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ABSTRACT

We use some results and methods of probability theory to improve bounds for the convergence rates in

some approximation formulas for operators.

The aim of this note is to demonstrate that some results and methods of probability
theory can be useful in a particular field of operator theory - convergence rates in the
approximation formulas for some semigroups of operators.

Let H be a separable Hilbert space with a scalar product (·, ·) and the norm ||x|| =
(x, x)1/2, and let T be a linear operator in H. Let C|| , as usual, denote the complex plane.
Consider the sets (cf. [2])

Θ(T ) = {(Tx, x), x ∈ D(T ), ||x|| = 1},

where D(T ) is the domain of T ,

Sα = {z ∈ C|| \ {0} : | arg z| < α}, 0 < α ≤ π,

and, for 0 ≤ α ≤ π/2,

Dα = {z ∈ C|| : |z| ≤ sinα} ∪ {z ∈ C|| : | arg(1− z)| ≤ α, |z − 1| ≤ cosα}.

An Operator T is called sectorial with semi-angle α ∈ (0, π/2) and vertex at 0 if
Θ(T ) ⊆ Sα. If, in addition, T is closed and there exists z /∈ Sα belonging to the resolvent
set of T , then T is said to be m-sectorial.

Let A be a contraction on H. We say that A is a quasi-sectorial operator with a
semi-angle α ∈ [0, π/2) with respect to the vertex at 1 if Θ(A) ⊂ Dα.
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Quasi-sectorial operators were introduced in [2], where , among other results, the fol-
lowing extension of the famous Chernoff ”n1/2- lemma” (see [6], Lemma 2) was proved:
.

Theorem A([2]). Let A be a quasi-sectorial contraction on H with numerical range
Θ(A) ⊂ Dα, α ∈ [0, π/2). Then

‖An − en(A−I)‖ ≤ 2(K + 1)n−1/3, n = 1, 2, . . . , (1)

where K is a constant depending on α (its explicit expression is given in [2]).

The quantity estimated in this theorem can be written as (see formula (14) in [2])

I(n) = ‖An − en(A−I)‖ = ‖e−n
∞∑

k=0

nk

k!
(An −Ak)‖.

If X is a Poisson random variable with mean EX = n, then

I(n) = ‖E(An −AX)‖,

where E denotes mathematical expectation, and AX is an operator-valued random variable
taking values Ak with probabilities P{X = k} = e−nnk(k!)−1. If we use the above written
representation of I(n), then we need to estimate ‖An−Ak‖ and Poissonian tail probabilities
P{|X − n| > k}. Estimates of these probabilities used in the proof of (1) were too rough,
and it was not difficult to note that, using the same bounds for ‖An−Ak‖ as in [2] but more
precise bounds for tail probabilities, we can improve estimate (1). Namely, the following
result holds.

Theorem 1. Under the conditions of Theorem A, we have the bound

‖An − en(A−I)‖ ≤ K1

( ln n

n

)1/2

, (2)

where the constant K1 depends on α.
Proof of Theorem 1. We begin the proof by formulating a bound on Poisson tail

probabilities following from [7](see also [1], where an estimate of the same precision was
obtained).

Proposition 2. [7]. Let X be a Poisson random variable with parameter λ > 0. Then,
for all x > 0, we have

max
(
P

{
X ≤ λ− x

}
, P

{
X ≥ λ + x

})
≤ exp

{
− (x + λ) log

(
1 +

x

λ

)
+ x

}
. (3)

In this estimate, the exponent is a right one. In [10], it was shown that exact (up to
constants) estimates from above and bellow contain the additional term (λ + x)−1/2 but
these exact estimates for tail probabilities were proved only for x > λ− 1. Since we need
to estimate tail probabilities when x is of order n1/2 and, in our case, λ = n, we cannot
apply the exact estimate from [10].
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Now we can prove (2). We choose k = [(6n ln n)1/2] (as usual, [a] denotes the integer
part of a number a > 0) and divide I(n) into two parts:

I(n) ≤ I1(n) + I2(n), (4)

where

I1(n) =
∑

j≥0,|j−n|≥k

pj(n)‖An(I −Aj)‖, I2(n) =
n+k∑

j=n−k

pj(n)‖An(I −Aj)‖,

and pj(n) = e−nnj(j!)−1. In the first sum, estimating ‖An(I−Aj)‖ ≤ 2 and using (3), we
have

I1(n) ≤ 2
(
P

{
X ≤ n− k

}
+ P

{
X ≥ n + k

})
≤

≤ 4 exp
{
− (n + k) log

(
1 +

k

n

)
+ k

}
≤ 4 exp

{
− k2

2n
(1− k/n)

}
≤ 4

n
(5)

for n > n0, where n0 is such that n−1
0 ln n0 ≤ 2/27. Here we used the elementary inequality

ln(1 + x) ≥ x− x2/2 for 0 < x < 1.
To estimate the second sum we use the following estimate from [2].
Lemma 3.([2]). If A is a quasi-sectorial contraction on H with semi-angle α ∈ [0, π/2),

then

‖An(I −A)‖ ≤ K2

n + 1
, (6)

for all n ≥ 1, where K2 is a constant depending on α.
Using a telescoping sum, we get, for every integer k ≥ 1,

‖An(I −Ak)‖ ≤ K2k

n
. (7)

Therefore, if n < j < n + k, then

‖An −Aj‖ = ‖An(I −Aj−n)‖ ≤ K2k

n

and if n− k ≤ j < n then

‖An −Aj‖ = ‖Aj(I −An−j)‖ ≤ K2(n− j)
j

≤ K2k

n− k
≤ 3K2k

n

for n > n0. Thus, for n > n0, we have

I2(n) ≤ 3
√

6K2

( ln n

n

)1/2

. (8)

From (4), (5), and (8), for n > n0, we have

I(n) ≤ (3
√

6K2 + 4)
( ln n

n

)1/2

.
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Therefore, taking K1 = max(n0, (3
√

6K2 + 4)), we have (2) for all n, and Theorem 1 is
proved.

It remains an open question what is the optimal rate of convergence in Theorem 1.
One can suspect that estimate (7) obtained by using telescoping sums is too rough but it
turns out that it is not the case. It is easy to verify that, for 1 ≤ k ≤ n,

sup
0≤a≤1

an(1− ak) =
( n

n + k

)n/k k

n + k
,

therefore we cannot improve (7). This fact together with the precision of (3) make us to
believe that it is impossible to get the rate of convergence better than n−1/2 using the
approach based on Poisson probabilities. It is worth to mention that this approach comes
from Chernoff paper [6].

In Theorem 1 estimate (1) was improved from n−1/3 to the rate (n−1 ln n)1/2. The next
result presents a smaller improvement, in which we take off the logarithmic term in another
error estimate from [2]. Despite of this we think that our Theorem 4 is more important,
since it gives an optimal estimate and, in its proof, a new idea (induction method) is used.
The proof of Theorem 4 also indicates a possible way to estimate the rate of convergence
in general Chernoff theorem (see Proposition 7 bellow).

Now we consider the following operator-norm Euler approximation of the exponential
function proved in [2].

Theorem B. If A is an m-sectorial operator in a Hilbert space H with semi-angle
α ∈ (0, π/2) and vertex at 0, then, for every t ∈ Sπ/2−α,

lim
n→∞

‖(I + tA/n)−n − e−tA‖ = 0. (9)

Moreover, if 0 belongs to the resolvent set of A, then, uniformly in t ≥ 0,

‖(I + tA/n)−n − e−tA‖ = O
( ln n

n

)
. (10)

This result resembles the Central Limit Theorem (CLT) in probability theory. More pre-
cisely, considering e−tA as a Gaussian distribution (in some sense, it is a “nice” operator)
and (I + tA/n)−n as the distribution of a normalized sum of n independent identically
distributed summands, one can interpret (9) as the CLT and (10) as the rate of conver-
gence in this theorem. It also turns out that, using the same estimates of operators from
[2] but applying the method of induction, which is commonly used to get the rates of
convergence in the CLT (especially in infinite-dimensional spaces where Fourier analysis
is not so successful as in finite-dimensional spaces, see [11] and references therein) we are
able to improve (10) to the optimal bound.

Theorem 4. Under the conditions of Theorem B (for (10)), we have

sup
t≥0

‖(I + tA/n)−n − e−tA‖ ≤ C̄n−1, (11)

where C̄ is a constant depending on the operator A.
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Proof of Theorem 4. Let us denote

δn(t) = (I + tA/n)−n − e−tA, ∆n(t) = ‖δn(t)‖, ∆n = sup
t≥0

‖∆n(t)‖.

We must prove that, for all n ≥ 1,

∆n ≤ C̄n−1. (12)

Since the operators F (t) = (I + tA)−1 are quasi-sectorial contractions (see Section 2.1 in
[2]) and the operator A generates a holomorphic semigroup (see Proposition 1.4 of [2]), we
have that

∆1 ≤ 2,

that is, (12) holds for n = 1 with C̄ ≥ 2. Now let us suppose (this is the main step of
induction) that, for all 1 < k ≤ n− 1,

∆k ≤ C̄k−1. (13)

We shall prove that (13) also holds for k = n. We assume that n > n0 (later we shall
put some condition on n0), since, for n ≤ n0, (12) trivially holds with C̄ ≥ 2n0. We first
collect all estimates used to prove (10) in one lemma ; the proofs of these estimates can
be found in [2] and [3]. In what follows, CA denote constants, depending only on operator
A and, possibly, different in different places.

Lemma 5. ([2], [3]). Under the conditions of Theorem 4, the following estimates hold:

‖A−1((I + tA/n)−1 − e−tA/n)‖ ≤ 2t/n, (14)

‖A−1((I + tA/n)−1 − e−tA/n)A−1‖ ≤ 3/2(t/n)2, (15)

‖((I + tA/n)−1 − e−tA/n)A−2‖ ≤ 3/2(t/n)2, (16)

‖Aie−τA‖ ≤ CAτ−i, i = 1, 2, τ > 0, (17)

‖(I + tA/n)−kA‖ ≤ nK2/kt, (18)

where K2 is from (6).
Along with the notation F (t) = (I + tA)−1, let us denote G(t) = e−tA. Since δn(t) =

F (t/n)n −G(t/n)n, we can write the well-known identity

δn(t) =
n−1∑

k=0

Jk(t), (19)

where
Jk(t) =

(
F

(
t/n

))n−1−k(
(F

(
t/n

)−G(
(
t/n

))
(G

(
t/n

))k
.

Denoting Jk = supt≥0 ‖Jk(t)‖, from (19) we get

∆n ≤
n−1∑

k=0

Jk. (20)



6 V. Paulauskas

We first separate the last term, which is easily estimated using (14) and (17) with i = 1:

Jn−1 ≤ 2CA

n− 1
≤ 4CAn−1. (21)

Let C1 be some positive integer, which we shall specify later. We divide the rest of the
sum in (20) (without Jn−1) into two parts: ∆n − Jn−1 = ∆(1)

n + ∆(2)
n , where

∆(1)
n =

C1∑

k=0

Jk, ∆(2)
n =

n−2∑

k=C1

Jk.

In the first sum, we estimate ‖G(
(
t/n

)‖ ≤ 1 and then use (18) and (14). We get

Jk ≤ 2K2(n− 1− k)−1

and, therefore,

∆(1)
n =

C1∑

k=0

2K2

n− 1− k
≤ 2C1K2

n− 1− C1
≤ 4C1K2

n
(22)

(here we made the first assumption about C1: C1 ≤ n/2 − 1). In the second sum, we
estimate Jk ≤ J1

k + J2
k , where J i

k = supt≥0 ‖J i
k(t)‖, i = 1, 2, and

J1
k (t) =

((
F

(
t/n

))n−1−k − (
G

(
t/n

))n−1−k
)(

F
(
t/n

)−G(
(
t/n

))(
G

(
t/n

))k
,

J2
k (t) =

(
G

(
t/n

))n−1−k
(
(F

(
t/n

)−G(
(
t/n

))(
G

(
t/n

))k
.

Note that

(
F

(
t/n

))n−1−k − (
G

(
t/n

))n−1−k =
(
F

( τ

n− 1− k

))n−1−k

−
(
G

( τ

n− 1− k

))n−1−k

with τ = t(n− 1− k)n−1 and, therefore,

sup
t≥0

∥∥
(
F

(
t/n

))n−1−k

−
(
G

(
t/n

))n−1−k∥∥ = sup
τ≥0

‖∆n−1−k(τ)‖ = ∆n−1−k.

For the term
‖(F (

t/n
)−G(

(
t/n

))(
G

(
t/n

))k‖,
applying (16) and (17) with i = 2 and using assumption (13), we get

J1
k ≤ ∆n−1−k

3t2CAn2

2n2t2k2
≤ 3CAC̄

2k2(n− 1− k)
.
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Using again (16) and (17) with i = 2 and separately considering the cases k > n/2 and
k ≤ n/2, we easily get

J2
k ≤

6CA

(n− 2)2
.

It is easy to verify that the following bound holds:

n−2∑

k=C1

1
(n− 1− k)k2

≤ 12
nC1

+
4 ln n

n2
.

Therefore, from two previous estimates we easily get

∆(2)
n ≤

n−2∑

k=C1

J1
k +

n−2∑

k=C1

J2
k ≤

≤ 3CAC̄

2

( 12
nC1

+
4 ln n

n2

)
+

6CA

n− 2
. (23)

Collecting (20)–(23), we get

∆n ≤ C̄

n

(
CA

( 1
C1

+
ln n

n

)
+

CA(1 + C1)
C̄

)
.

Now we choose C1 and n0 such that, for all n > n0,

CA

( 1
C1

+
ln n

n

)
<

1
2

(24)

and then take C̄ satisfying

C̄ > max{2n0, 2CA(1 + C1)}.

Then we have
∆n ≤ C̄n−1,

and the theorem is proved.
There are more results on convergence of operators in the Trotter product formulae

(see, for example, Theorems 3.4 and 5.8 of [4], Theorem 1 of [3], Theorem 3.5 of [5]) con-
taining a logarithmic term in estimates. We hope that applying the induction method, as
demonstrated above, it is possible to get rid of this logarithmic term in all these estimates.

(Note added during revision. In a recent preprint of V. Cachia ”Euler’s exponential
formula for non C0 semigroups” (available at http:// mpej.unige.ch/ ˜ cachia, to appear
in Semigroup Forum (2003)) the rate O( ln n

n ) in Theorem B is extended to bounded holo-
morphic semigroups not necessarily of class C0 and at the end of the preprint it is claimed
that induction method allows to skip the factor lnn.)
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In our preprint [12], we discussed in detail similarities and differences in estimating the
rate of convergence in the CLT in probability theory and in relation (9) for operators. Here
we only note that the main difference is that, in the CLT, we use the so-called ”smoothing”
inequality. This means that, at the beginning of the proof, we take the convolution of the
difference of distribution of a sum and a limiting Gaussian distribution with a Gaussian
law with small variance. Since, in our context, the role of Gaussian distribution is played
by the operator exp(−tA), it is temptating to use the operator G(1/n) = exp(−A/n) as a
“smoothing” factor. But it turns out that the family of operators exp(−tA) is not so good
as Gaussian distributions (due to the fact that A is an unbounded operator) and at present
we cannot provide any reasonable “smoothing“ inequality. It seems that it is interesting
to find an appropriate “smoothing” inequality for the operator convergence.

Theorem B and Theorem 4 give the rate of convergence in the operator-norm topology
for the special family of contractions in a Hilbert space H

F (t) = (I + tA)−1,

where A is an m-sectorial operator and 0 belongs to the resolvent set of A. On the
other hand, well-known Chernoff theorem states the convergence in the strong operator
topology of a general family of contractions F (t) on a Banach space B. Examining the
proof of Theorem 4 one can see that it is possible to formulate sufficient conditions on the
family F (t) in order to get the rate of convergence n−1 in the Chernoff theorem. Precisely,
repeating all steps of the proof of Theorem 4, we have the following result.

Proposition 7. Let {F (t), t ∈ R+} be a family of contractions on B with F (0) = I.
Suppose that the closure A of the strong derivative F ′(0) is the generator of a (C0) con-
traction semigroup T (t) = etA . Assume that there exist constants C1, . . . , C4 depending
only on the family F such that, for all τ > 0, k ≥ 1, and i = 1, 2,

max
(
‖A−i

(
F (τ)− T (τ)

)‖, ‖(F (τ)− T (τ)
)
A−i‖

)
≤ Ciτ

i,

‖AiT (τ)‖ ≤ C3τ
−i, ‖F (τ)kA‖ ≤ C4

τk
.

Then there exists a constant C̄ depending on the family F such that, for all n ≥ 1,

‖(F (t/n)
)n − T (t)‖ ≤ C̄n−1.

This proposition can be considered as an auxiliary result. It is possible to ask which
conditions on F are sufficient to establish the estimates required in Proposition 7. One can
guess may be some kind of smoothness of the function F ′(t) is a right condition. Another
interesting problem is the following one. We know that if, in the CLT, the summands have
only moments of the order 2 + δ with 0 < δ < 1, then the rate of convergence is of order
n−δ/2, and it can be obtained using a smoothing procedure and induction. It is interesting
whether it is possible to prove a result similar to Proposition 7 but with the rate n−α with
some 0 < α < 1 instead of n−1.
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11. V. Paulauskas and A. Račkauskas, Approximation Theory in the Central Limit
Theorem: Exact Results in Banach Spaces, Kluwer Academic Publishers, Dordrecht,
(1989).

12. V. Paulauskas, A note on error estimates in Trotter–Kato formula for quasi-sectorial
operators, preprint (2002).


