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Abstract

In the paper a distribution function of a sum of independent non-identically distributed
bivariate random vectors is approximated by distribution function of a stable vector and the
accuracy of such approximation is estimated. The obtained general result is only a little bit
worse when compared with known estimates for the case of multivariate independent and
identically distributed random vectors or univariate non-identically distributed summands.
Also the obtained result is applied for a specific scheme arising when considering the so-called
Increment-Ratio Statistics.
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1 Introduction and formulation of results

The problem of the rates of convergence in limit theorems for sums of random variables (or
random elements with values in more general spaces) can be formulated as follows. Let Fn

stand for a distribution function (d.f.) of some sum of the first n random variables and we
choose another sequence of distribution functions (d.fs.) Hn (normal, stable or more general
infinitely divisible laws), serving as approximating sequence for Fn. In the case where Fn, as n
tends to infinity, weakly converges to some limit law, let us say, H, then we usually set Hn ≡ H

for all n. Various quantities, such as

sup
x

(1 + |x|k)|Fn(x)−Hn(x)|, sup
f∈F

∣∣ ∫
R
f(x)d(Fn −Hn)(x)

∣∣,
where F is some class of functions, can be used for estimating how good approximation is.
Theory of summation of independent real random variables includes limit theorems and their
refinements - rates of convergence, asymptotic expansions, large deviations, local limit theorems
(by local limit theorems we mean limit theorems for densities of Fn). One can say that this
theory is almost completed, for most questions final answers are known, the list of monographs,
starting with classical books [13], [14], [27] is rather impressive. Many results are generalized
under assumption of some kind of dependence of summands, such as Markov type dependence,
martingales, weak dependence, etc.

The situation is different for multi-dimensional or infinite-dimensional random elements.
There are only few monographs [9], [31], [24] , [32] devoted to the rate of convergence in the
Central Limit Theorem (CLT) for independent random vectors. If the case of Gaussian approx-
imation is investigated comparatively well (rates of convergence and asymptotic expansions are
available, see, for example, [24], the survey paper [5] or the recent paper [4]), the case of ap-
proximation with stable laws is far from being investigated. But before giving review of known
results in this area we shall formulate our result, then we shall be able to compare our result
with the results obtained earlier.

Since in the paper a specific method of the proof is used (see Lemma 2.1 and discussion after
it), in what follows we consider only two-dimensional case. For x = (x1, x2) and y = (y1, y2)
denote

(x, y) = x1y1 + x2y2, ||x||rr = |x1|r + |x2|r, r ≥ 1, ||x|| = ||x||2, ||x||∞ = max(|x1|, |x2|),

V1 = {x ∈ R2 : ||x|| = 1}.

Let us denote by θ = (θ1, θ2) a two-dimensional stable random vector with a characteristic
function (ch.f.)

g(t) = g(t;α, λ,Γ) = exp
{
− λα

(∫
V1

|(t, x)|αΓ(dx) + iβα,Γ(t)
)}
,
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where t ∈ R2, 0 < α < 2, λ > 0 is a scale parameter and Γ is a normalized (that is, Γ(V1) =
1) spectral measure, defined on V1 (the assumption that spectral measure is normalized and
concentrated on V1 is made for convenience, see [30]). Function βα,Γ(t) is defined as follows:

βα,Γ(t) =

tan(πα/2)
∫
V1
|(t, x)|α−1(t, x)Γ(dx), if 0 < α < 2, α 6= 1,∫

V1
ln |(t, x)|(t, x)Γ(dx), if α = 1.

In [23] this function was called asymmetry function since if βα,Γ(s, t) ≡ 0 then the random
vector θ is symmetric. In [30] or [23] one can find more facts about multivariate stable laws.
Let G(x;α, λ,Γ) denote the d.f. of θ.

We consider a sequence of two-dimensional independent random vectors ξj = (ξj,1, ξj,2), j ≥
1 with d.fs. Fj and characteristic functions (ch.fs.)

fj(t) = E exp{i(t, ξj)}, t = (t1, t2).

Let θj = (θj,1, θj,2), j ≥ 1 be a sequence of independent stable random vectors. Let gj(t) =
g(t;α, λj ,Γj), and Gj(x) = G(x;α, λj ,Γj) be a ch.f. and a d.f., respectively, of θj . Here 0 < α <

2, λj > 0 and Γj is a normalized spectral measure. For non-negative integers i, j, k we set

µi,k;j =
∫

R2

xi
1x

k
2(Fj −Gj)(dx),

νj,r =
∫

R2

||x||r|(Fj −Gj)|(dx), ν
(i)
j,r =

∫
R2

|xi|r|(Fj −Gj)|(dx), i = 1, 2.

Let us denote

Bn(κ) =
( n∑

k=1

λκ
k

)1/κ
, Bn = Bn(α) Sn = B−1

n

n∑
k=1

ξj , Zn = B−1
n

n∑
k=1

θj ,

and let F̄n and Ḡn be the d.fs. of Sn and Zn, respectively. The main goal of the paper is to
estimate the quantity

∆n := sup
x∈R2

|F̄n(x)− Ḡn(x)|.

Since later on the numbers α and r will be fixed, therefore sometimes we shall skip these
numbers, for example, we shall write βΓ(t) instead of βα,Γ(t). Also we assume that pseudomo-
ments ν(i)

j,r are finite for all j ≥ 1 and i = 1, 2. Main quantity by which we want to estimate ∆n

is the following ”Lyapunov fraction”

Ln = Ln(r) = L(1)
n + L(2)

n , L(i)
n = L(i)

n (r) = B−r
n

n∑
j=1

ν
(i)
j,r , i = 1, 2.

Here it is worth to note that due to equivalence of norms in finite-dimensional space νj,r is
equivalent to ν(1)

j,r + ν
(2)
j,r (here a is equivalent to b means that c1a ≤ b ≤ c2a with some constants

c1, c2). As we are not interested in numerical values of constants appearing in our estimates
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we shall use the same letter Ln for the quantity B−r
n

∑n
i=1 νi,r. From one-dimensional case we

know (see for example [19]) that it is impossible to estimate ∆n by Ln, therefore we introduce
additional quantities

ηn = B−1
n max

1≤k≤n
λk, τn(κ) =

(Bn(κ)
Bn

)κ
,

where κ > 0. Note that τn(κ) ≤ 1 for κ > α, τn(α) = 1 and τn(κ) ≥ 1 for κ < α. Also we
need some quantity which reflects the dependence between coordinates of the vector Zn. Let us
denote

ρn = inf
||u||=1

B−α
n

n∑
k=1

λα
k γk(u),

where
γj(u) = γj(u;α) :=

∫
V1

|u1x1 + u2x2|αΓj(dx), u = (u1, u2).

In the proof there will be used the moments∫ ∫
|x1|β1 |x2|β2Fj(dx1, dx2),

which are finite for all non-negative βi, i = 1, 2, such that β1 + β2 < α. These moments
depend not only on βi, i = 1, 2, but also on λj , therefore we shall use the so-called standardized
distribution function F̂j corresponding to random vector λ−1

j ξj . Also we assume that there exist
constant Ĉ = Ĉ(κ), such that

sup
j≥1,β1+β2<κ

∫ ∫
|x1|β1 |x2|β2F̂j(dx) ≤ Ĉ. (1.1)

Let us denote

An(κ) = L(1−κ)/(r+1)
n η(r+κ)/(r+1)

n , Dn(κ) = ρ−(r+κ)/α
n τn(κ), κ > 0.

We shall make one remark about notation of constants which will be used in the paper.
Generally constants, dependent on fixed parameters, such as α, r, will be denoted by letter c,
so they can be different in different places. If we want to display some constants (this is done
mainly to help a reader to follow estimates, some of which are rather complicated, moreover,
some calculations are omitted), these constants will be numbered as c1, c2, . . . . With a special
notation we separate three constants - Ĉ, C̄, and C0. Ĉ was just introduced, it is specially
denoted for the reason that it is important constant with complicated dependence on parameters
of summands. C̄ will be used in all our final estimates of the accuracy of approximation (in
the main theorem and its corollaries and Proposition 1.1), thus in different statements it can
be different. C0 will be used two times to define an appropriate value of T , which appears in
Lemma 2.1 (see (2.1)).

Now we formulate the main result.
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Theorem 1.1 Let ε1 > 0, ε2 > 0 be some small fixed numbers. Suppose that for any 0 < κ < α

(1.1) holds and the following condition is satisfied: for some integer m, [α] ≤ m ≤ 1 + [α], for
some real r, max(α,m) < r ≤ min(1 +m, 1 + α), and, for all j = 1, 2, . . . , n,

µi,k;j = 0, 0 ≤ i, k ≤ m i+ k ≤ m, νj,r <∞

Then there exists a constant C̄ depending on ε1, ε2, α, r, such, that

∆n ≤ C̄max
{
Lnmin∗Dn(κ),min∗An(κ)Dn(κ)

}
. (1.2)

Here and in the sequel
min∗ := min

ε1≤κ≤α(1−ε2)

Changing a little bit the last step in the proof of the main theorem we can get less precise
but more transparent estimates.

Corollary 1.1 Under conditions of Theorem 1.1 the following estimates hold

∆n ≤ C̄min∗
{

max
(
Ln, An(κ)

)
Dn(κ)

}
(1.3)

∆n ≤ C̄max
(
Ln, An(κ0)

)
Dn(κ0), (1.4)

where κ0 = arg minDn(κ) and minimum is taken over interval ε1 ≤ κ ≤ α(1− ε2).

We can derive several corollaries from the obtained result. Let us consider sums of independent
and identically distributed (i.i.d.) random vectors with weights. Namely, let ζi = (ζi,1, ζi,2), i ≥ 1
be a sequence of i.i.d. random vectors with a common d.f. F (x) and let ζ̄i = (ζ̄i,1, ζ̄i,2), i ≥ 1
be another sequence of i.i.d. stable random vectors with a common d.f. G(x) and with ch.f.
g(t;α, 1,Γ) with some normalized spectral measure Γ. Pseudomoments between d.fs. F and G

will be denoted by the same letters only without index j:

µi,k =
∫

R2

xi
1x

k
2(F −G)(dx),

νr =
∫

R2

||x||r|(F −G)|(dx), ν(i)
r =

∫
R2

|xi|r|(F −G)|(dx), i = 1, 2.

Let λi, i ≥ 1 be a sequence of positive weights and ξj = λjζj , θj = λj ζ̄j . Adopting such notation
for the weighted random vectors we can use the same notation which was introduced before the
formulation of the main result, only, in order to distinguish this case, upper subscript (1) is
added: F (1)

j , G
(1)
j , F̄

(1)
n , Ḡ

(1)
n , ∆(1)

n . For example,

F
(1)
j (x) = F (xλ−1

j ), ∆(1)
n = sup

x∈R2

|F̄ (1)
n (x)− Ḡ(1)

n (x)|,
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etc. It is necessary to note that now for all j ≥ 1, Gj(x) = G(x;α, λj ,Γ) have the same spectral
measure Γ, therefore the parameter ρ(1)

n is independent of n

ρ(1)
n ≡ ρ = inf

||u||=1

∫
V1

|u1x1 + u2x2|αΓ(dx).

Now L
(1)
n = τn(r)νr, and it is easy to see that the rate of convergence in this case is expressed

by means of ηn and τn(κ) with a particular value of κ. Namely, denoting

A(1)
n (κ) =

(
τn(r)νr

)(1−κ)/(r+1)
η(r+κ)/(r+1)

n , D(1)
n (κ) = ρ−(r+κ)/ατn(κ),

we have the following result.

Corollary 1.2 Let ε1 > 0, ε2 > 0 be some small fixed numbers. Suppose that for introduced
i.i.d. random vectors the following condition is satisfied: for some integer m, [α] ≤ m ≤ 1 + [α]
and some real r,max(α,m) < r ≤ min(1 +m, 1 + α),

µi1,i2 = 0, 0 ≤ i1, i2 ≤ m, i1 + i2 ≤ m, νr <∞.

Then the following estimates hold

∆(1)
n ≤ C̄min∗

{
max

(
τn(r)νr, A

(1)
n (κ)

)
D(1)

n (κ)
}
,

∆(1)
n ≤ C̄max

(
τn(r)νr, A

(1)
n (κ0)

)
D(1)

n (κ0),

where κ0 = arg minD(1)
n (κ) and minimum is taken over interval ε1 ≤ κ ≤ α(1− ε2).

In the case of i.i.d. random vectors ξi (taking weights λi ≡ 1 in Corollary 1.2) for all notation
we shall add the upper subscript (2), for example,

F
(2)
j (x) ≡ F (x), ∆(2)

n = sup
x∈R2

|F̄ (2)
n (x)− Ḡ(2)

n (x)|,

etc. From Corollary 1.2 we have the following result.

Corollary 1.3 If the conditions of Corollary 1.2 are satisfied, ε1 = ε2 = ε, and λi ≡ 1, then
for any small fixed ε > 0 there exists a constant C̄ depending on ε, α, r, such, that

∆(2)
n ≤ C̄max

{
νrn

−(r−α)/αmin∗ρ−(r+κ)/αn1−(κ/α),min∗ρ−(r+κ)/αν(1−κ)/(1+r)
r nγ(r,α,κ)

}
,

∆(2)
n ≤ C̄nε−(r−α)/αρ−(r+α(1−ε))/α max

{
νr, ν

1−α(1−ε)/(1+r)
r nγ1(r,α,ε)

}
, (1.5)

where

γ(r, α, κ) = −(2 + α)(r + κ)− 2α(1 + r)
α(1 + r)

, γ1(r, α, ε) = −(1 + α− r)(r + α(1− ε))
α(1 + r)

.
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Before presenting one application of the obtained result at first we give a review of some
known results, then we shall compare our estimates with them. We shall consider only the rates of
convergence in the so-called uniform metrics (that is, supremum of the difference of distributions
over some classes of sets, in particular, supremum of the difference of d.fs.), leaving aside the
rates of convergence in other metrics (for review of such results we can recommend [34] or [28]),
since generally it is difficult to obtain estimates of the right order for uniform metrics using
estimates for other types of metrics, moreover, most estimates in terms of probability metrics
are formulated in the case of i.i.d. summands (see [28]). We start our review with the univariate
case.

It is well-known that pseudomoments (of various types) play an important role in the esti-
mation of the rates of convergence to stable laws. For the first time pseudomoments were used in
H. Bergström papers , see [7] and [8], but the systematic use of pseudomoment was initiated by
V.M.Zolotarev. Together with his students he laid the foundations of the theory of summation
of independent random variables without the so-called classical condition of uniform negligibility
of summands, see monograph [34]. We formulate one very general result of Zolotarev (see [33]
or Th 6.5.1 in [34]). Suppose we have two sums of independent random variables

Un =
n∑

i=1

ζi, Vn =
n∑

i=1

τi,

with d.fs. K̃n(x) and H̃n(x), respectively. Let Kj(x) = P (ζj ≤ x) and Hj(x) = P (τj ≤ x). If∫
R
xi(Kj −Hj)(dx) = 0, νj(r) :=

∫
R
|x|r|(Kj −Hj)|(dx) <∞,

for all j = 1, . . . , n, i = 1, . . . ,m, and some m < r ≤ m+ 1, then

sup
x
|K̃n(x)− H̃n(x)| ≤ C(m, r)

(
Dr

n∑
j=1

νj(r)
)1/r+1

, (1.6)

where D = supx H̃
′
n(x). In the classical situation of the CLT, when a random variable ξi has

zero mean, a variance σ2
i and finite the third moment βi := E|ξi|3, i ≥ 1. Taking m = 2, r =

3,Hj = Φj - mean zero normal d.f. with variance σ2
j , H̃n(x) = Φ - standard normal d.f., from

(1.6) we get

sup
x
|F̃n(x)− Φ(x)| ≤ C

(∑n
j=1 νj(3)

B̃3
n

)1/4

, (1.7)

where B̃2
n =

∑n
j=1 σ

2
j . Although νj(3) ≤ cβj , due to the presence of exponent 1/4 (therefore in

the case of i.i.d. summands (1.7) instead of correct order n−1/2 gives only n−1/8) from (1.6) we
can not derive the classical Berry-Esseen estimate

sup
x
|F̃n(x)− Φ(x)| ≤ C

∑n
j=1 βj

B̃3
n

. (1.8)
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On the other hand, (1.7) can be better than (1.8) if summands ξj are close to a normal distri-
bution - take extreme case Kj = Φj for all j, then in (1.7) on both sides of the inequality there
are zeros, while (1.8) does not reflect the closeness of the summands to the normal law. In the
case of i.i.d. summands (σj ≡ 1, νj(3) ≡ ν(3)) the improvement of both estimates (1.7) and
(1.8) was obtained by author in [16]:

sup
x
|F̃n(x)− Φ(x)| ≤ C

max(ν(3), ν(3)1/4)
n1/2

. (1.9)

Several years later generalizations of (1.9)to the case of non-identically distributed summands
were obtained, see [15] (the Gaussian case) and [18], [19], [22] ( the case of a stable limiting law).
Since these estimates have rather complicated form and for the formulation a lot of new notation
must be introduced, we do not provide them here; one of these estimates, the most simple, is
formulated bellow (see (3.1)). For complete review of estimates of the rate of convergence to
univariate stable laws we can recommend [10].

Now we pass to the multivariate case and we restrict ourselves with the case of i.i.d. sum-
mands, since it seems that in the case of non-identically distributed summands with infinite
moments of the second order the available estimates for uniform distances have not the right
order (see, for example, [20], where the estimate (1.6) was generalized to Hilbert space). The
first estimates of ∆n (only now F̄n(x) is a d.f. of a sum of i.i.d. multivariate summands and
supremum is taken over Rk) were obtained in [1], [2], [3], but all they were obtained for very
special case where ch.f. of the limit stable law is exp(−||t||α), moreover, the order of the esti-
mates with respect to number of summands n was not always the right one. For example, in [1]
in the case r = 1 + [α] and d = 2 the following rate of convergence was claimed:

∆n ≤ Cn−
r−α
rα . (1.10)

If 1 < α < 2 then r = 2 and (1.10) is worse than the right order −(r − α)/α but if 0 < α < 1
then r = 1 and (1.10) is optimal (and better than our estimate (1.5)). It turns out that such
result is obtained claiming (essentially without a proof, only using analogy to the Gaussian case,
which is clearly misleading) that estimate (2.3) is valid with κ = α.

In [21] (see also [17]) a general result was presented, stating what quantities and character-
istics must be estimated in order to get the right order n−(r−α)/α (if pseudomoment of the order
r, α < r ≤ 1+α is finite) of the rate of convergence in the multidimensional case. In this paper
in some specific cases these quantities were estimated, but completely this problem was solved
only in 2000, in a paper [6](there one can find other references of papers related to the problem).
In this paper the general d-dimensional case and supremum over all Borel sets are considered
and the estimate in the case of r = 1 + α and d = 2 with respect to n and ρ is of the order

∆n ≤ Cn−1/αρ−(1+2α)(1+α)/α, (1.11)

where constant C depends on α and some characteristics of one summand.
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Now we can compare indirectly our main result from Theorem 1.1 with known results (the
word ”indirectly” is used for the reason, that we compare two-dimensional result for non-
identically distributed summands with the results in the two-variate i.i.d. case or in the uni-
variate case). At first let us compare (1.11) with (1.5) which with respect to n and ρ has the
order

nε−1/αρ−(1+2α−εα)/α. (1.12)

Since ε is a small parameter, it is not difficult to see that for small ρ (comparable with n−v for
some v > 0) the quantity (1.12) may be smaller than (1.11). Of course, comparison of estimate
(1.5) with the estimate (1.11) from [6] is not completely correct, since in this paper the remainder
term was estimated for all convex sets in Rd, while our estimates are for rectangles only. From
Gaussian case we know that dependence of the remainder term on the quantities characterizing
degeneracy of distributions is worse for class of convex sets (comparing with rectangles). The
same effect should be expected in the case of stable laws, too. Still, this comparison allows to
think that in the case of non-identically distributed summands the characteristic ρn is the right
one and the power −(r + κ)/α with some κ from interval [ε1, α(1 − ε2)] is quite good. Also
there is one interesting question. In [23] the author had introduced some measure of dependence
between coordinates of multivariate symmetric stable random vector, it was called a generalized
association parameter; recently this parameter was considered in [12]. It would be interesting
to see what is the relation between ρ and g.a.p. and if the latter could be used in the estimates
of the rate of convergence.

Comparison of Theorem 1.1 with results in the case of univariate summands is not easy, since,
as it was mentioned, estimates obtained in [18], [19], [22] are rather complicated and no one of
them dominates others. Since we adapted the method of the proof from [18], for a comparison
we shall take the estimate (3.1)). Comparing (3.1) with (1.2) or with (1.4) we see appearance
of quantity ρn, which is natural (reflects dependence between coordinates), and τn(κ), which is
caused by the method of the proof - we must use Lemma 2.3 to get product |t1t2|κ with positive
κ. Also this use of Lemma 2.3 makes change in powers at Ln and ηn: if in (3.1) these powers
were 1/(1+r) and r/(1+r) (their sum is 1), now these exponents in (1.2) are shifted by κ/(1+r)
but their sum remains 1. This comparison allows to assert that in the two-dimensional case we
loose accuracy only a little bit comparing with univariate case. It is possible to conjecture that
under the conditions of Theorem 1.1 for some b > r/α the following estimate is true

∆n ≤ cmax(Ln, L
1/(r+1)
n ηr/(r+1)

n )ρ−b
n

On the other hand, the appearance of characteristic τn(κ) is not so surprising, since in [19] the
author obtained the estimate of another type (most probably, more precise), expressed by means
of some broken lines, constructed by the values of λ1, . . . , λn. As a corollary from this general
result there was obtained an estimate (3.1) only with τn(r) instead of ηn. It is not difficult to
see that in some cases τn(r) is smaller, in other cases it is better to use ηn (see [19]). It should
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be interesting to combine method of the proof from [19]) and lemma 2.1 in the two-dimensional
case.

Now we present one application of the obtained result. The problem which originates from
the so-called Increment-Ratio Statistics (IRS) was posed by D. Surgailis, and essentially this
problem was the main motivation to write the paper. It can be formulated as follows. Let
ϕi, i ∈ Z, be a sequence of i.i.d. random variables with common d.f. F and ch.f. f and let
ψi, i ∈ Z be another sequence of i.i.d. stable random variables with common d.f. G = Gα and
ch.f.

g(t) = g(t, α, β) = exp
{
− |t|α(1− iβsign t tan(πα/2))

}
, |β| ≤ 1, t ∈ R,

for 0 < α < 2, α 6= 1, and for α = 1 we assume that β = 0 (to avoid technical complications
with centering). We assume that ϕ1 belongs to the normal domain of attraction of ψ1 and that
Eϕ1 = 0 if α > 1. Also assume that the following conditions on pseudomoments are satisfied:
for m, r defined in Theorem 1.1

µi :=
∫

R
xi(F −G)(dx) = 0, 0 ≤ i ≤ m, ν̂r =

∫
R
|x|r|(F −G)|(dx) <∞. (1.13)

Let

Xt =
∞∑

j=0

ajϕt−j , Tn =
n∑

t=1

Xt,

be a linear process generated by the sequence ϕi, i ∈ Z and a sum of the first n values of this
process, respectively. Corresponding stable linear process and its sums are defined as follows:

Yt =
∞∑

j=0

ajψt−j , Un =
n∑

t=1

Yt

Optimal rates of approximation of a distribution of Tn by a distribution of Un under appropriate
conditions on coefficients aj were obtained in [26] (here it is possible to note that in [26] result
from [19], not from [18], as in this paper (see (3.1)) was used). In IRS problem one is interested
in quality of approximation of distribution of two-dimensional random vector (Tn, T2n − Tn) by
distribution of the corresponding stable vector (Un, U2n − Un). Since the sums under consider-
ation are formed by stationary dependent random variables, as the first step we ”translate” the
problem to the case of independent summands. It is not difficult to see that using our previous
notations we need to deal with the following random vectors

S̄2n = B̄−1
n

∑
j≤2n

ξj , Z̄2n = B̄−1
n

∑
j≤2n

θj ,

where
∑

j≤2n =
∑2n

j=−∞, and

ξi =

{
(bn,iϕi, b̃2n,iϕi), for i ≤ n,

( 0, b̃2n,iϕi), for n < i ≤ 2n,
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θi =

{
(bn,iψi, b̃2n,iψi), for i ≤ n,

( 0, b̃2n,iψi), for n < i ≤ 2n,

bn,i =
n∑

t=1∨i

at−i, b̃2n,i =
2n∑

t=(n+1)∨i

at−i, B̄n(κ) =
(∑

j≤n

|bn,i|κ
)1/κ

, B̄n := B̄n(α).

Unfortunately, any of corollaries formulated above can not be applied directly, although sum
S2n looks like a sum of i.i.d. random vectors with weights as in Corollary 1.2 (the difference
consisting in infinite summation is not essential, we can truncate and then pass to the limit,
see [26]). But if in Corollary 1.2 we multiply random vectors with scalar weights, now we have
degenerate vectors (ϕi, ϕi) and we multiply each coordinate by separate weights. Therefore, each
vector ξi is degenerate on (different) lines, only their sum is not degenerate. It was possible to
have coordinate normalizing both in Theorem 1.1 and in Corollary 1.2, but since the estimates
even with the scalar normalizing have rather complicated structure, we did not want to make
these estimates more complicated. Moreover, due to specific structure of coefficients bn,i, b2n,i

and easily verified equality
b̃2n,i = bn,i−n, (1.14)

we have
B̄α

n =
∑
i≤n

|bn,i|α =
∑
i≤2n

|b̃2n,i|α,

therefore both coordinates of S̄2n are normalized by the same quantity. This is not unexpected,
since both coordinates of the vector (Tn, T2n−Tn) contain sum of n stationary random variables.
We formulate our result as a proposition. Denote (this time we supply the upper subscript (3))

τ (3)
n (κ) =

(B̄n(κ)
(B̄n)

)κ
, η(3)

n =
maxi≤n |bn,i|

B̄n
,

L(3)
n = τ (3)

n (r)νr, ρ(3)
n = inf

||(u||=1
B̄−α

n

∑
i≤n

|u1bn,i + u2b̃2n,i|α,

A(3)
n (κ) = (L(3)

n )(1−κ)/(r+1)(η(3)
n )(r+κ)/(r+1), D(3)

n (κ) = (ρ(3)
n )−(r+κ)/ατ (3)

n (κ).

Let us denote
∆(3)

n := sup
x∈R2

|F (3)
2n (x)−G

(3)
2n (x)|,

where F (3)
2n and G(3)

2n stand for d.fs. of S̄2n and Z̄2n, respectively.

Proposition 1.1 Let ε1 > 0, ε2 > 0 be some small fixed numbers. Suppose that condition
(1.13) is satisfied, then the following estimates hold

∆(3)
n ≤ C̄min∗

{
max

(
L(3)

n , A(3)
n (κ)

)
D(3)

n (κ)
}

(1.15)

∆(3)
n ≤ C̄max

(
L(3)

n , A(3)
n (κ̂0)

)
D̂(3)

n (κ̂0), (1.16)

where κ̂0 = arg minD(3)
n (κ) and minimum is taken over interval ε1 ≤ κ ≤ α(1− ε2).

11



In the section of proofs we will show what steps in the proof of Theorem 1.1 must be checked
or changed in order to prove this proposition.

Further analysis of accuracy of estimates (1.15) or (1.16) depends on assumptions on co-
efficients (ai, i ≥ 0), which , in turn, define the so-called notions of short, long and negative
memory of a linear process Xt, see, for example, [26]. The behavior of the function B̄n(κ), which
is the main characteristic defining the accuracy of approximation, under different assumptions
on (ai, i ≥ 0) were investigated in [26]. The quantity η̂n is rather simple one and easy to ana-
lyze. The quantity ρ̄n is a specific for the bivariate case. How to get the bound from bellow for
ρ̄n is not evident. On the other hand, from the case of i.i.d. summands with a limit Gaussian
law it is known that it is impossible to get optimal with respect to n estimate of the remainder
term without presence of quantity, reflecting dependence structure between coordinates of sum-
mands. Therefore some quantity, like ρ̂n or some other, should be present in the estimate of the
approximation of S̄2n.

2 Auxiliary lemmas

It is well-known the important role that Esseen lemma plays in the problem of the rate of
convergence in limit theorems in one-dimensional setting. It allows one to transfer the analysis
of d.fs. to analysis of their Fourier transforms. Unfortunately, generalization of Esseen lemma to
multivariate case is not so simple. In 1966 there was a paper of S.M. Sadikova [29] where some
analog of Esseen lemma in R2 was proved and by means of this result the rate of convergence in
the CLT in the case of i.i.d. bivariate random vectors was proved. In [25] the convergence rate
was obtained for non-identically distributed summands.

Let X = (X1, X2), Y = (Y1, Y2) be two random vectors with d.fs. F and G, and ch.fs. f
and g, respectively. Denote

f̂(t) = f(t)− f((t1, 0))f((0, t2)), t = (t1, t2)

A1 = sup
x1,x2

∂G(x1, x2)
∂x1

, A2 = sup
x1,x2

∂G(x1, x2)
∂x2

,

Lemma 2.1 ([29]) There exists an absolute constant K such that for all T > 0

sup
x1,x2

|F (x1, x2)−G(x1, x2)| ≤ K
(∫ T

−T

∫ T

−T

∣∣∣ f̂(t)− ĝ(t)
t1t2

∣∣∣dt+

sup
x1

|F (x1,∞)−G(x1,∞)|+ sup
x2

|F (∞, x2)−G(∞, x2)|+
A1 +A2

T

)
. (2.1)

It is interesting to note that in the author’s diploma work in 1967 there was generalization
of inequality (2.1) to higher dimensions, but since the expressions in d-dimensional case were
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too complicated and there was no hope to use such inequality for sums, this result remained
unpublished. Although in 1977 N.G. Gamkrelidze published d-dimensional analog of (2.1)(see
[11]), as it can be expected, nobody tried to apply this result to obtain the rate of convergence
in Rd.

The next lemma is very simple, see , for example, [25].

Lemma 2.2 Let ui, ti, wi, zi, i ≥ 1 b be any complex numbers. Then the following inequality
holds ∣∣∣( n∏

i=1

zi −
n∏

i=1

wi)− (
n∏

i=1

ui −
n∏

i=1

vi)
∣∣∣ ≤

n∑
i=1

|zi − wi|
∣∣ i−1∏

k=1

zk

n∏
l=i+1

wl −
i−1∏
k=1

uk

n∏
l=i+1

vl

∣∣+
n∑

i=1

∣∣ i−1∏
k=1

uk

∣∣|(zi − wi)− (ui − vi)|
∣∣ n∏

l=i+1

vl

∣∣. (2.2)

To estimate the quantity ∆n we apply Lemma 2.1 with F̄n and Ḡn instead of F and G, respec-
tively. Then it is easy to see that in the nominator of the main integral on the right side of (2.1)
we have expression present on the left-hand side of (2.2) with

zi = fi(t′), wi = fi((t′1, 0))fi((0, t′2)), ui = gi(t′), vi = gi((t′1, 0))gi((0, t′2)),

where t′ := (t′1, t
′
2), t

′
i = B−1

n ti, i = 1, 2. In the following lemmas we shall keep these notations.

Lemma 2.3 For any fixed 0 < κ < α there exists a constant c1, depending on κ and on the
constant Ĉ, defined in (1.1) such that

|zj − wj | ≤ c1|t1t2|κ/2
λκ

j

Bκ
n

. (2.3)

Remark 2.1 Although Ĉ itself depends on κ, we stress the dependence of c1 on Ĉ, since via
this dependence constant c1 (and final constant C̄) tends to infinity when κ tends to α.

Proof. It is easy to see that
|zj − wj | ≤ J1,j + J2,j ,

where
J1,j =

∣∣∣ ∫ ∫ (exp(it′1x1)− 1)(exp(it′2x2)− 1)Fj(dx1, dx2)
∣∣∣,

J2,j = |(1− fj((t′1, 0)))(1− fj((0, t′2))|.

Now we apply standard estimate

| exp(ix)− 1| ≤ c(β)|x|β , 0 < β ≤ 1, (2.4)
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with an appropriate choice of β (for example, we set β1 = β2 = κ/2), and we easily estimate
both terms Ji,j , obtaining (2.3). The lemma is proved.

In the sequel I(A) will stand for the indicator of a set A.

Lemma 2.4 There exists a constant c2 depending on κ and Ĉ such that

|(zj − wj)− (uj − vj)| ≤ c2

(
(|t1|r|t2|κ + |t2|r|t1|κ)ηκ

n

(ν1
j,r + ν2

j,r

Br
n

)
+

(
|t1t2|r/2I(r ≤ 2) + |t1t2|(|t1|r−2 + |t2|r−2)I(r > 2)

)νj,r

Br
n

)
. (2.5)

Proof. Simple considerations lead to the estimate

|(zj − wj)− (uj − vj)| ≤ K1,j +K2,j , (2.6)

with
K1,j =

∣∣∣ ∫ ∫ (exp(it′1x1)− 1)(exp(it′2x2)− 1)(Fj(dx)−Gj(dx))
∣∣∣,

K2,j = |fj((t′1, 0))− gj((t′1, 0))||1− fj((0, t′2))|+ |fj((0, t′2))− gj((0, t′2))||1− gj((t′1, 0))|.

To estimate K1,j in the case r ≤ 2 we apply (2.4) with β1 = β2 = r/2 and another standard
inequality

|x1x2|r/2 ≤ 2−r/2(|x1|r + |x2|r).

Then we get
K1,j ≤ c|t1t2|r/2 νi,r

Br
n

. (2.7)

In the case r > 2 the estimate (2.4) is not applicable since r/2 > 1. Now for x ∈ R we can write

exp(ix)− 1 = ix+R(x), |R(x)| ≤ c(β)|x|β, 1 < β ≤ 2. (2.8)

Applying this inequality with β = r − 1 and obvious inequality |a||b|r

< |a|1+r + |b|1+r, and remembering that∫ ∫
x1x2(Fj(dx)−Gj(dx)) = 0,

we have

K1,j =
∣∣∣ ∫ ∫ (it′1x1 +R(t′1x1))(it′2x2 +R(t′2x2))(Fj(dx)−Gj(dx))

∣∣∣
≤ c(|t1||t2|r−1 + |t1|r−1|t2|)

ν
(1)
i,r + ν

(2)
i,r

Br
n

. (2.9)

The quantity K2,j contains only characteristic functions of marginal distributions (one ar-
gument always is 0), therefore noting that∫

|x1|r
∣∣∣ ∫ (Fj(dx1, dx2)−Gj(dx1, dx2))

∣∣∣ ≤ ∫ ∫ |x1|r
∣∣∣Fj(dx)−Gj(dx)

∣∣∣
14



and applying estimates from [19] and from previous lemma we easily get

K2,j ≤ c(|t1|r|t2|κ + |t2|r|t1|κ)ηκ
n

(ν1
i,r + ν2

i,r

Br
n

)
. (2.10)

From (2.6)-(2.10) we have (2.5). The lemma is proved.

Lemma 2.5 There exists a constant c3 such that

Vj := |
j−1∏
k=1

uk

n∏
m=j+1

vm| ≤ exp{−c3||t||αρn + c3||t||αB−α
n λα

j γj(t̄)}. (2.11)

Here and in the sequel t̄ = t||t||−1, t = (t1, t2).

Proof. From the definition of uk and vk we have

Vj :=
∣∣∣ j−1∏

k=1

uk

n∏
m=j+1

vm

∣∣∣ ≤ exp
{
−B−α

n

( j−1∑
k=1

λα
k

∫
V1

|t1x1 + t2x2|αΓk(dx)

+
n∑

k=j+1

λα
k

∫
V1

(|t1x1|α + |t2x2|α)Γk(dx)
)}
.

Since
|t1x1|α + |t2x2|α| ≥ c(α)|t1x1 + t2x2|α

where c(α) = 1 for 0 < α ≤ 1 and c(α) = 21−α for 1 < α ≤ 2, thus, taking into account that
always c(α) ≤ 1, we get

Vj ≤ exp{−c(α)B−α
n ||t||α

n∑
k 6=j

λkγk(t̄)}. (2.12)

From (2.12) using definition of ρn we easily get (2.11) with c3 = c(α). The lemma is proved.

3 Proofs

We start with the proof of Theorem 1.1 and Corollary 1.1. Note that in order to estimate ∆n

using Lemma 2.1 we must estimate differences of marginal d.fs. of F̄n and Ḡn. These quantities
we estimate by means of Theorem 1 in [18]. We get

sup
x1

|F̄n(x1,∞)−Ḡn(x1,∞)|+sup
x2

|F̄n(∞, x2)−Ḡn(∞, x2)| ≤ cmax(Ln, L
1/(r+1)
n ηr/(r+1)

n ). (3.1)

First we assume that
ηn ≤ 2Ln. (3.2)

We show that under assumption (3.2) for some 0 < κ < α and for T1 := C0L
−1
n ρ

r/α
n the following

estimate holds: ∫ T1

−T1

∫ T1

−T1

∣∣∣ f̄n(t)− ḡn(t)
t1t2

∣∣∣dt ≤ cLnρ
−(r+κ)/α
n τn(κ). (3.3)
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This estimate together with (3.1) gives us

∆n ≤ C̄Lnρ
−(r+κ)/α
n τn(κ), (3.4)

with a constant C̄ depending on all fixed parameters and also on κ (and unboundedly increasing
if κ approaches its boundaries 0 or α).

To estimate the integral in (3.3), for ||t||∞ ≤ T1 we need to estimate the quantity

An(t) := |f̄n(t)− ḡn(t)| =
∣∣∣( n∏

i=1

zi −
n∏

i=1

wi

)
−
( n∏

i=1

ui −
n∏

i=1

vi

)∣∣∣.
According to Lemma 2.2

An(t) ≤ I1,n + I2,n, (3.5)

where

I1,n =
n∑

i=1

|zi − wi|
∣∣∣ i−1∏

k=1

zk

n∏
l=i+1

wl −
i−1∏
k=1

uk

n∏
l=i+1

vl

∣∣∣,
I2,n =

n∑
i=1

∣∣ i−1∏
k=1

uk

∣∣|(zi − wi)− (ui − vi)|
∣∣ n∏

l=i+1

vl

∣∣.
Let us denote

z̃k = zku
−1
k , w̃k = wkv

−1
k , ũk = ṽk ≡ 1.

Then

Wi :=
∣∣ i−1∏

k=1

zk

n∏
l=i+1

wl −
i−1∏
k=1

uk

n∏
l=i+1

vl

∣∣ = W̃iVi,

where

W̃i =
∣∣ i−1∏

k=1

z̃k

n∏
l=i+1

w̃l −
i−1∏
k=1

ũk

n∏
l=i+1

ṽl

∣∣ ≤ W̃i,1 + W̃i,2,

W̃i,1 =
i−1∑
k=1

∣∣∣ k−1∏
l=1

z̃l

∣∣∣|z̃k − ũk|, W̃i,2 =
n∑

k=i+1

∣∣ i−1∏
l=1

z̃l

k−1∏
j=i+1

w̃j

∣∣|w̃k − ṽk|.

Now, for ||t||∞ ≤ T1 ≤ C0L
−1
n ,

|uk|−1 ≤ exp
{
λα

kB
−α
n ||t||αγk(t̄)

}
≤ exp

{
(21/2C0ηnL

−1
n )α

}
≤ c4,

and the standard estimation of characteristic functions gives us the estimate

|z̃k − ũk| = |uk|−1|zk − uk| ≤ cB−r
n

(
|t1|rν(1)

k,r + |t2|rν(2)
k,r

)
. (3.6)

From this estimate we have

|z̃k| ≤ 1 + |z̃k − ũk| ≤ exp
{
cB−r

n (|t1|rν(1)
k,r + |t2|rν(2)

k,r)
}
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and ∣∣ k−1∏
l=1

z̃l
∣∣ ≤ exp

{
cLn(|t1|r + |t2|r)

}
(3.7)

Similarly, for ||t||∞ ≤ T1 ≤ C0L
−1
n , we get

|vk|−1 ≤ c5

and, estimating marginal characteristic functions we have

|w̃k − ṽk| = |vk|−1|wk − vk| ≤ cB−r
n (|t1|rν(1)

k,r + |t2|rν(2)
k,r). (3.8)

Using the estimate |w̃k| ≤ 1 + |w̃k − ṽk| and (3.8) together with (3.7) we get for i < k

∣∣ i−1∏
l=1

z̃k

k−1∏
j=i+1

w̃j

∣∣ ≤ exp
{
c6Ln(|t1|r + |t2|r)

}
. (3.9)

Collecting estimates (3.6) -(3.9) we get

W̃i ≤ cLn(|t1|r + |t2|r) exp
{
c6Ln(|t1|r + |t2|r)

}
.

From (2.11), taking into account that, for ||t||∞ ≤ T1 ≤ C0L
−1
n , the term ||t||αB−α

n λα
j γj(t̄) is

bounded by a constant (see the estimation of |vk|−1 or |uk|−1), we have

Wi ≤ cLn(|t1|r + |t2|r) exp
{
− c3||t||αρn + c6Ln(|t1|r + |t2|r)

}
≤ cLn(|t1|r + |t2|r) exp

{
− c3||t||αρn(1− c7LnT

r−α
1 ρ−1

n )
}
. (3.10)

Without loss of generality we can assume that

Lnρ
−(r+κ)/α
n ≤ 1,

otherwise (3.4) will be true with C̄ > 1. Then it is easy to see that it is possible to choose C0

such small that

c7LnT
r−α
1 ρ−1

n ≤ c7C
r−α
0 L1−r+α

n ρ−1+(r+κ)(r−α)α−1

n ≤ c7C
r−α
0 ρ−1+(r+κ(1−r+α))α−1

n ≤ 1/2,

since ρn ≤ 1 and the exponent at ρn is positive. Then from (3.10) we obtain

Wi ≤ cLn(|t1|r + |t2|r) exp
{
− (c3/2)||t||αρn

}
and, combining with the estimate (2.3), we get

I1,n ≤ c|t1t2|κ/2Ln(|t1|r + |t2|r) exp
{
− (c3/2)||t||αρn

}
τn(κ). (3.11)

Now we estimate I2,n =
∑n

i=1 Vi|(zi − wi)− (ui − vi)|. From lemmas 2.4 and 2.5 we have

I2,n ≤ c
(
|t1t2|r/2I(r ≤ 2) + |t1t2|(|t1|r−2 + |t2|r−2)I(r > 2)

+ (|t1|r|t2|κ + |t2|r|t1|κ)ηκ
n

)
Ln exp

{
− c3||t||αρn

}
. (3.12)
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Collecting estimates (3.5), (3.11) and (3.12) and taking into account that∫ ∞

0
sd exp(−sαb)ds = c(d, α)b−(d+1)/α,

we get (3.3), and therefore (3.4) is proved.
Now we assume that

ηn > 2Ln. (3.13)

We set T = T2 := C0L
−1/(r+1)
n η

−r/(r+1)
n ρ

(r+κ)/α
n in Lemma 2.1 and we shall prove that

∆n ≤ C̄L(1−κ)/(r+1)
n ηr′/(r+1)

n ρ−r′/α
n τn(κ), (3.14)

where r′ = r+ κ. Note, that C0 and C̄ may be different from corresponding constants obtained
in the case (3.2), but in the final estimate we can take bigger C̄. This case is a little bit more
complicated, although the scheme of estimation is the same. We start with the same estimate
(3.5). To estimate I1,n we denote

z̄k = zkû
−1
k , w̄k = wkv̂

−1
k , ūk = ukû

−1
k , v̄k = vkv̂

−1
k ,

where
ûk = gk

(
t;
λk

Bn
χAα−1

n

)
v̂k = gk

(
(t1, 0);

λk

Bn
χAα−1

n

)
gk

(
(0, t2);

λk

Bn
χAα−1

n

)
.

Here χn = Ln/ηn, A = α/(r + 1) and in the notation of ch.f. of stable vector we skip α and
Γk and leave only the argument and scale parameter. Since, according to (3.13), χn < 1/2, it is
easy to see that

|ūk| ≤ 1, |v̄k| ≤ 1.

We can write

Wi :=
∣∣∣ i−1∏

k=1

zk

n∏
l=i+1

wl −
i−1∏
k=1

uk

n∏
l=i+1

vl

∣∣∣ = W̄iV̄i, (3.15)

where

W̄i =
∣∣∣ i−1∏

k=1

z̄k

n∏
l=i+1

w̄l −
i−1∏
k=1

ūk

n∏
l=i+1

v̄l

∣∣∣ ≤ W̄i,1 + W̄i,2, (3.16)

W̄i,1 =
i−1∑
k=1

∣∣∣ k−1∏
l=1

z̄l

∣∣∣|z̄k − ūk|
∣∣∣ i−1∏

l=k+1

ūl

n∏
m=i+1

v̄m

∣∣∣, (3.17)

W̄i,2 =
n∑

k=i+1

∣∣∣ i−1∏
l=1

z̄l

k−1∏
j=i+1

w̄j

∣∣∣|w̄k − v̄k|
∣∣∣ n∏

m=k+1

v̄m

∣∣∣, (3.18)

and

V̄i :=
∣∣∣ i−1∏

k=1

ûk

n∏
m=i+1

v̂m

∣∣∣. (3.19)

18



Note that for ||t||∞ ≤ T2 we have

|ûk|−1 ≤ exp
{
λα

kB
−α
n ||t||αχA

n

}
≤ exp

{
2α/2Cα

0

}
≤ c (3.20)

and, similarly,
|v̂k|−1 ≤ c.

Using these estimates, similarly to (3.6) and (3.8), we have

|z̄k − ūk| = |ûk|−1|zk − uk| ≤ cB−r
n (|t1|rν(1)

k,r + |t2|rν(2)
k,r), (3.21)

|w̄k − v̄k| = |v̂k|−1|wk − vk| ≤ cB−r
n (|t1|rν(1)

k,r + |t2|rν(2)
k,r). (3.22)

From (3.21) and (3.22), similarly to (3.7), (3.9), we easily get

max
i,k

max
{ ∣∣∣ i−1∏

l=1

z̄l

k−1∏
j=i+1

w̄j

n∏
m=k+1

v̄m

∣∣∣, ∣∣∣ k−1∏
l=1

z̄l

i−1∏
j=k+1

w̄j

n∏
m=i+1

v̄m

∣∣∣}
≤ exp

{
c8Ln(|t1|r + |t2|r)

}
. (3.23)

In the same way as in Lemma 2.5, using (3.20), we estimate Ṽi:

V̄i ≤ c10 exp{−c9||t||αρnχ
A
n }. (3.24)

Collecting estimates (3.15)- (3.19), (3.21)-(3.24) we get

W̄iV̄i ≤ c11

∑
k 6=i

νk,r

Br
n

||t||rr exp{c8Ln||t||rr − c9||t||αρnχ
A
n }

≤ c11Ln||t||rr exp{−c9||t||αρnχ
A
n (1− c12LnT

r−α
2 ρ−1

n χ−A
n )},

If we prove that
M := c12LnT

r−α
2 ρ−1

n χ−A
n < 1/2, (3.25)

then we will get
Wi ≤ c11||t||rrLn exp{−(c9/2)||(s, t)||αρnχ

A
n }.

Combining this estimate with (2.3) we obtain

I1,n ≤ c|t1t2|κ/2||t||rLnτn(κ) exp{−(c9/2)||t||αρnχ
A
n }. (3.26)

It is easy to see that

M ≤ c12C
r−α
0 LB

n η
C
n ρ

D
n , B =

1
r + 1

, C =
α− βr

r + 1
, D =

(r + κ)β − α

α
, β = r − α.

Since all three quantities Ln, ηn and ρn are less than 1, (3.25) holds if C ≥ 0, D ≥ 0 and C0 is
chosen sufficiently small. Thus, we need to consider the cases where C < 0 or D < 0 (it is easy
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to see that they both can not be negative). Let C < 0, that is β > α/r, then D > 0, and since
in this case B > −C, we have

LB
n η

C
n ρ

D
n =

LB
n

η−C
n

ρD
n =

(Ln

ηn

)−C
LB+C

n ρD
n ≤ 1,

and (3.25) holds. If D < 0, that is β < α/(r + κ), then C > 0 and we may assume that

L(1−κ)/(r+1)
n ηr′/(r+1)

n ρ−r′/α
n ≤ 1

otherwise (3.14) will be true with C̄ > 1. From this assumption we have

ρ−1
n ≤ LB1

n ηC1
n , B1 = −α(1− κ)

r′(r + 1)
, C1 = − α

r + 1
,

therefore

LB
n η

C
n ρ

D
n = LB

n η
C
n (ρ−1

n )−D ≤ LB2
n ηC2

n , B2 = B −B1D, C2 = C − C1D.

It is not difficult to verify that in this case B2 ≥ 0, C2 ≥ 0, thus (3.25) holds, too. (3.26) is
proved.

For the estimation of I2,n we can not use estimate (2.11) since in the interval ||t||∞ ≤ T2 we
can not estimate the positive term in the exponent. Therefore we write

Vi =
∣∣∣ i−1∏

k=1

uk

n∏
m=i+1

vm

∣∣∣ = ∣∣∣ j−1∏
k=1

ūk

n∏
m=j+1

v̄m

∣∣∣V̄i,

and remembering that |ūk| ≤ 1, |v̄k| ≤ 1, from (3.24) we get

Vi ≤ c10 exp{−c9||t||αρnχ
A
n }. (3.27)

Combining (2.5) and (3.27) we get

I2,n ≤ c
(
|t1t2|r/2I(r ≤ 2) + |t1t2|(|t1|r−2 + |t2|r−2)I(r > 2)

+ (|t1|r|t2|κ + |t2|r|t1|κ)ηκ
n

)
Ln exp

{
− c9||t||αρnχ

A
n

}
. (3.28)

The rest of the proof of (3.14) is similar to the first case: from (3.26) and (3.28) integrating and
using (3.13) we get∫ T2

−T2

∫ T2

−T2

∣∣∣An(t)
t1t2

∣∣∣dt ≤ c
(
Ln(ρnχ

A
n )−r′/α(ηκ

n + τn(κ)) + Ln(ρnχ
A
n )−r/α

)
≤ cL(1−κ)/(r+1)

n ηr′/(r+1)
n ρ−r′/α

n

(
τn(κ) + ηκ

n + χκ/(r+1)
n ρκ/α

n

)
≤ cL(1−κ)/(r+1)

n ηr′/(r+1)
n ρ−r′/α

n τn(κ). (3.29)

Since the bound (3.1) for marginal d.fs. and the quantity T−1
2 are smaller than the bound

obtained in (3.29), from (3.29) we obtain (3.14). To finish the proof of the theorem we must
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choose the parameter κ. First of all, let us note that constants which depend on κ unboundedly
increase if κ approaches its boundaries 0 or α (see, for example (1.1)). Therefore, it is natural
to take two fixed small positive quantities ε1 and ε2 and to take minimum of the obtained
estimates with respect to κ over the interval ε1 ≤ κ ≤ α(1 − ε2). Note that this choice can be
made separately in each case (ηn > 2Ln or ηn ≤ 2Ln) and in this way we get (1.2). If we choose
the parameter κ the same in both cases and take at first maximum between two terms and only
then take minimum, we get (1.3) and (1.4) from Corollary 1.1. Theorem 1.1 and Corollary 1.1
are proved.

The estimates of Corollary 1.2 are derived from the estimates of Corollary 1.1 (it is not
difficult to get more general estimate from (1.2)), it is sufficient to note that in the case of
weighted sums we have

L(1)
n = τn(r)νr, ρ(1)

n ≡ ρ

and τn(κ) and ηn remain unchanged. For a proof of Corollary 1.3 note that if λi ≡ 1 then
τn(κ) = n(α−κ)/α and ηn = n−1/α. Corollaries 1.2 and 1.3 are proved.

It remains to prove Proposition 1.1. As it was mentioned before the formulation of this
proposition, we can not directly apply any of corollaries, therefore we must check all the steps
of the proof of the main result. Since most of this checking is routine, we shall point only
main points. A reader probably noticed that all characteristics involved in estimates (1.15) and
(1.16) contain coefficients of the sum S̄2n only up to n. It is easy to see that one dimensional
characteristics L(3)

2n , η
(3)
2n , τ

(3)
2n for the second coordinate defined by coefficients b2n,i, −∞ < i ≤ 2n

due to the equality (1.14) coincide with the corresponding characteristics defined by bn,i, −∞ <

i ≤ n. It is not so evident why ρ̄(3)
n does not depend on b2n,i, n < i ≤ 2n. The explanation is as

follows. The characteristic ρ̄(3)
n appears when estimating An(t) from (3.5). The quantities I1,n

and I2,n are expressed as sums
∑

i≤2n, but due to the structure of summands for n < i ≤ 2n
we have zi = wi and ui = vi. Therefore all terms with indices in the range n < i ≤ 2n in
the above mentioned sums vanish and in the estimation of I1,n and I2,n it remains only sums∑

i≤n, therefore the characteristic ρ̄(3)
n depends only on (bn,i, b2n,i), i ≤ n. Since the choice of

Ti, i = 1, 2 is based on the estimation of An(t), in the final estimate we get ρ̄n. Calculating
pseudomoments one must keep in mind that the distributions of ξi and θi are concentrated on
line x2 = kx1 with k = b−1

n,ib2n,i. Also in the proof of Lemmas 2.3-2.5 one must remember that

max
i≤n

|bn,i| = max
i≤2n

|b2n,i|.

Thus, taking into account these remarks, one can carry the proof of Proposition 1.1.
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