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M. Bloznelis

Abstract : The paper gives estimates of the accuracy of the approximation of

the probability distribution function of supt∈[0,1] |n−1/2Sn(t)| for sums of random

processes Sn(t) = X1(t)+ . . .+Xn(t) satisfying the the central limit theorem in the

Skorokhod space D[0, 1].

1. Introduction

Let X = {X(t), t ∈ [0, 1]} be a centered stochastically continuous random process

with cadlag (right continuous and having left limits) sample paths. Let D[0, 1]

denotes the Skorohod space of cadlag functions on [0, 1] endowed with the usual

topology. The process X is said to satisfy the central limit theorem (CLT) in

D[0, 1] if L(n−1/2(X1 + · · · + Xn)) converges weakly to a Gaussian measure on

D[0, 1]. Here X1, X2, ... are independent copies of X. The aim of the paper is to

estimate the rate of convergence in the following limit theorem proved recently by

Bloznelis and Paulauskas (1993 b) and Fernique (1993).

Theorem 1. Let p, q ≥ 2. Let f, g be nonnegative increasing functions on

[0, +∞). Let X be a r. process with mean 0, finite second moments, and sample

paths in D[0, 1] satisfying

∀s ≤ t ≤ u E
(|X(s)−X(t)| ∧ |X(t)−X(u)|)p ≤ f(u− s), (1.1)

∀s ≤ t E|X(s)−X(t)|q ≤ g(t− s) (1.2)

and ∫

0

f1/p(u) · u−1−1/pdu < ∞,

∫

0

g1/q(u) · u−1−1/(2q)du < ∞ (1.3).

Then the process X satisfies the CLT in D[0, 1].

Denote Sn = n−1/2(X1 + · · ·+ Xn) and let Y = {Y (t), t ∈ [0, 1]} denotes the

limiting Gaussian process, i.e., L(Sn) converges weakly to L(Y ). For x ∈ D[0, 1]
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denote ‖x‖ = supt∈[0,1] |x(t)|. In the paper we estimate the uniform (Kolmogorov)

distance between the distributions L(‖Sn‖) and L(‖Y ‖).
Theorem 2. Let p, q ≥ 2. Let X be a centered stochastically continuous

cadlag process. Assume for some α > 0 the process X satisfies conditions (1.1) and

(1.2) with the functions f(u) = c · u1+α and g(u) = c · u1/2+α respectively. Then

there exists a constant C1 = C1(Y, p, q, α) such that for each r ≥ 0

|P(‖Sn‖ ≤ r)−P(‖Y ‖ ≤ r)| ≤ C1(1 + E‖X‖3)n−1/6 log2/3(n). (1.4)

Here and in what follows letters C and c with indices or without denote absolute

constants which may depend only on the quantities indicated in the brackets.

Theorem 2 is a particular case of more general results formulated in section 2

below. Denote

∆(r, Sn, Y ) = |P(‖Sn‖ ≤ r)−P(‖Y ‖ ≤ r)|.

Theorem 2 gives the bound for ∆(r, Sn, Y ) which is uniform with respect to r ≥ 0.

Next theorem gives the so called non – uniform bound.

Theorem 3. Let p > 3 and q ≥ 2. Let X be a centered stochastically

continuous cadlag process. Assume for some α > 0 the process X satisfies conditions

(1.1) and (1.2) with the functions f(u) = cu1+α, g(u) = cu1/2+α and E‖X‖β < ∞
for some β > 3. Then there exists a constant C2 = C2(Y, p, q, α, β) such that for

each r ≥ 0

|P(‖Sn‖ ≤ r)−P(‖Y ‖ ≤ r)|(1 + r3) ≤ C2(1 + E‖X‖3)n−1/6 log2(n). (1.5)

Remarks. 1. Let F and G be increasing continuous functions defined on [0, 1].

The statement of theorems 1, 2 and 3 remain true if one replaces the differences

|u − s| and |t − s| in the right hand sides of (1.1) and (1.2) by |F (u) − F (s)| and

|G(t)−G(s)| respectively.

2. The rate of order n−1/6 appears usually when one consider the CLT for a Ba-

nach function space valued random elements, see, e.g., Paulauskas and Račkauskas

(1989) and Bentkus et al (1990), moreover this rate is optimal in a sense.
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Earlier, the rate of convergence in the CLT in D[0, 1] was considered by Pau-

lauskas and Juknevičienė (1989) and Paulauskas and Stieve (1990). Results of the

present paper (theorems 2, 3, 4, and 5) are simpler and sharper. The rate of

convergence is obtained under considerably weaker conditions than those used in

Paulauskas and Juknevičienė (1989) and Paulauskas and Stieve (1990).

Acknowledgment. This work was supported in part by the V.P. 94 grant.

2. Main Results

Here we formulate and prove main results. In proofs one combines the finited-

imensional approximation with the estimates of the rate of convergence in the CLT

for lN∞ valued random vectors. Such estimates of order n−1/6 (here n denotes the

number of random vectors in the summ) which are non sensitive with respect to

the growing dimension (N →∞) were obtained in Bentkus (1982) and Račkauskas

(1984).

Theorem 4. Assume the process X satisfies conditions of Theorem 1 with

the parameters p = 2, q ≥ 2. Then there exists a constant C3 = C3(Y, q) such that

for any sequence of entire numbers {Nn n ≥ 1}, satisfying Nn ≥ n1/3, n ≥ 1 the

following bound holds

sup
r≥0

∆(r, Sn, Y ) ≤

C3

(
(1 + E‖X‖3)n−1/6 log2/3 n + [T1(N−1

n )]1/2 + [N−1
n log1/2 log(Nn)]1/2

)
, (2.1)

where

T1(s) =
∫ s

0

u−3/2f1/2(u)du +
∫ s

0

u−1−1/(2q)g1/q(u) log1/2−1/(2q)(1 + 1/u)du.

The main goal of theorem 4 is that the integrand of the first integral is precisely

the same as that in condition (1.3), when p = 2. The logarithmic factor that appears

in the second integral is, likely, superfluous.

The following theorem 5 gives the bound for the rate of convergence in the

CLT due to Bézandry and Fernique (1992).

3



Theorem 5. Let X, X1, X2, X3, ... be i.i.d. stochastically continuous centered

cadlag processes defined on the probability space (Ω1,F1, P1). Assume there exist

increasing functions f, g, θ, f(0) = g(0) = θ(0) = 0, θ is concave, such that

∀s ≤ t ≤ u, ∀A ∈ F1 E|X(s)−X(t)|2∧|X(t)−X(u)|2IIA ≤ f(u−s)θ(P (A)), (2.2)

∀s ≤ t E|X(s)−X(t)|q ≤ g(t− s). (2.3)

Then there exists a constant C4 = C4(Y, θ, q) such that for any sequence of

entire numbers {Nn n ≥ 1}, satisfying Nn ≥ n1/3, n ≥ 1 the bound (2.1) holds

with the constant C4 instead of C3 and with T1(·) replaced by T2(·),where

T2(s) =
∫ s

0

u−3/2θ1/2
(
u log(1 + 1/u)/ log 2

)
f1/2(u)du+

∫ s

0

u−1−1/(2q)[log1/2−1/(2q)(1 + 1/u)g1/q(u)du.

For x ∈ D[0, 1] define ∆x(s, t, u) = |x(s) − x(t)| ∧ |x(t) − x(u)|. Let Z =

{Z(t), t ∈ [0, 1]} be a separable cadlag random process defined on the probability

space (Ω,F , P ). Let h1, h2, θ1, θ2 be increasing functions, h1(0) = h2(0) = θ1(0) =

θ2(0) = 0 and θ1, θ2 are concave. The following result is proved in Bézandry and

Fernique (1992).

Theorem 6 (see lemma 1.1.3 and theorem 1.2 in Bézandry and Fernique

(1992)). Assume the process Z = {Z(t), t ∈ [0, 1]} is continuous from the right

in L1 at each t ∈ [0, 1]. Assume for each 0 ≤ s ≤ t ≤ u ≤ 1 and each A ∈ F

E|Z(s)− Z(t)| ∧ |Z(t)− Z(u)|IIA ≤ h1(u− s)θ1(P(A)) + h2(u− s)θ2(P(A)).

Then there exists a sequence of random functions {fk, k ≥ 1}, fk : Ω × [0, 1] →
Sk := {j · 2−k, 0 ≤ j ≤ 2k} satisfying:

1. For each k ≥ 1 and each ω ∈ Ω the function fk(ω, ·) → Sk is non decreasing,

fk(ω, t) = t for t ∈ Sk;

2. For each k ≥ 1

sup
t∈[0,1]

|Z(ω, t)− Z(ω, fk(ω, t))| ≤
∑

m≥k

∑

t∈Sm+1\Sm

∆Z(ω,·)(t− 2−k−1, t, t + 2−k−1)

(2.5)
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and

E sup
t∈[0,1]

|Z(ω, t)− Z(ω, fk(ω, t))| ≤ 2
∫ 2−k

0

u−2(h1(u)θ1(u) + h2(u)θ2(u))du. (2.6)

For a cadlag process Z satisfying conditions of Theorem 4 define

Z{k} = {Z(ω, fk(ω, t)), t ∈ [0, 1], ω ∈ Ω}, k ≥ 1.

One may define the other approximate process

Z [k](ω, t) =
2k−1∑

i=0

Z(ω, i · 2−k)II{i · 2−k ≤ t < (i + 1) · 2−k}+ Z(ω, 1)II{t = 1}.

Remark, that ‖Z{k}‖ = max{|Z(i · 2−k|, 0 ≤ i ≤ 2k} = ‖Z [k]‖ and hence

∆(·, Z{k}, Y ) = ∆(·, Z [k], Y ).

Lemma 1. For each k ≥ 1 and each r, ε > 0

|P(‖Sn‖ < r)−P(‖Y ‖ < r)| ≤

I1(Sn, ε) + 3I1(Y, ε) + 2I2(Y, ε) + 2 ·∆(r, S{k}n , Y [k]) + ∆(r − ε, S{k}n , Y [k]),

where I1(Sn, ε) = P(‖S{k}n − Sn‖ > ε), I1(Y, ε) = P(‖Y [k] − Y ‖ > ε), I2(Y, ε) =

P(‖Y [k]‖ ∈ [r − ε, r + ε]).

Proof. The proof is standard, see e.g., Bentkus et al.(1990).

Proof of theorem 4. Let k be the integer satisfying 2k−1 < Nn ≤ 2k. Fix r, ε > 0

and apply lemma 1 to the processes Sn and Y . It suffices to estimate quantities

I1(Sn, ε), I1(Y, ε), I2(Y, ε),∆(·, S[k]
n , Y [k]), see also remark before the lemma 1. It

follows from (2.6) and lemma 3 below that

I1(Sn, ε) = P(‖S{k}n − Sn‖ ≥ ε) ≤ ε−1E‖S{k}n − Sn‖ ≤ 2c2ε
−1T1(2−k). (2.7)

Define the pseudometric d(s, t) =
(
E(Y (s)−Y (t))2

)1/2
, s, t ∈ [0, 1]. Let N(δ), δ >

0 be the minimal number of balls B(u, δ) = {v ∈ [0, 1] : d(u, v) < δ} ⊂ [0, 1], u ∈
[0, 1] that cover the interval [0, 1]. By theorem 5.5 of Jain and Marcus (1978), there

exists an absolute constant c such that for each ε, δ > 0

P( sup
|u−v|<δ

|Y (u)− Y (v)| > ε) ≤ cε−1(
∫ δ

0

H1/2(s)ds + δ log1/2 log(1/δ)), (2.8)
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where H(δ) = log N(δ). A simple calculation shows that condition (1.3) implies

g(u) ≤ cu1/2. Hence,

(
E(Y (s)− Y (t))2

)1/2 =
(
E(X(s)−X(t))2

)1/2 ≤

(E|X(s)−X(t)|q)1/q ≤ c|t− s|1/q,

and N(δ) ≤ 1 + δ−q. We have

I1(Y, ε) = P(‖Y − Y [k]‖ > ε) ≤ cε−12−kk1/2. (2.9)

Theorem 4 of Lifshits (1986) applies to the Gaussian process Y and yields

sup
ε>0

sup
r≥0

ε−1P(‖Y ‖ ∈ [r, r + ε]) ≤ C5, (2.10)

where C5 = C5(Y ). Hence, I2(Y, ε) ≤ C5ε. It remains to estimate the quantity

∆(S[k]
n , Y [k]). The problem is equivalent to the estimation of the rate of convergence

in the CLT uniformly over the class of all balls with the center at the origin in the

finitedimensional Banach space l2
k

∞ , where 2k−1 < Nn ≤ 2k. Using the standard

technique due to Bentkus (1982) and Račkauskas (1984), see, e.g., Paulauskas and

Račkauskas (1989), one may obtain the following bound

∆(S[k]
n , Y [k]) ≤ C(Y )n−1/6 log2/3(2k)(1 + E‖X‖3), (2.11)

if 2k ≥ Nn ≥ n1/3, n ≥ 1.

It follows from lemma 1 and the estimates of I1(Sn, ε), I1(Y, ε), I2(Y, ε),

∆(·, S[k]
n , Y [k]) that

∆(r, Sn, Y ) ≤ C(Y )n−1/6 log2/3(Nn)(1 + E‖X‖3)+

C5ε + c2ε
−1T1(N−1

n ) + cε−1N−1
n log1/2 log(Nn).

Choosing ε =
(
T1(N−1

n ) + N−1
n log1/2 log(Nn)

)1/2 gives the desired bound (2.1).

Theorem is proved.
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Proof of Theorem 5. The proof is almost the same as that of theorem 4. Only

now we use lemma 4 instead of lemma 3 when estimating

I1(Sn, ε) ≤ ε−1E‖S{k}n − Sn‖ ≤ 2c3ε
−1T2(2−k), (2.12)

by means of theorem 6. Theorem is proved.

Proof of theorem 2. If p = 2, q ≥ 2 we apply theorem 4. It is easy to see that

if f(u) = cu1+α and g(u) = cu1/2+α then

T1(u) ≤
∫ u

0

s−1+α/2ds +
∫ u

0

s−1+α/q log1/2−1/(2q)(1 + 1/s)ds ≤ c(α, q)uα/(2+q),

u ∈ [0, 1]. Choosing Nn = nγ with γ ≥ 2 + [2(2 + q)/α] gives [T1(N−1
n )]1/2 +

[N−1
n log1/2 log(Nn)]1/2 ≤ c(α, q)n−1. Now (1.4) follows from (2.1).

If p > 2, q ≥ 2 we apply theorem 5 with the functions f(u) = cu2(1+α)/p, θ(u) =

u1−2/p, q(u) = u1/2+α. We have

T2(u) ≤
∫ u

0

s−1+α/p log1/2−1/(2p)(1 + 1/s)ds+

∫ u

0

s−1+α/q log1/2−1/(2q)(1 + 1/s)ds ≤ c(α, p, q)uα/(p+q), u ∈ [0, 1].

The bound (1.4) follows from (2.4) where Nn = nγ and γ ≥ 2 + [2(p + q)/α].

Theorem is proved.

Rest of the section is devoted to the non-uniform bound, i.e., the bound for

(1 + r)3∆(r, Sn, Y ).

Lemma 2 (see, e.g., lemma 4.1 in Bentkus et al. (1990)). For all n, k ≥ 1 and

r > ε > 0 the following inequality holds

∆(r, Sn, Y )) ≤

∆(r − ε, S{k}n , Y [k]) + ∆(r, S{k}n , Y [k]) + I3(Sn, ε, r) + I3(Y, ε, r) + I2(Y, ε),

where I3(Sn, ε, r) = P(‖S{k}n − Sn‖ > ε, ‖Sn‖ > r), I3(Y, ε, r) = P(‖Y [k] − Y ‖ >

ε, ‖Y ‖ > r).
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Proof of theorem 3. Denote d = min(p, β). Assume without loss of gener-

ality that r > 10. If r ≤ 10 then theorem follows from theorem 2. Fix inte-

ger k satisfying 2k > n1/3 and ε = n−1/6. By lemma 2, it suffices to estimate

I2(Y, ε), I3(Sn, ε, r), I3(Y, ε, r) and ∆(r, S[k]
n , Y [k]).

Using Holder inequality and combining (2.12) and lemma 5, we get

I3(Sn, ε, r) = EII{‖S{k}n − Sn‖ > ε}II{‖Sn‖ > r} ≤

[P(‖S{k}n − Sn‖ > ε)]1−3/dP3/d(‖Sn‖ > r) ≤ c(β, p, q)(1 + r)−3[ε−1T1(2−k)]1−3/d.

Analogously, by (2.9) and Chebyshev inequality,

I3(Y, ε, r) ≤ [cε−12−kk1/2]1/2r−3(E‖Y ‖6)1/2.

Here we use the fact that sample continuous Gaussian process Y has finite moments

E‖Y ‖p < ∞ for each p > 0.

Combining (2.10) with the estimates for the density function of the distribution

of ‖Y ‖ due to Tsirel’son (1975), we get

I2(Y, ε) ≤ C6(1 + r)−3ε, ∀r > ε > 0,

where C6 = C6(Y ) is an absolute constant. It remains to estimate ∆(r, S[k]
n , Y [k]).

In what follows we apply theorem 4.5 from Bentkus et al. (1990). Define

M3 = n−1/6(1 ∨ (E‖X‖3 + E‖Y ‖3)1/3); Dn(2−k) = M3 ∨W (2−k,M3).

W (2−k, t) = sup
r≥0

(1 + r)3P( sup
|u−v|≤2−k

|Y (u)− Y (v)| > t, ‖Y ‖ > r);

By theorem 4.5 in Bentkus et al. (1990), there exists an absolute constant C7 =

C7(Y ) such that for each r > ε > 0

∆(r, S[k]
n , Y [k]) ≤ C7(1 + r)−3 log2(2k)[Dn(2−k) ∨D3

n(2−k)].

Using Holder and Chebyshev inequalities and (2.8), we estimate

W (2−k, t) ≤ sup
r≥0

(1 + r)−3P1/2( sup
|u−v|<2−k

|Y (u)− Y (v)| > t)P1/2(‖Y ‖ > r) ≤
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sup
r≥0

(1 + r)3[ct−12−kk1/2]1/2r−3
(
E‖Y ‖6)1/2 ≤ C(Y )t−1/22−k/2k1/4.

A simple calculation gives

Dn(2−k) ∨D3
n(2−k) ≤ n−1/6(1 + E‖X‖3 + E‖Y ‖3) + C(Y )n1/122−k/2k1/4,

since 2k ≥ n1/3. Hence

∆(r, S[k]
n , Y [k]) ≤ C(Y )(1 + r)−3k2(n−1/6(1 + E‖X‖3 + E‖Y ‖3) + n1/122−k/2k1/4).

Combining the estimates of I2(Y, ε), I3(Sn, ε, r), I3(Y, ε, r) and ∆(r, S[k]
n , Y [k]) and

lemma 2, we get

∆(r, Sn, Y )(1 + r)3 ≤

C(Y )
(
k2[n−1/6(1 + E‖X‖3 + E‖Y ‖3) + n1/122−k/2k1/4]+

[ε−1T2(2−k)]1−3/d + [ε−12−kk1/2]1/2 + ε
)
. (2.13)

Recall, that T2(2−k) ≤ c(α, p, q)(2−k)α/(p+q), see proof of theorem 2. Choose

2−k ≤ n−γ where γ satisfies

γ > 1/3; [γ(α/(p + q))− 1/6] · (1− 3/d) > 1/6; , γ/2− 1/12 > 1/6; γ − 1/6 > 1/6.

Then the summ in the right hand side of (2.13) does not exceed

C(Y )k2n−1/6(1 + E‖X‖3 + E‖Y ‖3).

Theorem is proved.

The argument used in proof of theorem 3 allows to get more general results. For

instance the non uniform estimates ( but with a slower speed of convergence with

respect to n) can be obtained if instead of condition f(u) ≤ cu1+α, g(u) ≤ cu1/2+α

one requires the finiteness of the integrals that appear in the proof of lemma 5.

Proof of the remark. It was mentioned in Bloznelis and Paulauskas (1993) that

a transformation of the parameter set by means of increasing continuous function

does not influence the quantity ∆(·, Sn, Y ).
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It is possible to construct a sample continuous process X which satisfies the

CLT in C[0, 1] and for which the rate of order n−1/6 can not be improved, cf.

Bentkus et al (1990).

3. Auxiliary results

Lemma 3. Assume X satisfies conditions of theorem 4. Then there exists a

constant c2 = c2(q) such that for all A ∈ F1 and each 0 ≤ s ≤ t ≤ u ≤ 1

E|Sn(s)− Sn(t)| ∧ |Sn(t)− Sn(u)|IIA ≤

c2f
1/2(u− s)P1/2(A) + c2g

1/q(u− s)[P(A)]1−1/(2q) log1/2−1/(2q)(1 + 1/P(A)).

Lemma 4. Assume X satisfies conditions of theorem 5. Then there exists a

constant c3 = c3(q) such for all A ∈ F1 and all 0 ≤ s ≤ t ≤ u ≤ 1,

E|Sn(s)− Sn(t)| ∧ |Sn(t)− Sn(u)|IIA ≤

c3f
1/2(u− s)P1/2(A)θ1/2(P(A) log(1 + 1/P(A))/ log 2)+

c3g
1/q(u− s)P1−1/(2q)(A) log1/2−1/(2q)(1 + 1/P(A)). (3.12)

The proof of lemmas 3 and 4 goes along the lines of the proof of lemmas 2.4.1,

2.4.2 and 2.4.4 of Bézandry and Fernique (1992), see also proof of theorem 2 in

Bloznelis and Paulauskas (1993).

Lemma 5. Assume X satisfies conditions of theorem 3. Then there exist a

constant c4 = c4(X, p, q, β) such that for all r ≥ 1, n ≥ 1, P(‖Sn‖ ≥ 0) ≤ c4r
−d,

where d = min(β, p).

Proof. Put λm = a/(m log2(m)),m ≥ 1 and let the constant a be such that
∑

m≥1 λm = 1. By (2.5),

‖S{1}n − Sn‖ ≤
∑

m≥1

∑

t∈Sm+1\Sm

∆Sn(t− 2−m−1, t, t + 2−m−1).

Hence, for each r ≥ 0

P(‖Sn‖ ≥ 2r) ≤ P(‖S{1}n ‖ ≥ r)+
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P(
∑

m≥1

∑

t∈Sm+1\Sm

∆Sn
(t− 2−m−1, t, t + 2−m−1) ≥ r

∑

m≥1

λm). (3.2)

The standard argument yields

P(‖S{1}n ‖ ≥ r) = P(max(|Sn(0)|, |Sn(1/2)|, Sn(1)|) ≥ r) ≤ cr−β ,

since E‖X‖β < ∞ and the process X is centered. The second summand in (3.2)

does not exceed

I :=
∑

m≥1

∑

t∈Sm+1\Sm

P(∆Sn
(t− 2−m−1, t, t + 2−m−1) ≥ rλm).

Below we will prove that for all s ≤ t ≤ u and each λ > 0

P(∆Sn(s, t, u) ≥ λ) ≤

c(p, q)[λ−pf(u− s) + λ−2qg2(u− s) + λ−2v(f2v/p(u− s) + g2v/q(u− s))], (3.3)

where v = max(p, q). Then

I ≤
∑

m≥1

2mc(p, q)[r−p(m log2(m))pf(2−m) + r−2q(m log2(m))2qg2(2−m)]+

∑

m≥1

2mc(p, q)[r−2v(m log2(m))2vf2v/p(2−m) + g2v/q(2−m)] ≤

c′(p, q)
(
r−p

∫ 1

0

u−2hp(u)f(u)du + r−2q

∫ 1

0

u−2h2q(u)g2(u)du+

r−2v

∫ 1

0

u−2h2v(u)
(
f2v/p(u) + g2v/q(u)

)
du

)
,

where h(u) =
(
u log(1 + u−1)

)
. These integrals are finite, since f(u) ≤ cu1+α,

g(u) ≤ cu1/2+α. Hence I ≤ c′′(p, q)(r−p + r−2q + r−2v) and the lemma follows.

It remains to prove (3.3). Let X1, X2, ..., Xn, X ′
1, X

′
2, ..., X

′
n be independent

copies of X. Let ε, ε1, ε2, ... be i.i.d. Bernoulli random variables
(
P(ε = +1) =

P(ε = −1) = 1/2
)
. Assume the sequences {Xn}, {X ′

n}, {εn} are independent.

Define Xs = X ′ −X and Ss
n = Sn − S′n, where S′n = n−1/2(X ′

1 + · · ·+ X ′
n).
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Let a = Sn(s)−Sn(t), b = Sn(t)−Sn(u), a′ = S′n(s)−S′n(t), b
′
= S′n(t)−S′n(u).

A simple inequality

|a| ∧ |b| ≤ |a− a′| ∧ |b− b
′|+ |a′| ∧ |b|+ |a| ∧ |b′| (3.4)

yields

P(|a| ∧ |b| > 3λ) ≤

P(|a− a′| ∧ |b− b
′| > λ) + P(|a′| ∧ |b| > λ) + P(|a| ∧ |b′| > λ) = P1 + P2 + P3.

The second and the third probabilities are estimated in the same way. Let us

estimate the second one,

P2 ≤ λ−2qE|Sn(s)− Sn(t)|q|S′n(t)− S′n(u)|q =

λ−2qE|Sn(s)− Sn(t)|qE|S′n(t)− S′n(u)|q ≤

c(q)λ−2qE|X(s)−X(t)|qE|X(t)−X(u)|q ≤ c(q)λ−2qg2(u− s).

Analogously P3 ≤ c(q)λ−2qg2(u− s). Let us estimate P1. Denote

x = n−1/2(Xs(s)−Xs(t)), y = n−1/2(Xs(t)−Xs(u)),m = |x| ∧ |y|,

α = sign(x), β = sign(y), u = |x| −m, v = |y| −m.

Then

P1 = P(|
n∑

i=1

εiαixi| ∧ |
n∑

i=1

εiβiyi| ≥ λ) ≤ P(|
n∑

i=1

εiαimi| ≥ λ/3)+

P(|
n∑

i=1

εiβimi| ≥ λ/3) + P(|
n∑

i=1

εiαiui| ∧ |
n∑

i=1

εiβivi| ≥ λ/3) ≤ P4 + P5 + P6.

The last probability P6 does dot exceed

(λ/3)−2qE(|
n∑

i=1

εiαiui| ∧ |
n∑

i=1

εiβivi|)2q ≤

c(q)(λ/3)−2qE|Xs(s)−Xs(t)|qE|Xs(t)−Xs(u)|q,

12



see proof of theorem 2 in Bloznelis and Paulauskas (1993 b). It follows from (1.2)

that P6 ≤ c(q)(λ)−2qg2(u− s). It remains to estimate probabilities P4 and P5 . In

what follows we apply the iterated Hoffmann-Jorgensen (1975) inequality. For each

v ≥ 1 there exist constants c1(v), c2(v), c3(v) such that for each λ > 0 and n ≥ 1

P(|
n∑

i=1

εiαimi| ≥ c1(v)λ) ≤ c2(v)
n∑

i=1

P(|mi| ≥ λ) + c3(v)Pv(|
n∑

i=1

εiαimi| ≥ λ).

(3.5)

Denote a = n−1/2(X(s) − X(t)), b = n−1/2(X(t) − X(u)), a′ = n−1/2(X ′(s) −
X ′(t)), b′ = n−1/2(X ′(t) − X ′(u)). Inequality (3.4) with a, b, a′, b′ instead of

a, b, a′, b
′
yields

P(|m| > 4λ) = P(|a− a′| ∧ |b− b′| > 4λ) ≤

λ−p(E(|a| ∧ |b|) + E(|a′| ∧ |b′|)) + λ−2q(E(|a′| ∧ |b|)2q + E(|a| ∧ |b′|)2q) ≤

n−p/2λ−p2f(u− s) + n−qλ−2q2g2(u− s). (3.6)

On the other hand

P(|
n∑

i=1

εiαimi| ≥ λ) ≤ λ−2
n∑

i=1

E|mi|2 ≤ λ−2c(f2/p(u− s) + g2/q(u− s)). (3.7)

In the last inequality we estimate m by means of (3.4) but with a, b, a′, b′ instead

of a, b, a′, b
′
and apply Holder inequality. Combining (3.6), (3.7) and (3.5) with

v = max(p, q) we get

P4 ≤ c
(
λ−pf(u− s) + λ−2qg2(u− s) + λ−2v(f2v/p(u− s) + g2v/q(u− s))

)
.

Analogous estimation holds also for P5. Combining estimates of P1 ≤ P4+ P5+ P6

and P2, P3 gives (3.3). Lemma is proved

4. Appendix

Here we prove lemmas 3 and 4.

Lemma 6. Assume X satisfies conditions of theorem 4. Then there exists a

constant c depending only on q such that for each A ∈ F and all 0 ≤ s ≤ t ≤ u ≤ 1

E|Ss
n(s)− Ss

n(t)| ∧ |Ss
n(t)− Ss

n(u)|IIA ≤
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cf1/2(u− s) + cg1/q(u− s)[P(A)]1−1/(2q) log1/2−1/(2q)(1 + 1/P(a)). (4.1)

Proof. Denote

x = n−1/2(Xs(s)−Xs(t)), y = n−1/2(Xs(t)−Xs(u)),m = |x| ∧ |y|,

α = sign(x), β = sign(y), u = |x| −m, v = |y| −m.

It suffices to estimate

E{|
n∑

i=1

εiαixi| ∧ |
n∑

i=1

εiβiyi|IIA} ≤

E|
n∑

i=1

εiαimi|IIA + E|
n∑

i=1

εiβimi|IIA + E{|
n∑

i=1

εiαiui| ∧ |
n∑

i=1

εiβivi|IIA}. (4.2)

The last expectation is estimated in Bloznelis and Paulauskas (1993 b). We have

E{|
n∑

i=1

εiαiui| ∧ |
n∑

i=1

εiβivi|IIA} ≤ cg1/q(u− s)[P(A)]1−1/(2q). (4.3)

The first and the second expectations are estimated in the same way. Let us estimate

the first one,

E|
n∑

i=1

εiαimi|IIA ≤
(
E|

n∑

i=1

εiαimi|2IIA
)1/2[P(A)]1/2 =

(
E(E2|

n∑

i=1

εiαimi|2IIA)
)1/2[P(A)]1/2. (4.4)

Here E2 denotes the expectation taken with respect to P2. Using the standard

Orlicz space technique, see Bézandry and Fernique (1992), one obtains

E2|
n∑

i=1

εiαimi|2IIA ≤ c

n∑

i=1

m2
i P2(A) log(1 + 1/P2(A)). (4.5)

Denote ξ(u) = u log(1 + 1/u)/ log 2. Put

a = n−1/2(X(s)−X(t)), a′ = n−1/2(X ′(s)−X ′(t)), b = n−1/2(X(t)−X(u))

b′ = n−1/2(X ′(t)−X ′(u)), d = |a| ∧ |b|, d′ = |a′| ∧ |b′|.
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A simple inequality

|m| = |a− a′| ∧ |b− b′| ≤ d + d′ + |a′| ∧ |b|+ |a| ∧ |b′|

yields

E|m|2ξ(P2(A)) ≤ 4Ed2ξ(P2(A)) + 4Ed′2ξ(P2(A))+

4E|a′|2 ∧ |b|2ξ(P2(A)) + 4E|a|2 ∧ |b′|2ξ(P2(A)). (4.6)

We have

Ed2ξ(P2(A)) ≤ Ed2 ≤ n−1f(u− s),Ed′2ξ(P2(A)) ≤ Ed′2 ≤ n−1f(u− s). (4.7)

By lemma 1.1.3 of Fernique (1981),

E|a′|2 ∧ |b|2ξ(P2(A)) ≤ n−1g2/q(u− s)[Eξ(P2(A))]1−1/q

provided

E|a′|2 ∧ |b|2II{|a′|2 ∧ |b|2 ≥ M} ≤ n−1g2/q(u− s)[P(|a′|2 ∧ |b|2 ≥ M)]1−1/q, ∀M ≥ 0.

Observe, that the last inequality follows from the independence of |a′| and |b|, Holder

inequality and condition (2.1) of theorem 4. We have

E|a′|2 ∧ |b|2ξ(P2(A)) ≤ n−1g2/q(u− s)[Eξ(P2(A))]1−1/q

≤ n−1g2/q(u− s)[ξ(P(A))]1−1/q, (4.9)

since, by Iensen inequality, Eξ(P2(A)) ≤ ξ(P(A)). Analogously,

E|a|2 ∧ |b′|2ξ(P2(A)) ≤ n−1g2/q(u− s)[ξ(P(A))]1−1/q. (4.10)

Combining inequalities (4.2,4,5,6) and estimates (4.3,7,9,10) we get (4.1). Lemma

is proved.

Lemma 3. Assume X satisfies conditions of theorem 4. Then there exist a

constant c depending only on q such that for all A ∈ F1 and each 0 ≤ s ≤ t ≤ u ≤ 1

E|Sn(s)− Sn(t)| ∧ |Sn(t)− Sn(u)|IIA ≤
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cf1/2(u− s) + cg1/q(u− s)[P(A)]1−1/(2q) log1/2−1/(2q)(1 + 1/P(A)). (4.11)

Proof. Let x = Sn(s) − Sn(t), y = Sn(t) − Sn(u), x′ = S′n(s) − S′n(t), y′ = S′n(t) −
S′n(u). A simple inequality

|x| ∧ |y| ≤ |x− x′| ∧ |y − y′|+ |x′| ∧ |y|+ |x| ∧ |y′|

yields

E|x| ∧ |y|IIA ≤ E|x− x′| ∧ |y − y′|IIA + E|x′| ∧ |y|IIA + E|x| ∧ |y′|IIA. (4.12)

The first summand is estimated in lemma 6. Let us estimate the last two expecta-

tions. We have

E|x′| ∧ |y|IIA ≤ E|x′|IIA = E|x′|EIIA = E|S′n(s)− S′n(t)|P(A),

since IIA and S′n are independent. Further,

E|S′n(s)− S′n(t)| ≤ (
E|S′n(s)− S′n(t)|2)1/2 =

(
E(X(s)−X(t))2

)1/2

≤ (
E|X(s)−X(t)|q)1/q ≤ g1/q(u− s).

Hence E|x′|∧|y|IIA ≤ g1/q(u−s)P(A). Analogously, E|x|∧|y′|IIA ≤ g1/q(u−s)P(A).

Substitution of these estimates and (4.1) in (4.12) gives (4.11).Lemma is proved.

Lemma 4. Assume X satisfies conditions of theorem 5. Then there exists a

constant C depending on q such for all A ∈ F1 and all 0 ≤ s ≤ t ≤ u ≤ 1,

E|Sn(s)− Sn(t)| ∧ |Sn(t)− Sn(u)|IIA ≤

Cf1/2(u− s)P1/2(A)θ1/2(P(A) log(1 + 1/P(A))/ log 2)

+Cg1/q(u− s)P1−1/(2q)(A) log1/2−1/(2q)(1 + 1/P(A)). (4.13)

Proof. The proof goes along the lines of the argument we used in proof of Lemmas 6

and 3. The only difference is that now expectations Ed2ξ(P2(A)) and Ed′2ξ(P2(A))

are estimated as in proof of lemma 2.4.1 in Bézandry and Fernique (1992),

Ed2ξ(P2(A)) ≤ cf(u− s)θ(ξ[P(A) log(1 + 1/P(A))/ log 2]),
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Ed′2ξ(P2(A)) ≤ cf(u− s)θ(ξ[P(A) log(1 + 1/P(A))/ log 2]).

The rest of the proof of the lemma coincides with that of lemmas 6 and 3. Lemma

is proved.
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