A BERRY-ESSEEN BOUND FOR STUDENT’S
STATISTIC IN THE NON-LI.D. CASE

V. BEnTKUS! M. BLozNELIS!”  F. GOTZE!”

Abstract. We establish a Berry—Esséen bound for Student’s statistic for independent
(non-identically) distributed random variables. The bound is very general and sharp.
In particular, it implies an estimate like to the classical Berry—Esséen bound. In the
i.i.d. case it yields as well the best known sufficient conditions for the Central Limit
Theorem for studentized sums. For non-i.i.d. random variables the bound shows that
the Lindeberg condition is sufficient for the Central Limit Theorem for studentized
sums.

1. INTRODUCTION AND RESULTS

Let X1,..., XN be independent random variables. Let
t=X/6
denote the Student statistic, where

— N —
X=N1X,+-+ Xy), 62 =N"1 Zizl(Xi—X)Q.

We shall investigate the rate of the normal approximation of v/ Nt when the random
variables X1,..., Xy are non-identically distributed. Define

oN :supx‘ P(\/Nt <) —q)(x)},

where ®(z) is the standard normal distribution function. Denote

N N
B% = Zi:l Var X; and Ly = By? Zi:l E|X,)°.
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Theorem 1.1. Let Xq,..., Xy have mean zero and By > 0. Then there exists an
absolute constant ¢ > 0 such that

5N SCLN. (1.1)

Inequality (1.1) is an extension to the case of studentized sums of the classical
bound by Esséen (1945)

sup, P (X1 + -+ Xy <2zBny)—P(z) <cLy.

Theorem 1.1 is a consequence of a general result formulated as Theorem 1.2.
For a given number V' > 0, define the truncated random variables

Z; =VIX;I{X? <V?}, for 1 <4 < N, (1.2)
where T {A} denotes the indicator function of the event A. Denote
MZZZN Var Z; H:ZN P (X7 >V?) A=M3 ZN E|Z;
i=1 v i=1 g ’ i=1 !
and
Yo=M"1 ZN EZ , N1=M" ZN \EZ|, To=M"2 ZN (E Z;)?

0 i1 % 1 ie1 i 2 ie1 i) -
Theorem 1.2. Let Xi,...,Xxn be arbitrary independent random variables. Then
there exists an absolute constant ¢ > 0 such that, for any V > 0,

oy <clIl +¢cYy+cYs +cA. (1.3)

Example 3.1 in the Appendix shows that the term 75 in the bound (1.3) is optimal.

Corollary 1.1. Let independent random variables X1,..., Xy be arbitrary. Then
there exists an absolute constant ¢ > 0 such that, for any V > 0,

on <cll +cT1 + cA.
Let a denote the largest solution of the equation
a® = EX7T{X] <a*N}. (1.4)

Theorem 1.2 yields the following Berry—Esséen bound for the Student statistic in
the i.i.d. case.
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Corollary 1.2 (Bentkus and Gé&tze (1994)). Let Xi,...,Xn be i.i.d. random vari-
ables. Assume that the largest solution a of the equation (1.4) is positive. There
exists an absolute constant ¢ > 0 such that

SN <cNP(X?>a’N)+cN|EZ|+cNE|Z|?, (1.5)

where
7y = (a®N)'?

X, T{X} <a®’N}.

The explicit bounds of Theorems 1.1 and 1.2 and Corollaries 1.1 and 1.2 are appli-
cable for any independent random variables X1,..., Xx. The random variables may
depend on any parameters (for instance, on N). An application of a chosen bound
reduces to estimation of moments or tails of random variables X; and to summation
over 1 < i < N of expressions obtained since the bounds depend additively on a
separate summand. The bounds are indeed sharp and a lot of consequences may be
derived, for example, the Central Limit Theorem for the Student test under the most
precise known conditions follows (see the discussion at the bottom of the section).

All the results remain valid if instead of the Student statistic v/ Nt one considers
the selfnormalized sums defined as

_ X+ + XN

= 49

XP+-+ X3

In particular, Theorems 1.1, 1.2 and Corollaries 1.1-1.3 hold with dn replaced
by sup,| P (S < #) — ®(x)|. Indeed, (see the argument in the proof of Lemma 2.3
below)

sup, | P(VNt<z)— P(S<uz)|<cll+cTy+clr+cA

The convergence of selfnormalized sums was investigated by a number of authors,
see, for instance, Efron (1969), Logan, Mallows, Rice and Shepp (1973), LePage,
Woodroofe and Zinn (1981), Griffin and Kuelbs (1989, 1991), Hahn, Kuelbs and
Weiner (1990), Griffin and Mason (1991).

Convergence rates and Edgeworth expansions for Student’s and related statistics
were considered by Chung (1946), Chibisov (1980), Helmers and van Zwet (1982), van
Zwet (1984), Helmers (1985), Slavova (1985), Bhattacharya and Ghosh (1986), Hall
(1987, 1988), Praskova (1989), Friedrich (1989), Bhattacharya and Denker (1990),
Bentkus, Gotze and van Zwet (1994), Bentkus and Gotze (1994), etc.

For i.i.d. Xq,..., Xy, the rate O(N_l/Z) under the 3-rd moment condition was
obtained by Slavova (1985). The bound 6y < ¢ N~/233/03, where 8, = E|X1|* and
02 = EX?, follows from a general result of Bentkus and Gétze (1994). A related
result O(N~1/2) under the additional condition: there exists y € R such that

n (@]
Ep(y)(1-p(y)) >0, where p(y)=P X-y [X—y| ,
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was proved by Hall (1988) (see Bai and Shepp (1994) for a discussion of such condi-
tion).

Most of the papers mentioned above deal with the case of independent and iden-
tically distributed random variables. Friedrich (1989) constructed a Berry—Esséen
bound for a general class of statistics without the i.i.d. assumption. In the i.i.d. case
the result of Friedrich (1989) yields 6y = O(N~1/2) provided B¢,3 is finite, whereas
our result implies 6 < cN~1/285/03.

In the remaining part of the Introduction we shall discuss sufficient conditions
for the Central Limit Theorem (CLT) for studentized sums in i.i.d. and non-i.i.d.
cases. We say that a sequence of studentized sums satisfies the CLT if it converges in
distribution to the standard normal distribution. We are going to apply the bounds

in the particular case when observations Xi,..., Xy are taken from a (fixed) infi-
nite sequence X7, Xo,... of independent random variables and t = t(X1,..., Xn).
By &,&1,&2, ... we shall denote i.i.d standard normal variables.

The CLT for i.i.d. random variables. Let X1, X5, ... be i.i.d. Then the right-hand
side of (1.5) tends to zero as N — oo if and only if X; belongs to the domain of
attraction of the standard normal law, see Bentkus and Goétze (1994). Thus (1.5)
yields the weakest known sufficient condition for the Central Limit Theorem for
Student’s statistic (Maller (1981), Csorgé and Mason (1987)). There is a conjecture
(communicated for us by D.M. Mason and seemingly difficult to prove) that the
condition is necessary as well.

The CLT for non-i.i.d. random variables. Let X, Xs,... denote a sequence of
independent random variables with mean zero and finite variances 0? = E X2 < oo.
It is well known (Feller (1971)) that if X, ¢ > 1, have mean zero then the Lindeberg
condition

N
Ve >0 By Z,_l EX?I{X?>eB%}—0 (1.6)

is sufficient for
L ByM(Xi+--+Xn) — N(0,1), (1.7)

and it is necessary for (1.7) provided that
maxi<;<n U?/BJQV — 0. (18)

Corollary 1.3. Assume that X1, Xs,... have mean zero and satisfy the Lindeberg
condition (1.6). Then 6y — 0, that is, L(v/Nt) converge to the standard normal
distribution.

Remark 1.1. Corollary 1.3 tells us that the Lindeberg condition is sufficient for

L(VNt) = N(0,1). (1.9)
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It is interesting to note that the Lindeberg condition (1.6) is not necessary for (1.9)
even if (1.8) holds. More specifically, there exists a sequence (see Example 1.1 below)
of centered independent random variables which satisfies (1.8) and (1.9) and which
fails to satisfy (1.6).

Ezample 1.1 (cf. Feller (1971), p. 521). Let 7, 72, ... be a sequence of independent
symmetric random variables such that

P(n|=d)=1-P(|n|=0) =472 for all 4> 1.
Assume that i.i.d. standard normal random variables £;,&s,... are independent
of 7,7, .... It is easy to see that independent centered random variables X; = 7, +&;

satisfy (1.7) and (1.9) and fail to satisfy the Lindeberg condition. In this case

Notice as well that in this particular case (1.9) follows from the Borel-Cantelli lemma
(or Corollary 1.1 with V' = V(N) = v/N).

Thus we conclude that in case of finite variance and centered and asymptotically
negligible summands in sense of (1.8) the studentization of the sum may lead to better
results than normalization by By. However, in general a different situation may
arise. In the following example we construct a sequence X7, Xs,... of independent
(non-centered) random variables such that (1.7) holds and E(\/N t) - N(0,1).

Ezxample 1.2. Define
X; =i Y2 + (—1)4P, p>0. (1.10)

It is easy to see that B% ~ In(N + 2). Furthermore, X + --- + Xy is distributed
as By& + z,fvzl(—l)ii_p. Therefore

L ( X1+ -+ Xn)/VIn(N+2) — L)

converges to the standard normal distribution.
Let V2 = V2(N) = log(N + 2). In what follows we show that, for the se-
quence (1.10),
L(VNt) — N(0,1) (1.11)

if and only if

Zil(EZi)Q — 0, (1.12)

where r.v. Z; are defined in (1.2). A calculation shows that all terms other
than Zi\il(E Z;)? in the right-hand side of (1.3) tend to 0 as N — oo, for each p > 0.
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Hence (1.12) implies (1.11). Notice that (1.12) holds if and only if p > 1/2. There-
fore, in order to prove the converse implication, (1.11) = (1.12) it suffices to show
that

VNt £, for 0<p<1/2, (1.13)
and that
L(VNt) — N(0,1/2), for p=1/2. (1.14)

Proofs of (1.13) and (1.14) are given in Appendix.

Remark 1.2. Example 1.2 demonstrates that the limiting behavior of the distribu-
tion of studentized sums crucially depends on fo\;1 (E Z;)?. This observation can be
generalized. Let X1, X5, ... be a sequence of independent random variables. Assume
that, for a sequence of positive numbers V(N),

Ve > 0, Mmaxi<ip<N P (|Xk| > 8V(N)> — 0 (1.15)

and
L((X1+ -+ Xn)/V(N)) — N(0,1). (1.16)

Then (see Petrov (1975)), for each € > 0,

N N
P(X]>VAN)—0, Y EZ —0, M—1, Y E[Z—-EZ[’-0
=1 1=1

1=1

as N — oo. Hence if (1.15) and (1.16) hold then (1.12) implies (1.11). A sim-
ple analysis shows that the converse implication (1.11) = (1.12) is also true pro-
vided (1.15) and (1.16) hold. A similar effect was noticed by Robbins (1948). He
considered the distribution of the Student statistic based on the independent normal
observations X; ~ N(u;,0?), 02 > 0, with u; = E X, such that Zivzl w; = 0. In par-
ticular, Robbins (1948) showed that in this case the distribution function depends
only on N and A = "N 412/(202). In his results A plays a role similar to that

K3
N : . .
of >>." ,(E Z;)? in our considerations.

2. PROOFS

The proofs are close to those given in Bentkus and Gotze (1994). By means of
truncation we replace the Student statistic t = t(X1,..., Xx) by a smooth function
S = S5(Xi1,...,Xn) of the sample (see Lemma 2.3 below). Then we apply Esséen’s
smoothing inequality. When estimating the difference between the characteristic
functions (t) = exp{—t?/2} and f(t) = E exp{itS} we split f into a conditional
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product of two characteristic functions (different for different values of ¢) of condition-
ally independent random variables. This type of approach has been used by Helmers
and van Zwet (1982), van Zwet (1984) and was extended in Gotze and van Zwet
(1992), Bentkus, Gotze and van Zwet (1994) to the case of general symmetric sta-
tistics of i.i.d. random variables. The crucial step of the proof in the non-identically
distributed case is to bound the characteristic function of the sum (which may con-
tain, for example, only one summand) by a characteristic function which splits into
a product. For this purpose we use a randomization by means of Bernoulli random
variables.

The Section is organized as follows. First we shall derive Corollary 1.1 from The-
orem 1.2. Then we shall show that Corollary 1.1 implies Theorem 1.1, Corollary 1.2
and Corollary 1.3. The proof of these implications is simple. The real problem
presents the proof of the main result—Theorem 1.2. Lemmas 2.1-2.4 are needed for
the proof of Theorem 1.2. In particular, the preparatory Lemma 2.4 may serve a
simplified version of the proof of Theorem 1.2: the result of the lemma supplies a
sufficiently precise bound for the difference of the characteristic functions for Fourier
frequencies [t| < 1; for frequencies [t| > 1 much more elaborated techniques is needed
in order to ensure sufficiently fast decrease (as |t| — oo0) of the bound.

Proof of Corollary 1.1. We shall derive the Corollary from Theorem 1.2. Let us
consider two incompatible cases: a) there exists 1 < i < N such that M < |E Z;|;
b) for all 1 < i < N, the inverse inequality |E Z;| < M holds. In the case a) the
Corollary follows from the trivial bound dy < 1 since the inequality M < |E Z|
implies 6y < 1 < MY EZ;] < 77. In the case b) we have M~} EZ;| < 1, for
all 1 <7 < N. Consequently, 75 < 77. Obviously Ty < 77, and the result follows
from the bound of Theorem 1.2.

Proof of Theorem 1.1. If Ly > 1/4, then the desired bound follows from the trivial
estimate dy < 1. Therefore we shall assume that Ly < 1/4. Let us apply the
bound oy < c¢Il + ¢17 + cA of Corollary 1.1. Choose V = By. By the Chebyshev
inequality, I < Ly. Obviously A < M~3Ly. Recall that E X; = 0, and therefore
we have |E Z;| = By |EX;TI{X? > B%}|. Thus, by the Chebyshev inequality, we
obtain 77 < M~!'Ly. To conclude the proof of the Theorem, it suffices to show
that M? > 1/2. We have

VarZ; = EZ? — (EZ;)? > By EX? - BYYEXZT{X? > B3} — |E Z||
since |Z;| < 1. Applying the Chebyshev inequality and summing over i, we obtain

N
M221—LN—Zi:1|EZ¢|21—2LN21/2

since, again by the Chebyshev inequality, Zf\il |EZ;| < Ly, and Ly <1/4.
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Proof of Corollary 1.2. Choose V? = a?N and apply Corollary 1.1. Due to the i.i.d.
assumption, we have

SN <cNP(X?2>a*?N)+cNM EZ)|+cNM 3E|Z, ]2,

and it remains to show that M? > 1/2. We can assume that N |E Z;| < 1/2 since
otherwise the trivial bound d5 < 1 implies the result. Therefore, due to the choice
of a and |Z;| < 1, we have

M?=NEZ?-N(EZ)>=1-N(EZ)*>1-N|EZ| >1/2.

Proof of Corollary 1.3. We have to show that oy — 0 as N — oo. Let us
choose V' = By, and apply the bound ény < cIl + ¢17 4 ¢ /A of Corollary 1.1. Then
it is sufficient to prove that IT — 0, 77 — 0 and A — 0.

Denote

N
A-=By" ) EX?I{X?>eBi)

Then, for any ¢ > 0, the Lindeberg condition (1.6) yields \. — 0, as N — oo.
The Chebysvev inequality implies IT < Ay — 0.
Using E X; = 0, the inequality | E Z;| < 1 and the Chebyshev inequality, we have

VarZ; = EZ? — (EZ;)? > By EX? - 2B EXPI{X? > B Y,

whence, summing over i, we obtain M? > 1 — 2);. Consequently, M >1/2, for
sufficiently large N.

To bound 77, use E X; = 0 and the Chebyshev inequality. Then 77 < M1\,
and 77 — 0 since M > 1/2 and Ay — 0.

It remains to show that A — 0. For given 0 < € < 1, we have

E|Z;]? = By’ E|X;PI{X? <?B%} + By E|X;P1{e*BY < X? < By}
<eByY’EX?+ By EX?I{X? >2B% ).
Multiplying by M ~3 and summing over i, we get A < eM 3 + X\. M~3. Recall that

M > 1/2, for sufficiently large N. Therefore we have 0 < limsupy_,., 4 < 8¢, and
limy o A = 0 follows, since € > 0 is arbitrary.

It remains to prove Theorem 1.2. Introduce the notation
Y, =M"YZ;— EZ), 1<i<N,
Y:Y1+"'+YN,
n=m-+---+nn, where mzYiQ—EY-Q.

(3
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The random variables Y7,...,Yx (resp., m1,...,mn) have means zero and are inde-
pendent. Furthermore,

N N
Y EY? =1, Y EYP <84
1=1

i=1
We shall assume throughout the rest of the paper that for a small absolute con-
stant cg > 0,

A < e, 1> < co, 1o < co, (2.1)

since otherwise the result follows from the obvious estimate oy < 1.
Let a = (aq,...,an) denote a sequence of i.i.d. Bernoulli random variables inde-
pendent of Y7, ..., Yy and such that

Plag=1)=1-P(a; =0)=m with some m < 1.
Lemma 2.1. Assume that (2.1) holds. Denote
= (n; + M"Y, EZ;), for 1 <4< N.
Then there exists an absolute constant ¢ > 0 such that
E)Zj\;lYZ%Z <cmA, E‘Zj\;% G <emA.
The U -statistic
U= Z a; Y x; satisfies E|U|*/? < em™/* A.

{1<4,5<N, i#j}
Proof of Lemma 2.1 is given in the Appendix.
Lemma 2.2. Let  be a random variable with finite third moment. Then

4|t|

|E exp{itB}|” <1-*E B> + E|8°. (2.2)

Let ay be a Bernoulli random variable with P (a1 = 1) =1—P(o; =0) =m. Then

4\t| 2m|t|

1 2 n 2
E 1-a?EF +ay B8 7 < exp —%Em BB . (2.3)

Proof of Lemma 2.2. Proof of (2.2) is easy and can be found in Petrov (1975). For-
mula (2.3) is a simple consequence of Jensen’s inequality.

Let g : R — R denote a function which is infinitely many times differentiable with
bounded derivatives and such that

é <g(x) <2, for z €R, and  g(z) = =, for
T

Define the statistic S = Yg(1+n + 24 + 13), where A = M~} Efvzl Y;E Z,.
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Lemma 2.3. Assume that (2.1) holds. There exists an absolute constant ¢ > 0 such
that
Sy < sup| P (S <z)— ®(x)|+cll + cTy + cA. (2.4)

Proof of Lemma 2.3 is given in the Appendix.
Recall that by &,&1,&2,... we denote i.i.d. standard normal r.v. Define

v = (EY?)2¢, 1<i<N.

In what follows 6 and 64,05,... denote generic real numbers such that 0] <1
and |6;| < 1. Furhtermore, ¥, ¥;,7s,... denote i.i.d. uniformly distributed in [0, 1]
random variables. For a vector valued differentiable function H, the mean value
formula may be written as

H(b)— H(a)=EH'(a+9(b—a))(b-a), a,beR.
We shall use the notation
E¢ F(¢,8) = E(F(¢,5)]8). ESF(¢.0) = E(F((8)]€),

for conditional expectations. For Q = ¢ + -+ + qn, we shall denote Q' = Q — ¢;.
Similarly, Q" = Q — ¢; — g;.

Lemma 2.4. Assume that (2.1) holds. Let H : R — C denote a bounded infinitely
many times differentiable function with bounded derivatives. Then, for 1 < k < N,

EH(Yi4+ - +Y)g(l+x+1)) —EH@W+-+¢) <cl(A+713), (25)

where }
_ . . —1y ) .
=3y )i =i +2M7 Y, B Z;, 1<i<N,
and
I'= |Hlo+1 [H3* + |H oo + [H"|oo + [H" |, |H|oo = sup |H(z)|.

Proof of Lemma 2.4. We shall prove the lemma for £ = N only. Then the sums
in (2.5) are equal to 15 and A respectively, L(i1 + -+ 4+ ¢¥n) = L(§), and it suffices
to prove that

EH(Yg(l4+x+713) — EH(Y g(1+5) <cl'7s,
|EH(Y g(1+ ) - EH(Y)|<cI'A
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and
|EH(Y)—- EH(¢)| <cTA

Expanding g in powers of 15 and then expanding H we obtain the first inequality.
The proof of the third inequality is easy and does not differ from that of given in
Bentkus et al. (1990) where the i.i.d. case was considered.

Let us prove the second inequality. Expanding ¢ in powers of s we have

Yg(l+x)=Yg(1)+Yxg (1+012%) =Y +Dg'(1+613)+U g (1+ 0, ).

Here we split Y s into the sum D + U, where

D= Zj\; Yisi, U= Z1§i,j§N, i Yis;.
Expanding H in powers of D ¢'(1 + 60 ») we obtain
EH(Yg(l4»)=EHY+Ug(14+6:1x)+R
with |R| < ¢I" E |D|. An application of Lemma 2.1 gives E|R| < ¢I"A. Expanding
Ug(1+615)=Ug (1) +Uby5g" (14 06, 5)

and applying the inequalities
, , 3/4
[H(s) = Ht)| < [H'|o [t —s| < |[H|o |t —s]

for |H'|oo |t — s| <1, and

|H(s) — H(t)| < |Hl|oo < [H|oo ([H' |0 [t — s])*",

for |[H' | [t — s| > 1, we get
EHY+Ug (1+61%)=EHY+Ug'(1))+R

with
IR| < cTE(|U]]#)Y* <el BIUP? + B2 <clA

In the last step we applied the inequality ab < a®+b? with a = |U|>/4 and b = |[3/*
and Lemma 2.1. Since H’, H” are uniformly bounded, we can write

EH(Y +Ug (1) = EH(Y)+ EH (Y)U ¢ (1) + R,
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with
|R| < c¢T'E|UPP? <cIA.

It remains to estimate
/ o !
EH (Y)U = E E iGN, i) Yin; H (Y)

Recall that Y denotes the sum Y without summand Y;. The Taylor expansion
of H'(Y) = H'(Y'+Y;) in powers of Y; and EY; = 0 yield
EYix; H(Y'+Y;) = EY;5¢; [H'(Y)Y; + H"(Y' + 920, Y;) 01 Y],

where ¥, and ¥ are mutually independent (and independent of Y7,...,Yy) random
variables uniformly distributed in [0,1]. Thus E H'(Y)U = R; + Ry where

Ri=E Y  YlgH'(Y",

1<i,j<N, i#j

and
[Rol <el' Y EYiP E|x<clA
1<i,j<N

Here we estimated
|5¢;] < |n;| + |Y; M~ E Z;], |V, M'EZ;| <Y?+(M'EZ)”

and

N N N
Do Elgl<ed EB)P+) (BYP+(MTEZ)?) <c

Let us estimate |R;|. Expanding
H'(YH =H' (Y +Y;)=H'(Y™)+Y; H" (Y™ 4 9Y;)
and using E s; = 0 we have
E Y25, H' (YY) = E Y? 5, Y; H" (Y™ +9Y;).

Hence

N N N
(R <el' Y BY? Y E Y| <cl'Y El|xYj|<clA

i=1 j=1 j=1

Thus proving the lemma.
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Proof of Theorem 1.2. Without loss of generality we shall assume that (2.1) is
fulfilled. An application of Lemma 2.3 reduces the proof to the verification of the
inequality

sup P(S<z)-P({<z) <cA+cDy, (2.6)

assuming that (2.1) holds.
In order to prove (2.6) let us apply the Esséen inequality for characteristic func-
tions. Write

f(t) = Eexp{itS} = Eexp{itYg(1+n+2A+72)},
p(t) = E exp{it&} = exp{—t/2}.

Estimating

/|t|<c | F(t) — ()| dt/|t] < cA+cTy

by Lemma 2.4, we see that (2.6) is a consequence of
[ 150 el < ca+ o, 2.7
Ci<|t|<T

where T' = ¢1/ (Zf\il E |Y;|?). Here we may choose the absolute constant C; suffi-
ciently large, and the absolute constant c; sufficiently small. We may assume that
the interval (C1,T) is non-empty since otherwise the theorem follows from (2.1).
Define the function
Int 1
m(t) :C'gt—Q < 5 for C1 <t <T,

where (5 is a sufficiently large absolute constant. Throughout the proof we shall
write h ~ g if

/ h(t) — g(t) | dt/1t] < A+ cT.
Ci<|tILT

In particular, (2.7) is equivalent to f ~ . We shall prove the inequality (2.7)
in two steps. In the first step using randomization by means of Bernoulli random
variables with the parameter m(¢) we shall split f into a product of two conditionally
independent characteristic functions. The first characteristic function will account
for the contribution of the m(t)-th part of the sum Y; + - -+ Yy and will ensure the
convergence of the integral, cf. Bentkus and Gotze (1994).

Step 1. Let (Y1,...,Y ) denote an independent copy of (Y1,...,Yn). Recall
that aq,...,ay denotes a sequence of i.i.d. Bernoulli random variables, assume that
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P(ay =1)=1—- P (a; =0) =m(t) and assume that all these random variables are
independent. It is easy to verify that

f(t) = Eexp{it(X +2)g(1+~+p)},

where

X=aVi+-+ay¥y, Z=(0-a)Vi+--+(1-an)¥y,

N
V_ZO%%' with v =n; +2M 'Y, E Z;,
=1

N
Zl—alpl—k% with p; =%, +2M~ V. E Z;,
=1

2

7., =Y - EY., 1<i<N.

Let us show that
f(t) = f2(t) = E exp{it W},

where
W=Xg(l+p)+Ug'(L+p)+Zg(l+p)+Zvg'(L+p)

and

U = Z an} Ok V-
{1<5,k<N, j#k}

Denote D = Zi\]:1 a;Y;v;. Expanding g(1 4+ v + p) in powers of v we have
(X +2)g(1+v+p)=Xg(1+p)+Xvg' (1+p+617)
+Z9(L+p)+Zg (L+p)y+Zg"(1+p+027)037%

Xvd(1+p+617)=D+U)gd(1+p+617)
=Dg'(14+p+617)+Ug (1+p)+Ub1vg"(1+p+047),

Expanding now the exponent in powers of it D g’(1 4+ p + 617) we obtain

f(t) = f1(t) + R, fi(t) = E exp{itW +itr},

with
r=2g"(14+p+027)037> +U01vg" (1 + p+ 047)

and
|R| < c|t| E|D| < clt|m(t)A
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In the last estimate we applied Lemma 2.1. Since the function u — exp{iu} and it’s
derivatives are uniformly bounded there exists an absolute constant ¢ > 0 such that

filt) = f2(t) + R
and |R| < ¢[t]3/* E |r|>/4. The inequality ab < a® +b? with a = |U|>/* and b = ||3/*
implies
BIrf/t < cE Y2 Eg|2P/t + Bl
<cENP2 +cE|UP?
< em(t) A+ em™4(t)A.
In the last step we estimated E ;+|Z|3/4 < ¢ uniformly over a and applied lemma 2.1.

We have
| £(t) = fa(t)| < c(lt] + [t *)m(t)A.

Hence f ~ fo because the factor m(t) ensures the convergence of the integral with
respect to the measure dt/|t| as |t| — oc.

Since the function u — exp{iu} and it’s derivatives are bounded there exists an
absolute constant ¢ > 0 such that

| fa(t) — fs(t) — fa(t)| < R,

where

f3(t) = Eexp{it [X g(1+ p) + Zg(1 + p) + Zvg (1 + )]},
folt) = Eexp it[Xg(l+p)+ Zg(1+p) + Zvg' (L4 p)] itUg (1 + p)
and |R| < c|t|>/?E|U|*/2. Applying Lemma 2.1 we get
IR| < c|t]32m™/4(t)A.
Hence fy ~ f3 + f4. Furthermore, denoting
n (o]

fs(t)=Eexp it[Xg(l+p)+Zg(l+p)] tUg'(1+p),

we have

|[f2(0) = Fs(|< [#P2R, with  R=E[U[[Z4]'2
Estimating E ¢|Z|%/2 < ( E?]Z|2)1/4 < ¢ uniformly with respect to @ we obtain

R = E|U||Z7|'? < cEU|W|'*E | 2]'*
< cE|U[W"? < c(E[UP? + ER*?) < em(t) A
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In the last step we used the inequality a?/3bY/3 < a + b with a?/3 = |U| and

b'/3 = |4|*/2 and applied Lemma 2.1. Since the integral with respect to the mea-

dt . .
sure |t[3/2m(t) T converges, we conclude that f; ~ f5. We rewrite f5(t) in a more

convenient form such that some independent random variables get separated. Write
Py =explit X g(1+p) + Zg(1 +p)}gd (1 +p), 1<kI<N, k#L

Recall that X! denotes the sum ;Y] + - - - + ay Yy with the summands «y Y and
oY, removed. Then

f5 (t) N n o

itE, Z E%aY,exp itarYrg(l+p) aryiexplitagYig(1+p)} X Py .
{1<k,I<N, k#l}

Expanding the exponents in powers of ity Yy g(1 + p) and ity Y, g(1 + p) we have

BOI<Ba Y arcltl E2arl|E[nYi
{1<EI<N, k#1}
N
< et m?(t) Y Eluvi
1=1

= c|t]Pm?(t) A.

Here we used the fact that Yy, 7, and Py are independent, for k # [, | Py ;| < ¢ and
EY; =0, Ev =0. Hence f5 ~ 0 and we conclude that f ~ f3. We shall show that

f3 >~ fe + fr, where

fo(t) =E exp{it [Xg(1+ p) + Zg(1 + p)]},
fr(t) =EitZyg (1 + p) exp{it (X g(1 4 p) + Zg(1 + p)]}.

Using the inequality
|exp{ia} — 1 —ia| < |a|*/?

with a =t Zyg¢'(1 + p) we obtain f3(t) = fs(t) + fz(t) + [t|3/? R, where
|R| <cEWPPEZP? < cER*? < em(t)A.

Thus f3 ~ f¢ + f7. Next we will prove that f; ~ 0. Introduce for brevity

A n o
Tj:=Exiexp{itX?g(1+p)}, Q:=exp itZg(l+p) Zg'(1+p).
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Then
N

fr(t) =it B Y ;v explita; Y;9(1+ p)} 15 Q.

J=1

Expanding the exponent and estimating |a;| < 1 we have
N
(Ol < cltPEa Y By, [y Y EYTQL
i=1

Using inequality (2.2) with 6 = Y,y g(1+p) and with expectation taken with respect
to Y; and using the fact that 1/8 < g < 2 we get

1 32
T<T= [] (- g PaBy? s Lfo By
I<ISN, I#]

Using the simple bound Ey |Q| < ¢ and inequality (2.3) for E,, T} we get
E|Q|T] < cET] < c exp{-W/2} < cexp{—10"*t*m(%)},

where

N
t2m(t) 32 ~
W= Z EY - 3 [t m(t) E E|Y,> > 500" * m(t).
(1IN, 1) P

The last inequality is true for C; < |t| < T, provided that E|Y;|? < 1/2 which is
satisfied due to (2.1) (otherwise E |Y;|> > (E|Y;]?)3/2 > ¢y). Thus we have

N
Fr(0)] < elt? exp{-~Cs2m(t)} 3" By Yi| < cltf? exp{~Cstm(t)} A,
=1

where C'5 is a sufficiently large absolute positive constant. Hence, f7 ~ 0.

It remains to prove that fg ~ . Introduce the sequence of i.i.d Bernoulli random
variables

T=(T1,...,TN) such that P(ri=1)=P(r, =0)=1/2.

Let (Y{,...,Y} ) be independent copy of (Y1,...,Yn). Assume that

7, a, (Y1,....Yn), (Y1,...,YnN) and (Y{,..., YY)
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are independent. Denote
X(T) = ()é17'1Y1 + - +OéNTNYN

and
X(l—T):041(1—Tl)Y1/—|—"'+OéN(1—TN)YJ<].

Observe that X (7) and X (1 — 7) are conditionally independent given o and 7.
We have

f6(t) = Eexp{itZg(1+p)} eXpnit(X(T) +X(1-7))g(1+ p)o.

Write

Qo :=explit Zg(1 + p)}, Q1 = exp{it X(7) g(1 + p)},
Q2 :==exp{it X(1—7)g(1+ p)}.

Expanding ¢(1 + p) in powers of p we obtain
g(L+p)=g(1) +g'(1)p+ 019" (1 +02p) p*.
Expanding the exponents

exp{it X(7)019"(1+02p) p°} = 1471 with |ri| < c[tX(r)p?[/*,
exp{ —27"itX(r)p} =1-2""itX(1)p+re with [ry| < cltX () pl3/?

we get

Q1 =exp{it X (1) (1+¢'(1)p+ 019" (1 +02p)p°) }
=exp{it X ()} exp{ —27"itX(7)p} exp{it X (7)01 g" (1 + 62p)p° }
=F(7)+ P(1) + R(7),

where
F(r) =exp{itX(r)}, P(r)=-2""itX(r)p exp{it X () }
and
[R(m)| < et X ()P4 o2 + e[t X (7) pl 2.
Similarly,

Q=F(1-7)+P1—-7)+R(1—1).
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On the other hand one may write
n o
Q2=exp itX(1—7)(1+4¢(1+61p)p) =F1—7)+Ro(l—7),

where
|Ro(1—7)| < et X(1—1)p|'/2
We have
fo =EQo (F(1)+ P(1) + R(1)) Q2
=EQq )( (1—7)+P(1—7‘)+R(1—7‘))
+EQoP(1) (F(1—7)+ Ro(1—7)) + EQo R(7) Q2.

In what follows we shall prove that

F(r)(F
P(t)(F

foe~EQoF(r)F(1—r1). (2.8)

First, let us prove that EQq R(7) @2 ~ 0. The random variables R(7) and Q4 are
conditionally independent given o, 7,Y and |Qo| < 1. Hence

|IEQo R(7) Q2| < |EQo EyR(7) Ev/Q2| < EEy |R(7)| |[Ey: Q2.

Proceeding in the same way as above while estimating T, we get

N
1 32 1/2
[y Qof < ll:[l <1 — g Q- EY)? + St (1 -n)aE |Y/|3) _

The estimate
Ey |R(7)| < c(|t[¥* + [t[*/2)|p|*/

which holds uniformly with respect to 7 together with integration with respect to 7
yields

N
E. By |R(r) | |By: Qa| < et/ +[¢*/2) |02 [ 71 (2.9)
=1

where

Ti=(1- —CaE )2+ CtPaEY/F)2  1<I<N

Now we may integrate the product obtained in the right-hand side of (2.9) firstly
with respect to Y and afterwards with respect to a. Applying Lemma 2.1 and (2.1)
we get

N 3/2
Egp*? <2°2E Y pi P BlT < (A4 T).
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Hence,

N
E ([t + 1t2) [pP? [T T < e (1P + 1t2/%) Ea (A + Tz
=1

H’:]z

The expectation E, []... does not exceed

N
8
exp{—E m(t) ¢ + < m(t) ¢ ; E|Vi*} < exp{—C3m(t)t*},

for C1 < |t| < T. We conclude that E Qo R(7) Q2 ~ 0. Proceeding in a similar way
we get EQo F(t)R(1 —71) ~0.
Let us prove that EQq P(7) Ro(1 — 7) ~ 0. Expanding the exponent in powers of
ita,; 7, Y; we get
N N
|Ey P(1)| = 2~ YtpEy ZO,/JTJY exp{ita;7;Y; +it X7 (1)} <clt||p| ZGj Hj,
j=1 j=1
where G; = [t| EY?, and

. 1/2
Hj:= By exp{itX7(r)} < ][] 1—t2alTlEYZQ+%]t\3alTlE|Y2|3 2,

1<ISN,I#]

An application of Lemma 2.2 leads to

N
Ea,,ngexp{—zrlt?m(t) > EY12+3_1|t|3m(t)ZE|Y2|3}
=1

1<I<N, 1#j
<exp{—Csm(t)t*}, (2.10)

for C1 < [t| < T. Here we assumed that > ooy EY? > 1/2, since otherwise
the theorem follows from (2.1). Estimating

N
QI <1, By |X(1-7)[""<¢ EBglpf2<ca+cls, Y Gj<clt
j=1
and using (2.10) we get
|EQo P(T)Ro(1—7)| = aTY!QOHEyP )| Eys |Ro(1—7)|

S C ‘t‘3/2 Z Gj Eaﬂ— HJ E? ’p‘3/2
j=1

< c|t]¥/? exp{—Csm(t)t*} (A + T2).
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Thus we conclude that E Qo P(7) Ro(1 —7) ~ 0.

Let us prove that E Qo P(7) F(1 — 7) ~ 0. Expanding the exponent as above we
get

N
Ey X(7) exp{it X(7)} <c¢ ijl G; H;.
Observe that

|Ey' F(1—-7)| < Eys exp{itX'(1—7)}, forall j.

Hence, E™ X (1) exp{itX(7)} F(1 —7) is bounded from above by

N N
Z G,;E" Eyy exp{itX/(r)+itX'(1—-71)} < Z G; exp{—Csm(t)t*}
j=1 j=1

< c|t| exp{—C3 m(t)tQ},

for C; < |t| < T. The relation EQy P(7) F(1 — 7) ~ 0 now follows provided that
the following estimate holds

|EvQop| <c(1+ Y2+t +1t]) (A+ 1) (2.11)

uniformly in a. Let us prove (2.11). Define

N
p = lel pi, where ;= (1 — ) pr.

We have
EgypQo =EgpQo + R, |R| < |Egy12Qo] < 7o.

Write go(u) := g(u+ 1%) and

N
pQo:=> pjexp{itZgo(l+p)}
j=1

pj exp{it (1 — ;)Y go(1+p) } exp{it Z7 go(1+p) }-

<
Il
—

I
.MZ

Expanding the first exponent we get

pPQo = fs + R,
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where
N

fs(t) = ijl p; exp{it Z7 go(1+ p) }

and N
Eg [R| < c[t] ijl Eg[p; Y| < clt| A,

see the proof of the first inequality of lemma 2.1. Expanding
90(1 4 p) = go(1) + go(1 + 0p) (" + p;)
and then expanding the exponent in fg as follows
o

. n ) . )
exp{itZ’ go(1+p) } =exp itZ7 go(1) +itZ) go(1+6p)p’ +r,

with |r| < c|tZ7 p;|1/2, we get fs = fo + R. Here

N , . _
Jo = ijl Pj exp{itZJgO(l) + it Z7 g\ (14 0p) ﬁ]}

and

N N
|Eg Rl <clt]'? ) By |p; P72V < clt]'? Y By g < clt'? A
j=1 j=1

Here we used the independence of p; and Z7 as well as bounds
Ey |27V < (Ey |27)2)/* < ¢ and ZN Ev|p;|?% <cA
Y — Y — i1 Y Mg =~ .
For the last inequality see the proof of lemma 2.1. Consider the second summand

in the argument of the exponent in fyg. Let DU denote the diagonal part of the
product Z7 p7, that is,

D(j) = Z (1—0zk) ?kﬁk
{1<K<N, k#j}

and let U denote the rest, i.e., UY) + DU) = Z7 5. Expanding the exponent in
powers of it DU) g/ (14 0 p) we obtain fo = fi9 + R, where

N . .
fio(t) = ijl pj expl{it Z9 + it UY g{(1+0p) }
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and

N N N
By [Rl<cltlBy > lo;l D Vipl <cltlBy Y lpjl Y By [Vipil
j=1 {1<I<N,i#5} j=1 =1

Estimating E?Zﬁl lpil < c as it was done in proof of Lemma 2.4 but with x;

instead of p; and estimating Z;L Eg |[Yipi| < cA, we get E¢ |R| < c|t|A.
Let us consider the second summand in the argument of the exponent in f1o. We
may write

U9 go(1+0p) = UV go(1) + U p0 g (146:10p), and UV p=UV 5/ +UD) ;.

Applying simple inequality |exp{i(a + b)} — 1| < ¢ (|a[*/% + [b]3/*), where ¢ > 0 is
an absolute constant, we have

exp{it Z7 +itUY) go(1 4+ 0p) } = exp{it 27 +itUY) g{(1) } + 711 + 72,

where A L
[ra] < [EUD ]2, [ra] < [EUW B2,

Hence,
fio= fu1 + R,

where

N
fu(t) =Y p; exp{itZz +itUY gy(1)},

j=1
N . . .
Bl <Y 1ol (U 3yl /2 4 e UD 111
j=1
Observe that Ey f11 = 0, since p; and (z7,U0)) are independent and Esp; = 0.
Furthermore, estimating
Ey [p;[*? By [UV|2 < cEg |,
Ey |pj| Eg[UY Y PP* < cEg |pj| By (\U(j)|3/2 + |ﬁj|3/2> :

N
ijl Elpj| <c

and using Lemma 2.1 combined with (2.1) we obtain

E¢|R| < c(Jt|2+[t*/*) A.
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Thus (2.11) is proved. We have EQo P(7) F(1 — 7) ~ 0. Similarly, we prove
that E QoF (1) P(1 —7) ~ 0. We arrive at (2.8).

Step 2. Observe that E Qo F(7) F(1 —7) = EQq exp{it X} =: fi2(t). We shall
show that fio ~ . Recall that 1;,1 < i < N, denote independent centered Gaussian
random variables with variances E¢? = EY?2, 1 <i < N. Given a, let us apply
Lemma 2.4 conditionally. We get

N
Ey, ... Ey, exp{it Zizla —a;); } —Eg Qo < c|tfP(A+ ).

Thus, using
E. | Ey exp{itX}| < exp{—Csmi(t)t*},
we obtain n N o
fi2~ Eexp it Z~_1(1 — ;) exp{it X}.
Furthermore,

n N (@) n N o
fio~ Eexp it Zi:l(l — ;) ; exp it Zi:l a0 = exp{—t?/2}.

Here 91, ...,%¢)y denote independent copies of ¢;, 1 <47 < N. Thus Theorem 1.2
is proved.

3. APPENDIX

Proof of Lemma 2.1. Let us prove the first inequality of the Lemma. Recall that
s = a; (n; + M~'Y; EZ;). By the triangle inequality, we have

N N N
) g <m Yy n; > 2 V1R
E i:lYZ%Z <m ¢:1E‘Ylm|+m - EY |M™ " EZ]
since E a; = m. Obviously
E|Yin| <2E|Y;P < cM3E|Z]>.

Similarly EY;? < cM~2E Z?. Consequently, an application of the Hélder inequality
yields EY2 M1 E Z;| < cM—3E|Z;|>. Summing over i we derive the desired bound
E Zf\le Y, <cmA.

To prove the second and the third inequalities of the Lemma, we shall apply
the following well known bound. Assume that Ty = 0,77,...,Tx is a martingale-
difference sequence, that is, E (7} |11,...,T;-1) = 0. Then

N p N
E Zizl T; * < c(p) Zizl E |T;|7, for 1<p<2 (3.1)
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To prove (3.1) define f(u) = |u|P. Then |f'(s) — f'(t)| < c|t — s|P7!, for 1 < p < 2.
Writing S; = T1 + --- + T and expanding into the Taylor series, we have

E f(Sj+1) = Ef(S;) + Ef(S;)Tj41 + R,

where

E|R| < cE[f'(S; +0Tj11) — f(S)l [ Tj41] < cE[Tj4a|".

Thus, it follows that | E f(Sj41) — E f(S;)| < ¢E|[Tj11P, since E f/(S;)Tj41 = 0.
Applying the last inequality iteratively, we derive (3.1).

Let us prove the second inequality of the Lemma. Random variables s, ..., »xn
are independent and have mean zero. Thus, by (3.1),

N 3

2
Dy

since, similarly to the proof of the first inequality, E|s¢;|?/? < cm E|Z;|3.
For the proof of the third inequality E|U[*/2 < ¢m/*A of the Lemma, write
U=W + W', where

W = E Oéi}/i%j, W/: E Oéiifi%j.
1<i<j<N 1<j<i<N

It is sufficient to estimate E|W|3/2 and E |W'|3/2 since |U|3/2 < 2|W[3/2 +2|W'|3/2.
Let us estimate E |[IWW]3/2. The estimation of E|W’|3/2 is similar. Split the sum W
as follows

/2 N 13/2
< 621:1 E |5]7* < cmA, (3.2)

W:Tg—l—"'—l—TN, where Tj:%j(OqYl—l—"'—f—Oéj_lY}_l), 2§j§N

By (3.1), we obtain
W[ < Cz; B|T; >, (3.3)
Furthermore
E|T;? = E|s,?ElayYi + - + aj_1Y;_1 |2
< E | *? (E(a1Yy+ -+ aj—1Yj_1)2)3/4
< em® VB |53

Thus (3.3) together with (3.2) implies E |[W|3/2 < ¢m7/* A, that completes the proof
of the Lemma.

Proof of Lemma 2.3. Recall that

N
S=Yg(1+n+24+713), where A:M—lz;lYiEZi.
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Introduce the statistic t; = t(Z1, ..., Zn) based on observations Z1, ..., Zx. Furher-
more, denote S’ = (Y 4+ C) g(1 + W), where

N
W=n+24+71,+ N1 (Y +0)? and C:M*Z,_lEZﬁ.

To prove the Lemma, it is sufficient to show that

P(VNt<az)-P(VNtz<z) <21, (3.4)
P(\/Ntz<x)— P (S <z) <ecA, (3.5)
P(S'<z)-®(x) <sup P(S<z)—®x) +cT+cA (3.6)

xT

To prove (3.4) notice that the event t(X1,...,Xn) # t(Z1,..., Zy) has probabil-
ity less than II = vazl P(X?>V?).
Let us prove (3.5). It is easy to verify that

Y+ C
VIFW S

VNt(Zy,...,Zxn) =
The function g(u) = 1/y/u, for 1/2 <wu < 7/8. Therefore the event
VNt(Zi,...,Z5) # (Y +C)g(1+ W)

has probability less than P ‘W} > 1/4 . Thus, it suffices to show that P !W‘ >
1/4 < cA. Notice that

W< n|+2/A|+ 2 +2N'Y? +2N "1 C2
By (2.1), we have 15 + 2N ~1C? < 1/8. Therefore
P |[W|>1/4 <P(|n|>1/24)+ P (2|4 >1/24)+ P (2N"'Y? > 1/24).

We have N
< 32 < 1% <
P (|n| >1/24) <cE|n| _cZ:1E|YZ| < cA.

%

Similarly P (2|A| > 1/24) < ¢ E A%? < ¢A. To conclude the proof of (3.5) notice
that

N N
1 3 . 2 _
o5 < ;_1 E|Y;?<A  since ;_1 EY? =1, (3.7)
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and therefore
PN 'Y?>1/24)<cN 'EY?=cN ! <cA
It remains to prove (3.6). Expanding g in powers of N~1(Y + C)? we obtain
S=Yg(1+W)+Cg(1+W)=Yg(1l+n+24+7)+R=S+R,
where
|R| < Ry + Ro, Ry = ¢|C| = ¢To, Ry =cN7'|Y|(Y +C)2

Writing ®(z) = P (£ < ), where ¢ is a standard normal random variable, we have

sup P (S <z)—®(z) <sup P(S<z)—®(@) +5L+1

with

Iy =sup P (€ € [z,0 + 2R, + 2N /7)), I= P (Ry>N"1?).

Chebyshev’s inequality and (2.1) give
L=P(Ro>NY2)<eNV2EY|C?+ E[YP) <ecNTV2
Estimating

I, = sup P(fe [33,3:+2R1+2N_1/2]) <c¢Ry+cN V2 =¢cYy+eN"1/2

and using (3.7) we obtain (3.6), that completes the proof of the Lemma.
Proof of (1.13). For X, X5, ... defined by (1.10) we have
X2 =it 4 o(—1) i Ve i,
Therefore, for 0 < p < 1/2,
P(X{+ +X3Z>N"%2)—1

since

N . N
X4+ X35> 22121 (_1)zi—1/2—p£i + Zi:l 2P,
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the first series in the right-hand side converges a.s. by Kolmogorov’s Three Series
Theorem, and

N
Z~—1 P72 > ¢(p) N1, C(p) > 1, N >2.

Now it follows that
VNt —p 0,

since asymptotically (X7 + -+ Xn)/+/In(V 4 2) is standard normal. That proves
(1.13).

Proof of (1.14). In this case p = 1/2 and in order to prove (1.14) it suffices to show
that
N

T:=By(X2+ -+ X}) 52, where By =% i

For any ¢ > 0, we have
N N
P(|T—2/>2¢)=P (B;VQ Sih@ -2 Y (-0t > 25>
i=1 i=1

N 9 N
<c2BY'E (Zrl(gf - 1)) + P( Sty > ngv).
=1

=1

In the last step we applied the Chebyshev inequality. A simple calculation shows
that the first summand tends to zero as N — 0. The second summand tends to
zero because the series Eiv:l(—i)*lfi converges a.s. by Kolmogorov’s Three Series
Theorem. Hence (1.14) is proved.

Ezample 3.1. The term 15 = M2 Zivzl(E Z;)% in the bound (1.3) is optimal in the
sense that it can not be replaced by

Ty = ZZJM*EZJQM

or by Ti+°, (3.8)
with some 0 > 0. Indeed, fix 0 < ¢ < 1 and introduce the sequence X7, Xo, ...
defined as X; = &+ (—1)%e, where & denote i.i.d. standard normal random variables.
Choose V(N) = v/N. A simple calculation shows that limy_ .., 1> = €2, and that
all other summands in the right hand side of (1.3) tend to zero as N — oo. On the
other hand we have

P(VNt<1)= P(§< 1+e2+R+s(1—(—1)”)/(2\/ﬁ)>, (3.9)
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where R is a random variable such that R -5 0 as N — oo. It follows from (3.9) that
there exists an absolute positive constant ¢ such that

liminf o > lim inf P(VNt<1)-P(<1) >cel (3.10)

i
N—oo

The relations (3.9) and (3.10) contradict to any estimate of the type (1.3) with
terms (3.8) instead of 1% since

lim 5 =0 and lim 710 = &2+,
N—oo N —oo
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