
CENTRAL LIMIT THEOREM
FOR STOCHASTICALLY CONTINUOUS PROCESSES.

CONVERGENCE TO STABLE LIMIT (REVISED).

M. Bloznelis
ABSTRACT. Let X = {X(t), t ∈ [0, 1] } be a stochastically continuous cadlag
process. Assume that the k dimensional finite joint distributions of X are in the
domain of normal attraction of a strictly p-stable, 0 < p < 2, measure on Rk for
all 1 ≤ k < ∞. For functions f, g such that Λp

(|X(s) − X(u)|) < g(u − s) and
Λp

(|X(s) − X(t)| ∧ |X(t) − X(u)|) < f(u − s), 0 ≤ s ≤ t ≤ u ≤ 1, conditions
are found which imply that the distributions L(

n−1/p(X1 + · · · + Xn)
)
, n ≥ 1,

converge weakly in D[0, 1] to the distribution of a p-stable process. Here X1, X2, ...
are independent copies of X and Λp(Z) = supt>0 tpP{|Z| > t} denotes the weak
p-th moment of a random variable Z.
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1. INTRODUCTION AND STATEMENT OF RESULTS.
Let X = {X(t), t ∈ [0, 1] } be a stochastically continuous random process with
sample paths in D[0, 1] (the space of real cadlag functions, i.e., functions which are
right continuous and have left limits). We say that X satisfies the central limit
theorem with index p in the space D[0, 1] (in short X ∈ CLTp(D)), 0 < p < 2, if
the distributions L(Sn) of Sn = n−1/p(X1 + · · · + Xn), n ≥ 1, converge weakly in
D[0, 1] endowed with the Skorohod topology to the distribution of a p-stable cadlag
process. Here X1, X2, ... are independent copies of X.

In the case when p=2, i.e., when the limiting process is Gaussian, the central
limit theorem in D[0, 1] was considered by a number of authors: Hahn(17), Giné and
Zinn(12), Juknevičiene(19), Paulauskas and Stieve(23), Bézandry and Fernique(5),
Bloznelis and Paulauskas(7,8), Fernique(11), etc. For p < 2, the CLTp(D) is less
investigated. Giné and Marcus(13) considered CLTp(D) of stochastic integrals with
respect to Levy processes. Dehling et al(9) proved CLTp(D) for empirical processes
weighted by random variables that belong to the domain of normal attraction of a
p-stable law, see Example 2 below. Most of the papers devoted to the CLT with a
p-stable limit, 0 < p ≤ 2, deal with the processes whose sample paths are continuous
or belong to some Banach space: Marcus and Woyczyński(21), Araujo and Giné(2),
Marcus and Pisier(22), etc. In the present paper we prove the CLT for stochastically
continuous processes in the case when the limiting process is p-stable, 0 < p < 2,
and cadlag.

Usually, cf. Ref. 5, 8, 11, conditions for X to satisfy CLT2(D) are formulated
in terms of moments of increments |X(s)−X(u)| and

∣∣X(s)−X(t)
∣∣∧

∣∣X(t)−X(u)
∣∣,

s ≤ t ≤ u. It is well known, see, e.g. Feller(10), that if a random variable Z is in
the domain of normal attraction of a p-stable law then the weak p-th moment

Λp(Z) = sup
t>0

tpP(|Z| > t)

is finite, whereas E|Z|p = +∞. Therefore, we shall use weak moments of increments.
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Our aim is to obtain sufficient conditions for X to satisfy CLTp(D) in terms of
Λp(X(u)−X(s)) and Λp(|X(s)−X(t)| ∧ |X(t)−X(u)|).

Let f, g be nonnegative increasing functions such that f(0) = g(0) = 0. We
shall assume that

Λp(X(s)−X(u)) ≤ g(u− s), 0 ≤ s ≤ u ≤ 1, (1.1)

and

Λp(|X(s)−X(t)| ∧ |X(t)−X(u)|) ≤ f(u− s), 0 ≤ s ≤ t ≤ u ≤ 1. (1.2)

Theorem 1. Let 1 < p < 2 . Suppose that X = {X(t), t ∈ [0, 1] } is random
process such that

(i) the k dimensional finite joint distributions of X are in the domain of
normal attraction of a strictly p-stable measure on Rk for all 1 ≤ k < ∞;

(ii) conditions (1.1) and (1.2) hold with f , g such that
∫

0

u−1−1/pf1/p(u)du < ∞ (1.3)

and ∫

0

u−1−1/(2p)g1/p(u)du < ∞. (1.4)

Then the process X has a version X ′ with sample paths in D[0, 1] and X ′ ∈
CLTp(D).

Here and in what follows c, c1, c2, . . . denote generic absolute constants. We
shall write c(T1, T2, . . .) when the constant depends on T1, T2, . . ..

Notice that in Theorem 1 we do not assume that X is stochastically continuous
and cadlag. These two properties are ensured by the conditions (1.1-2) and (1.3-4).
Condition (1.1) - (1.4) implies stochastic continuity (st.c.). Furthermore, condition
(1.2) - (1.3) yields that st.c. process X has a cadlag version, say X ′.

In Example 1 we show that condition (1.3) is close to the optimal for 1 < p < 2.
Unfortunately, we are not able to check optimality of the condition (1.4).

Next we give sufficient conditions for CLTp(D) in the case when 0 < p < 1.
Theorem 2. Let 0 < p < 1. Assume that X satisfies condition (i) of Theorem

1. If conditions (1.1) and (1.2) hold with f , g such that

f(t) ≤ c|t| ln−(p+1+ε)(1 + |t|−1) (1.5)

and
g(t) ≤ c|t|1/2 ln−(p+1/2+ε)(1 + |t|−1). (1.6)

then X has a version X ′ with sample paths in D[0, 1] and X ′ ∈ CLTp(D).
Bass and Pyke(3) proved a central limit theorem for triangular arrays of in-

dependent random variables with values in the space of set-indexed functions that
are outer continuous with inner limits (a generalization of D[0, 1]). An applica-
tion of this general result yields sufficient conditions for X ∈ CLTp(D), but these
conditions are uncomparable with the conditions of Theorems 1 and 2.
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Proposition 1. Assume that X is symmetric, i.e. L(X) = L(−X). Suppose
that X satisfies conditions of Theorem 2, but with p = 1. Then X has a version X ′

with sample paths in D[0, 1] and X ′ ∈ CLT1(D).

Notice that conditions (1.3-4) are sharper than (1.5-6). This is because for
1 < p < 2, we apply precise weak compactness criteria (of probability measures on
D[0, 1] ) due to Bezandry and Fernique(5). This criteria is not applicable to the
case 0 < p ≤ 1.

Example 1 (cf. Hahn(15,16)). Let 1 < p < 2. Put
(
Ω,P

)
=

(
[0, 1], λ

)
, where

λ denotes the Lebesgue measure. For k ≥ 1, on the probability space (Ω, P) define
the process

ηk(t, ω) =
∞∑

i=1

min
{
n2/p, lnk

(
c(k)|t− ω|)}II

{
(n + 1)−1 < ω < n−1

}
,

ω ∈ Ω, t ∈ [0, 1]. Here the function ln k is defined by induction:

ln 0(x) = |x| and ln k(x) =
∣∣ln k−1 |x|

∣∣, k ≥ 1.

We choose the constant c(k) small enough to satisfy

ln r

(
c(k)|t− ω|) > 1000, t ∈ [0, 1], ω ∈ Ω, t 6= ω, 1 ≤ r ≤ k.

Consider the process
X = θp ηk,

where θp is a standard p-stable random variable
(
E exp{itθp} = exp{−|t|p}

)
inde-

pendent of ηk. It is easy to see that the process X is symmetric, sample continuous
and satisfies condition (i) of Theorem 1. Moreover, calculations show that condi-
tions (1.1-2) are satisfied with the functions

f(u) = c(k, p) hk,p,0(u) and g(u) = c(k, p)hk,p,0(u),

where

hk,p,ε(u) = |u|
(
ln1+ε

k−1(u) lnk−2(u) · · · ln1(u)
)−p

, k ≥ 2, and h1,p,ε(u) = |u|, ε ≥ 0.

Obviously, g satisfies (1.4) and f fails to satisfy (1.3). Furthermore, we have
E‖ηk‖p = ∞. Here ‖x‖ = supt∈[0,1] |x(t)| denotes the norm of an element x of the
Banach space C[0, 1]. Hence, by Lemma 2.1 of Ref. 14, L(

n−1/p(X1 + · · · + Xn)
)

does not converge weakly in the space C[0, 1] and therefore X /∈ CLTp(D). Another
proof of the fact that X /∈ CLTp(D) could be obtained using the same argument as
in Hahn(16).

Observe that condition (1.3) is close to the optimal since f(u) = hk,p,ε(u)
satisfies (1.3), for each ε > 0.

In the next example an application of Theorem 1 yields the weak convergence
(in D[0, 1]) of weighted empirical processes.
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Example 2. Let U,U1, U2, . . . be i.i.d. r. variables uniformly distributed in
[0, 1]. Let V, V1, V2, . . . be i.i.d. r. variables independent of the sequence {Ui, i ≥ 1}
such that V belongs to the domain of normal attraction of some strictly p-stable
law. Define an empirical process with random weights

Fn(t) = n−1/p
n∑

i=1

w(t)Vi II
{
Ui ≤ t

}
, n ≥ 1.

Here w is a nonrandom function. In Ref. 9 the weak convergence of L(Fn) was
obtained in the case when w ≡ 1 and 1 < p < 2. If w ≡ 1 then an application
of Theorems 1 and 2 yields the weak convergence of L(Fn) for 0 < p < 2, p 6= 1.
Proposition 1 applies to the case p = 1, ω ≡ 1 provided that V is symmetric, i.e.,
L(V ) = L(−V ). Moreover, if 1 < p < 2 and w(t) = t−1/pm(t), t ∈ (0, 1], where
m is positive, continuous and nondecreasing function, then Theorem 1 yields the
weak convergence of L(Fn) provided that, for some δ > 1/p, m(t) = O

(
ln−δ(t−1)

)
as t → 0, t > 0.

Remark 1. Let Y = {Y (t), t ∈ [0, 1] } be a Levy process with the parameter
p ∈ (0, 2) (p-stable process with independent increments). It is easy to see that for
each q < 2p,

E
(|Y (t)− Y (s)| ∧ |Y (u)− Y (t)|)q

< ∞
Hence, it could be reasonable to consider the condition

E
(|X(t)−X(s)| ∧ |X(u)−X(t)|)q

< f(u− s)

with some q < 2p instead of (1.2).
Remark 2. Theorems 1, 2 and Proposition 1 remain true if f(u − s) and

g(u − s) in the right-hand sides of (1.1-2) are replaced by f
(
F (u) − F (s)

)
and

g
(
G(u)−G(s)

)
, where F, G are increasing continuous functions.

2. PROOFS.
In the proofs we use the technique developed in Ref. 5. The step towards the
non Gaussian limit case is made using several facts from the theory of stable type
Banach spaces.

A Banach space (E, ‖ · ‖) is said to be of stable type p if for every sequence
(xn) ⊂ E the convergence of

∑ ‖xn‖p implies the convergence of
∑

gnxn almost
surely, where the gn’s are independent standard p-stable random variables.

Theorem 3 (Theorem 1 in Ref. 25, see also Ref.21). A Banach space E is of
stable type p for 0 < p < 2, if and only if there exists a constant C > 0 such that

Λp(‖
n∑

i=1

Zi‖) ≤ C

n∑

i=1

Λp(‖Zi‖) (2.1)

for all symmetric independent E-valued r. variables Z1, Z2, ..., Zn such that
Λp(‖Zi‖) < ∞, i = 1, 2, ..., n, n ≥ 1.

Remark 3. If p > 1 then (2.1) holds for non symmetric but centered r.
variables as well, see the Remark after Theorem 4.12 in Ref. 24. An inspection of
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the proof of Theorem 1 in Ref. 25 shows that (2.1) holds for non-symmetric random
variables if p < 1.

In what follows Theorem 3 is applied to E = R. It seems that similar results
to Theorems 1 and 2 could be formulated for E-valued cadlag processes (processes
with sample paths in D([0, 1], E)), where E is a Banach space of stable type, e.g.
Hilbert space.

In what follows we present some known results concerning weak moments and
two criteria of the weak compactness of sequences of probability measures on D[0, 1].
Denote

Np(‖Z‖) = sup
{
P(A)−1/q

∫

A

‖Z‖dP ; A ∈ F , P(A) > 0
}
, p > 1.

Then for q = p/(p− 1)

(
Λp(‖Z‖)

)1/p ≤ Np(‖Z‖) ≤ q
(
Λp(‖Z‖)

)1/p
, (2.2)

see e.g. Chapter 5. in Ref. 20.
Lemma 1 (Hoffmann-Jorgensen, see Ref. 18). Let X1, ..., Xn be independent

symmetric a Banach space valued random variables. Then for all s, t > 0,

P(‖X1+ · · ·+Xn‖ > 2t+s) ≤ P( sup
1≤i≤n

‖Xi‖ > s)+P2(‖X1+ · · ·+Xn‖ > t), (2.3)

where ‖ · ‖ denotes the norm of the Banach space.
Denote

∆x(s, t, u) = |x(s)− x(t)| ∧ |x(t)− x(u)|, x ∈ D[0, 1], 0 ≤ s ≤ t ≤ u ≤ 1.

The following theorem is a simple corollary of Theorem 1.3 in Ref. 5.
Theorem 4. Let p, q > 1. Let {Xn, n ≥ 1} be a sequence of stochastically

continuous processes defined on a probability space (Ω,F , P ) with sample paths in
D[0, 1]. Assume that the sequence {Xn, n ≥ 1} is equicontinuous in probability
at the points {0; 1} and, for each t ∈ [0, 1], the sequence of real random variables
{Xn(t), n ≥ 1} is stochastically bounded. Assume that there exist nondecreasing
functions f , g with f(0) = g(0) = 0 such that

∫

0

(u−1−1/pf1/p(u) + u−1−1/qg1/q(u))du < ∞.

If, for each n ≥ 1,

∀ 0 ≤ s ≤ t ≤ u ≤ 1 and ∀ A ∈ F ,

E∆Xn(s, t, u) II{A} ≤ f1/p(u− s)P (A)1−1/p + g1/q(u− s)P (A)1−1/q

then the sequence {L(Xn), n ≥ 1} is weakly relatively compact in D[0, 1].
Lemma 2 (cf. Remark 2. in Ref. 7). Let γ1, γ2 > 0. Let {Xn, n ≥ 1}

be sequence of processes with sample paths in D[0, 1]. Assume that the sequence
{Xn, n ≥ 1} is equicontinuous in probability at the points {0; 1} and for each t in
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[0, 1] the sequence of real random variables {Xn(t), n ≥ 1} is stochastically bounded.
Assume that there exist a constant c > 0 and a number ε > 0 such that for each
n ≥ 1 and λ > 0,

P(∆Xn
(s, t, u) ≥ λ) ≤

cλ−γ1 |u− s| ln−γ1−1−ε(1 + |u− s|−1) + cλ−γ2 |u− s| ln−γ2−1−ε(1 + |u− s|−1),

0 ≤ s ≤ t ≤ u, then the sequence {L(Xn), n ≥ 1} is weakly relatively compact in
D[0, 1].

Proof of Lemma 2. In the proof we use the scheme of (finite–dimensional)
approximation elaborated in Ref. 5. By Theorem 15.3 in Ref. 6, it suffices to show
that for each λ > 0

sup
n

P(W (Xn, η) > λ) → 0 as η → 0, (2.4)

where

W (x, η) := sup{∆x(s, t, u) : 0 ≤ s ≤ t ≤ u ≤ 1, |u− s| ≤ η}+

sup{|x(t)− x(0)|+ |x(1− t)− x(1)| : 0 ≤ t ≤ η},
x ∈ D[0, 1]. Denote

S′k = {j · 2−k, 0 ≤ j ≤ 2k}, t+k = inf{s ∈ S′k, s > t}, t−k = sup{s ∈ S′k, s ≤ t}.

By Lemma 1.3.1 in Ref. 5,

W (Xn, 2−J−1) ≤ 4I1 + I2 + I3 + I4,

where

I1 =
∑

k≥J

sup
t∈S′

k+1\S′k
∆Xn(t−k , t, t+k ), I2 = sup

s∈S′
J
\{0;1}

∆Xn(s− 2−J , s, s + 2−J)

and
I3 =

∣∣Xn(0)−Xn(2−J)
∣∣, I4 =

∣∣Xn(1)−Xn(1− 2−J)
∣∣.

We have

P(W (Xn, 2−J−1) > 7λ) ≤
4∑

j=1

P(Ij > λ). (2.5)

Put
c−1
0 =

∑

k≥1

k−1 log−2(2 + k).

Then
P(I1 > λ) ≤

P(I1 > λc0

∑

k≥J

k−1 log−2(2 + k)) ≤
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∑

k≥J

P( sup
t∈S′

k+1\S′k
∆Xn

(t−k , t, t+k ) > λc0k
−1 log−2(2 + k)) ≤

c
∑

k≥J

2k
[(

λk−1 log−2(2 + k)
)−γ12−k log−1−γ1−ε(2k)+

(
λk−1 log−2(2 + k)

)−γ22−k log−1−γ2−ε(2k)
] ≤

cλ−γ1
∑

k≥J

k−1−ε log2γ1(2 + k) + cλ−γ2
∑

k≥J

k−1−ε log2γ2(2 + k) = o(1) (2.6)

as J → +∞. Similarly,

P(I2 > λ) ≤ cλ−γ1J−1−γ1−ε + cλ−γ2J−1−γ2−ε. (2.7)

Now (2.4) follows from (2.5), (2.6), (2.7) and the fact that I3 and I4 tend to zero in
probability, since the sequence {Xn, n ≥ 1} is equicontinuous in probability at the
points {0; 1}. Lemma 2 is proved

Proof of theorem 1. Assume that all random variables considered in the theo-
rem are defined on a common probability space, say (Ω,F , P ). First we construct
a version of X with sample paths in D[0, 1]. By (1.1), (1.4), the process X is
stochastically continuous. It follows from (2.2) and (1.2), (1.3) that

E∆X(s, t, u) II{A} ≤ c(p)
(
Λp(∆X(s, t, u))

)1/p
P(A)1−1/p

≤ c(p)f1/p(u− s)P(A)1−1/p.

Now an application of Theorem 1.2 of Ref. 5 yields that the process X has a
version with sample paths in D[0, 1]. Hence, in what follows we may and shall
assume (without loss of generality) that X is cadlag.

It remains to prove the weak compactness of the sequence {L(Sn), n ≥ 1}. For
this purpose we use Theorem 4. It follows from Lemma 3 below that

P(∆Sn(s, t, u) > λ)

≤ c(p)λ−pf(u− s) + c(p)λ−2p(f2(u− s) + g2(u− s)), 0 ≤ s ≤ t ≤ u ≤ 1.

Fix 0 ≤ s ≤ t ≤ u ≤ 1. We have

∆Sn(s, t, u) ≤ Z1 + Z2,

where
Z1 = Z II

{|Z| > m
}
, Z2 = Z II

{|Z| ≤ m
}
, Z = ∆Sn(s, t, u)

and

m =
((

f2(u− s) + g2(u− s)
)
/f(u− s)

)−1/p

.

Simple calculation shows that

Λp(Z1) ≤ 2c(p) f(u− s) and Λ2p(Z2) ≤ 2c(p)
(
f2(u− s) + g2(u− s)

)
.
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By (2.2), for each A ∈ F ,

EZ1 II{A} ≤ c(p)f1/p(u− s)P1−1/p(A)

and
EZ2 II{A} ≤ c(p)

(
f2(u− s) + g2(u− s)

)1/2p
P1−1/2p(A)

≤ c(p)
(
f1/p(u− s) + g1/p(u− s)

)
P1−1/2p(A).

Hence, for each A ∈ F ,

E∆Sn
(s, t, u)II{A} ≤ c(p)f1/p(u− s)P (A)1−1/p + c(p)g1/p(u− s)P (A)1−1/(2p).

An application of Theorem 4 yields the weak compactness of the sequence {Sn, n ≥
1}. This together with the condition (i) completes the proof.

Proof of theorem 2. To construct a cadlag version X ′ we proceed as in the
proof of Theorem 15.7 in Ref. 6. Only now we use Proposition 1 in Ref. 7 instead
of Theorem 12.5 in Ref. 6 which was used in the proof of Theorem 15.7 ibidem.
Hence, in what follows we may and shall assume (without loss of generality) that
X is cadlag.

Lemmas 2 and 3 (below) and condition (i) yield that the sequence
{L(Sn), n ≥ 1} converges weakly to some p-stable distribution on D[0, 1] and
complete the proof.

Lemma 3. Let 0 < p < 2. Let X be a random process satisfying conditions
(1.1) and (1.2). Let X1, X2, . . . be independent copies of X. Assume that X is
centered if p > 1, and that X is symmetric if p = 1. Then for each λ > 0 and each
n ≥ 1,

P(∆Sn(s, t, u) > λ)

≤ c(p)λ−pf(u− s) + c(p)λ−2p(f2(u− s) + g2(u− s)), 0 ≤ s ≤ t ≤ u ≤ 1.

Proof of lemma 3. We need to estimate the probability P(∆Sn(s, t, u) > λ).
Firstly, we estimate this probability in the case when processes are symmetric.

Let X ′, X ′
1, X

′
2, ... be independent copies of the r. process X. Let ε, ε1, ε2, ... be

i.i.d. Bernoulli r. variables. We assume that the sequences {Xi, i ≥ 1}, {X ′
i, i ≥ 1}

and {εi, i ≥ 1} are independent. Denote

X∗ = ε(X −X ′), S′n = n−1/p
n∑

i=1

X ′
i, S∗n = n−1/p

n∑

i=1

εi(Xi −X ′
i).

Put

x∗ = n−1/p(X∗(t)−X∗(s)), y∗ = n−1/p(X∗(u)−X∗(t)), m∗ = |x∗| ∧ |y∗|

and
u = |x∗| −m∗, v = |y∗| −m∗, α = sign(x∗), β = sign(y∗).

We have
∆S∗n(s, t, u) =
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|
n∑

i=1

εiαim
∗
i +

n∑

i=1

εiαiui| ∧ |
n∑

i=1

εiβim
∗
i +

n∑

i=1

εiβivi| ≤

∣∣
n∑

i=1

εiαim
∗
i

∣∣ +
∣∣

n∑

i=1

εiβim
∗
i

∣∣ +
∣∣

n∑

i=1

εiαiui

∣∣ ∧
∣∣

n∑

i=1

εiβivi

∣∣.

Hence,
P(∆S∗n(s, t, u) ≥ λ) ≤ I1 + I2 + I3, (2.8)

where

I1 = P
(∣∣

n∑

i=1

εiαim
∗
i

∣∣ ≥ λ/3
)
, I2 = P

(∣∣
n∑

i=1

εiβim
∗
i

∣∣ ≥ λ/3
)

and

I3 = P
(
|

n∑

i=1

εiαiui

∣∣ ∧ ∣∣
n∑

i=1

εiβivi

∣∣ ≥ λ/3
)
.

Let us estimate I1 and I2. Put

x = n−1/p(X(t)−X(s)), y = n−1/p(X(u)−X(t)), x′ = n−1/p(X ′(t)−X ′(s)),

y′ = n−1/p(X ′(u)−X ′(t)), m = |x| ∧ |y|, m′ = |x′| ∧ |y′|.
By Hoffmann-Jorgensen’s inequality, see Lemma 1,

P(|
n∑

i=1

εiαim
∗
i | ≥ 3λ) ≤

n∑

i=1

P(|m∗
i | ≥ λ) + P2(|

n∑

i=1

εiαim
∗
i | ≥ λ). (2.9)

The inequality

|m∗| ≤ m + m′ + |x′| ∧ |y|+ |x| ∧ |y′|

yields

P(m∗
i ≥ 4λ) ≤ P(m ≥ λ) + P(m′ ≥ λ) + P(|x′| ∧ |y| ≥ λ) + P(|x| ∧ |y′| ≥ λ).

Since X and X ′ are independent, we have

P(m∗
i ≥ λ) ≤ cn−1λ−p2f(u− s) + cn−2λ−2p2g2(u− s) (2.10).

Hence, the first summand in the right-hand side of (2.9)

n∑

i=1

P(m∗
i ≥ λ) ≤ cλ−pf(u− s) + cλ−2pg2(u− s). (2.11)

On the other hand,

P(m∗
i ≥ 4λ) ≤ P(m ≥ λ) + P(m′ ≥ λ) + P(|x′| ≥ λ) + P(|y′| ≥ λ) ≤

n−1λ−p2f(u− s) + n−1λ−p2g(u− s).
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Therefore,
Λp(m∗

i ) ≤ cn−1
(
f(u− s) + g(u− s)

)
(2.12).

To estimate the last summand of (2.9) we combine (2.12) and (2.1):

P(|
n∑

i=1

εiαim
∗
i | ≥ λ) ≤

λ−pΛp

( n∑

i=1

εiαim
∗
i

) ≤ c(p)λ−p
n∑

i=1

Λp(m∗
i ) ≤ c(p)λ−p

(
f(u− s) + g(u− s)

)
.

We have

P2
(|

n∑

i=1

εiαim
∗
i | ≥ λ

) ≤ c(p)λ−2p
(
f2(u− s) + g2(u− s)

)
. (2.13)

Combining (2.9), (2.11), and (2.13) we get

P
(|

n∑

i=1

εiαim
∗
i | ≥ λ

) ≤ cλ−pf(u− s) + c(p)λ−2p(f2(u− s) + g2(u− s)).

In what follows we estimate the probability I3 from (2.8). For this purpose we
prove that

Λ2p

(∣∣
n∑

i=1

εiαiui

∣∣ ∧
∣∣

n∑

i=1

εiβiui

∣∣
)
≤ c(p)

n∑

i=1

Λp(ui)
n∑

i=1

Λp(vi). (2.14)

It suffices to show that

P
(∣∣

n∑

i=1

εiαiui

∣∣ ∧
∣∣

n∑

i=1

εiβiui

∣∣ > 1
)
≤ c(p)

n∑

i=1

Λp(ui)
n∑

i=1

Λp(vi). (2.15)

Indeed, replacing ui and vi by t−1 ui and t−1 vi in (2.15) and using the identity
Λp

(
t−1 z

)
= t−pΛp(z) with z = ui, vi we obtain (2.14). Let us prove (2.15). Since

in each pair (ui, vi) at least one variable takes value zero, we have that
∑n

i=1 εiαiui

and
∑n

i=1 εiβivi are conditionally independent given αi ui, βi vi, 1 ≤ i ≤ n. Hence, if
Pε(A) denotes the conditional probability of the event A given αi ui, βi vi, 1 ≤ i ≤ n,
then

Pε

(∣∣
n∑

i=1

εiαiui

∣∣ ∧ ∣∣
n∑

i=1

εiβiui

∣∣ > 1
)

= Pε

(∣∣
n∑

i=1

εiαiui

∣∣ > 1
)
Pε

(∣∣
n∑

i=1

εiβiui

∣∣ > 1
)
.

(2.16)
Furthermore, we have

Pε

(∣∣
n∑

i=1

εiαiui

∣∣ > 1
)
≤ Pε

(∣∣
n∑

i=1

Yi

∣∣ > 1
)

+ II
{
max

i
|ui| > 1

}
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and

Pε

(∣∣
n∑

i=1

εiβiui

∣∣ > 1
)
≤ Pε

(∣∣
n∑

i=1

Zi

∣∣ > 1
)

+ II
{
max

i
|vi| > 1

}
,

where
Yi = εiαiui II

{|ui| ≤ 1
}
, Zi = εiαizi II

{|zi| ≤ 1
}
, i ≥ 1.

Thus,

Pε

(∣∣
n∑

i=1

εiαiui

∣∣ > 1
)
Pε

(∣∣
n∑

i=1

εiβiui

∣∣ > 1
)

= J1 + J2 + J3 + J4. (2.17)

Here

J1 = Pε

(∣∣
n∑

i=1

Yi

∣∣ > 1
)
Pε

(∣∣
n∑

i=1

Zi

∣∣ > 1
)
,

J2 = II
{
max

i
|ui| > 1

}
Pε

(∣∣
n∑

i=1

Zi

∣∣ > 1
)
,

J3 = Pε

(∣∣
n∑

i=1

Yi

∣∣ > 1
)
II
{
max

i
|vi| > 1

}

and
J4 = II

{
max

i
|ui| > 1

}
II
{
max

i
|vi| > 1

}
.

Let us estimate EJ1, EJ2, E J3 and EJ4. Since at least one of ui and vi takes
value zero, we have

J4 ≤
∑

i 6=j

II
{|ui| > 1

}
II
{|vj | > 1

}

and
E J4 ≤

∑

i 6=j

Λp(ui)Λp(vj). (2.18)

Furthermore,

J3 ≤
n∑

i=1

II
{|vi| > 1

}
Pε

(∣∣ ∑

1≤j≤n, j 6=i

Yj

∣∣ > 1/2
)

+
n∑

i=1

II
{|vi| > 1

}
Pε

(|Yi| > 1/2
)
.

Observe that the last summand equals to zero. Hence,

E J3 ≤
n∑

i=1

Λp(vi)EPε

(∣∣ ∑

1≤j≤n, j 6=i

Yj

∣∣ > 1/2
)
≤ c(p)

∑

i 6=j

Λp(vi) Λp(uj). (2.19)

Here we use the estimate

EPε

(∣∣ ∑

1≤j≤n, j 6=i

Yj

∣∣ > 1/2
)

= P
(∣∣ ∑

1≤j≤n, j 6=i

Yj

∣∣ > 1/2
)
≤ c(p)

∑

1≤j≤n, j 6=i

Λp(uj),

11



see proof of Theorem 1 in Ref. 25. The same bound holds for J2. Let p′ ∈ (p; 2)
be a parameter which depends only on p. An application of Chebyshev’s inequality
gives

J1 ≤ Eε

∣∣
n∑

i=1

Yi

∣∣p′Eε

∣∣
n∑

j=1

Zj

∣∣p′ ≤
∑

i 6=j

Eε

∣∣Yi

∣∣p′Eε

∣∣Zj

∣∣p′ .

Here Eε denotes the expectation with respect to the r. variables {εi}, i.e. the
conditional expectation given αi ui and βi vi, 1 ≤ i ≤ n. Using estimates

E
∣∣Yi

∣∣p′ ≤ c(p)Λp(ui) and E
∣∣Zi

∣∣p′ ≤ c(p)Λp(vi),

see proof of Theorem 1 in Ref. 25, we obtain

EJ1 ≤ c(p)
∑

i 6=j

Λp(ui) Λp(vj).

This inequality together with (2.16-19) yields (2.15). We arrive to (2.14). Now the
inequality

I3 ≤ c(p)g2(u− s),

follows from (2.14), since

Λp(ui) ≤ c(p)Λp

(
X(s)−X(t)

) ≤ g(t− s) ≤ g(u− s)

and
Λp(vi) ≤ c(p)Λp

(
X(t)−X(u)

) ≤ g(u− t) ≤ g(u− s).

By (2.8),

P(∆S∗n(s, t, u) ≥ λ) ≤ c(p)λ−pf(u− s) + c(p)λ−2p(f2(u− s) + g2(u− s)). (2.20)

We will complete the proof of the lemma by showing that the same bound holds
for P(∆Sn(s, t, u) ≥ λ). Denote

x = Sn(t)− Sn(s), y = Sn(u)− Sn(t), x′ = S′n(t)− S′n(s), y′ = S′n(u)− S′n(t).

The inequality

|x| ∧ |y| ≤ |x− x′| ∧ |y − y′|+ |x′| ∧ |y|+ |x| ∧ |y′|

implies
P(∆Sn(s, t, u) > 3λ) ≤

P(∆S∗n(s, t, u) > λ) + P(|S′n(t)− S′n(s)| ∧ |Sn(u)− Sn(t)| > λ)

+P(|Sn(t)− Sn(s)| ∧ |S′n(u)− S′n(t)| > λ). (2.21)

It follows from (2.1) and Remark 3 that

P(|Sn(t)− Sn(s)| > λ)

12



≤ λ−pΛp(Sn(t)− Sn(s)) ≤ c(p)λ−pΛp(X(t)−X(s)) ≤ c(p)λ−pg(t− s).

By the independence of Sn and S′n, the last two probabilities in (2.21) do not exceed

cλ−2pg2(u− s). (2.22)

The lemma follows from (2.20-22).
Proof of the Proposition 1. The proposition is a consequence of Lemmas 2 and

3.
Proof of the statements of Example 2. For ω ≡ 1, we have

Λp

(|X(s)−X(t)| ∧ |X(t)−X(u)|) = 0

and
Λp

(|X(s)−X(u)|) ≤ Λp(V )E
∣∣∣II

{
U ∈ (s; u)

}∣∣p = c(V ) |u− s|.
Theorems 1 and 2 imply the weak convergence of L(Fn), for p ∈ (0; 2), p 6= 1.

Let 1 < p < 2. Denote

Y (t) = ω(t) II
{
U ≤ t

}
.

We have

Λp

(|X(s)−X(t)| ∧ |X(t)−X(u)|) ≤ Λp(V )E
(|Y (s)− Y (t)| ∧ |Y (t)− Y (u)|)p

,

Λp

(|X(s)−X(u)|) ≤ Λp(V )E
∣∣Y (s)− Y (u)

∣∣p.
The weak convergence of L(Fn) would follow from Theorem 1 and Remark 2 if we
show that for some ε > 0 and some continuous increasing function H : [0; 1] → R,

E
(|Y (s)− Y (t)| ∧ |Y (t)− Y (u)|)p ≤ ∣∣H(u)−H(s)

∣∣1+ε (2.23)

and
E

∣∣Y (s)− Y (u)
∣∣p ≤

∣∣H(u)−H(s)
∣∣. (2.24)

We shall choose ε such that 1 < 1 + ε < min{p, δp}.
Let us construct the function H. We have

E
(|Y (s)− Y (t)| ∧ |Y (t)− Y (u)|)p ≤ I1 + I2,

where

I1 = s
(∣∣ω(s)− ω(t)

∣∣ ∧ ∣∣ω(t)− ω(u)
∣∣
)p

, I2 = (t− s)
(
ω(t) ∧ ∣∣ω(t)− ω(u)

∣∣
)p

.

Fix γ = e−e. Let t, u ∈ (γ; 1]. Put

R1(t) := m(t) + t and M = max
γ≤t≤1

m(t).

We have

ω(u)− ω(t) = u−1/p
(
m(u)−m(t)

)
+ m(t)

(
u−1/p − t−1/p

)
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≤
(
γ−1/p + M γ−1−1/p p−1

) (
R1(u)−R1(t)

)
.

Therefore,
I1 + I2 ≤

∣∣ω(u)− ω(t)
∣∣p ≤ c(p,m)

(
R1(u)−R1(t)

)p
. (2.25)

For t ≤ γ, we shall estimate I1 and I2 separately. Let us consider

I1 ≤ s
∣∣ω(s)− ω(t)

∣∣p =
∣∣∣m(s)−m(t) + m(t)(t1/p − s1/p)t−1/p

∣∣∣
p

≤ 2p
∣∣m(s)−m(t)

∣∣p + I3,

where
I3 = 2p mp(t)

∣∣∣(t1/p − s1/p)t−1/p
∣∣∣
p

.

Calculation shows that for t2 ≤ s ≤ t/2, the function

R2(t) := ln−1
2 (t−1), 0 < t ≤ γ, R2(0) := 0, R2(t) := 1, γ ≤ t ≤ 1

satisfies
R2(t)−R2(s) ≥ c ln−1(t−1) ln−2

2 (t−1).

Hence,

I3 ≤ 2p mp(t) ≤ c(p,m) ln−δp(t−1) ≤ c(p, ε,m)
(
R2(t)−R2(s)

)1+ε
.

If t/2 ≤ s ≤ t then

R2(t)−R2(s) ≥ c (t− s)t−1 ln−1(t−1) ln−1
2 (t−1).

In this case

I3 ≤ 2p mp(t) c(p)
(
(t− s)/t

)p ≤ c(p, ε, m)
(
R2(t)−R2(s)

)1+ε
.

Finally, for 0 ≤ s ≤ t2,

I3 ≤ 2p mp(t) ≤ c(p) lnδp(t−1) ≤ c(p, ε,m) ln−1−ε(t−1).

Obviously,
I3 ≤ c(p, ε, m)

(
R3(t)−R3(s)

)1+ε
,

where

R3(t) := ln−1(t−1), 0 < t ≤ γ, R3(0) := 0, R3(t) := e−1, γ ≤ t ≤ 1.

Put
R4(t) := c(p, ε, m)

(
R1(t) + R2(t) + R3(t)

)
,

where c(p, ε, m) is sufficiently large constant. Then

I1 ≤
(
R4(t)−R4(s)

)1+ε
, 0 ≤ s ≤ t ≤ γ. (2.26)
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Let us estimate I2. If t ≤ u ≤ γ then proceeding as in proof of (2.26) we
obtain

I2 ≤ t
∣∣ω(t)− ω(u)

∣∣p ≤(
R4(u)−R4(t)

)1+ε
. (2.27)

In the case t ≤ γ ≤ u we have

I2 ≤ 2p t
∣∣ω(t)− ω(γ)

∣∣p + 2p
∣∣ω(u)− ω(γ)

∣∣p

≤ c(p)
(
R4(t)−R4(γ)

)1+ε + c(p)
(
R1(u)−R1(γ)

)p

≤ c(p, ε)
(
R4(u)−R4(t)

)1+ε
. (2.28)

Combining (2.25) and (2.26-28) we obtain (2.23) with

H(t) := c(p, ε, m)R4(t).

Let us show (2.24). We have

E
∣∣Y (s)− Y (t)

∣∣p = s
∣∣ω(s)− ω(t)

∣∣p + (t− s)ωp(t).

The first summand is already estimated (see the estimation of I3 above) and does
not exceed

c(p, ε,m)
(
R4(t)−R4(s)

)1+ε

.

Let us estimate the second summand

I4 = (t− s)ωp(t) = (t− s)t−1mp(t).

For t ≥ γ,
I4 ≤ Mpγ−1(t− s) ≤ c(p,m)

(
R1(t)−R1(s)

)
.

To estimate I4 for t ≤ γ, we proceed in the same way as that of the estimation of
I3. We obtain

I4 ≤ c(p,m)
(
R4(t)−R4(s)

)
, 0 ≤ t ≤ γ.

Therefore, (2.24) follows and this completes the proof of the statements of Exam-
ple 2.
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