T1 = c2/(N3/2E(w)E |τ1|3).

This inequality implies (3.4) if we show that

I1 :=
∫

0≤|t|≤c1

|t|−1|f(t)− φ(t)|dt ≤ cR2 (3.5)

and
I2 :=

∫

c1≤|t|≤T1

|t|−1|f(t)− φ(t)|dt ≤ cR2, (3.6)

where the constant c1 is sufficiently large. Let us prove (3.5). Write H(x) =
exp{itx} and denote cH = ‖H ′‖+‖H ′′‖+‖H ′′′‖, where ‖H‖ = supx |H(x)|. Then
(3.5) follows from the inequality

∣∣EH(V )−EH(ξ)
∣∣ ≤ c cH R2. (3.7)

This inequality is a consequence of

∣∣EH(
√

Nκ)−EH(ξ)
∣∣ ≤ c cH R2,

∣∣EH(V )−EH(
√

Nκ)
∣∣ ≤ c cH R2. (3.8)

The proof of the first inequality in (3.8) is easy, see Bentkus, Götze, Paulauskas
and Račkauskas (1990). The proof of the second inequality is very close to the
proof of the inequality (2.3) in Bentkus and Götze (1996). An inspection of their
proof shows that in order to verify the second inequality of (3.8) it suffices to show
that

E |D| ≤ cR2, EU2 ≤ cR2, E η2 ≤ cR2,
∣∣EU H ′(

√
N κ)

∣∣ ≤ cR2, (3.9)

where D =
√

N
∑N

i=1 κi ηi and U =
√

N
∑

1≤i,j≤N, i 6=j κiηj . The first two in-
equalities of (3.9) follows from Lemma 3.1. The inequality E η2 ≤ cR2 is trivial,
since |ηi| ≤ 2, for 1 ≤ i ≤ N . To prove the last inequality in (3.9) let us write

U H ′(
√

N κ) =
∑

1≤i,j≤N, i 6=j

Ai,j , Ai,j =
√

N κiηjH
′(
√

N κ)
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and κ = κi,j + κi + κj , where we denote κi,j = κ − κi − κj . Expanding
H ′(√N (κi,j +κi +κj)

)
in powers of

√
N κi and subsequently in powers of

√
N κj

we get ∣∣EAi,j

∣∣ ≤ cE(
√

Nκi)2
∣∣√N κjηj

∣∣ ≤ cw2
i |wj |N1/2E |τ1|3.

An application of (2.2) completes the proof of (3.9). We arrive to (3.7)
The proof of the (3.6) is more complicated. An additional effort has to be made

to ensure the integrability (with respect to the measure dt/|t| in the region c1 ≤
|t| ≤ T1) of the remainder of expansions. In order to prove (3.6) one uses the
approach developed in Callaert and Janssen (1978), Helmers and van Zwet (1982),
van Zwet (1984) where similar integral is estimated in the case where f(t) is the
characteristic function of U or more general nonlinear symmetric statistic based
on i.i.d. observations. One extension of this approach to the situation where the
observations are non-identically distributed is given in [BBG].
To prove (3.6) we expand g in powers of observations and then expand the expo-

nent in much the same way as in proof of Theorem 1.2 of [BBG], only now we use
inequalities of Lemma 3.1 to bound the remainders of these expansions.
Finally, combining (3.5) and (3.6) we obtain (3.4) thus completing the proof of

the theorem.

Lemma 3.1. Assume that (3.1) holds. Then

E
∣∣τ1 + · · ·+ τk

∣∣s ≤ c(s), for s > 0, and k = 1, 2, . . . , N,

E
∣∣√N

N∑

i=1

αiκiηi

∣∣ ≤ c pN E |τ1|3, E
∣∣

N∑

i=1

αiηi

∣∣3/2 ≤ c p N E |τ1|3,

E
∣∣√N κ

∣∣3 ≤ c, EU2 ≤ c p2 N E |τ1|3, E |U |3/2 ≤ c p7/4 N E |τ1|3,

where U =
√

N
∑

1≤i,j≤N, i 6=j αiκiαjηj .

Proof of Lemma 3.1. The proof is easy and routine, cf. proof of Lemma 2.1 in
[BBG].
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