
A BERRY–ESSEEN BOUND FOR STUDENT’S

STATISTIC IN THE NON-I.I.D. CASE

V. Bentkus1 M. Bloznelis1” F. Götze1”

Abstract. We establish a Berry–Esséen bound for Student’s statistic for independent
(non-identically) distributed random variables. The bound is very general and sharp.
In particular, it implies an estimate like to the classical Berry–Esséen bound. In the
i.i.d. case it yields as well the best known sufficient conditions for the Central Limit
Theorem for studentized sums. For non-i.i.d. random variables the bound shows that
the Lindeberg condition is sufficient for the Central Limit Theorem for studentized
sums.

1. Introduction and Results

Let X1, . . . , XN be independent random variables. Let

t = X/σ̂

denote the Student statistic, where

X = N−1 (X1 + · · ·+ XN ), σ̂2 = N−1
∑N

i=1
(Xi −X)2.

We shall investigate the rate of the normal approximation of
√

N t when the random
variables X1, . . . , XN are non-identically distributed. Define

δN = supx

∣∣ P (
√

N t < x)− Φ(x)
∣∣,

where Φ(x) is the standard normal distribution function. Denote

B2
N =

∑N

i=1
VarXi and LN = B−3

N

∑N

i=1
E |Xi|3.
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Theorem 1.1. Let X1, . . . , XN have mean zero and BN > 0. Then there exists an
absolute constant c > 0 such that

δN ≤ cLN . (1.1)

Inequality (1.1) is an extension to the case of studentized sums of the classical
bound by Esséen (1945)

supx

���P (X1 + · · ·+ XN < xBN )− Φ(x)
��� ≤ cLN .

Theorem 1.1 is a consequence of a general result formulated as Theorem 1.2.
For a given number V > 0, define the truncated random variables

Zi = V −1Xi II{X2
i ≤ V 2}, for 1 ≤ i ≤ N, (1.2)

where II {A} denotes the indicator function of the event A. Denote

M2 =
∑N

i=1
VarZi, Π =

∑N

i=1
P

(
X2

i > V 2
)
, Λ = M−3

∑N

i=1
E |Zi|3

and

Υ0 = M−1
���
∑N

i=1
EZi

���, Υ1 = M−1
∑N

i=1
|EZi|, Υ2 = M−2

∑N

i=1
(EZi)2.

Theorem 1.2. Let X1, . . . , XN be arbitrary independent random variables. Then
there exists an absolute constant c > 0 such that, for any V > 0,

δN ≤ cΠ + cΥ0 + cΥ2 + cΛ. (1.3)

Example 3.1 in the Appendix shows that the term Υ2 in the bound (1.3) is optimal.

Corollary 1.1. Let independent random variables X1, . . . , XN be arbitrary. Then
there exists an absolute constant c > 0 such that, for any V > 0,

δN ≤ cΠ + cΥ1 + cΛ.

Let a denote the largest solution of the equation

a2 = EX2
1 II{X2

1 ≤ a2N}. (1.4)

Theorem 1.2 yields the following Berry–Esséen bound for the Student statistic in
the i.i.d. case.



STUDENT’S STATISTIC 3

Corollary 1.2 (Bentkus and Götze (1994)). Let X1, . . . , XN be i.i.d. random vari-
ables. Assume that the largest solution a of the equation (1.4) is positive. There
exists an absolute constant c > 0 such that

δN ≤ cN P (X2
1 ≥ a2N) + cN |EZ1|+ cN E |Z1|3, (1.5)

where
Z1 =

(
a2N

)−1/2
X1 II {X2

1 ≤ a2N}.
The explicit bounds of Theorems 1.1 and 1.2 and Corollaries 1.1 and 1.2 are appli-

cable for any independent random variables X1, . . . , XN . The random variables may
depend on any parameters (for instance, on N). An application of a chosen bound
reduces to estimation of moments or tails of random variables Xi and to summation
over 1 ≤ i ≤ N of expressions obtained since the bounds depend additively on a
separate summand. The bounds are indeed sharp and a lot of consequences may be
derived, for example, the Central Limit Theorem for the Student test under the most
precise known conditions follows (see the discussion at the bottom of the section).

All the results remain valid if instead of the Student statistic
√

N t one considers
the selfnormalized sums defined as

S = X1 + · · ·+ XNq
X2

1 + · · ·+ X2
N

.

In particular, Theorems 1.1, 1.2 and Corollaries 1.1–1.3 hold with δN replaced
by supx

∣∣ P (S < x) − Φ(x)
∣∣. Indeed, (see the argument in the proof of Lemma 2.3

below)
supx

∣∣ P (
√

N t < x)− P (S < x)
∣∣ ≤ cΠ + cΥ0 + cΥ2 + cΛ.

The convergence of selfnormalized sums was investigated by a number of authors,
see, for instance, Efron (1969), Logan, Mallows, Rice and Shepp (1973), LePage,
Woodroofe and Zinn (1981), Griffin and Kuelbs (1989, 1991), Hahn, Kuelbs and
Weiner (1990), Griffin and Mason (1991).

Convergence rates and Edgeworth expansions for Student’s and related statistics
were considered by Chung (1946), Chibisov (1980), Helmers and van Zwet (1982), van
Zwet (1984), Helmers (1985), Slavova (1985), Bhattacharya and Ghosh (1986), Hall
(1987, 1988), Praskova (1989), Friedrich (1989), Bhattacharya and Denker (1990),
Bentkus, Götze and van Zwet (1994), Bentkus and Götze (1994), etc.

For i.i.d. X1, . . . , XN , the rate O(N−1/2) under the 3-rd moment condition was
obtained by Slavova (1985). The bound δN ≤ cN−1/2β3/σ3, where βs = E |X1|s and
σ2 = EX2

1 , follows from a general result of Bentkus and Götze (1994). A related
result O(N−1/2) under the additional condition: there exists y ∈ R such that

E p(y)
(
1− p(y)

)
> 0, where p(y) = P

n
X − y

��� |X − y|
o
,
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was proved by Hall (1988) (see Bai and Shepp (1994) for a discussion of such condi-
tion).

Most of the papers mentioned above deal with the case of independent and iden-
tically distributed random variables. Friedrich (1989) constructed a Berry–Esséen
bound for a general class of statistics without the i.i.d. assumption. In the i.i.d. case
the result of Friedrich (1989) yields δN = O(N−1/2) provided β10/3 is finite, whereas
our result implies δN ≤ cN−1/2β3/σ3.

In the remaining part of the Introduction we shall discuss sufficient conditions
for the Central Limit Theorem (CLT) for studentized sums in i.i.d. and non-i.i.d.
cases. We say that a sequence of studentized sums satisfies the CLT if it converges in
distribution to the standard normal distribution. We are going to apply the bounds
in the particular case when observations X1, . . . , XN are taken from a (fixed) infi-
nite sequence X1, X2, . . . of independent random variables and t = t(X1, . . . , XN ).
By ξ, ξ1, ξ2, . . . we shall denote i.i.d standard normal variables.

The CLT for i.i.d. random variables. Let X1, X2, . . . be i.i.d. Then the right-hand
side of (1.5) tends to zero as N → ∞ if and only if X1 belongs to the domain of
attraction of the standard normal law, see Bentkus and Götze (1994). Thus (1.5)
yields the weakest known sufficient condition for the Central Limit Theorem for
Student’s statistic (Maller (1981), Csörgő and Mason (1987)). There is a conjecture
(communicated for us by D.M. Mason and seemingly difficult to prove) that the
condition is necessary as well.

The CLT for non-i.i.d. random variables. Let X1, X2, . . . denote a sequence of
independent random variables with mean zero and finite variances σ2

i = EX2
i < ∞.

It is well known (Feller (1971)) that if Xi, i ≥ 1, have mean zero then the Lindeberg
condition

∀ ε > 0 B−2
N

∑N

i=1
EX2

i II {X2
i ≥ εB2

N} → 0 (1.6)

is sufficient for
L
�
B−1

N (X1 + · · ·+ XN )
�
→ N(0, 1), (1.7)

and it is necessary for (1.7) provided that

max1≤i≤N σ2
i /B2

N → 0. (1.8)

Corollary 1.3. Assume that X1, X2, . . . have mean zero and satisfy the Lindeberg
condition (1.6). Then δN → 0, that is, L(

√
N t) converge to the standard normal

distribution.

Remark 1.1. Corollary 1.3 tells us that the Lindeberg condition is sufficient for

L(
√

N t) → N(0, 1). (1.9)
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It is interesting to note that the Lindeberg condition (1.6) is not necessary for (1.9)
even if (1.8) holds. More specifically, there exists a sequence (see Example 1.1 below)
of centered independent random variables which satisfies (1.8) and (1.9) and which
fails to satisfy (1.6).

Example 1.1 (cf. Feller (1971), p. 521). Let τ1, τ2, . . . be a sequence of independent
symmetric random variables such that

P
( |τi| = i2

)
= 1− P

( |τi| = 0
)

= i−2 for all i ≥ 1.

Assume that i.i.d. standard normal random variables ξ1, ξ2, . . . are independent
of τ1, τ2, . . . . It is easy to see that independent centered random variables Xi = τi+ξi

satisfy (1.7) and (1.9) and fail to satisfy the Lindeberg condition. In this case

B−1
N (X1 + · · ·+ XN ) →P 0.

Notice as well that in this particular case (1.9) follows from the Borel–Cantelli lemma
(or Corollary 1.1 with V = V (N) =

√
N).

Thus we conclude that in case of finite variance and centered and asymptotically
negligible summands in sense of (1.8) the studentization of the sum may lead to better
results than normalization by BN . However, in general a different situation may
arise. In the following example we construct a sequence X1, X2, . . . of independent
(non-centered) random variables such that (1.7) holds and L(√

N t
)
9 N(0, 1).

Example 1.2. Define

Xi = i−1/2ξi + (−1)ii−p, p > 0. (1.10)

It is easy to see that B2
N ∼ ln(N + 2). Furthermore, X1 + · · · + XN is distributed

as BNξ1 +
∑N

i=1(−1)ii−p. Therefore

L
�
(X1 + · · ·+ XN )/

√
ln(N + 2)

�
→ L(ξ)

converges to the standard normal distribution.
Let V 2 = V 2(N) = log(N + 2). In what follows we show that, for the se-

quence (1.10),
L(√

N t
) → N(0, 1) (1.11)

if and only if ∑N

i=1
(EZi)2 → 0, (1.12)

where r.v. Zi are defined in (1.2). A calculation shows that all terms other
than

∑N
i=1(EZi)2 in the right-hand side of (1.3) tend to 0 as N →∞, for each p > 0.
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Hence (1.12) implies (1.11). Notice that (1.12) holds if and only if p > 1/2. There-
fore, in order to prove the converse implication, (1.11) ⇒ (1.12) it suffices to show
that

√
N t P→ 0, for 0 < p < 1/2, (1.13)

and that

L(√
N t

) → N(0, 1/2), for p = 1/2. (1.14)

Proofs of (1.13) and (1.14) are given in Appendix.
Remark 1.2. Example 1.2 demonstrates that the limiting behavior of the distribu-

tion of studentized sums crucially depends on
∑N

i=1(EZi)2. This observation can be
generalized. Let X1, X2, . . . be a sequence of independent random variables. Assume
that, for a sequence of positive numbers V (N),

∀ ε > 0, max1≤k≤N P (|Xk| > εV (N)) → 0 (1.15)

and
L(

(X1 + · · ·+ XN )/V (N)
) → N(0, 1). (1.16)

Then (see Petrov (1975)), for each ε > 0,

N∑

i=1

P
(
X2

i ≥ ε2V 2(N)
)→ 0,

N∑

i=1

EZi → 0, M → 1,

N∑

i=1

E |Zi − EZi|3 → 0

as N → ∞. Hence if (1.15) and (1.16) hold then (1.12) implies (1.11). A sim-
ple analysis shows that the converse implication (1.11) ⇒ (1.12) is also true pro-
vided (1.15) and (1.16) hold. A similar effect was noticed by Robbins (1948). He
considered the distribution of the Student statistic based on the independent normal
observations Xi ∼ N(µi, σ

2), σ2 > 0, with µi = EXi such that
∑N

i=1 µi = 0. In par-
ticular, Robbins (1948) showed that in this case the distribution function depends
only on N and λ =

∑N
i=1 µ2

i /(2σ2). In his results λ plays a role similar to that
of

∑N
i=1(EZi)2 in our considerations.

2. Proofs

The proofs are close to those given in Bentkus and Götze (1994). By means of
truncation we replace the Student statistic t = t(X1, . . . , XN ) by a smooth function
S = S(X1, . . . , XN ) of the sample (see Lemma 2.3 below). Then we apply Esséen’s
smoothing inequality. When estimating the difference between the characteristic
functions ϕ(t) = exp{−t2/2} and f(t) = E exp{itS} we split f into a conditional
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product of two characteristic functions (different for different values of t) of condition-
ally independent random variables. This type of approach has been used by Helmers
and van Zwet (1982), van Zwet (1984) and was extended in Götze and van Zwet
(1992), Bentkus, Götze and van Zwet (1994) to the case of general symmetric sta-
tistics of i.i.d. random variables. The crucial step of the proof in the non-identically
distributed case is to bound the characteristic function of the sum (which may con-
tain, for example, only one summand) by a characteristic function which splits into
a product. For this purpose we use a randomization by means of Bernoulli random
variables.

The Section is organized as follows. First we shall derive Corollary 1.1 from The-
orem 1.2. Then we shall show that Corollary 1.1 implies Theorem 1.1, Corollary 1.2
and Corollary 1.3. The proof of these implications is simple. The real problem
presents the proof of the main result—Theorem 1.2. Lemmas 2.1–2.4 are needed for
the proof of Theorem 1.2. In particular, the preparatory Lemma 2.4 may serve a
simplified version of the proof of Theorem 1.2: the result of the lemma supplies a
sufficiently precise bound for the difference of the characteristic functions for Fourier
frequencies |t| ≤ 1; for frequencies |t| ≥ 1 much more elaborated techniques is needed
in order to ensure sufficiently fast decrease (as |t| → ∞) of the bound.

Proof of Corollary 1.1. We shall derive the Corollary from Theorem 1.2. Let us
consider two incompatible cases: a) there exists 1 ≤ i ≤ N such that M ≤ |EZi|;
b) for all 1 ≤ i ≤ N , the inverse inequality |EZi| < M holds. In the case a) the
Corollary follows from the trivial bound δN ≤ 1 since the inequality M ≤ |EZi|
implies δN ≤ 1 ≤ M−1|EZi| ≤ Υ1. In the case b) we have M−1|EZi| ≤ 1, for
all 1 ≤ i ≤ N . Consequently, Υ2 ≤ Υ1. Obviously Υ0 ≤ Υ1, and the result follows
from the bound of Theorem 1.2.

Proof of Theorem 1.1. If LN ≥ 1/4, then the desired bound follows from the trivial
estimate δN ≤ 1. Therefore we shall assume that LN ≤ 1/4. Let us apply the
bound δN ≤ cΠ + cΥ1 + cΛ of Corollary 1.1. Choose V = BN . By the Chebyshev
inequality, Π ≤ LN . Obviously Λ ≤ M−3LN . Recall that EXi = 0, and therefore
we have |EZi| = B−1

N |EXiII {X2
i > B2

N}|. Thus, by the Chebyshev inequality, we
obtain Υ1 ≤ M−1LN . To conclude the proof of the Theorem, it suffices to show
that M2 ≥ 1/2. We have

VarZi = EZ2
i − (EZi)2 ≥ B−2

N EX2
i −B−2

N EX2
i II {X2

i ≥ B2
N} − |EZi|

since |Zi| ≤ 1. Applying the Chebyshev inequality and summing over i, we obtain

M2 ≥ 1− LN −
∑N

i=1
|EZi| ≥ 1− 2LN ≥ 1/2

since, again by the Chebyshev inequality,
∑N

i=1 |EZi| ≤ LN , and LN ≤ 1/4.
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Proof of Corollary 1.2. Choose V 2 = a2N and apply Corollary 1.1. Due to the i.i.d.
assumption, we have

δN ≤ cN P (X2
1 ≥ a2N) + cN M−1|EZ1|+ cN M−3 E |Z1|3,

and it remains to show that M2 ≥ 1/2. We can assume that N |EZ1| ≤ 1/2 since
otherwise the trivial bound δN ≤ 1 implies the result. Therefore, due to the choice
of a and |Zi| ≤ 1, we have

M2 = N EZ2
i −N (EZi)2 = 1−N (EZi)2 ≥ 1−N |EZi| ≥ 1/2.

Proof of Corollary 1.3. We have to show that δN → 0 as N → ∞. Let us
choose V = BN , and apply the bound δN ≤ cΠ + cΥ1 + cΛ of Corollary 1.1. Then
it is sufficient to prove that Π → 0, Υ1 → 0 and Λ → 0.

Denote
λε = B−2

N

∑N

i=1
EX2

i II {X2
i ≥ εB2

N}.
Then, for any ε > 0, the Lindeberg condition (1.6) yields λε → 0, as N →∞.

The Chebysvev inequality implies Π ≤ λ1 → 0.
Using EXi = 0, the inequality |EZi| ≤ 1 and the Chebyshev inequality, we have

VarZi = EZ2
i − (EZi)2 ≥ B−2

N EX2
i − 2B−2

N EX2
i II {X2

i ≥ B2
N},

whence, summing over i, we obtain M2 ≥ 1 − 2λ1. Consequently, M ≥ 1/2, for
sufficiently large N .

To bound Υ1, use EXi = 0 and the Chebyshev inequality. Then Υ1 ≤ M−1 λ1,
and Υ1 → 0 since M ≥ 1/2 and λ1 → 0.

It remains to show that Λ → 0. For given 0 < ε < 1, we have

E |Zi|3 = B−3
N E |Xi|3 II {X2

i ≤ ε2B2
N}+ B−3

N E |Xi|3 II {ε2B2
N ≤ X2

i ≤ B2
N}

≤ εB−2
N EX2

i + B−2
N EX2

i II {X2
i ≥ ε2B2

N}.

Multiplying by M−3 and summing over i, we get Λ ≤ εM−3 + λε M−3. Recall that
M ≥ 1/2, for sufficiently large N . Therefore we have 0 ≤ lim supN→∞ Λ ≤ 8ε, and
limN→∞ Λ = 0 follows, since ε > 0 is arbitrary.

It remains to prove Theorem 1.2. Introduce the notation

Yi = M−1(Zi − EZi), 1 ≤ i ≤ N,

Y = Y1 + · · ·+ YN ,

η = η1 + · · ·+ ηN , where ηi = Y 2
i − EY 2

i .
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The random variables Y1, . . . , YN (resp., η1, . . . , ηN ) have means zero and are inde-
pendent. Furthermore,

N∑

i=1

EY 2
i = 1,

N∑

i=1

E |Yi|3 ≤ 8Λ.

We shall assume throughout the rest of the paper that for a small absolute con-
stant c0 > 0,

Λ ≤ c0, Υ2 ≤ c0, Υ0 ≤ c0, (2.1)

since otherwise the result follows from the obvious estimate δN ≤ 1.
Let α = (α1, . . . , αN ) denote a sequence of i.i.d. Bernoulli random variables inde-

pendent of Y1, . . . , YN and such that

P (α1 = 1) = 1− P (α1 = 0) = m with some m ≤ 1.

Lemma 2.1. Assume that (2.1) holds. Denote

κi = αi

(
ηi + M−1Yi EZi

)
, for 1 ≤ i ≤ N.

Then there exists an absolute constant c > 0 such that

E
∣∣∣
∑N

i=1
Yiκi

∣∣∣ ≤ cmΛ, E
∣∣∣
∑N

i=1
κi

∣∣∣
3/2

≤ cmΛ.

The U -statistic

U =
∑

{1≤i,j≤N, i 6=j}
αi Yiκj satisfies E |U |3/2 ≤ cm7/4Λ.

Proof of Lemma 2.1 is given in the Appendix.

Lemma 2.2. Let β be a random variable with finite third moment. Then

∣∣E exp{itβ}∣∣2 ≤ 1− t2 Eβ2 + 4 |t|3
3

E |β|3. (2.2)

Let α1 be a Bernoulli random variable with P (α1 = 1) = 1− P (α1 = 0) = m. Then

E
�
1−α1t

2 Eβ2 +α1
4 |t|3

3
E |β|3

�1/2 ≤ exp
n
− mt2

2
Eβ2 + 2m |t|3

3
E |β|3

o
. (2.3)

Proof of Lemma 2.2. Proof of (2.2) is easy and can be found in Petrov (1975). For-
mula (2.3) is a simple consequence of Jensen’s inequality.

Let g : R → R denote a function which is infinitely many times differentiable with
bounded derivatives and such that

1

8
≤ g(x) ≤ 2, for x ∈ R, and g(x) = 1p

|x| , for 1

2
≤ x ≤ 7

4
.

Define the statistic S = Y g(1 + η + 2A + Υ2), where A = M−1
∑N

i=1 Yi EZi.
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Lemma 2.3. Assume that (2.1) holds. There exists an absolute constant c > 0 such
that

δN ≤ sup
x

∣∣ P (S < x)− Φ(x)
∣∣+cΠ + cΥ0 + cΛ. (2.4)

Proof of Lemma 2.3 is given in the Appendix.
Recall that by ξ, ξ1, ξ2, . . . we denote i.i.d. standard normal r.v. Define

ψi = (EY 2
i )1/2 ξi, 1 ≤ i ≤ N.

In what follows θ and θ1, θ2, . . . denote generic real numbers such that |θ| ≤ 1
and |θi| ≤ 1. Furhtermore, ϑ, ϑ1, ϑ2, . . . denote i.i.d. uniformly distributed in [0, 1]
random variables. For a vector valued differentiable function H, the mean value
formula may be written as

H(b)−H(a) = EH ′(a + ϑ(b− a)
)
(b− a), a, b ∈ R.

We shall use the notation

Eζ F (ζ, β) = E
(
F (ζ, β)

∣∣β )
, Eζ F (ζ, β) = E

(
F (ζ, β)

∣∣ζ )
,

for conditional expectations. For Q = q1 + · · · + qN , we shall denote Qi = Q− qi.
Similarly, Qi,j = Q− qi − qj .

Lemma 2.4. Assume that (2.1) holds. Let H : R → C denote a bounded infinitely
many times differentiable function with bounded derivatives. Then, for 1 ≤ k ≤ N ,

��� EH
(
(Y1 + · · ·+ Yk) g(1 + κ + Υ2)

)− EH(ψ1 + · · ·+ ψk)
��� ≤ cΓ (Λ + Υ2), (2.5)

where

κ =
∑k

i=1
κi, κi = ηi + 2M−1Yi EZi, 1 ≤ i ≤ N,

and

Γ =
�
|H|∞ + 1

�
|H ′|3/4

∞ + |H ′|∞ + |H ′′|∞ + |H ′′′|∞, |H|∞ = sup
x
|H(x)|.

Proof of Lemma 2.4. We shall prove the lemma for k = N only. Then the sums
in (2.5) are equal to Υ2 and Λ respectively, L(ψ1 + · · ·+ ψN ) = L(ξ), and it suffices
to prove that

��� EH
(
Y g(1 + κ + Υ2)

)− EH(Y g(1 + κ)
��� ≤ cΓ Υ2,∣∣ EH(Y g(1 + κ)

)− EH(Y )
∣∣ ≤ cΓ Λ
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and ∣∣ EH(Y )− EH(ξ)
∣∣ ≤ cΓ Λ.

Expanding g in powers of Υ2 and then expanding H we obtain the first inequality.
The proof of the third inequality is easy and does not differ from that of given in
Bentkus et al. (1990) where the i.i.d. case was considered.

Let us prove the second inequality. Expanding g in powers of κ we have

Y g(1 + κ) = Y g(1) + Y κ g′(1 + θ1κ) = Y + D g′(1 + θ1κ) + U g′(1 + θ1κ).

Here we split Y κ into the sum D + U , where

D =
∑N

i=1
Yiκi, U =

∑
1≤i,j≤N, i 6=j

Yiκj .

Expanding H in powers of D g′(1 + θ1κ) we obtain

EH
(
Y g(1 + κ)

)
= EH(Y + U g′(1 + θ1κ)) + R

with |R| ≤ cΓ E |D|. An application of Lemma 2.1 gives E |R| ≤ cΓ Λ. Expanding

U g′(1 + θ1κ) = U g′(1) + U θ1κ g′′(1 + θθ1κ)

and applying the inequalities

∣∣H(s)−H(t)
∣∣ ≤ |H ′|∞ |t− s| ≤

�
|H ′|∞ |t− s|

�3/4
,

for |H ′|∞ |t− s| ≤ 1, and

∣∣H(s)−H(t)
∣∣ ≤ |H|∞ ≤ |H|∞

(|H ′|∞ |t− s|)3/4
,

for |H ′|∞ |t− s| > 1, we get

EH(Y + U g′(1 + θ1κ)) = EH(Y + U g′(1)) + R

with
|R| ≤ cΓ E

( |U | |κ|)3/4 ≤ cΓ
�

E |U |3/2 + E |κ|3/2
�
≤ cΓ Λ.

In the last step we applied the inequality ab ≤ a2 + b2 with a = |U |3/4 and b = |κ|3/4

and Lemma 2.1. Since H ′, H ′′ are uniformly bounded, we can write

EH(Y + U g′(1)) = EH(Y ) + EH ′(Y ) U g′(1) + R,



12 V. BENTKUS M. BLOZNELIS F. GÖTZE

with
|R| ≤ cΓ E |U |3/2 ≤ cΓ Λ.

It remains to estimate

EH ′(Y ) U = E
∑

1≤i,j≤N, i 6=j
Yiκj H ′(Y ).

Recall that Y i denotes the sum Y without summand Yi. The Taylor expansion
of H ′(Y ) = H ′(Y i + Yi) in powers of Yi and EYi = 0 yield

E Yiκj H ′(Y i + Yi) = E Yiκj

[
H ′′(Y i)Yi + H ′′′(Y i + ϑ2ϑ1 Yi)ϑ1 Y 2

i

]
,

where ϑ1 and ϑ2 are mutually independent (and independent of Y1, . . . , YN ) random
variables uniformly distributed in [0, 1]. Thus E H ′(Y )U = R1 + R2 where

R1 = E
∑

1≤i,j≤N, i 6=j

Y 2
i κj H ′′(Y i),

and
|R2| ≤ cΓ

∑

1≤i,j≤N

E |Yi|3 E |κj | ≤ cΓ Λ.

Here we estimated

|κj | ≤ |ηj |+
∣∣Yj M−1 EZj

∣∣,
∣∣Yj M−1 EZj

∣∣ ≤ Y 2
j +

(
M−1 EZj

)2

and
∑N

j=1
E |κj | ≤ c

∑N

j=1
E (Yj)2 +

∑N

j=1

(
EY 2

j + (M−1 EZj)2
) ≤ c.

Let us estimate |R1|. Expanding

H ′′(Y i) = H ′′(Y i,j + Yj) = H ′′(Y i,j) + Yj H ′′′(Y i,j + ϑYj)

and using E κj = 0 we have

E Y 2
i κj H ′′(Y i) = E Y 2

i κj Yj H ′′′(Y i,j + ϑYj).

Hence

|R1| ≤ cΓ

N∑

i=1

EY 2
i

N∑

j=1

E |κj Yj | ≤ cΓ

N∑

j=1

E |κj Yj | ≤ cΓ Λ

Thus proving the lemma.
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Proof of Theorem 1.2. Without loss of generality we shall assume that (2.1) is
fulfilled. An application of Lemma 2.3 reduces the proof to the verification of the
inequality

sup
x

��� P
(
S < x

)− P
(
ξ < x

) ��� ≤ cΛ + cΥ2, (2.6)

assuming that (2.1) holds.
In order to prove (2.6) let us apply the Esséen inequality for characteristic func-

tions. Write

f(t) = E exp{itS} = E exp{itY g(1 + η + 2A + Υ2)},
ϕ(t) = E exp{itξ} = exp{−t2/2}.

Estimating ∫

|t|≤C1

∣∣f(t)− ϕ(t)
∣∣ dt/|t| ≤ cΛ + cΥ2

by Lemma 2.4, we see that (2.6) is a consequence of

∫

C1≤|t|≤T

|f(t)− ϕ(t)|/|t|dt ≤ cΛ + cΥ2, (2.7)

where T = c1/(
∑N

i=1 E |Yi|3). Here we may choose the absolute constant C1 suffi-
ciently large, and the absolute constant c1 sufficiently small. We may assume that
the interval (C1, T ) is non-empty since otherwise the theorem follows from (2.1).

Define the function

m(t) = C2
ln t

t2
<

1

2
, for C1 ≤ |t| ≤ T,

where C2 is a sufficiently large absolute constant. Throughout the proof we shall
write h ' g if ∫

C1≤|t|≤T

∣∣h(t)− g(t)
∣∣ dt/|t| ≤ cΛ + cΥ2.

In particular, (2.7) is equivalent to f ' ϕ. We shall prove the inequality (2.7)
in two steps. In the first step using randomization by means of Bernoulli random
variables with the parameter m(t) we shall split f into a product of two conditionally
independent characteristic functions. The first characteristic function will account
for the contribution of the m(t)-th part of the sum Y1 + · · ·+ YN and will ensure the
convergence of the integral, cf. Bentkus and Götze (1994).

Step 1. Let (Y 1, . . . , Y N ) denote an independent copy of (Y1, . . . , YN ). Recall
that α1, . . . , αN denotes a sequence of i.i.d. Bernoulli random variables, assume that
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P (α1 = 1) = 1− P (α1 = 0) = m(t) and assume that all these random variables are
independent. It is easy to verify that

f(t) = E exp
{

it(X + Z)g(1 + γ + ρ)
}
,

where

X = α1Y1 + · · ·+ αNYN , Z = (1− α1)Y 1 + · · ·+ (1− αN )Y N ,

γ =
N∑

i=1

αiγi with γi = ηi + 2M−1Yi EZi,

ρ =
N∑

i=1

(1− αi)ρi + Υ2 with ρi = ηi + 2M−1Y i EZi,

ηi = Y
2

i − EY
2

i , 1 ≤ i ≤ N.

Let us show that
f(t) ' f2(t) = E exp{itW},

where
W = X g(1 + ρ) + U g′(1 + ρ) + Z g(1 + ρ) + Z γg′(1 + ρ)

and
U =

∑

{1≤j,k≤N, j 6=k}
αjYj αk γk.

Denote D =
∑N

i=1 αiYiγi. Expanding g(1 + γ + ρ) in powers of γ we have

(X + Z)g(1 + γ + ρ) = X g(1 + ρ) + X γg′(1 + ρ + θ1γ)

+ Z g(1 + ρ) + Z g′(1 + ρ)γ + Z g′′(1 + ρ + θ2 γ)θ3 γ2;

X γg′(1 + ρ + θ1γ) = (D + U)g′(1 + ρ + θ1γ)

= Dg′(1 + ρ + θ1γ) + U g′(1 + ρ) + U θ1γ g′′(1 + ρ + θ4γ),

Expanding now the exponent in powers of itDg′(1 + ρ + θ1 γ) we obtain

f(t) = f1(t) + R, f1(t) = E exp{itW + itr},

with
r = Z g′′(1 + ρ + θ2γ)θ3γ2 + U θ1 γ g′′(1 + ρ + θ4 γ)

and
|R| ≤ c |t| E |D| ≤ c |t|m(t)Λ.
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In the last estimate we applied Lemma 2.1. Since the function u → exp{iu} and it’s
derivatives are uniformly bounded there exists an absolute constant c > 0 such that

f1(t) = f2(t) + R

and |R| ≤ c|t|3/4 E |r|3/4. The inequality ab ≤ a2 + b2 with a = |U |3/4 and b = |γ|3/4

implies

E |r|3/4 ≤ c E |γ|3/2 E Y |Z|3/4 + c E |U γ|3/4

≤ c E |γ|3/2 + c E |U |3/2

≤ cm(t)Λ + cm7/4(t)Λ.

In the last step we estimated E Y |Z|3/4 ≤ c uniformly over α and applied lemma 2.1.
We have ∣∣f(t)− f2(t)

∣∣ ≤ c(|t|+ |t|3/4)m(t)Λ.

Hence f ' f2 because the factor m(t) ensures the convergence of the integral with
respect to the measure dt/|t| as |t| → ∞.

Since the function u → exp{iu} and it’s derivatives are bounded there exists an
absolute constant c > 0 such that

∣∣f2(t)− f3(t)− f4(t)
∣∣ ≤ R,

where

f3(t) = E exp{it [X g(1 + ρ) + Z g(1 + ρ) + Z γg′(1 + ρ)]},
f4(t) = E exp

n
it [X g(1 + ρ) + Z g(1 + ρ) + Z γg′(1 + ρ)]

o
itU g′(1 + ρ)

and |R| ≤ c |t|3/2 E |U |3/2. Applying Lemma 2.1 we get

|R| ≤ c|t|3/2m7/4(t)Λ.

Hence f2 ' f3 + f4. Furthermore, denoting

f5(t) = E exp
n

it [X g(1 + ρ) + Z g(1 + ρ)]
o

itU g′(1 + ρ),

we have ∣∣f4(t)− f5(t)
∣∣≤ |t|3/2R, with R = E |U | |Z γ|1/2.

Estimating E Y |Z|1/2 ≤ (
E Y |Z|2

)1/4 ≤ c uniformly with respect to α we obtain

R = E |U | |Zγ|1/2 ≤ cE |U | |γ|1/2 E Y |Z|1/2

≤ c E |U | |γ|1/2 ≤ c(E |U |3/2 + E |γ|3/2) ≤ cm(t)Λ.
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In the last step we used the inequality a2/3b1/3 ≤ a + b with a2/3 = |U | and
b1/3 = |γ|1/2 and applied Lemma 2.1. Since the integral with respect to the mea-
sure |t|3/2m(t) dt

|t| converges, we conclude that f4 ' f5. We rewrite f5(t) in a more

convenient form such that some independent random variables get separated. Write

Pk,l := exp{it [Xk,l g(1 + ρ) + Z g(1 + ρ)]}g′(1 + ρ), 1 ≤ k, l ≤ N, k 6= l.

Recall that Xk,l denotes the sum α1Y1 + · · ·+ αN YN with the summands αk Yk and
αl Yl removed. Then

f5(t) =

itE α

∑

{1≤k,l≤N, k 6=l}
E ααkYk exp

n
itαkYkg(1 + ρ)

o
αlγl exp{itαlYlg(1 + ρ)} × Pk,l.

Expanding the exponents in powers of itαk Yk g(1 + ρ) and itαl Yl g(1 + ρ) we have

|f5(t)| ≤ c |t|E α

∑

{1≤k,l≤N, k 6=l}
αk c |t| EY 2

k αl |t|E |γl Yl|

≤ c |t|3m2(t)
N∑

i=1

E |γl Yl|

= c |t|3m2(t)Λ.

Here we used the fact that Yk, γl and Pk,l are independent, for k 6= l, |Pk,l| ≤ c and
EYk = 0, E γl = 0. Hence f5 ' 0 and we conclude that f ' f3. We shall show that
f3 ' f6 + f7, where

f6(t) =E exp
{

it [X g(1 + ρ) + Z g(1 + ρ)]},
f7(t) =E itZ γ g′(1 + ρ) exp{it [X g(1 + ρ) + Z g(1 + ρ)]}.

Using the inequality
| exp{ia} − 1− ia| ≤ |a|3/2

with a = tZ γ g′(1 + ρ) we obtain f3(t) = f6(t) + f7(t) + |t|3/2R, where

|R| ≤ c E |γ|3/2 E Y |Z|3/2 ≤ cE |γ|3/2 ≤ cm(t)Λ.

Thus f3 ' f6 + f7. Next we will prove that f7 ' 0. Introduce for brevity

Tj := E Xj exp{itXj g(1 + ρ)}, Q := exp
n

itZ g(1 + ρ)
o

Z g′(1 + ρ).
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Then

f7(t) = itE
N∑

j=1

αj γj exp{itαj Yj g(1 + ρ)}Tj Q.

Expanding the exponent and estimating |αj | ≤ 1 we have

|f7(t)| ≤ c |t|2 E α

N∑

i=1

EYj
|γj Yj |E α|Tj | |Q|.

Using inequality (2.2) with β = Yl αl g(1+ρ) and with expectation taken with respect
to Yl and using the fact that 1/8 ≤ g ≤ 2 we get

|Tj | ≤ T ′j :=
∏

1≤l≤N, l 6=j

(1− 1

64
t2αl EY 2

l + 32

3
|t|3αl E |Yl|3)1/2.

Using the simple bound EY |Q| ≤ c and inequality (2.3) for Eα T ′j we get

E |Q|T ′j ≤ cET ′j ≤ c exp{−W/2} ≤ c exp{−10−3t2m(t)},

where

W = t2 m(t)

64

∑

{1≤l≤N, l 6=j}
EY 2

l −
32

3
|t|3 m(t)

N∑

i=1

E |Yl|3 ≥ 500−1 t2 m(t).

The last inequality is true for C1 ≤ |t| ≤ T , provided that E |Yj |2 ≤ 1/2 which is
satisfied due to (2.1) (otherwise E |Yi|3 ≥ (E |Yi|2)3/2 ≥ c0). Thus we have

|f7(t)| ≤ c |t|2 exp{−C3 t2m(t)}
N∑

i=1

E |γi Yi| ≤ c |t|2 exp{−C3 t2 m(t)}Λ,

where C3 is a sufficiently large absolute positive constant. Hence, f7 ' 0.
It remains to prove that f6 ' ϕ. Introduce the sequence of i.i.d Bernoulli random

variables

τ = (τ1, . . . , τN ) such that P (τ1 = 1) = P (τ1 = 0) = 1/2.

Let (Y ′
1 , . . . , Y ′

N ) be independent copy of (Y1, . . . , YN ). Assume that

τ, α, (Y1, . . . , YN ), (Y 1, . . . , Y N ) and (Y ′
1 , . . . , Y ′

N )
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are independent. Denote

X(τ) = α1 τ1Y1 + · · ·+ αN τN YN

and
X(1− τ) = α1 (1− τ1)Y ′

1 + · · ·+ αN (1− τN )Y ′
N .

Observe that X(τ) and X(1− τ) are conditionally independent given α and τ .
We have

f6(t) = E exp
{

itZ g(1 + ρ)
}

exp
n

it
(
X(τ) + X(1− τ)

)
g(1 + ρ)

o
.

Write

Q0 := exp{it Z g(1 + ρ)}, Q1 := exp{itX(τ) g(1 + ρ)},
Q2 := exp{itX(1− τ) g(1 + ρ)}.

Expanding g(1 + ρ) in powers of ρ we obtain

g(1 + ρ) = g(1) + g′(1)ρ + θ1 g′′(1 + θ2ρ)ρ2.

Expanding the exponents

exp
{

itX(τ)θ1 g′′(1 + θ2ρ) ρ2} = 1 + r1 with |r1| ≤ c |tX(τ)ρ2|3/4,

exp
{−2−1 itX(τ)ρ

}
= 1− 2−1 itX(τ)ρ + r2 with |r2| ≤ c |tX(τ)ρ|3/2

we get

Q1 =exp
{

itX(τ) (1 + g′(1)ρ + θ1 g′′(1 + θ2ρ)ρ2)
}

=exp
{

itX(τ)
}

exp
{−2−1 itX(τ)ρ

}
exp

{
itX(τ)θ1 g′′(1 + θ2ρ)ρ2

}

=F (τ) + P (τ) + R(τ),

where

F (τ) = exp
{

itX(τ)
}
, P (τ) = −2−1 itX(τ)ρ exp

{
itX(τ)

}

and ∣∣R(τ)
∣∣ ≤ c |tX(τ)|3/4 |ρ|3/2 + c |tX(τ)ρ|3/2.

Similarly,
Q2 = F (1− τ) + P (1− τ) + R(1− τ).
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On the other hand one may write

Q2 = exp
n

itX(1− τ)
(
1 + g′(1 + θ1 ρ)ρ

)o
= F (1− τ) + R0(1− τ),

where
|R0(1− τ)| ≤ c |tX(1− τ)ρ|1/2.

We have

f6 =EQ0

(
F (τ) + P (τ) + R(τ)

)
Q2

=EQ0 F (τ)
(
F (1− τ) + P (1− τ) + R(1− τ)

)

+EQ0 P (τ)
(
F (1− τ) + R0(1− τ)

)
+ EQ0 R(τ) Q2.

In what follows we shall prove that

f6 ' EQ0 F (τ)F (1− τ). (2.8)

First, let us prove that EQ0 R(τ)Q2 ' 0. The random variables R(τ) and Q2 are
conditionally independent given α, τ, Y and |Q0| ≤ 1. Hence

|EQ0 R(τ) Q2| ≤ |EQ0 E Y R(τ) E Y ′Q2| ≤ EEY |R(τ)| |EY ′ Q2|.

Proceeding in the same way as above while estimating Tj , we get

|EY ′ Q2| ≤
N∏

l=1

(
1− 1

64
t2 (1− τl)αl E (Y ′

l )2 + 32

3
|t|3 (1− τl)αl E |Y ′

l |3
)1/2

.

The estimate
EY

∣∣R(τ)
∣∣ ≤ c (|t|3/4 + |t|3/2) |ρ|3/2

which holds uniformly with respect to τ together with integration with respect to τ
yields

Eτ EY

∣∣R(τ)
∣∣ ∣∣EY ′ Q2

∣∣ ≤ c (|t|3/4 + |t|3/2) |ρ|3/2
N∏

l=1

Tl, (2.9)

where

Tl = (1− 1

128
t2αl E (Y ′

l )2 + 16

3
|t|3αl E |Y ′

l |3)1/2, 1 ≤ l ≤ N.

Now we may integrate the product obtained in the right-hand side of (2.9) firstly
with respect to Y and afterwards with respect to α. Applying Lemma 2.1 and (2.1)
we get

EY |ρ|3/2 ≤ 23/2 E
���
∑N

i=1
ρi

���
3/2

+ 23/2 Υ
3/2
2 ≤ c(Λ + Υ2).
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Hence,

E (|t|3/4 + |t|3/2) |ρ|3/2
N∏

l=1

Tl ≤ c (|t|3/4 + |t|3/2)Eα (Λ + Υ2)
N∏

l=1

Tl.

The expectation E α

∏
. . . does not exceed

exp{− 1

256
m(t)t2 + 8

3
m(t) |t|3

N∑

i=1

E |Yi|3} ≤ exp{−C3 m(t)t2},

for C1 ≤ |t| ≤ T . We conclude that EQ0 R(τ)Q2 ' 0. Proceeding in a similar way
we get EQ0 F (τ)R(1− τ) ' 0.

Let us prove that EQ0 P (τ)R0(1− τ) ' 0. Expanding the exponent in powers of
itαj τj Yj we get

∣∣EY P (τ)
∣∣ =

���2−1 tρEY

N∑

j=1

αj τj Yj exp
{

itαj τj Yj + itXj(τ)
} ��� ≤ c |t| |ρ|

N∑

j=1

Gj Hj ,

where Gj = |t| EY 2
j , and

Hj :=
���EY exp

{
itXj(τ)

} ��� ≤
∏

1≤l≤N,l 6=j

�
1− t2αl τl EY 2

l + 4

3
|t|3 αl τl E |Yl|3

�1/2
.

An application of Lemma 2.2 leads to

Eα,τ Hj ≤ exp
{
−4−1 t2 m(t)

∑

1≤l≤N, l 6=j

EY 2
l + 3−1 |t|3 m(t)

N∑

l=1

E |Yl|3
}

≤ exp{−C3 m(t)t2}, (2.10)

for C1 ≤ |t| ≤ T . Here we assumed that
∑

1≤l≤N, l 6=j EY 2
l > 1/2, since otherwise

the theorem follows from (2.1). Estimating

|Q0| ≤ 1, EY ′
∣∣X(1− τ)

∣∣1/2 ≤ c, EY |ρ|3/2 ≤ cΛ + cΥ2,

N∑

j=1

Gj ≤ c |t|.

and using (2.10) we get
∣∣ EQ0 P (τ)R0(1− τ)

∣∣ = Eα,τ,Y |Q0|
∣∣EY P (τ)

∣∣EY ′
∣∣R0(1− τ)

∣∣

≤ c |t|3/2
N∑

j=1

Gj Eα,τ Hj EY |ρ|3/2

≤ c |t|3/2 exp{−C3 m(t)t2} (Λ + Υ2).
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Thus we conclude that EQ0 P (τ) R0(1− τ) ' 0.

Let us prove that EQ0 P (τ)F (1− τ) ' 0. Expanding the exponent as above we
get ��� EY X(τ) exp

{
it X(τ)

} ��� ≤ c
∑N

j=1
Gj Hj .

Observe that

∣∣ EY ′ F (1− τ)
∣∣ ≤

��� EY ′ exp
{

itXj(1− τ)
} ���, for all j.

Hence,
���Eτ X(τ) exp

{
itX(τ)

}
F (1− τ)

��� is bounded from above by

N∑

j=1

Gj Eτ
��� EY,Y ′ exp

{
itXj(τ) + itXj(1− τ)

} ��� ≤
N∑

j=1

Gj exp{−C3 m(t)t2}

≤ c |t| exp{−C3m(t)t2},

for C1 ≤ |t| ≤ T . The relation EQ0 P (τ)F (1 − τ) ' 0 now follows provided that
the following estimate holds

|EY Q0ρ| ≤ c
(
1 + |t|1/2 + |t|3/4 + |t|) (Λ + Υ2) (2.11)

uniformly in α. Let us prove (2.11). Define

ρ̂ :=
∑N

l=1
ρ̂l, where ρ̂l = (1− α)ρl.

We have
EY ρQ0 = EY ρ̂Q0 + R, |R| ≤ |EY Υ2Q0| ≤ Υ2.

Write g0(u) := g(u + Υ2) and

ρ̂ Q0 : =
N∑

j=1

ρ̂j exp
{

itZ g0(1 + ρ̂)
}

=
N∑

j=1

ρ̂j exp
{

it (1− αj)Y j g0(1 + ρ̂)
}

exp
{

itZj g0(1 + ρ̂)
}
.

Expanding the first exponent we get

ρ̂Q0 = f8 + R,
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where
f8(t) =

∑N

j=1
ρ̂j exp

{
it Zj g0(1 + ρ̂)

}

and
EY |R| ≤ c |t|

∑N

j=1
EY |ρ̂j Y j | ≤ c |t|Λ,

see the proof of the first inequality of lemma 2.1. Expanding

g0(1 + ρ̂) = g0(1) + g′0(1 + θρ̂) (ρ̂j + ρ̂j)

and then expanding the exponent in f8 as follows

exp
{

itZj g0(1 + ρ̂)
}

= exp
n

itZj g0(1) + itZj g′0(1 + θ ρ̂) ρ̂j
o

+ r,

with |r| ≤ c |tZj ρ̂j |1/2, we get f8 = f9 + R. Here

f9 =
∑N

j=1
ρ̂j exp

{
itZjg0(1) + itZj g′0(1 + θ ρ̂) ρ̂j

}

and

|EY R| ≤ c |t|1/2
N∑

j=1

EY |ρ̂j |3/2 |Zj |1/2 ≤ c |t|1/2
N∑

j=1

EY |ρ̂j |3/2 ≤ c |t|1/2 Λ.

Here we used the independence of ρ̂j and Zj as well as bounds

EY |Zj |1/2 ≤ (
EY |Zj |2 )1/4 ≤ c and

∑N

i=1
EY |ρ̂j |3/2 ≤ cΛ.

For the last inequality see the proof of lemma 2.1. Consider the second summand
in the argument of the exponent in f9. Let D(j) denote the diagonal part of the
product Zj ρ̂j , that is,

D(j) =
∑

{1≤k≤N, k 6=j}
(1− αk) Y k ρ̂k

and let U (j) denote the rest, i.e., U (j) + D(j) = Zj ρ̂j . Expanding the exponent in
powers of itD(j) g′0(1 + θ ρ̂) we obtain f9 = f10 + R, where

f10(t) =
∑N

j=1
ρ̂j exp

{
it Zj + it U (j) g′0(1 + θρ̂)

}
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and

EY |R| ≤ c |t|EY

N∑

j=1

|ρ̂j |
∑

{1≤l≤N,l 6=j}
|Y l ρ̂l| ≤ c |t|EY

N∑

j=1

|ρj |
N∑

l=1

EY |Y l ρl|.

Estimating E Y

∑N
j=1 |ρj | ≤ c as it was done in proof of Lemma 2.4 but with κj

instead of ρj and estimating
∑N

l=1 EY |Y l ρl| ≤ cΛ, we get EY |R| ≤ c |t|Λ.
Let us consider the second summand in the argument of the exponent in f10. We

may write

U (j) g′0(1+ θ ρ̂) = U (j) g′0(1)+U (j) ρ̂θ g′′0 (1+ θ1 θ ρ̂), and U (j) ρ̂ = U (j) ρ̂j +U (j) ρ̂j .

Applying simple inequality | exp{i(a + b)} − 1| ≤ c
( |a|1/2 + |b|3/4

)
, where c > 0 is

an absolute constant, we have

exp
{

itZj + itU (j) g′0(1 + θ ρ̂)
}

= exp
{

itZj + itU (j) g′0(1)
}

+ r1 + r2,

where
|r1| ≤ |tU (j) ρ̂j |1/2, |r2| ≤ |tU (j) ρ̂j |3/4.

Hence,
f10 = f11 + R,

where

f11(t) =
N∑

j=1

ρ̂j exp
{

itZj + itU (j) g′0(1)
}
,

|R| ≤
N∑

j=1

|ρ̂j |
(
|t U (j) ρ̂j |1/2 + |t U (j) ρ̂j |3/4

)
.

Observe that EY f11 = 0, since ρ̂j and (Zj , U (j)) are independent and EY ρ̂j = 0.
Furthermore, estimating

EY j
|ρj |3/2 EY |U (j)|1/2 ≤ cEY j

|ρj |3/2,

EY j
|ρj | EY |U (j) ρ̂j |3/4 ≤ cEY j

|ρj | EY

(
|U (j)|3/2 + |ρ̂j |3/2

)
,

∑N

j=1
E |ρj | ≤ c

and using Lemma 2.1 combined with (2.1) we obtain

EY |R| ≤ c
( |t|1/2 + |t|3/4

)
Λ.
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Thus (2.11) is proved. We have EQ0 P (τ) F (1 − τ) ' 0. Similarly, we prove
that E Q0F (τ) P (1− τ) ' 0. We arrive at (2.8).

Step 2. Observe that E Q0 F (τ) F (1 − τ) = EQ0 exp{itX} =: f12(t). We shall
show that f12 ' ϕ. Recall that ψi, 1 ≤ i ≤ N , denote independent centered Gaussian
random variables with variances Eψ2

i = EY 2
i , 1 ≤ i ≤ N . Given α, let us apply

Lemma 2.4 conditionally. We get

��� Eψ1 . . .EψN
exp

{
it

∑N

i=1
(1− αi)ψi

}−EY Q0

��� ≤ c |t|3(Λ + Υ2).

Thus, using
Eα

∣∣ EY exp{itX}
∣∣ ≤ exp{−C3m(t)t2},

we obtain
f12 ' E exp

n
it

∑N

i=1
(1− αi)ψi

o
exp{itX}.

Furthermore,

f12 ' E exp
n

it
∑N

i=1
(1− αi)ψi

o
exp

n
it

∑N

i=1
αi ψ

′
i

o
= exp{−t2/2}.

Here ψ′1, . . . , ψ
′
N denote independent copies of ψi, 1 ≤ i ≤ N . Thus Theorem 1.2

is proved.

3. Appendix

Proof of Lemma 2.1. Let us prove the first inequality of the Lemma. Recall that
κi = αi

(
ηi + M−1 Yi EZi

)
. By the triangle inequality, we have

E
���
∑N

i=1
Yiκi

��� ≤ m
∑N

i=1
E |Yi ηi|+ m

∑N

i=1
EY 2

i |M−1 EZi|

since Eαi = m. Obviously

E |Yi ηi| ≤ 2E |Yi|3 ≤ cM−3 E |Zi|3.

Similarly EY 2
i ≤ cM−2 EZ2

i . Consequently, an application of the Hölder inequality
yields EY 2

i |M−1 EZi| ≤ cM−3 E |Zi|3. Summing over i we derive the desired bound
E
���
∑N

i=1 Yiκi

��� ≤ cmΛ.
To prove the second and the third inequalities of the Lemma, we shall apply

the following well known bound. Assume that T0 = 0, T1, . . . , TN is a martingale-
difference sequence, that is, E (Tj |T1, . . . , Tj−1) = 0. Then

E
���
∑N

i=1
Ti

���
p ≤ c(p)

∑N

i=1
E |Ti|p , for 1 ≤ p ≤ 2. (3.1)
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To prove (3.1) define f(u) = |u|p. Then |f ′(s) − f ′(t)| ≤ c |t − s|p−1, for 1 < p ≤ 2.
Writing Sj = T1 + · · ·+ Tj and expanding into the Taylor series, we have

E f(Sj+1) = E f(Sj) + E f ′(Sj)Tj+1 + R,

where
E |R| ≤ cE |f ′(Sj + θTj+1)− f ′(Sj)| |Tj+1| ≤ cE |Tj+1|p.

Thus, it follows that
∣∣ E f(Sj+1) − E f(Sj)

∣∣ ≤ cE |Tj+1|p, since E f ′(Sj)Tj+1 = 0.
Applying the last inequality iteratively, we derive (3.1).

Let us prove the second inequality of the Lemma. Random variables κ1, . . . ,κN

are independent and have mean zero. Thus, by (3.1),

���
∑N

i=1
κi

���
3/2 ≤ c

∑N

i=1
E |κi|3/2 ≤ cmΛ, (3.2)

since, similarly to the proof of the first inequality, E |κi|3/2 ≤ cm E |Zi|3.
For the proof of the third inequality E |U |3/2 ≤ cm7/4 Λ of the Lemma, write

U = W + W ′, where

W =
∑

1≤i<j≤N
αi Yiκj , W ′ =

∑
1≤j<i≤N

αi Yiκj .

It is sufficient to estimate E |W |3/2 and E |W ′|3/2 since |U |3/2 ≤ 2 |W |3/2 +2 |W ′|3/2.
Let us estimate E |W |3/2. The estimation of E |W ′|3/2 is similar. Split the sum W
as follows

W = T2 + · · ·+ TN , where Tj = κj (α1Y1 + · · ·+ αj−1Yj−1), 2 ≤ j ≤ N.

By (3.1), we obtain

E |W |3/2 ≤ c
∑N

j=2
E |Tj |3/2. (3.3)

Furthermore

E |Tj |3/2 = E |κj |3/2 E |α1Y1 + · · ·+ αj−1Yj−1|3/2

≤ E |κj |3/2
(
E (α1Y1 + · · ·+ αj−1Yj−1)2

)3/4

≤ cm3/4 E |κj |3/2.

Thus (3.3) together with (3.2) implies E |W |3/2 ≤ cm7/4Λ, that completes the proof
of the Lemma.

Proof of Lemma 2.3. Recall that

S = Y g(1 + η + 2A + Υ2), where A = M−1
∑N

i=1
Yi EZi.
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Introduce the statistic tZ = t(Z1, . . . , ZN ) based on observations Z1, . . . , ZN . Furher-
more, denote S′ = (Y + C) g(1 + W ), where

W = η + 2A + Υ2 + N−1(Y + C)2 and C = M−1
∑N

i=1
EZi.

To prove the Lemma, it is sufficient to show that

��� P
(√

N t < x
)− P

(√
N tZ < x

) ��� ≤ 2Π, (3.4)
��� P

(√
N tZ < x

)− P
(
S′ < x

)��� ≤ cΛ, (3.5)
��� P

(
S′ < x

)− Φ(x)
��� ≤ sup

x

��� P
(
S < x

)− Φ(x)
��� + cΥ0 + cΛ. (3.6)

To prove (3.4) notice that the event t(X1, . . . , XN ) 6= t(Z1, . . . , ZN ) has probabil-
ity less than Π =

∑N
i=1 P (X2

i > V 2).
Let us prove (3.5). It is easy to verify that

√
N t(Z1, . . . , ZN ) = Y + C√

1 + W
.

The function g(u) = 1/
√

u, for 1/2 ≤ u ≤ 7/8. Therefore the event

√
N t(Z1, . . . , ZN ) 6= (Y + C)g

(
1 + W

)

has probability less than P
�∣∣W ∣∣ > 1/4

�
. Thus, it suffices to show that P

� ∣∣W ∣∣ >

1/4
�
≤ cΛ. Notice that

|W | ≤ |η|+ 2 |A|+ Υ2 + 2N−1Y 2 + 2N−1C2.

By (2.1), we have Υ2 + 2N−1 C2 ≤ 1/8. Therefore

P
�∣∣W ∣∣ > 1/4

�
≤ P

( |η| > 1/24
)

+ P
(
2 |A| > 1/24

)
+ P

(
2N−1 Y 2 > 1/24

)
.

We have
P

( |η| > 1/24
) ≤ c E |η|3/2 ≤ c

∑N

i=1
E |Yi|3 ≤ cΛ.

Similarly P
(
2 |A| > 1/24

) ≤ c EA3/2 ≤ cΛ. To conclude the proof of (3.5) notice
that

1√
N
≤

N∑

i=1

E |Yi|3 ≤ Λ since
N∑

i=1

EY 2
i = 1, (3.7)
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and therefore

P (2N−1 Y 2 > 1/24) ≤ cN−1 EY 2 = cN−1 ≤ cΛ.

It remains to prove (3.6). Expanding g in powers of N−1(Y + C)2 we obtain

S′ = Y g (1 + W ) + C g (1 + W ) = Y g(1 + η + 2A + Υ2) + R = S + R,

where

|R| ≤ R1 + R2, R1 = c |C| = c Υ0, R2 = c N−1 |Y | (Y + C)2.

Writing Φ(x) = P
(
ξ < x

)
, where ξ is a standard normal random variable, we have

sup
x

��� P
(
S′ < x

)− Φ(x)
��� ≤ sup

x

��� P
(
S < x

)− Φ(x)
��� + I1 + I2

with

I1 = sup
x

P
(
ξ ∈ [x, x + 2R1 + 2N−1/2]

)
, I2 = P

(
R2 ≥ N−1/2

)
.

Chebyshev’s inequality and (2.1) give

I1 = P
(
R2 > N−1/2

) ≤ cN−1/2
(
E |Y |C2 + E |Y |3) ≤ cN−1/2.

Estimating

I2 = sup
x

P
(
ξ ∈ [x, x + 2R1 + 2N−1/2]

) ≤ cR1 + cN−1/2 = c Υ0 + cN−1/2,

and using (3.7) we obtain (3.6), that completes the proof of the Lemma.

Proof of (1.13). For X1, X2, . . . defined by (1.10) we have

X2
i = i−1 ξ2

i + 2(−1)i i−1/2−p ξi + i−2p.

Therefore, for 0 < p < 1/2,

P
(
X2

1 + · · ·+ X2
N > N1−2p

) → 1

since
X2

1 + · · ·+ X2
N ≥ 2

∑N

i=1
(−1)i i−1/2−p ξi +

∑N

i=1
i−2p,
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the first series in the right-hand side converges a.s. by Kolmogorov’s Three Series
Theorem, and

∑N

i=1
i−2p > c(p)N1−2p, C(p) > 1, N ≥ 2.

Now it follows that √
N t →P 0,

since asymptotically (X1 + · · ·+ XN )/
√

ln(N + 2) is standard normal. That proves
(1.13).

Proof of (1.14). In this case p = 1/2 and in order to prove (1.14) it suffices to show
that

T := B−2
N (X2

1 + · · ·+ X2
N ) P→ 2, where B2

N =
∑N

i=1
i−1.

For any ε > 0, we have

P
( |T − 2| > 2ε

)
= P

(
B−2

N

���
N∑

i=1

i−1 (ξ2
i − 1) + 2

N∑

i=1

(−1)i i−1 ξi

��� > 2ε
)

≤ ε−2 B−4
N E

( N∑

i=1

i−1 (ξ2
i − 1)

)2

+ P
(���

N∑

i=1

(−1)i i−1 ξi

��� > εB2
N

)
.

In the last step we applied the Chebyshev inequality. A simple calculation shows
that the first summand tends to zero as N → 0. The second summand tends to
zero because the series

∑N
i=1(−i)−1 ξi converges a.s. by Kolmogorov’s Three Series

Theorem. Hence (1.14) is proved.

Example 3.1. The term Υ2 = M−2
∑N

i=1(EZi)2 in the bound (1.3) is optimal in the
sense that it can not be replaced by

Γδ :=
∑N

i=1

∣∣M−1 EZi

∣∣2+δ or by Υ 1+δ
2 , (3.8)

with some δ > 0. Indeed, fix 0 < ε < 1 and introduce the sequence X1, X2, . . .
defined as Xi = ξi +(−1)i ε, where ξi denote i.i.d. standard normal random variables.
Choose V (N) =

√
N . A simple calculation shows that limN→∞ Υ2 = ε2, and that

all other summands in the right hand side of (1.3) tend to zero as N → ∞. On the
other hand we have

P (
√

N t < 1) = P
(
ξ <

√
1 + ε2 + R + ε

(
1− (−1)n

)
/(2

√
N)

)
, (3.9)
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where R is a random variable such that R
P→ 0 as N →∞. It follows from (3.9) that

there exists an absolute positive constant c such that

lim inf
N→∞

δN ≥ lim inf
N→∞

��� P
(√

N t < 1
)− P (ξ < 1)

��� ≥ c ε2. (3.10)

The relations (3.9) and (3.10) contradict to any estimate of the type (1.3) with
terms (3.8) instead of Υ2 since

lim
N→∞

Γδ = 0 and lim
N→∞

Υ 1+δ
2 = ε2+2δ.
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Friedrich, K.O., A Berry–Esséen bound for functions of independent random variables, Ann. Statist.
17 (1989), 170–183.

Götze, F. and van Zwet, W., Edgeworth expansions for asymptotically linear statistics, SFB 343
Preprint 91–034, Universität Bielefeld, 1991, revised version 1992.

Griffin, P.S. and Kuelbs, J.D., Self-normalized laws of the iterated logarithm, Ann. Probab. 17
(1989), 1571–1601.

Griffin, P.S. and Kuelbs, J.D., Some extensions of the LIL via self-normalizations, Ann. Probab.
19 (1991), 380–395.



30 V. BENTKUS M. BLOZNELIS F. GÖTZE

Griffin, P.S. and Mason, D.M., On the asymptotic normality of self-normalized sums, Math. Proc.
Camb. Phil. Soc. 109 (1991), 597–610.

Hahn, M.G., Kuelbs, J. and Weiner, D.C., The asymptotic joint distribution of self-normalized
censored sums and sums of squares, Ann. Probab. 18 (1990), 1284–1341.

Hall, P., Edgeworth expansion for Student’s t statistic under minimal moment conditions, Ann.
Probab. 15 (1987), 920–931.

Hall, P., On the effect of random norming on the rate of convergence in the Central Limit Theorem,
Ann. Probab. 16 (1988), 1265–1280.
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van Zwet, W.R., A Berry–Esséen bound for symmetric statistics, Z. Wahrsch. verw. Gebiete 66

(1984), 425–440.


