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Abstract. We prove a Berry–Esseen bound for general M-estimators under optimal
regularity conditions on the score function and the underlying distribution. As an
application we obtain Berry–Esseen bounds for the sample median, the Lp-median,
p > 1 and Huber’s estimator of location.

1. Introduction and Main Results

Let X denote a random variable taking values in a measurable space (X ,F) with
distribution F . For an open subset T of R, let f : X ×T → R be a jointly measurable
function. Let X1, . . . , XN be independent observations drawn from the distribution
F . A random variable tN = tN (X1, . . . , XN ) which minimizes the function

QN (t) = N−1
N∑

i=1

f(Xi, t)

is called M-estimator. If E
∣∣f(X, t)

∣∣ < ∞, for t ∈ T , and the function t → E f(X, t)
has a unique minimum point, say t0, then tN may be used as an estimator of t0.

The usual requirement for tN is that it estimates t0 ∈ T consistently. Furthermore,
under certain conditions N1/2(tN − t0) is asymptotically normal, see Huber (1964),
Serfling (1980). For recent advances concerning the asymptotic normality we refer to
Pollard (1984, 1985) and Hoffmann-Jorgensen (1994).

Our aim is to establish a general Berry–Esseen bound for the statistics
N1/2(tN − t0) under minimal regularity conditions on the the score function f(x, t).
Hence we shall estimate

∆N := sup
u∈R

∣∣∣P
{
N1/2(tN − t0)/b < u

}− Φ(u)
∣∣∣,
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where Φ denotes the standard normal distribution function and b is a scale parameter
defined in (1.3) below.

Any M-estimator tN = tN (X1, . . . , XN ) is a symmetric function of its arguments
X1, . . . ,XN , i.e., it is a symmetric statistic. Berry–Esseen bounds for general sym-
metric statistics were obtained by van Zwet (1984), Friedrich (1988) and Bolthausen
Götze and (1993). These results are applicable (see van Zwet (1984) and Bentkus
Götze and van Zwet (1994)) to a wide class of statistics. They apply to M-estimators
if the score function f is sufficiently smooth since in this case an explicit approximate
solution of the minimization problem is available. However, in a number of important
examples the score function is not sufficiently smooth and direct proofs are needed.

Berry–Esseen bounds for M- and related (maximum likelihood, minimum contrast)
estimators were considered by Linnik and Mitrofanova (1963), Michel and Pfanzagl
(1971), Pfanzagl (1971), Chibisov (1972), Bickel (1974), Matsuda (1983), Radavičius
(1990), Paulauskas (1995), etc. Pfanzagl (1971) obtained the bound ∆N = O(N−1/2)
for a minimum contrast estimator in the case where the score function is twice dif-
ferentiable in t and the second derivative f ′′(x, t) = ∂2

∂t2
f(x, t) satisfies Lipschitz

condition. In particular cases the smoothness condition on the score function were
relaxed in Matsuda (1983) and Radavičius (1990). Matsuda (1983) considered the
maximum likelihood (ML) estimator of the shift parameter of a density function and
obtained an estimate of ∆N assuming that the score function is two times differen-
tiable. Radavičius (1990) obtained the bound ∆N = O(N−1/2) for a ML estimator
in the case where the score function f(x, t) is differentiable and convex in t and the
derivative f ′(x, t) = ∂

∂t
f(x, t) satisfies a Lipschitz condition.

We prove a Berry–Esseen bound for general M-estimators. To formulate the result
we need notations related to smoothness, (asymptotic) convexity and consistency.

Smoothness. Let there exist a neighborhood, say

V = (t0 − δ, t0 + δ) ⊂ T,

of t0 such that, for any t ∈ V ,

f ′(x, t) = lim
τ→0

(
f(x, t + τ)− f(x, t)

)
/τ exists, (1.1)

for F -almost all x ∈ X . In other words, for any t ∈ V , there is a set Ut ⊂ X of
F–measure zero such that, for all x /∈ Ut, f ′(x, t) exists.

Introduce the mean values

L1(t) := E f ′(X, t) and L2(t) := E
(
f ′(X, t)

)2

and assume that the function L1 is differentiable, L2 is continuous at the point t0,

L1(t0) = 0, L′1(t0) > 0 and L2(t0) > 0.
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Furthermore, we require

∣∣L1(t)− L′1(t0) · (t− t0)
∣∣ ≤ C|t− t0|1+α,

∣∣L2(t)− L2(t0)
∣∣ ≤ D|t− t0|β , (1.2)

for t ∈ V , with some α > 0, β > 0 and C > 0, D > 0.
We shall denote

a := L′1(t0), σ2 := L2(t0) and b = σ/a. (1.3)

The sample median may serve as an illustration for the smoothness condition
(1.1). Assume that X = R, that f(x, t) = |x− t|, and that a continuous distribution
function F has a unique median, say t0. Then tN is the sample median and it is a
consistent estimator of t0. For any given x, the function f(x, t) is not differentiable
in t. Nevertheless f satisfies (1.1) with the exceptional (one point) set Ut = {t}.
Condition (1.2) is satisfied if, for t ∈ V , the distribution F has a density, say p, and
p(t)− p(t0) = O(|t− t0|α) as t → t0.

Convexity. There exist δ > 0 and B > 0 such that

P
{

QN (t) is convex on (t0 − δ, t0 + δ)
}
≥ 1−B N−1/2. (1.4)

In minimization problems the convexity is a natural requirement and this property
of QN is sufficient for all our applications. In a number of interesting examples such
as Huber’s robust estimator of location, the sample median, the Lp-median, p > 1,
the function QN is merely convex. Moreover, the law of large numbers yields the
asymptotic convexity of QN in the case considered by Pfanzagl (1971) as well.

Consistency. Let, for some δ > 0 and A > 0,

P
{ |tN − t0| ≥ δ

} ≤ AN−1/2. (1.5)

Assumptions (1.4) and (1.5) allow to reduce the problem to a purely convex case.
Indeed, the probability in (1.5) and BN−1/2 in (1.4) are of the same order as the
remainder term in the Berry-Esseen bound and hence may be neglected. In many
interesting cases the consistency condition (1.5) holds for δ = c

√
ln N/N) with a

sufficiently large constant c = c(f, F ). Our results are applicable in these cases and
for our purposes it suffices to choose the parameter δ in (1.4) of the same order.

Denote

β3 = sup
{

β3(t) : |t− t0| ≤ 6 b
√

ln N/N
}

, where β3(t) = E
∣∣f ′(X, t)

∣∣3.
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Theorem 1.1. Suppose that (1.1), (1.2), (1.4) and (1.5) are satisfied with some

δ ≥ 6 b
√

ln N/N , some A, B, C, D, and with α = β = 1.
Then

∆N = sup
u∈R

∣∣∣P
{
b−1 N1/2(tN − t0) < u

}− Φ(u)
∣∣∣

≤ cN−1/2
(
A + B + β3/σ3 + a−1b C + bD σ−2

)
, (1.6)

for N satisfying
N

ln N
≥ c

(
a−2b2C2 + σ−4b2D2 + 1

)
, (1.7)

where c denotes an universal constant.

Throughout c, c1, c2, . . . will denote generic absolute constants. We write
c(T1, T2, . . . ) when the constant depends on T1, T2, . . . .

The bound of Theorem 1.1 is explicit. Our notation might suggest that we are
considering a fixed underlying distribution F and fixed values of the parameters
δ, A, B, C and D. In fact F and δ = δN , A = AN , . . . may depend on N .

For the sample mean tN = N−1(X1+· · ·+XN ) Theorem 1.1 yields a bound for ∆N

which is asymptotically equivalent to the classical Berry–Esseen bound. Indeed, tN ,
the minimizer of QN (t) = 2−1N−1

∑N
i=1(Xi − t)2, is the sample mean and in this

case Theorem 1.1 implies

lim sup
N

∆NN1/2 < cE
∣∣X −E X

∣∣3/σ3,

provided that σ2 = E (X −E X)2 > 0.
Conditions (1.1) and (1.2) are satisfied when the score function and the underlying

distribution in combination are sufficiently smooth. Thus, if the distribution F is
arbitrary we need to impose stronger regularity conditions on the function f , and
vice versa. For instance, conditions (1.1) and (1.2) hold for arbitrary F if f is twice
differentiable in t ∈ V and, for some 0 < α ≤ 1,

∣∣f ′′(x, t)− f ′′(x, s)
∣∣ ≤ h(x) · |t− s|α, (1.8)

for s, t ∈ V and x ∈ X . In this case (1.2) is satisfied with α as in (1.8) and with
β = 1. Here h is a measurable function such that E h2(X) < ∞. Evidently, (1.8) is
satisfied for f(x, t) = (x− t)2. Thus, Theorem 1.1 yields the Berry–Esseen bound for
the sample mean without any conditions on the smoothness of F .

An example when the smoothness of F becomes important is the sample median.
In this case the score function f(x, t) = |x−t| satisfies (1.1) whenever F is continuous.
Furthermore, condition (1.2) is satisfied with α = β = 1 if F has a bounded density
function, say p, and ∣∣p(t)− p(t0)

∣∣ ≤ c(F ) |t− t0|, (1.9)
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for t ∈ V . If, moreover, p(t0) > 0, then Theorem 1.1 yields the Berry–Esseen bound
O(N−1/2), see Proposition 2.1 in Section 2.

Theorem 1.1 is a consequence of a more general result given in the next theorem.
Denote

β(t) = E
∣∣f ′(X, t)

∣∣31I
{∣∣f ′(X, t)

∣∣ ≤ σ
√

N
}

+ σ
√

NE
∣∣f ′(X, t)

∣∣21I
{∣∣f ′(X, t)

∣∣ > σ
√

N
}

and let
β = sup

{
β(t) : |t− t0| ≤ 6 b

√
ln N/N

}
.

Theorem 1.2. Suppose that (1.1), (1.2), (1.4) and (1.5) are satisfied with some

δ ≥ 6b
√

ln N/N , some A, B, C, D and with some α, β ∈ (0, 1].
Then there exists an absolute constant c such that

∆N ≤ cN−1/2(A + B + β/σ3) + c a−1bαCN−α/2 + c bβDσ−2N−β/2, (1.10)

for N such that

N

ln N
≥ c

(
91/αa−2/αb2C2/α + 91/βb2D2/βσ−4/β + 1

)
. (1.11)

Theorem 1.2 is applicable to a large class of M-estimators. In particular Theo-
rem 1.2 yields the Berry–Esseen bound O(N−1/2) for the sample median, Huber’s
estimator of location and for the sample Lp-median, p > 1 , under optimal smooth-
ness conditions on the distribution F . These examples are described in Section 2. For
M-estimators defined by means of smooth score functions, i.e., twice differentiable
functions satisfying (1.8), Theorem 1.2 yields the following result.

For a function f satisfying (1.8) denote

ε =
(

a

4E h(X)

)1/α

and put ε = ∞ if E h(X) = 0.

Corollary 1.3. Suppose that the smoothness condition (1.8) is satisfied for
s, t ∈ V = (t0 − δ′, t0 + δ′) with some function h and some α ∈ (0, 1]. Suppose
that the consistency condition (1.5) holds with some A and some δ such that

6b
√

lnN/N ≤ δ ≤ min{ε; δ′}.

Then there exists an absolute constant c such that

∆N ≤ cN−1/2(A + B + bσ2D + β/σ3) + cN−α/2a−1bαC, (1.12)
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for N satisfying

N

ln N
≥ c

(
91/αa−2/αb2C2/α + b2D2σ−4 + 1

)
(1.13)

with

B = cN−1/2
(
a−2(ξ+η

(
E h(X)

)−2
)
, C = E h(X), D = c (σ2 +ξ+η)(1+δ1+2α),

where ξ = E
(
f ′′(X, t0)

)2
and η = E h2(X).

In order to compare our result with that of Pfanzagl (1971) let us consider the
case when β3(t0) < ∞, the smoothness condition (1.8) is satisfied with α = 1 and
the consistency condition (1.5) holds with some A < ∞ which is independent of N .
In this case Corollary 1.3 yields ∆N = O(N−1/2). A similar asymptotic result, but
under a bit more restrictive conditions was proved by Pfanzagl (1971) for minimum
contrast estimators. In particular, instead of the consistency condition (1.5), Pfanzagl
(1971) assumed that the distribution F belongs to the parametric family defining the
minimum contrast estimator.

Observe, that Corollary 1.3 yields the Berry–Esseen bound O(N−α/2) if the
smoothness condition (1.8) is satisfied with a parameter α. The order O(N−α/2)
depends on the smoothness of f in an optimal way. To see this consider an example.
Let tN be the minimizer of the function N−1

∑N
i=1

∣∣Xi − t
∣∣2+α and assume that X

has a symmetric distribution such that P{|X| = 1} = P{X = 0} = 1/2 . Then, see
Example 2.8 in Section 2,

lim inf
N

Nα/2 ∆N > 0.

In this case the score function f(x, t) = |x − t|2+α satisfies (1.8) with the exponent
α and Corollary 1.3 yields ∆N = O(N−α/2).

In Corollary 1.3 we do not need to impose the asymptotic convexity condition (1.4)
since it is implied by the smoothness condition (1.8). In this case the function QN

is twice differentiable and hence it is convex on the interval (t0 − δ, t0 + δ) provided
that

Q′′
N (t) = N−1

N∑

i=1

f ′′(Xi, t) ≥ 0, t ∈ (t0 − δ, t0 + δ). (1.14)

The smoothness condition (1.8) and the law of large numbers for
∑N

i=1 f ′′(Xi, t0)
imply that the probability of (1.14) tends to 1, provided that δ ≤ ε. Hence (1.4) is
fulfilled.

The smoothness condition (1.8) can be replaced by the weaker one: for some
H ≥ 0 and p, q > 1,

E
∣∣f ′′(X, t)− f ′′(X, s)

∣∣p ≤ H
∣∣t− s

∣∣q, (1.15)
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for s, t ∈ [t0 − δ′, t0 + δ′]. Condition (1.15) allows to estimate the oscillation of
the random process Q′′

N (t), see, e.g., Talagrand (1990). Such an estimate together
with the law of large numbers for

∑N
i=1 f ′′(Xi, t0) implies (1.4) since the probability

of (1.14) tends to 1 as N → ∞, for δ sufficiently small (but independent on N).
Furthermore, (1.15) implies that there exists a version of the random process Q′′

N (t)
with continuous sample paths. Hence, in presence of (1.15) the only smoothness
requirement on f is that, for t ∈ [t0 − δ′, t0 + δ′],

f ′′(x, t) = lim
τ→0

(
f ′(x, t + τ)− f ′(x, t)

)
/τ exists, (1.16)

for F -almost all x ∈ X .

Corollary 1.4. Suppose that (1.15) and (1.16) are satisfied with some δ′, H and
some p, q > 1 . Suppose that (1.5) holds with some A and δ such that

6 b
√

ln N/N ≤ δ ≤ min
{(

2−1aH−1/p
)p/q; δ′

}
.

Then there exists an absolute constant c such that, for N satisfying (1.13),

∆N ≤ cN−1/2(A + bDσ−2 + β/σ3) + c N−q/2pa−1bq/pC

+ c(p)N−γa−pκ + c(p, q)N−γ/pa−1H1/p(1 + 2δ),

where γ = min{p− 1; p/2}, r = p/(p− 1), κ = E
∣∣f ′′(X, t0)

∣∣p,

C = H1/p, D =
(
κ + H δq

)1/p
β1/r

r , βr = sup
{
E

∣∣f ′(X, t)
∣∣r : |t− t0| ≤ δ

}
.

Remark. Our approach allows to construct bounds for ∆N even under more general
conditions than (1.1) and (1.2). For instance, in Theorem 1.2 it suffices to assume
that conditions (1.1) and (1.2) hold for t ∈ V ′, where V ′ is a dense subset of V .
In particular the Berry–Esseen bound O(N−1/2) holds for the sample median in the
cases when F might have atoms in any neighborhood of t0. More precisely, it is
sufficient to require that F is representable as a sum F0 + F1, where the measure F0

has a positive density satisfying (1.9) in a neighborhood of the median t0, and where
F1 is a discrete measure which assigns probabilities pi > 0 to points xi such that

∑

i: |xi−t0|<u

pi = O(u−2) as u → 0.

Another possibility to weaken (1.2) is to replace |t−t0|1+α and |t−t0|β by φ1(|t−t0|)
and φ2(|t− t0|) with functions φ1(τ) = o(τ) and φ2(τ) = o(1), as τ → 0.

The rest of the paper is organized as follows. In the Section 2 we consider various
applications of the main result and give several examples. In Section 3 we prove
Theorems 1.1, 1.2 and Corollaries 1.3 and 1.4. Calculations related to the applications
are postponed to Section 4.
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2. Applications and Examples

In this section we apply Theorem 1.2 to the sample median, the sample quantiles,
Huber’s estimator of location and to the Lp-median, p > 1. These statistics are
M-estimators with special score functions. Hence in each particular case we have a
fixed score function f and our aim is to find minimal smoothness conditions on the
distribution F which ensure a Berry–Esseen bound. The examples are arranged in
order of increasing smoothness of the score function.

Let F denote the distribution function of a real random variable X. If F is
absolutely continuous, p will denote a density function of F . Recall that

∆N = sup
u∈R

∣∣∣P
{
b−1 N1/2(tN − t0) < u

}− Φ(u)
∣∣∣

with b = σ/a to be specified in each particular example.

2.1. The sample median. Assume that F has the unique median t0. Let f(x, t) =
|x − t|. A random variable tN which minimizes QN (t) is called the sample median.
In this case b = 1/

(
2p(t0)

)
.

Proposition 2.1. Assume that F has a density p on (t0 − δ, t0 + δ). Suppose that
p(t0) > 0 and that, for some α ∈ (0, 1] and H > 0,

|p(t)− p(t0)| ≤ H|t− t0|α, |t− t0| < δ. (2.1)

Then there exists an absolute constant c such that

∆N ≤ cN−α/2Hp−1−α(t0) + cN−1/2, (2.2)

for N satisfying

N

ln N
>

c

P2
�
t0 − δ < X < t0

	 + c

P2
�
t0 < X < t0 + δ

	 + c 361/αH2/α

p2+2/α(t0)
.

In particular, the Berry-Esseen bound O(N−1/2) holds if F is twice differentiable
at the point t0 and p(t0) > 0.

Next we give an example which shows that the optimal rate assuming condition
(2.1) is O(N−α/2).

Example 2.2. Let α ∈ (0, 1] and let F be a distribution with the density
p(t) = cα

(
1 − |t|α)

, for |t| ≤ 1, where cα = (α + 1)/(2α). It is easy to see that
F has a unique median t0 = 0 and p(0) = cα. Condition (2.1) of Proposition 2.1 is
satisfied with exponent α and H = 2 cα. Hence (2.2) yields ∆N = O(N−α/2). The
rate O(N−α/2) can not be improved since lim infN Nα/2∆N > 0.
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2.2. Sample quantiles. Let 0 < p < 1 and let f(u) = |u| + (1 − 2p) u.
A random variable tN which minimizes the function t → N−1

∑N
i=1 f(t − Xi) is

a sample p-quantile. Theorem 1.2 applies to the sample p-quantile and yields a
Berry–Esseen bound like (2.2) under the same regularity condition as in Proposition
2.1.

Using a different approach and a somewhat more restrictive condition on the
smoothness of F a Berry–Esseen bound O(N−1/2) for sample quantiles, 0 < p < 1,
was obtained in Reiss (1974), see also Serfling (1980). In particular, Reiss (1974) and
Serfling (1980) assumed that the distribution function F is twice differentiable in a
neighborhood of t0.

For X non degenerate, the (sample) Lp-median, p > 1 is defined as the minimizer
tN of QN (t) with the score function f(x, t) = |x − t|p. In this case the function
f(x, t) = |x − t|p is strictly convex and differentiable in t. Hence, the unique Lp-
median t0 = argmintE

∣∣X − t
∣∣p exists provided that E |X|p < ∞. Furthermore,

a = p(p− 1)E |X − t0|p−2 and σ2 = p2E |X − t0|2(p−1).

2.3. The Lp-median, 1 < p < 2.

Proposition 2.3. Assume that for some δ > 0, C > 0 and β ∈ (2− p, 1],

|F (t)− F (t0)| < C|t− t0|β , |t− t0| < δ. (2.3)

Suppose that E |X|(p−1)(p+β) < ∞. Then ∆N = O(N−(p+β−2)/2).

Observe, that conditions of the proposition ensure that a < ∞ and σ2 < ∞.
Assuming the smoothness condition (2.3) the rate O(N−(p−1)/2) is unimprovable.

In order to prove the rate O(N−(p−1+β)/2) with some β > 0 we need to impose a
stronger regularity condition on F .

Proposition 2.4. Assume that F has a density p on (t0 − δ, t0 + δ) such that, for
some C > 0 and β ∈ (0, 2− p),

|p(t)− p(t0)| < C|t− t0|β , |t− t0| < δ. (2.4)

Then the condition E |X|(p−1)(1+p+β) < ∞ implies ∆N = O(N−(p+β−1)/2).

One may expect that if F has a density on (t0 − δ, t0 + δ) satisfying

|p(t)− p(t0)| < C|t− t0|2−p, |t− t0| < δ, (2.5)

the Berry–Esseen bound O(N−1/2) holds. However this condition is not sufficient.
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Proposition 2.5. Suppose that (2.5). holds. Moreover, assume that the function

t → |t− t0|p−3
∣∣p(t)− p(t0)

∣∣

is integrable in a neighborhood of t0. If E |X|3(p−1) < ∞ then ∆N = O(N−1/2).

The smoothness condition of Proposition 2.5 is close to optimal. In Section 4 we
shall show that, if E |X|3(p−1) < ∞ and F has a density p such that p(t0) > 0 and

p(t0 + u) = p(t0) + u2−p, p(t0 − u) = p(t0)− u2−p, 0 < u < δ,

for some δ > 0, then
lim inf

N
N1/2 ln−1 N ∆N > 0. (2.6)

2.4. Huber’s estimator of location. Assume that X is non degenerate. Let
k > 0. The Huber (1964) estimator of location is the minimizer of QN (t) =
N−1

∑N
i=1 ρk(Xi − t), where

ρk(t) = t2

2
, for |t| ≤ k, and ρk(t) = k|t| − k2

2
, for |t| > k.

It is easy to see that

there exists a unique t0 such that E ρ′k(X − t0) = 0 (2.7)

and
P{|X − t0| < k} > 0 (2.8)

provided that k is sufficiently large. In particular, the parameters

a = P{|X − t0| < k}, σ2 = k2P{|X − t0| > k}+ E |X − t0|21I
{|X − t0| ≤ k

}

are positive.

Proposition 2.6. Assume that (2.7) and (2.8) hold. Assume that, for t1 = t0 + k
and t2 = t0 − k,

∣∣F (ti + h)− F (ti)
∣∣ ≤ H |h|α, |h| < δ, i = 1, 2, (2.9)

with some H > 0, α ∈ (0, 1] and δ > 0. Then

∆N ≤ cN−α/2H k2α/a1+α + cN−1/2
(
k3/σ3 + k/

(
a σ

))
+ o

(
N−1/2

)
.

Observe that the derivative t → ρ′′k(t − t0) is discontinuous at the points t0 + k
and t0 − k. Therefore, in order to obtain a Berry–Esseen bound we need to impose
the smoothness condition (2.9). In particular, the bound O(N−1/2) holds if F is
differentiable at t0 + k and t0 − k.
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2.5. The Lp-median, 2 < p < 3.

Proposition 2.7. Assume that E |X|(p−1)(2+β) < ∞ with some β ∈ (0, p − 2].
Then ∆N = O(N−β/2).

The following example shows that O(N−(p−2)/2) is the optimal rate without any
assumption on the smoothness of F .

Example 2.8. Let X be a random variable with a symmetric distribution such that
P{|X| = 1} = P{X = 0} = 1/2. Then t0 = 0, a = p(p − 1)/2 and σ2 = p2/2. An
application of Proposition 2.7 yields ∆N = O(N−(p−2)/2). The rate is optimal since
it is easy to show that lim infN N (p−2)/2∆N > 0.

In order to obtain the improved bound O(N−(p−2+γ)/2) with some γ > 0 we need
to impose a regularity condition on F .

Proposition 2.9. Assume that, for some C > 0 , γ ∈ (0, 3− p) and δ > 0,

|F (t)− F (t0)| < C|t− t0|γ , |t− t0| < δ. (2.10)

Suppose that E |X|(p−1)(p+γ) < ∞. Then ∆N = O
(
N−(p−2+γ)/2

)
.

One may expect that the smoothness condition
∣∣F (t)− F (t0)

∣∣ < C|t− t0|3−p, |t− t0| < δ (2.11)

is sufficient for proving bound O(N−1/2). However this is not the case. As in Propo-
sition 2.5 we need to impose a stronger condition on F .

Proposition 2.10. Suppose that (2.11) holds with some δ > 0 and C > 0. More-
over, assume that the function

t → |t− t0|p−4
∣∣F (t)− F (t0)

∣∣

is integrable in a neighborhood of t0. If E |X|3(p−1) < ∞ then ∆N = O(N−1/2).

2.6. The Lp-median, p ≥ 3. If p ≥ 3 then the Berry–Esseen bound for the (sample)
Lp-median holds without conditions on the smoothness of F , since in this case the
score function satisfies the smoothness condition (1.8) with α = 1. Hence Corollary
(1.3) yields the bound O(N−β/2) provided that E |X|(p−1)(2+β) < ∞, for 0 < β ≤ 1.

3. Proofs

Proof of Theorem 1.1. Theorem 1.1 is a particular case of Theorem 1.2.

Proof of Corollary 1.3. Corollary 1.3 is a consequence of Theorem 1.2. In what
follows we show that conditions of Theorem 1.2 are satisfied. Observe that

|f ′′(x, t)| ≤ |f ′′(x, t0)|+ δαh(x), for |t− t0| < δ.
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Hence ∂

∂t
E f ′(X, t) = E f ′′(X, t). In particular, a = E f ′′(X, t0). Calculations show

that (1.2) holds with α as in (1.8) and with

β = 1, C = E h(X), D = c (σ2 + ξ + η)(1 + δ1+2α).

It remains to verify condition (1.4). Since a = E f ′′(X, t0), an application of
Chebyshev’s inequality yields

P
{
Q′′N (t0) < a/2

} ≤ N−14a−2E
(
f ′′(X, t0)−E f ′′(X, t0)

)2
< N−1ca−2ξ. (3.1)

If E h(X) = 0 (1.4) immediately follows from (3.1) and (1.8). If E h(X) > 0 an
application of Chebyshev’s inequality yields

P
{

N−1
N∑

i=1

h(Xi) > 2E h(X)
}
≤ E

�
h(X)−E h(X)

�2

N
�
E h(X)

�2 <
c η

N
�
E h(X)

�2 . (3.2)

By (1.8),

sup
|t−t0|<δ

∣∣Q′′N (t)−Q′′
N (t0)

∣∣ ≤ δαN−1
N∑

i=1

h(Xi).

Combining this inequality with (3.1) and (3.2) we obtain that

P
{

inf
|t−t0|<δ

Q′′N (t) > 0
}
≥ 1− cN−1

(
a−2ξ + η

(
E h(X)

)−2
)

provided that δ ≤ (
4E h(X)/a

)−1/α. Hence (1.4) follows with

B = cN−1/2
(
a−2(ξ + η

(
E h(X)

)−2
)
,

which completes the proof.

Proof of Corollary 1.4. Corollary 1.4 is a consequence of Theorem 1.2. In what
follows we check the conditions of Theorem 1.2. By Lemma 3.1 below, the condition
(1.4) is satisfied with a constant

B = N1/2
(
c(p)N−γa−pκ + c(p, q)N−γ/pa−1H1/p(1 + 2δ)

)
.

Furthermore,

|f ′′(X, t)| ≤ g(X), g(X) := |f ′′(X, t0)|+ sup
t0−δ≤s, t≤t0+δ

(
f ′′(X, s)− f ′′(X, t)

)
.
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It is shown in the proof of Lemma 3.1 that E g(X) < ∞. Hence ∂

∂t
E f ′(X, t) =

E f ′′(X, t), for |t− t0| < δ.
It remains to verify condition (1.2). Using (1.15) one may show that the condition

(1.2) is satisfied with

α = q/p, β = 1 and C = H1/p, D =
(
κ + Hδq

)1/p
β1/r

r .

An application of Theorem 1.2 completes the proof.

Proof of Theorem 1.2. Without loss of generality we may assume that all random
variables are defined on a common probability space

(
Ω,P)

. Furthermore, we may
and shall assume that 0 ∈ T and t0 = 0.

In view of (1.11) it suffices to bound ∆N for N such that

ln N

N
≥ c

(
91/αC2/αb2a−2/α + 91/βD2/βb2σ−4/β + 1

)
. (3.3)

The proof of the theorem will consist of two steps. First, using the asymptotic
convexity condition (1.4) we shall show that the probability P

{
tN < t

}
is close to

P
{
0 < Q′

N (t)
}
, for t ∈ (−δ, δ), i.e., that

P
{
0 < Q′

N (t)
}− A√

N
− B√

N
≤ P

{
tN < t

} ≤ P
{
0 ≤ Q′N (t)

}
+ A√

N
+ B√

N
. (3.4)

To estimate the probability P
{
0 ≤ Q′N (t)

}
in the second step we may apply

the classical Berry–Esseen bound since, for given t, the random variable Q′N (t) =
N−1

∑N
i=1 Yi(t) is the sum of real random variables Yi(t) = f ′(Xi, t) .

To verify (3.4) we shall use a simple but useful observation concerning convex
functions, cf. Huber (1964). Let t → g(t) be a convex function. If t∗ is a minimizer
of g and g′(t) exists then

0 < g′(t) ⇒ t∗ < t ⇒ 0 ≤ g′(t), (3.5)

which means simply that g(t) is nondecreasing, for t ≥ t∗, and it is non increasing,
for t ≤ t∗. The monotone derivative g′ of the convex function g exists everywhere
except at most countable set of points, see Schvartz (1967). To make (3.5) valid for
all t, extend (if necessary) the function g′(t) so that the extension g′(t) is monotone
and g′(t∗) = 0, for all minimizers t∗ of g. The asymptotic convexity condition (1.4)
allows to apply (3.5) to the function t → QN (ω, t) and to derive (3.4). Indeed, by
(1.4) and (1.5), the events

Aδ =
{
ω : QN (t, ω) is convex in t, for t ∈ (−δ, δ)

}
, Bδ =

{
ω : |tN | < δ

}
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satisfy
P

{Aδ

}
> 1−N−1/2 B and P

{Bδ

}
> 1−N−1/2 A.

Hence, (3.4) reduces to the verification of

0 < Q
′
N (ω, t) ⇒ tN (ω) < t ⇒ 0 ≤ Q

′
N (ω, t),

for ω ∈ Aδ ∩ Bδ, where Q
′
N denotes the extension of the derivative of the convex

function QN . But, for fixed t, the random variables Q
′
N (t) and Q′N (t) coincide

almost surely, and (3.4) follows.
Let us apply the Berry–Esseen bound to Q′N (t). Denote

Y (t) = f ′(X, t), mt = E Y (t), σt =
(
E

(
Y (t)−E Y (t)

)2
)1/2

and η = Y (t)−mt,

β̂t = E |η|31I{|η| < σt

√
N

}
+ σt

√
NE |η|21I{|η| ≥ σt

√
N

}
.

We have ∣∣∣P
{

0 <

N∑

i=1

Yi(t)
}
− Φ

(√
Nmt/σt

)∣∣∣ ≤ cN−1/2β̂t/σ3
t , (3.6)

see, e.g., Theorem 8 of Chapter V in Petrov (1975).
Observe that

mt = E Y (t) = L1(t) and σ2
t = L2(t)− L2

1(t).

It follows from (1.2) that, for |t| ≤ 6 b
√

ln N/N ,

∣∣mt − a t
∣∣ ≤ C|t|1+α ≤ C

(
6 b

√
ln N/N

)1+α ≤ σ/2

and
1

2
σ2 ≤ σ2

t ≤
3

2
σ2, (3.7)

provided that (3.3) holds. It follows from these inequalities that

β̂t/σ3
t ≤ c β/σ3 + cN−1, for |t| ≤ 6 b

√
ln N/N, (3.8)

provided that (3.3) holds.
Recall that ∆N = supu ∆N (u), where

∆N (u) =
∣∣∣P

{
b−1 N−1/2tN < u

}− Φ(u)
∣∣∣.
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In what follows we show that ∆N (u) does not exceed the right hand side of (1.10).
We shall consider separately two cases: |u| < 6

√
ln N and |u| ≥ 6

√
ln N . In the case

|u| ≥ 6
√

ln N the bound to prove follows from the estimate

P
{|tN | ≥ 6 b

√
ln N/N

} ≤ cN−1/2
(
1 + A + B + β(t1)/σ3 + β(t2)/σ3

)
, (3.9)

where
t1 = 6 b

√
ln N/N and t2 = −6 b

√
ln N/N.

Indeed, (3.9) implies

∆N (u) ≤ N−1/2c
(
1 + A + B + β(t1)/σ3 + β(t2)/σ3

)
+ 2Φ(−6

√
ln N)

≤ N−1/2c
(
1 + A + B + β(t1)/σ3 + β(t2)/σ3

)
.

Let us prove (3.9). It follows from (3.4)–(3.6) and (3.8) that the probability
P

{|tN | ≥ 6 b
√

ln N/N
}

does not exceed

c N−1/2
(
1+A+B +β(t1)/σ3 +β(t2)/σ3

)
+

[
Φ

(√
Nmt2/σt2

)
+1−Φ

(√
Nmt1/σt1

)]
.

Using (1.2) and (3.3) it is easy to show that√
Nmt2/σt2 ≤ −2

√
ln N and

√
Nmt1/σt1 ≥ 2

√
ln N.

Hence the quantity in the brackets [· · · ] is bounded by c N−1/2 and we obtain (3.9).
It remains to estimate ∆N (u), for |u| ≤ 6

√
ln N . Let t = N−1/2u b. It follows

from (3.4)–(3.6) and (3.8) that

∆N (u) ≤ N−1/2c
(
1 + A + B + β(t)/σ3

)
+ R, R =

∣∣∣Φ
(√

Nmt/σt

)−Φ(u)
∣∣∣. (3.10)

Thus the theorem would follow if we show that

R ≤ c
(
a−1bαCN−α/2 + bβDσ−2N−β/2 + N−1/2

)
.

By the Lagrange mean value it is sufficient to verify that the
difference d :=

√
Nmt/σt − u satisfies

|d| ≤ cCa−1bαN−α/2u1+α + Dσ−2bβN−β/2u1+β + N−1/2u. (3.11)

Write
d =

√
N(mt − at)/σt −

√
Nat(σt − σ)

σ · σt
.

Substituting

σt − σ = (σt + σ)−1(σ2
t − σ2) = (σt + σ)−1

(
L2(t)− σ2 − L2

1(t)
)

and using the estimate (3.7) we obtain

|d| ≤
√

2σ−1
√

NC|t|1+α + σ−3a
√

N |t|(D|t|β + L1(t)2
)
. (3.12)

By (3.3) we may estimate

σ−3a
√

N |t|L2
1(t) = uσ−2L2

1(t) < uN−1/2, for |t| ≤ 6 b
√

ln N/N.

This together with (3.12) implies (3.11) and completes the proof of the theorem.
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Lemma 3.1. Assume that (1.15) holds and that E
∣∣f ′′(X, t0)

∣∣p < ∞. Assume that

δ ≤ min
{(

2−1aH−1/p
)p/q; δ′

}
.

Then there exist constants c(p) and c(p, q) such that

P
{

inf
{
Q′′

N (t) : |t− t0| ≤ δ
}

< 0
}
≤ c(p){

Nγ ap
+ c(p, q) H1/p (1 + 2δ)

Nγ/pa
,

where γ and κ are as in Corollary 1.4.

Proof of Lemma 3.1. Denote

Z(t) = f ′′(X, t) and Zi(t) = f ′′(Xi, t), i = 1, 2, . . . , N.

By (1.15) and Hölder’s inequality,

E
∣∣Z(t)− Z(t0)

∣∣ ≤ (
H|t− t0|q

)1/p
.

Hence, for |t− t0| ≤ δ,

E Z(t) ≥ E Z(t0)−
(
H|t− t0|q

)1/p ≥ a− (
Hδq

)1/p
> a/2.

We have

Q′′N (t) = E Z(t)−N−1
N∑

i=1

(
E Zi(t)− Zi(t)

)
> 0

if
M := sup

|t−t0|≤δ

SN (t) < a/2, (3.13)

where we denote

SN (t) = N−1
N∑

i=1

(
E Zi(t)− Zi(t)

)
.

Further, M ≤ M1 + M2, with

M1 = SN (0), and M2 = sup
{
SN (t)− SN (s) : t0 − δ ≤ s, t ≤ t0 + δ

}
.

By Chebyshev’s inequality,

P{M ≥ a/2} ≤ P{M1 ≥ a/4}+ P{M2 ≥ a/4} ≤ 4pa−pE Mp
1 + 4a−1E M2. (3.14)
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Using well known inequalities, see e.g. Petrov (1975), for p-th moments of sums of
centered random variables we obtain

E Mp
1 ≤ c(p)N1−pE

∣∣f ′′(X, 0)
∣∣p = c(p)N1−pκ, for 1 < p ≤ 2,

and
E Mp

1 ≤ c(p)N−p/2E
∣∣f ′′(X, 0)

∣∣p = c(p)N−p/2κ, for p > 2.

Thus
E Mp

1 ≤ c(p)N−γκ, p > 1. (3.15)

Similarly,

E
∣∣SN (t)− SN (s)

∣∣p ≤ c(p)N−γE
∣∣∣
(
Z(t)− Z(s)

)−E
(
Z(t)− Z(s)

)∣∣∣
p

, p > 1.

Hence, by (1.15),
E

∣∣SN (t)− SN (s)
∣∣p ≤ c(p)N−γH|s− t|q.

This estimate yields

E sup
t0−δ≤s,t≤t0+δ

(
SN (s)− SN (t)

)
≤ c(p)N−γ/pH1/p

∫ 2δ

0

(
2δ

up/q

)1/p

du,

see, e.g., Theorem 1.2 in Talagrand (1990). We have

E M2 ≤ c(p, q)N−γ/pH1/p(1 + 2δ).

Combining this inequality with (3.14) and (3.15) we see that the probability of (3.13)
is larger than

1− c(p)N−γa−pκ + c(p, q)N−γ/pa−1H1/p(1 + 2δ),

thereby proving the lemma.

4. Appendix

In the appendix we outline proofs of the propositions and examples of section 2
omitting tedious computations. Detailed proofs are contained in an extended version
of the paper which appears as a Preprint of SFB 343, 1995, Universität Bielefeld.

The propositions are corollaries of the general result provided as Theorem 1.2.
Therefore we check the conditions of this theorem.

Proof of Proposition 2.1. It suffices to verify conditions of Theorem 1.2. Let us check
condition (1.2).
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For t ∈ (t0 − δ, t0 + δ), we have

L1(t) = P{X < t} −P{X > t}, L′1(t) = 2p(t), L2(t) = 1.

Hence a = 2p(t0) and σ2 = L2(t0) = 1. Since L1(t0) = 0, the mean value theorem
yields

L1(t) = L1(t)− L1(t0) = L′1
(
t0 + τ(t− t0)

)
(t− t0), 0 ≤ τ ≤ 1.

Hence, the inequality

∣∣L1(t)− a(t− t0)
∣∣ ≤ 2H|t− t0|1+α, |t− t0| < δ,

is a consequence of

∣∣L′1(t′)− L′1(t0)
∣∣ < 2H|t′ − t0|α, |t′ − t0| < δ.

But this is exactly (2.1). Therefore, condition (1.2) is satisfied with the exponent α
and with β = 1, C = 2H and D = 0.

It remains to verify condition (1.5). Let X(1) ≤ X(2) ≤ · · · ≤ X(N) denote the
order statistic of the sample X1, X2, . . . , XN . It is easy to see that if

X([N/2]−1) < X([N/2]) < X([N/2]+1) < X([N/2]+2) (4.1)

then tN = X([N/2]+1) if N is odd and X([N/2]) ≤ tN ≤ X([N/2]+1) if N is even. Using
Bernstein’s inequality, see e.g. Petrov (1975), one may show that

P
{

ω : t0 − δ < X([N/2]−1) ≤ X([N/2]+2) < t0 + δ
}

> 1−N−1 (4.2)

provided that

N

ln N
≥ cP−2{t0 − δ < X < t0}+ cP−2{t0 < X < t0 + δ}. (4.3)

Since F is absolutely continuous on (t0−δ, t0+δ), the bounds (4.2) and (4.1) together
imply (1.5) with a constant A = N−1/2 provided that (4.3) holds. An application of
Theorem 1.2 completes the proof.

Proof of the statements of Example 2.2. It is easy to see that t0 = 0, a = (α + 1)/α,
σ2 = 1 and that conditions of Theorem 1.2 are satisfied with

δ = 1, b = α/(1 + α), β = 1, A = B = D = 0 and C = (α + 1)/α.
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Let u = b−1, and write t = N−1/2ub = N−1/2. We shall show
that lim infN Nα/2 ∆N (u) > 0 , where ∆N (u) =

∣∣P{
b−1 N1/2tN < u

}− Φ(u)
∣∣.

It follows from (3.4), (3.6) and (3.8) that

∆N (u) ≥
∣∣∣Φ

(
N1/2 mt/σt

)
− Φ(u)

∣∣∣− cN−1/2
(
1 + A + B + β(t)/σ3

)

≥
∣∣∣Φ

(
N1/2 mt/σt

)
− Φ(u)

∣∣∣− cN−1/2. (4.4)

Here mt = L1(t) and σt = L2(t)− L2
1(t). Observe that in our case σt = 1. A simple

calculation yields

mt = P{X < t} −P{X > t} = uN−1/2 − α−1t1+α.

Hence ∣∣∣N1/2mt/σt − u
∣∣∣ = α−1N−α/2.

An application of the mean value theorem implies
∣∣Φ(

N1/2mt/σt

)− Φ(u)
∣∣ ≥ c(α)N−α/2,

with some c(α) > 0. This inequality combined with (4.4) completes the proof.

Proof of Proposition 2.3. It suffices to check the conditions of Theorem 1.2. Observe
that the condition (2.3) ensures that a = p(p − 1)E |X − t0|p−2 < ∞ . Calculations
show that, for small h (one may take, e.g., |h| < δ/20),

∣∣L1(t0 + h)− ah
∣∣ < c(p, β, F ) |h|β+p−1

and ∣∣L2(t0 + h)− L2(t0)
∣∣ ≤ c(p, β, F ) |h|. (4.5)

Hence the first inequality of (1.2) is satisfied with an exponent α = β + p− 2 and the
second one with an exponent 1.

It remains to check condition (1.5). Since the function t → |x − t|p is strictly
convex, we have

P
{
tN ≤ t0 − δ′

} ≤ P
{
0 ≤ Q′N (t0 − δ′)

}
, P

{
tN ≥ t0 + δ′

} ≤ P
{
0 ≥ Q′N (t0 + δ′)

}
.

The random variable QN (t) is the sum
∑N

i=1 Yi(t) of real i.i.d. random variables
Yi(t) = f ′(Xi, t). An application of Chebyshev’s inequality yields

P
{
0 ≥ Q′N (t0 + δ′)

}
= P

{
−L1(t0 + δ′) ≥ Q′

N (t0 + δ′)− L1(t0 + δ′)
}

≤
E
�
Q′N (t0 + δ′)− L1(t0 + δ′)

�2

L2
1(t0 + δ′)

≤ 2N−1 L2(t0 + δ′)
L2

1(t0 + δ′)
.
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Similarly
P

{
0 ≤ Q′

N (t0 − δ′)
} ≤ 2N−1 L2(t0 − δ′)

L2
1(t0 − δ′)

.

Observe that

E Y1(t0 − δ′) = L1(t0 − δ′) < 0 = L1(t0) < L1(t0 + δ′) = E Y1(t0 + δ′), δ′ > 0,

since the function L1 is strictly increasing.
We obtain

P
{|tN − t0| ≥ δ′

} ≤ 2 L2(t0 − δ′)
N L2

1(t0 − δ′)
+ 2 L2(t0 + δ′)

N L2
1(t0 + δ′)

≤ c(f, F, δ′)
N

, δ′ > 0. (4.6)

The choice δ′ = δ/20 and an application of Theorem 1.2 completes the proof.

Proof of Proposition 2.4. To prove Proposition 2.4 it suffices to check the conditions
of Theorem 1.2. As in the proof of Proposition 2.3 the estimate (4.6) implies (1.5).
It remains to verify condition (1.2).

Since F has a bounded density p, for |t− t0| < δ, the function L1 is differentiable
and L′1(t) = p(p− 1)E |X − t|p−2, for |t− t0| < δ. Calculations show that, for small
h (one may take |h| < δ/20), the estimate (4.5) holds and

∣∣L′1(t0 + h)− L′1(t0)
∣∣ ≤ c(p, F )|h|p−1+β . (4.7)

Since L1(t0) = 0, this inequality yields
∣∣L1(t0 + h)− ah

∣∣ ≤ c(p, F )|h|p+β .

Hence the first inequality of (1.2) is satisfied with the exponent α = p + β − 1 and
the second one with the exponent 1. This proves the proposition.

Proof of Proposition 2.5. The proof proceeds along the lines of the proof of Propo-
sition 2.4. Minor differences appear in verifying condition (4.7) while estimating the
integral

∫

c|h|≤|x|≤cδ

∣∣x− t0
∣∣p−3∣∣p(x)− p(t0)

∣∣dx ≤ c|h|p−2+βdx, β < 2− p,

by means of (2.4). Such bound fails to hold, for β = 2 − p. Hence in addition to
the condition (2.5) we need to impose an integrability condition. This completes the
proof.

Proof of (2.6). We shall show that

lim inf
N

N1/2 ln−1 N ∆N (u) > 0, with u = b−1.
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Assume without loss of generality that t0 = 0. As in proof of Proposition 2.3
the estimate (4.6) implies (1.5) (with some A independent of N). Furthermore,
E |X|3(p−1) < ∞ yields β < ∞. Therefore, as in proof of the statements of Example
2.2, it suffices to show that, for some c(f, F ) > 0,

∣∣∣Φ
(
N1/2 mt/σt

)− Φ(u)
∣∣∣ ≥ c(f, F )N−1/2 ln N, for large N. (4.8)

Here mt = L1(t), σ2
t = L2(t)− L2

1(t) and t = N−1/2u b = N−1/2.
Let us prove (4.8). Calculations that, for small h, the inequality (4.5) holds and

∣∣L1(h)− ah− hr(h)
∣∣ < c(f, F )|h|2, (4.9)

where the function r is such that

∣∣r(h)
∣∣ ≥ c(f, F )|h| ·

∣∣ln |h|
∣∣. (4.10)

Take h = t. It follows from (3.7), (4.5) and (4.9) that, for large N ,

∣∣∣
√

N mt

σt
− u− r(t)

σ

∣∣∣ ≤
√

Nσ−1|L1(t)| ·
∣∣σ/σt − 1

∣∣ +
√

Nσ−1
∣∣∣L1(t)− a t− t r(t)

∣∣∣
≤ c(p, F )N−1/2. (4.11)

This bound together with (4.10) gives

∣∣∣
√

N mt/σt − u
∣∣∣ > c(f, F )N−1/2 ln N,

for sufficiently large N . The last inequality combined with the Lagrange mean value
theorem implies (4.8) and completes the proof.

Proof of Proposition 2.6. It suffices to verify the conditions of Theorem 1.2. Let us
consider condition (1.2).

Since P{X = t0−k} = P{X = t0 +k} = 0, it is easy to show that the function L1

is differentiable at t0 and

∣∣L1(t0 + h)−P
{|X − t0| < k

} · h∣∣

≤ |h|
(∣∣F (t0 + k + h)− F (t0 + k)

∣∣ +
∣∣F (t0 − k + h)− F (t0 − k)

∣∣
)
, |h| < δ.

Invoking (2.9) we obtain

∣∣L1(t)− L1(t0)− a(t− t0)
∣∣ ≤ 2H|t− t0|1+α, |t− t0| < δ. (4.12)
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Furthermore, since
∣∣∣
(
ρ′k(x− t)

)2 − (
ρ′k(x− s)

)2
∣∣∣ ≤ 2k|t− s|, x, s, t ∈ R,

we obtain ∣∣L2(t)− L2(t0)
∣∣ ≤ 2k|t− t0|.

This inequality together with (4.12) yields (1.2) with an exponent α, with β = 1,
C = 2H and D = 2k.

Let us verify the consistency condition (1.5). Inequality (2.8) implies that the
function L1 is strictly increasing in a neighborhood of t0, i.e., that, for any δ′ > 0,

L1(t0 − δ′) < L1(t0) = 0 < L1(t0 + δ′).

An inspection of the proof of the estimate (4.6) shows that (4.6) remains valid
(with, e.g. δ′ = δ/2) in this case as well. Hence condition (1.5) holds with
A = N−1/2c(f, F ). Observe also that σ2 ≤ k2 and that β < k3. An application
of Theorem 1.2 completes the proof.

Proof of Proposition 2.7. The proposition follows immediately from Corollary 1.3.

Proof of the statements of Example 2.8. We shall prove that

lim inf
N

∆N (u)N (p−2)/2 > 0, with u = b−1.

It was shown in the proof of Corollary 1.3 that the consistency condition (1.5) is
satisfied with A = N−1/2c(f, F ). Furthermore, it is easy to see that in our case
t0 = 0 and β < ∞. Therefore, see the proof of (2.6), the problem reduces to showing
that ∣∣∣Φ

(
N1/2 mt/σt

)− Φ(u)
∣∣∣ ≥ c(p)N−(p−2)/2 as N →∞

with some c(p) > 0. Here t, mt and σt are as in proof of (2.6).
Obviously,

∣∣L2(t)− L2(0)
∣∣ < c(p)|t|. Furthermore, simple calculations show that
∣∣L1(t)− at− tr(t)

∣∣ ≤ c(p)t2,

where the function r(t) = p 2−1|t|p−2sign(t) satisfies

r(t) = r
(
N−1/2

) ≥ c(p)N−(p−2)/2.

The rest of the proof is similar to the proof of (2.6), and we omit it. The proof is
complete.

Proofs of Propositions 2.9 and 2.10. The proofs go along the lines of the proof of
Proposition 2.4. and resp. 2.5.
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