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Abstract

We discuss the limit behavior of the partial sums process of stationary solutions
to the (autoregressive) AR(1) equation Xt = atXt−1 + εt with random (renewal-
reward) coefficient, at , taking independent, identically distributed values Aj ∈ [0, 1]
on consecutive intervals of a stationary renewal process with heavy-tailed interrenewal
distribution, and independent, identically distributed innovations, εt , belonging to the
domain of attraction of an α-stable law (0 < α ≤ 2, α �= 1). Under suitable conditions
on the tail parameter of the interrenewal distribution and the singularity parameter of the
distribution of Aj near the unit root a = 1, we show that the partial sums process of Xt

converges to a λ-stable Lévy process with index λ < α. The paper extends the result
of Leipus and Surgailis (2003) from the case of finite-variance Xt to that of infinite-
variance Xt .
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1. Introduction and main result

There is a growing econometrics literature on regime switching models that offer an
attractive explanation of the long memory and heavy tails observed in financial series.
Various regime switching models leading to the long-memory property and related econo-
metrical issues were discussed in Parke (1999), Liu (2000), Jensen and Liu (2006), Gourieroux
and Jasiak (2001), Diebold and Inoue (2001), Leipus and Viano (2003), Davidson and
Sibbertsen (2005), Granger and Hyung (2004), and Mikosch and Stărică (2004). Recently,
Leipus and Surgailis (2003) and Leipus et al. (2005) discussed the random-coefficient
(autoregressive) AR(1) equation

Xt = atXt−1 + εt , t ∈ Z, (1.1)
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where at assumes random values Aj ∈ [0, 1] on consecutive intervals (Sj−1, Sj ] of a renewal
process on Z with a heavy-tailed interrenewal distribution Uj = Sj − Sj−1. When the Aj

assume two values, 0 and 1, only, the corresponding stationary solution to (1.1) switches
between independent, identically distributed (i.i.d.) and random walk (unit-root) regimes,
and the autocovariance of Xt may decay slowly with the lag, as in fractional autoregressive
integrated moving average models (this fact was first observed in Pourahmadi (1988)). The main
result of Leipus and Surgailis (2003) says that partial sums of such a regime switching AR(1)
model as (1.1) converge to a λ-stable Lévy process, with index λ < 2, depending on the tail
parameter, β, of the interrenewal distribution U = Uj and the singularity parameter, q, of the
probability density function of generic A = Aj near the unit root a = 1 (see Assumptions
U(β) and A(q), below, for precise definitions of β and q). This result is in deep contrast with
the Gaussian (fractional Brownian motion) asymptotic distribution of partial sums of finite-
variance fractional autoregressive integrated moving average models. Note that the asymptotic
stable behavior of partial sums processes of linear models with heavy-tailed renewal switching
mean was discussed in Taqqu and Levy (1986), Liu (2000), Davidson and Sibbertsen (2005),
Mikosch et al. (2002), Pipiras et al. (2004), and other papers.

The present paper extends the results of Leipus and Surgailis (2003) from the finite-variance
case (E[X2

t ] < ∞) to the infinite-variance case (E[X2
t ] = ∞). As in the above-mentioned

paper, we assume that εt , t ∈ Z, is an i.i.d. sequence and that at , t ∈ Z, is a strictly stationary
(renewal-reward) process independent of εt , t ∈ Z; i.e.

at := Aj , Sj−1 < t ≤ Sj , j ∈ Z, (1.2)

where Sj , j ∈ Z, is a stationary renewal process on Z with finite-mean interrenewal distribution
Uj = Sj −Sj−1, and Aj , j ∈ Z, is an i.i.d. sequence independent of Sj , j ∈ Z. Let µ := E[U ].
Recall that the distribution of the first arrival time, S0 ≥ 0, and the last arrival time, S−1, before
t = 0 in a stationary renewal process {Sj } satisfy

P[S0 = u] = P[S−1 = −u − 1] = µ−1 P[U ≥ u + 1], u = 0, 1, . . . . (1.3)

The following assumptions on the generic distributions ε = εt , U = Uj , and A = Aj play
an important role in the asymptotic results for partial sums of Xt in (1.1).

Assumption D(α). (i) If α = 2 then E[ε] = 0 and E[ε2] < ∞.

(ii) If 0 < α < 2 then there exist constants c+
ε , c−

ε ≥ 0, c+
ε + c−

ε > 0, such that

P[ε > x] ∼ c+
ε x−α as x → ∞, P[ε < x] ∼ c−

ε |x|−α as x → −∞.

Moreover, E[ε] = 0 for 1 < α < 2.

Assumption U(β). There exist constants cU > 0 and β > 1 such that

P[U = u] ∼ cUu−β−1 as u → ∞.

Assumption A(q). P[0 ≤ A ≤ 1] = 1 and

(i) if q = 0 then A has an atom at 1, i.e. 0 < f1 := P[A = 1] < 1;

(ii) if q > 0 then A has a probability density f (a) in some neighborhood of a = 1 such that

f (a) = f1(a)(1 − a)q−1,

where f1(a) is a continuous function such that f1 := f1(1) > 0.
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We shall invoke the above assumptions by writing ε ∈ D(α), U ∈ U(β), and A ∈ A(q),
respectively. Note that ε ∈ D(α) means that the random variable (RV) ε belongs to the domain
of normal attraction of a stable law with index α, 0 < α ≤ 2; in other words,

n−1/α
n∑

i=1

εi − �n(α)
d−→ Z, (1.4)

where Z is an α-stable RV, ‘
d−→’denotes convergence in distribution, and �n(α) are the centering

constants; see Feller (1966, p. 580):

�n(α) :=
{

n E[sin(ε/n)], α = 1,

0, α �= 1.

The characteristic function of the RV Z is given by E[eiθZ] = exp{−|θ |αω(θ; α, c+
ε , c−

ε )},
where

ω(θ; α, c+
ε , c−

ε )

:=

⎧⎪⎪⎨
⎪⎪⎩

�(2 − α)

1 − α

(
(c+

ε + c−
ε ) cos

(
πα

2

)
− i(c+

ε − c−
ε ) sgn(θ) sin

(
πα

2

))
, α �= 1,

(c+
ε + c−

ε )
π

2
+ i(c+

ε − c−
ε ) sgn(θ) log |θ |, α = 1.

We shall also need Assumption D(α, δ), below, which is a technical assumption stronger than
Assumption D(α) and is sometimes imposed to obtain convergence rates in the central limit
theorem (1.4). To formulate it, for ε ∈ D(α), 0 < α < 2, and r ≥ α, let us define the rth
absolute pseudomoment of ε as

µr(ε) :=
∫

R

|x|r |d(P[ε ≤ x] − P[Z ≤ x])|,

where Z is the α-stable RV on the right-hand side of (1.4).

Assumption D(α, δ). (i) If α = 2 then E[ε] = 0 and E[|ε|2+δ] < ∞ for some δ > 0.

(ii) If 0 < α < 2 then ε ∈ D(α) and µα+δ(ε) < ∞ for some δ > 0.

We write ‘
fdd−−→’ to denote weak convergence of finite-dimensional distributions, and define

λ := α(β + q)

1 + α
. (1.5)

In Theorem 1.1, below, Xt is a stationary solution to (1.1) given by

Xt = εt +
∞∑
i=1

εt−i

i−1∏
p=0

at−p. (1.6)

For 0 < λ < 2, introduce a λ-stable Lévy process Zλ(τ), τ ≥ 0, with independent and
stationary increments, whose d-dimensional characteristic function is given by

E

[
exp

{
i

d∑
j=1

θjZλ(τj )

}]
= exp

{
−µ−1

d∑
j=1

∣∣∣∣
d∑

k=j

θk

∣∣∣∣
λ

ω

( d∑
k=j

θk; λ, c+
Y , c−

Y

)
(τj − τj−1)

}
(1.7)
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for τ0, . . . , τd with 0 = τ0 < τ1 < · · · < τd , and θj ∈ R, j = 1, . . . , d, where

c+
Y := cV E[|Z|λ 1(Z > 0)], c−

Y := cV E[|Z|λ 1(Z < 0)]. (1.8)

In (1.8), Z is the same as in (1.4) and the constant cV ≡ cV (α, β, q) > 0 is given explicitly
later, in (3.7). Let [nτ ] denote the integer part of nτ .

Theorem 1.1. Let Assumptions A(q), U(β), and D(α, δ) be satisfied for some q ≥ 0, β > 1,
α with 0 < α ≤ 2 and α �= 1, and δ > 0 such that β + q < 1 + α. Then

n−1/λ
∑

0≤s<[nτ ]
Xs

fdd−−→ Zλ(τ). (1.9)

Remark 1.1. It follows from (1.7) and (1.8) that the limit process Z1(τ ) in (1.9), corresponding
to λ = 1, is symmetric (i.e. c+

Y = c−
Y ), due to the fact that the RV Z in (1.4) has mean 0 for

α > 1. On the other hand, if λ �= 1 then the process Zλ(τ) need not be symmetric, since

E[|Z|λ 1(Z > 0)] �= E[|Z|λ 1(Z < 0)]
in general. The last inequality holds, e.g. if Z is not symmetric and λ is sufficiently close to
α (Samorodnitsky and Taqqu (1994, p. 19)). The lack of symmetry of Zλ(τ) in Theorem 1.1
contrasts with the limit process labeled Zλ(τ) in Leipus and Surgailis (2003, Theorem 4.1),
which is symmetric (in that paper α = 2, β ≡ α, λ ∈ ( 4

3 , 2), and Z ∼ N(0, 1); the symmetry
of ε is not assumed).

Remark 1.2. The case α = 1 is more delicate and remains open. If the distribution of ε

is symmetric then we expect that the convergence (1.9) also holds in this case, with λ =
(β + q)/2 ∈ (0, 1), as in (1.5). However, if α = 1 and c+

ε �= c−
ε then we conjecture that a limit

of partial sums of Xt exists under the normalization (n log n)−1/λ rather than under n−1/λ, and
that the limiting process Zλ(τ) is completely antisymmetric.

Remark 1.3. While positivity of A (see Assumption A(q)) can probably be weakened, the fact
that |A| ≤ 1 is crucial in Theorem 1.1. The regime in (1.1) corresponding to at = a > 1
can be described as ‘explosive growth’ whose duration should be quite short (U should have
an exponential tail) in order that a stationary Lr -solution (r > 0) exists; see Remark 2.1(iii).
See also Leipus et al. (2005) on AR(1) process switching between the i.i.d. regime a = 0 and
some (deterministic) value A > 1. A particular case of this process is the collapsible bubbles
model introduced in Blanchard (1979).

Under the assumptions of Theorem 1.1, the stationary solution Xt , (1.6), with at as in (1.2)
has finite variance if and only if α = 2 and 2 < β + q. Moreover, for 2 < β + q < 3
the autocovariance function of Xt decays slowly, as t2−β−q ; see Leipus and Surgailis (2003,
Theorem 3.1). The last property is usually referred to as long memory. We might also expect
some kind of long memory for Xt in Theorem 1.1 when E[X2

t ] = ∞. In particular, our limit
results can be linked to the LRD(SAV) property introduced in Heyde and Yang (1997) and
the self-normalization discussed therein. (The possibility of such a connection was suggested
by the referee.) On the other hand, the limit process Zλ(τ) in Theorem 1.1 has independent
increments, which is an indication of short memory of the summands (see Cox (1984) and
Dehling and Philipp (2002)). Note that λ < α for any α ∈ (0, 2]; in other words, variability of
the limit process in (1.9) is strictly greater than variability of the summands. A rather general
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scheme of renewal regime switching that exhibits a similar increase of variability was discussed
in Leipus et al. (2005).

The regular asymptotics in Assumptions A(q), U(β), and D(α) help to avoid additional
technicalities and can probably be generalized to include slowly varying factors. We expect
that for β +q > 1+α, Theorem 1.1 holds with λ = α (and some constants, c+

Y and c−
Y , in (1.7)

proportional to c+
ε and c−

ε ); in other words, when β + q > 1 + α, partial sums of Xt should
behave similarly to partial sums of εt .

The rest of the paper is organized as follows. In Section 2 we discuss the existence of a
stationary solution to Xt , (1.6), in the Lr -sense (r > 0) and the LRD(SAV) property of Xt .
(LRD and SAV stand for long-range dependence and sample Allen variance, respectively.)
Theorem 1.1 is proved in Section 3. Section 4 contains the proofs of the auxiliary results
Lemmas 3.1–3.5.

2. Existence of a stationary solution

Random-coefficientAR(1) equation (1.1), under general conditions on the R
2-valued process

(at , εt ), has been studied by many authors; see Vervaat (1979), Brandt (1986), Pourahmadi
(1988), Karlsen (1990), and the references therein. Theorem 2.1, below, states conditions for
the existence of stationary solution (1.6) with finite rth moment, when at is a renewal-reward
process of the form (1.2). In this theorem, we do not invoke Assumption A(q), U(β), or D(α).
Let νr := E[|A|r ].
Theorem 2.1. Let r and p, 0 < r ≤ p ≤ 2, be given, and let E[|ε|p] < ∞. Equation (1.1),
with at as in (1.2), admits a stationary solution, Xt , given by (1.6), with E[|Xt |r ] < ∞ if

E[νrU ] < 1 (2.1)

and

E

[ U∑
v=1

{1 + νp + · · · + νpv}r/p
]

< ∞. (2.2)

Proof. We shall use the following inequality. Let 0 < p ≤ 2 and let ξ1, ξ2, . . . be random
variables with E[|ξi |p] < ∞. Moreover, for 1 < p ≤ 2 we assume that the RVs ξi form a
martingale difference sequence:

E[ξi+1 | ξi, . . . , ξ1] = 0, i = 1, 2, . . . .

There then exists a constant, Cp < ∞, which depends only on p, such that

E

[∣∣∣∣∑
i

ξi

∣∣∣∣
p]

≤ Cp

∑
i

E[|ξi |p]. (2.3)

For 0 < p ≤ 1, (2.3) holds with Cp = 1, and for 1 < p ≤ 2 it holds with Cp = 2 (see von Bahr
and Esseen (1965)). The theorem follows if we show that the series for Xt in (1.6) converges
in Lr . Clearly, it suffices to consider the case t = 0. Write X0 = X0

0 + X1
0, where

X0
0 :=

∑
S−1<u≤0

A−u
0 εu, X1

0 :=
∑

u≤S−1

a0 · · · au+1εu.
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Using (2.3), (1.3), and Jensen’s inequality, as in Leipus and Surgailis (2003) we set c1 =
(2 E[|ε|p])r/p and obtain

E[|X0
0|r ] ≤ E

[
E

[∣∣∣∣ ∑
S−1<u≤0

A−u
0 εu

∣∣∣∣
p ∣∣∣∣ A0, S−1

]]r/p

≤ c1 E

[ ∑
S−1<u≤0

|A0|−pu

]r/p

≤ c1

∞∑
v=1

{ ∑
−v<u≤0

E[|A0|−pu | S−1 = −v]
}r/p

P[S−1 = −v]

= c1µ
−1 E

[ U∑
v=1

{1 + νp + · · · + νp(v−1)}r/p
]
. (2.4)

Next, consider E[|X1
0|r ]. As X1

0 = A
−S−1
0

∑
u≤S−1

aS−1 · · · au+1εu, we have

E[|X1
0|r ] =

∞∑
v=1

E

[
|A0|rv

∣∣∣∣ ∑
u≤−v

a−v · · · au+1εu

∣∣∣∣
r ∣∣∣∣ S−1 = −v

]
P[S−1 = −v].

Since A0 is independent of A−1, A−2, . . . , S−1, S−2, . . . and the εu, we have

E

[
|A0|rv

∣∣∣∣ ∑
u≤−v

a−v · · · au+1εu

∣∣∣∣
r ∣∣∣∣ S−1 = −v

]

= E[|A0|rv] E

[∣∣∣∣ ∑
u≤−v

a−v · · · au+1εu

∣∣∣∣
r ∣∣∣∣ S−1 = −v

]
.

Hence,

E[|X1
0|r ] =

∞∑
v=1

P[S−1 = −v]νrv E

[∣∣∣∣ ∑
u≤−v

a−v · · · au+1εu

∣∣∣∣
r ∣∣∣∣ S−1 = −v

]

=
∞∑

v=1

P[S−1 = −v]νrv E

[∣∣∣∣∑
u≤0

a0a−1 · · · au+1εu

∣∣∣∣
r ∣∣∣∣ S0 = 0

]

= c2J, (2.5)

where

c2 :=
∞∑

v=1

P[S−1 = −v]νrv = µ−1
∞∑

v=1

νrvP[U ≥ v] = µ−1 E

[ U∑
u=1

νru

]

and

J := E

[∣∣∣∣∑
u≤0

a0a−1 · · · au+1εu

∣∣∣∣
r ∣∣∣∣ S0 = 0

]
= E[|X0|r | S0 = 0].

Note that c2 is finite, due to νru ≤ ν
r/p
pu ≤ {1 + νp + · · · + νpu}r/p and (2.2).

The conditional expectation J = E[|X0|r | S0 = 0] can be estimated similarly to E[|X0|r ]:
the only difference is in using the conditional distribution P[S−1 = −v | S0 = 0] = P[U = v].
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We shall also need the following inequality: for any real numbers a, b ∈ R, any r, 0 < r ≤ 2,
and any δ > 0, we have

|a + b|r ≤ (1 + δ)|a|r + (1 + δ−1)|b|r . (2.6)

Using (2.6), we can write

J ≤ (1 + δ−1) E

[∣∣∣∣ ∑
S−1<u≤0

A−u
0 εu

∣∣∣∣
r ∣∣∣∣ S0 = 0

]
+ (1 + δ) E

[∣∣∣∣ ∑
u≤S−1

a0 · · · au+1εu

∣∣∣∣
r ∣∣∣∣ S0 = 0

]

=: (1 + δ−1)J0 + (1 + δ)J1.

Here, as in (2.4),

J0 ≤ c1

∞∑
v=1

{v−1∑
u=0

νpu

}r/p

P[S−1 = −v | S0 = 0]

= c1

∞∑
v=1

{v−1∑
u=0

νpu

}r/p

P[U = v]

= c1 E

[{U−1∑
u=0

νpu

}r/p]
. (2.7)

Also, as in (2.5),

J1 = J

∞∑
v=1

νrvP[S−1 = −v | S0 = 0] = J

∞∑
v=1

νrvP[U = v] = J E[νrU ].

We now have

J ≤ c1(1 + δ−1) E

[{U−1∑
u=0

νpu

}r/p]
+ J (1 + δ) E[νrU ].

Condition (2.1) implies that (1 + δ) E[νrU ] < 1 for a small enough δ > 0, resulting in

J ≤ c1(1 + δ−1) E[{∑U−1
u=0 νpu}r/p]

1 − (1 + δ) E[νrU ] . (2.8)

By combining (2.4)–(2.8), we obtain

E[|X0|r ] ≤ 2(E[|X0
0|r ] + E[|X1

0|r ])

≤ 2c1

(
µ−1E

[ U∑
u=1

{u−1∑
i=0

νpi

}r/p]
+ (1 + δ−1)c2 E[{∑U−1

u=0 νpu}r/p]
1 − (1 + δ) E[νrU ]

)
.

Theorem 2.1 is thus proved.

Remark 2.1. (i) In the case p = r = 2, conditions (2.1) and (2.2) are also necessary for the
existence of a stationary L2-solution; see Leipus and Surgailis (2003, Theorem 2.1).

(ii) Condition (2.1) is satisfied if P[|A| ≤ 1] = 1 and P[|A| �= 1] > 0. UnderAssumptionsA(q),
U(β), and D(α), (2.2) can easily be specified in terms of parameters q, β, and α. In particular,
for A ∈ A(q), U ∈ U(β), ε ∈ D(α), 0 < α < 2, and 0 ≤ q < 1, (2.2) holds for any r and p

with 0 < r < p(β − 1)/(1 − q) and r ≤ p < α. A similar result also easily follows in the
case α = 2.
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(iii) If P[|A| > 1] > 0 then E[νrU ] < ∞ implies that P[U > u] = O(e−cu) (as u → ∞) for
some c = c(r) > 0. As long as (2.1) and (2.2) hold, a stationary Lr -solution Xt always exists
(Theorem 2.1), although in the case of ‘explosive growth’ (P[|A| > 1] > 0), it will have short
duration, since then U has an exponentially decreasing tail.

Heyde and Yang (1997) introduced a notion of long-range dependence based on self-
normalization, which does not require finite variance. Namely, a stationary zero-mean
process Xt is said to have LRD(SAV) if

(
∑n

t=1 Xt)
2∑n

t=1 X2
t

p−→ ∞, (2.9)

where ‘
p−→’ stands for convergence in probability. It is known (see, e.g. Chistyakov and Götze

(2004)) that in the case of an i.i.d. Xt = εt satisfying Assumption D(α) (with 0 < α ≤ 2 and
α �= 1), the quotient in (2.9) has a (proper) limit distribution and the LRD(SAV) property does
not hold.

In the case when the Xt are of the form (1.1), we obtain the following result.

Corollary 2.1. Let Xt satisfy the assumptions of Theorem 1.1, with 1 < α ≤ 2. In addition,
assume that either β + q > 2 or β + q ≤ 2 and (β − 1)/(1 − q) > (β + q)/(1 + α). Then Xt

has LRD(SAV).

Proof. In view of the statement of Theorem 1.1, it suffices to show that
∑n

t=1 X2
t = op(n2/λ),

or E[|∑n
t=1 X2

t |r/2] = o(nr/λ) for some r > 0. By stationarity and (2.3),

E

[∣∣∣∣
n∑

t=1

X2
t

∣∣∣∣
r/2]

≤ E[|X0|rn] = o(nr/λ)

provided that r satisfies λ < r ≤ 2 and E[|X0|r ] < ∞. From Theorem 2.1 and Remark 2.1(ii),
we see that such an r exists if either (β − 1)/(1 − q) > 1 (in this case we can take r = p to be
arbitrarily close to α, whence r > λ) or

β − 1

1 − q
≤ 1 and λ < α

β − 1

1 − q
. (2.10)

(In the latter case we can take any r, λ < r < α(β − 1)/(1 − q), and then take p < α

sufficiently close to α. Also note that, for q = 0, the second inequality in (2.10) implies that
λ > 1.) The corollary is thus proved.

3. Proof of Theorem 1.1

Let S−(t) be the last renewal time before time t :

S−(t) := max{Sj : Sj < t}.
Then Xt = X1

t + X0
t , where

X0
t :=

∑
S−(t)<s≤t

at · · · as+1εs, X1
t :=

∑
s≤S−(t)

at · · · as+1εs.

In Lemmas 3.1–3.3 we assume that the conditions of Theorem 1.1 are satisfied. The proofs
of all auxiliary lemmas in this section are relegated to Section 4.
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Lemma 3.1. For any r < α sufficiently close to α, there exists a θ ≡ θ(r, α, β, q) > λ such
that

E

[∣∣∣∣
n∑

t=1

X1
t

∣∣∣∣
r]

= O(nr/θ ). (3.1)

According to Lemma 3.1, the component X1
t is negligible in the limit (1.9), and we can

replace Xt in Theorem 1.1 by X0
t . As in Leipus and Surgailis (2003), write

∑
0≤s<[nτ ] X0

s =∑
1≤i≤N[nτ ]−1

Yi + Rn, where

Nt := max{j ≥ 0 : Sj ≤ t},
i.e. Nt + 1 is the number of renewal points in the interval [0, t], and

Yi :=
∑

Si−1<s≤Si

(εs + Aiεs−1 + · · · + A
s−Si−1−1
i εSi−1+1), i = 1, 2, . . . ,

is the sum of the AR(1) processes with parameter Ai in the renewal interval [Si−1 + 1, Si].
By Rn we denote the corresponding sum in two extreme subintervals,

[0, S0] and [SN[nτ ]−1 + 1, [nτ ] − 1],
of the interval [0, [nτ ]−1]. This can easily be shown to be bounded in probability: Rn = Op(1).
The proof of Theorem 1.1 therefore reduces to the following relation:

n−1/λ

N[nτ ]∑
i=1

Yi
fdd−−→ Zλ(τ). (3.2)

Lemma 3.2. We have
∑

1≤i≤N[nτ ] Yi − ∑
1≤i≤[nτ/µ] Yi = op(n1/λ).

By the above lemma, (3.2) and, hence, Theorem 1.1 follow from

n−1/λ

[nτ/µ]∑
i=1

Yi
fdd−−→ Zλ(τ). (3.3)

Let

T (a, n) :=
n∑

s=1

(εs + aεs−1 + · · · + as−1ε1),

�(a, n) := 1α + (1 + a)α + · · · + (1 + a + · · · + an−1)α, (3.4)

Z(a, n) := T (a, n)

�1/α(a, n)
.

Observe that the Yi are conditionally independent given Sj and Aj , j ∈ Z, and

Law(Yi | Sj , Aj , j ∈ Z) = Law(T (Ai, Ui)).

As (Ai, Ui), i ≥ 1, are independent, this implies that Yi, i ≥ 1, are i.i.d. RVs, with generic
distribution Y

d= �1/α(A, U)Z(A, U) = T (A, U), where ‘
d=’ denotes equality in distribution.
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Lemma 3.3. We have

P[Y > x] ∼ c+
Y x−λ as x → ∞, P[Y ≤ x] ∼ c−

Y |x|−λ as x → −∞,

where c+
Y and c−

Y are as defined in (1.8). Moreover, if λ = 1 then

lim
n→∞ n E[sin(Y/n)] = 0. (3.5)

From Lemma 3.3 and the classical central limit theorem (cf. (1.4)), we have the convergence
in (3.3), where Zλ(τ), τ ≥ 0, is the Lévy process defined in Theorem 1.1. This concludes the
proof of Theorem 1.1.

The proof of Lemma 3.3 uses a generalization of Breiman’s lemma (Lemma 4.1, below) for
‘tail-independent’ RVs �(A, U) and Z(A, U), together with Lemmas 3.4 and 3.5.

Lemma 3.4. We have

P[�(A, U) > x] ∼ cV x−λ/α as x → ∞, (3.6)

where

cV :=

⎧⎪⎨
⎪⎩

cUf1(1 + α)−β/(1+α)β−1, q = 0,

cUf1

∫ ∞

0

dy

y1+β+q

∫ ∞

0

dv

v1−q
1(y1+α�(v) > 1), q > 0,

(3.7)

and

�(v) := v−α

∫ 1

0
(1 − e−vτ )α dτ, v > 0. (3.8)

Lemma 3.5. We have

lim
n→∞ sup

a∈[0,1]
sup
x∈R

|P[Z(a, n) ≤ x] − P[Z ≤ x]| = 0. (3.9)

Moreover, there exists a constant, C < ∞, such that, for sufficiently large n and x > 0,

sup
0≤a≤1

P[|Z(a, n)| > x] ≤ Cx−α. (3.10)

4. Proofs of Lemmas 3.1–3.5

A generic constant, C, will be used in the proofs below to represent positive numbers whose
precise values are not required.

Proof of Lemma 3.1. We have

n∑
t=1

X1
t =

∑
s≤n−1

{ n∑
t=1∨(s+1)

at · · · as+1 1(s ≤ S−(t))

}
εs.

By (2.3), for any r, 0 < r < α,

E

[∣∣∣∣
n∑

t=1

X1
t

∣∣∣∣
r]

≤ c3

∑
s≤n−1

E

[{ n∑
t=1∨(s+1)

at · · · as+1 1(s ≤ S−(t))

}r]
,
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where c3 = 2 E[|ε|r ] < ∞, a constant. Next, applying the Minkowski inequality (for r > 1)
and the inequality |a + b|r ≤ |a|r + |b|r (for 0 < r ≤ 1) yields

E

[∣∣∣∣
n∑

t=1

X1
t

∣∣∣∣
r]

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C
∑

s≤n−1

{ n∑
t=1∨(s+1)

γ
1/r
t−s

}r

if 1 < r < α,

C
∑

s≤n−1

n∑
t=1∨(s+1)

γt−s if 0 < r ≤ 1,

(4.1)

where
γt−s := E[ar

t · · · ar
s+1 1(s ≤ S−(t))] ≤ C(t − s)−q−β, s < t. (4.2)

Indeed, for r ≥ 1, we have

E[ar
t · · · ar

s+1 1(s ≤ S−(t))] ≤ E[at · · · as+1 1(s ≤ S−(t))]
and the bound (4.2) follows from Leipus and Surgailis (2003, pp. 743–744). For 0 < r < 1,
(4.2) follows similarly.

To prove (3.1), first consider the case 1 < r < α. Then, by (4.1) and (4.2),

E

[∣∣∣∣
n∑

t=1

X1
t

∣∣∣∣
r]

≤ C

( ∑
|s|<n

{ n∑
t=1

t−(q+β)/r

}r

+
∑
s≥n

{ n∑
t=1

(t + s)−(q+β)/r

}r)
=: C(I1 + I2).

If q +β > r then I1 = O(n), implying that I1 = O(nr/θ ) for r < α sufficiently close to α and
θ > λ sufficiently close to λ. The case in which q + β = r follows similarly. If q + β < r

then I1 ≤ Cn1+r−q−β , meaning that I1 = O(nr/θ ) follows, for some θ > λ, from

1 + r − q − β <
r(1 + α)

α(β + q)
. (4.3)

It suffices to show (4.3) for r = α (because then it is also satisfied for all r < α sufficiently
close to α), in which case (4.3) becomes 1 + α − q − β < (1 + α)/(β + q) or, equivalently,
(1+α)(1−1/(β+q)) < β+q. However, 1+α ≤ 3 and, so, (4.3) follows from 3(1−x−1) < x

for any x, as the polynomial x2 − 3x + 3 has no real roots.
Now we estimate I2. We have

I2 <

∫ ∞

n−1
ds

{∫ n

0
(t + s)−(q+β)/r dt

}r

= n1+r−q−βI3,

where

I3 =
∫ ∞

1−(1/n)

ds

{∫ 1

0
(t + s)−(q+β)/r dt

}r

≤
∫ ∞

1−(1/n)

s−(q+β) ds < ∞,

since q + β > 1. The required bound, I2 = O(nr/θ ), again follows from (4.3). This proves
(3.1) for 1 < r < α.

Now let 0 < r ≤ 1. Then, from (4.1) and (4.2), we obtain E[|∑n
t=1 X1

t |r ] ≤ C(Ĩ1 + Ĩ2),
where now

Ĩ1 :=
∑
|s|≤n

n∑
t=1

t−q−β, Ĩ2 :=
∑
s≥n

n∑
t=1

(t + s)−q−β.
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Since β + q > 1, we have Ĩ1 = O(n) and Ĩ2 = O(n2−β−q), and (3.1) follows from the fact
that

2 − β − q <
r(1 + α)

α(β + q)
(4.4)

for r < α sufficiently close to α. As in the proof of (4.3), it is sufficient to prove (4.4) for
r = α, in which case it becomes 2 − β − q < (1 + α)/(β + q), or 0 < (β + q − 1)2 + α.
Lemma 3.1 is thus proved.

Proof of Lemma 3.2. The proof is very similar to that in Leipus and Surgailis (2003, p. 752)
and is omitted.

The proof of Lemma 3.3 uses Lemmas 3.4, 3.5, and 4.1 and is postponed until the end of
the section.

Lemma 4.1. Let �̃ ≥ 0, let Z̃ and Z̃0 be RVs with Z̃0 independent of �̃, and let

P[�̃ > u] ∼ c0u
−λ/α as u → ∞, (4.5)

for some c0 > 0 and λ and α, 0 < λ < α < ∞. Moreover, assume that there exist r > λ, a
nonrandom constant C < ∞, and a function δ(u), u > 0, with limu→∞ δ(u) = 0, such that

P[|Z̃0| > x] + P[|Z̃| > x|�̃] ≤ Cx−r for all x > 0, almost surely, (4.6)

and
sup
x∈R

|P[Z̃ ≤ x|�̃] − P[Z̃0 ≤ x]| ≤ δ(�̃) almost surely. (4.7)

Let Ỹ := �̃1/αZ̃. Then

P[Ỹ > x] ∼ c+
1 x−λ as x → ∞, P[Ỹ ≤ x] ∼ c−

1 |x|−λ as x → −∞, (4.8)

where
c+

1 := c0 E[|Z̃0|λ 1(Z̃0 > 0)], c−
1 := c0 E[|Z̃0|λ 1(Z̃0 < 0)].

Proof. Let X̃ := �̃1/αZ̃0. The lemma follows from the facts that

P[X̃ > x] ∼ c+
1 x−λ as x → ∞, P[X̃ ≤ x] ∼ c−

1 |x|−λ as x → −∞, (4.9)

and

P[Ỹ > x] − P[X̃ > x] = o(x−λ), P[Ỹ ≤ −x] − P[X̃ ≤ −x] = o(|x|−λ), as x → ∞.

(4.10)
Relations (4.9) are well known (see Breiman (1965) and Pipiras et al. (2004)). Let us prove
(4.10). We have

P[Ỹ > x] = E[P[Z̃ > xu−1/α | �̃]|u=�̃], P[X̃ > x] = E[P[Z̃0 > xu−1/α]|u=�̃],
and, therefore,

|P[Ỹ > x] − P[X̃ > x]| ≤
3∑

i=1

di(x),
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where

d1(x) := E
[∣∣∣P[Z̃ > xu−1/α | �̃]|u=�̃ − P[Z̃0 > xu−1/α]|u=�̃

∣∣∣ 1(x�̃−1/α ≤ K)
]
,

d2(x) := E[P[Z̃ > xu−1/α | �̃]|u=�̃ 1(x�̃−1/α > K)],
d3(x) := E[P[Z̃0 > xu−1/α]|u=�̃ 1(x�̃−1/α > K)].

Consider the last expression. As P[Z̃0 > xu−1/α] ≤ Cur/α/xr by (4.6), we have

d3(x) ≤ Cx−r E[�̃r/α 1(�̃ ≤ (x/K)α)]

= −Cx−r

∫ (x/K)α

0
ur/α dP[�̃ > u]

= C

[
−x−r

(
x

K

)r

P

[
�̃ >

(
x

K

)α]
+x−r

(
r

α

)∫ (x/K)α

0
P[�̃ > u]u(r/α)−1 du

]
≤ (C/Kr−λ)x−λ

by (4.5). We obtain the same bound for d2(x), also using (4.6) and (4.5). Therefore,

sup
x>0

xλ(d2(x) + d3(x))

can be made arbitrarily small by choosing K > 0 to be large enough.
Let us estimate d1(x). As limu→∞ δ(u) → 0, for any K < ∞ and δ0 > 0 there exists a

u0 ≡ u0(K, δ0) > 0 such that δ(u) < δ0/K
λ for all u > u0. Then, by (4.7),

sup
v∈R

|P[Z̃ > v | �̃] − P[Z̃0 > v]| < δ0/K
λ, almost surely on {�̃ > u0}.

Then, for all x > u
1/α
0 K large enough,

d1(x) ≤ δ0

Kλ
P

[
�̃ ≥

(
x

K

)α]
≤ Cδ0/K

λ

(x/K)λ
≤ Cδ0x

−λ.

Hence, lim supx→∞ xλ|d1(x)| ≤ Cδ0, thereby proving the first relation of (4.10). The second
relation of (4.10) follows similarly.

Proof of Lemma 3.4. Let us consider

�n(v) := 1

n1+α
�

(
1 − v

n
, n

)
= 1

vαn

n∑
j=1

(
1 −

((
1 − v

n

)n)j/n)α

, 0 ≤ v ≤ n.

Since (1 − (v/n))n → e−v , by the dominated convergence theorem �n(v) converges to �(v),
in (3.8), for each v > 0. We note the bound

�n(v) ≤ C/(1 + v)α. (4.11)

Indeed, for v > 1, (4.11) follows by writing �(a, n) ≤ n/(1 − a)α and from the definition of
�n(v). For v ≤ 1, (4.11) follows trivially from �(a, n) ≤ n1+α .
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To prove (3.6), first consider the case q > 0. Then P[�(A, U) > x] = p0(x) + p1(x),
where

p0(x) := P[�(A, U) > x, 1 − ε < A < 1, U > n0],
p1(x) := P[�(A, U) > x, A ≤ 1 − ε or U ≤ n0]

≤ P[�(A, U) > x, A ≤ 1 − ε] + P[�(A, U) > x, U ≤ n0].
Relation (3.6) follows from

lim
n0→∞, ε→0

lim sup
x→∞

∣∣∣∣ p0(x)

cV x−(β+q)/(1+α)
− 1

∣∣∣∣ = 0 (4.12)

and the fact that, for any fixed n0 < ∞ and ε > 0,

lim
x→∞ p1(x)xλ/α = 0. (4.13)

Let us prove (4.12). As in Leipus and Surgailis (2003),

p0(x) = cV (x)x−λ/α(1 + δ(n0, ε)),

where δ(n0, ε) → 0 as n0 → ∞ and ε → 0, and where

cV (x) := cUf1

∫ ∞

0

dy

y1+β+q
ω1(x; y)

∫ ∞

0

dv

v1−q
ω2(x; v, y)

× 1(y1+α�[x1/(1+α)y](v) > ω3(x; y)).

The functions ωi, i = 1, 2, 3, are uniformly bounded in all arguments and tend to 1 for any
v, y > 0 as x → ∞. Then (4.12) follows from

lim
x→∞ cV (x) = cV . (4.14)

Furthermore, using (4.11),

cV (x) ≤ c̄V := C

∫ ∞

0

dy

y1+β+q

∫ ∞

0

dv

v1−q
1
(

C
y1+α

(1 + v)α
> 1

)
,

which is finite, since 1 + β + q > 1 and β + q − q(1 − α)/α > 0, or β > q/α. Note that
the last inequality follows from β + q < 1 + α and β > 1, as these imply that q < α and,
therefore, that β > 1 > q/α. Therefore (4.14) holds by the dominated convergence theorem,
proving (4.12).

To finish the proof of (3.6) in the case q > 0, we need to prove (4.13), where now ε > 0
and n0 < ∞ are fixed. Note that �(a, n) ≤ Cn for a ≤ 1 − ε; therefore,

P[�(A, U) > x, A ≤ 1 − ε] ≤ P[U > C−1x] ≤ Cx−β = o(x−λ/α),

as β > 1 > λ/α. On the other hand, P[�(A, U) > x, U ≤ n0] = 0 for sufficiently large x,
since �(a, n) is bounded by nα+1

0 for n ≤ n0 and a ∈ [0, 1] (see (3.4)).
If q = 0 then P[�(A, U) > x] = f1P [�(1, U) > x] + P [�(A, U) > x, A < 1].

As �(1, n) = ∑n
k=1 kα ∼ n1+α/(1 + α), we have

P[�(1, U) > x] ∼ P[U1+α > (1 + α)x]
= P[U > ((1 + α)x)1/(1+α)]
∼ (cV /f1)x

−λ/α as x → ∞,
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with cV as given in (3.7). It remains to show that

lim sup
x→∞

xλ/α P[�(A, U) > x, A < 1] = 0. (4.15)

For any δ > 0, we can find a δ′ > 0 such that P[1 − δ′ < A < 1] < δ. Then, using
�(a, n) ≤ �(1, n), we have

P[�(A, U) > x, 1 − δ′ < A < 1] ≤ δ P[�(1, U) > x] ≤ Cδx−λ/α,

according to the argument above. Finally, for any fixed δ′ > 0,

sup
0≤a≤1−δ′

�(a, n) ≤ (1 − an+1)(δ′)−αn ≤ Cn

and, therefore,

P[�(A, U) > x, A ≤ 1 − δ′] ≤ P[CU > x] ≤ Cx−β = o(x−λ/α), β > 1 > λ/α.

As δ > 0 is arbitrary, this proves (4.15) and, thus, the lemma.

Proof of Lemma 3.5. First let 0 < α < 2, with α �= 1. The proof of (3.9) given below uses
the bound of the rate of convergence in the central limit theorem for sums of independent RVs
in the domain of attraction of an α-stable law obtained in Paulauskas (1974). To that end, let

S(a, n) :=
n∑

i=1

bn,iζi , T (a, n) =
n∑

i=1

bn,iεi , bn,i := 1 + a + · · · + an−i ,

where ζi, i = 1, 2, . . . , are independent copies of the RV Z in (1.4). Note that S(a, n) is a
weighted sum of α-stable RVs and that the normalized RV S(a, n)/�1/α(a, n) has the same
distribution as the RV Z in (3.9). Let

�(a, n) := sup
x∈R

|P[Z(a, n) ≤ x] − P[Z ≤ x]|

= sup
x∈R

∣∣∣∣P
[

T (a, n)

�1/α(a, n)
≤ x

]
− P

[
S(a, n)

�1/α(a, n)
≤ x

]∣∣∣∣.
Let r := α + δ, where δ > 0 is the same as in Assumption D(α, δ). Observe that �(a, n) =∑n
i=1 bα

n,i , and that the absolute pseudomoment obeys µr(bn,iεi) = br
n,iµr(ε) < ∞. Let

Ln,r (a) :=
n∑

i=1

µr(bn,iεi)

�r/α(a, n)
= µr(ε)

∑n
i=1 br

n,i

(
∑n

i=1 bα
n,i)

r/α
,

γn(a) := max1≤i≤n bn,i

(
∑n

i=1 bα
n,i)

1/α
.

According to the bound of Paulauskas (1974, Theorem 1) (see also Christoph and Wolf (1992,
p. 59)),

�(a, n) ≤ Kα max{Ln,r (a), (Ln,r (a))1/(r+1)γ
r/(r+1)
n (a)}, (4.16)

where Kα is an absolute constant depending only on α. Clearly, 0 ≤ γn(a) ≤ 1 and (3.9) will
follow from (4.16) if we can show that

sup
0≤a≤1

Ln,r (a) → 0 as n → ∞. (4.17)
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According to Lemma 4.2, below, the function Ln,r (a) is nondecreasing in a ∈ [0, 1] for any
n ≥ 1. Therefore, (4.17) follows from

Ln,r (1) = µr(ε)

∑n
i=1 ir

(
∑n

i=1 iα)r/α
= O(n−(r−α)/α) = o(1),

as r > α. This proves (3.9) for 0 < α < 2 .
The case in which α = 2 is simpler. Let r = 2 + δ, again with δ as in Assumption

D(α, δ)(ii). In this case, Z is a Gaussian RV with mean 0 and variance E[ε2], and �(a, n) =
var(T (a, n))/E[ε2]. By applying a standard estimate of the rate of convergence in the central
limit theorem for independent summands with finite rth moment (Petrov (1995, p. 151)),
we obtain �(a, n) ≤ KL̃n,r (a), where K is an absolute constant and

L̃n,r (a) := E[|ε|r ] ∑n
i=1 br

n,i

(E[ε2] ∑n
i=1 b2

n,i)
r/2

.

Again, using Lemma 4.2 and noting that

L̃n,r (1) = E[|ε|r ] ∑n
i=1 ir

(E[ε2] ∑n
i=1 i2)r/2

= O(n−δ/2),

we obtain (3.9) in the case α = 2.
Let us now prove (3.10). Write Z(a, n) = ∑n

i=1 βn,iεi , where

βn,i := bn,i

�1/α(a, n)
,

n∑
i=1

|βn,i |α = 1.

Let ε̂i , i ≥ 1, be independent copies of εi, i ≥ 1, and let Ẑ(a, n) := ∑n
i=1 βn,i ε̂i . Then ε̃i :=

εi − ε̂i , i ≥ 1, are symmetric, i.i.d. RVs and

Z̃(a, n) := Z(a, n) − Ẑ(a, n) =
n∑

i=1

βn,i ε̃i

also has a symmetric distribution. Let H > 0 satisfy

P[|Z(a, n)| > H ] ≤ 1
2 . (4.18)

Then
P[|Z(a, n)| > x] ≤ 2 P[|Z̃(a, n)| > x − H ]. (4.19)

Introduce the Lorentz norm

‖ζ‖α,∞ :=
(

sup
x>0

xα P[|ζ | > x]
)1/α

.

We shall use the following inequality, due to Rosiński (1980, Theorem 1). Let 0 < α ≤ 2 and
let ξi, i = 1, 2, . . . , be independent symmetric RVs such that ‖ξi‖α,∞ < ∞, i ≥ 1. Then,
for any n ≥ 1, ∥∥∥∥

n∑
i=1

ξi

∥∥∥∥
α

α,∞
≤ Cα

n∑
i=1

‖ξi‖α
α,∞, (4.20)
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where Cα is an absolute constant depending on α only. Applying (4.20) to the sum Z̃(a, n),
yields

P[|Z̃(a, n)| > x] ≤ x−α‖Z̃(a, n)‖α
α,∞

≤ Cαx−α
n∑

i=1

‖βn,i ε̃i‖α
α,∞

≤ Cα‖ε̃1‖α
α,∞x−α

n∑
i=1

|βn,i |α

= C̃αx−α, (4.21)

where C̃α = Cα‖ε̃1‖α
α,∞ does not depend on n, a, or x. Clearly, (3.10) follows from (4.21) and

(4.19), provided that we can find an H > 0 that satisfies (4.18) and is independent of n and
a for all n ≥ n0 large enough. The last fact follows from (3.9), or (4.16) and (4.17). Indeed,
as P[|Z(a, n)| > H ] ≤ P[|Z| > H ] + 2�(a, n), we can choose H and n0 to be large enough
that both P[|Z| > H ] < 1

4 and supa∈[0,1] �(a, n) < 1
8 , n ≥ n0. Lemma 3.5 is thus proved.

Lemma 4.2. Let

Ln(a) := ζ(a, n, r)

ζ r/α(a, n, α)
, ζ(a, n, r) :=

n∑
i=1

(1 − ai)r .

Then for any n ≥ 1, a ∈ [0, 1], and any α, r ≥ α > 0, we have ∂Ln(a)/∂a ≥ 0.

Proof. It suffices to prove the lemma for a ∈ (0, 1). We have

∂Ln(a)

∂a
= 1

ζ r/α(a, n, α)

[
ζ ′
a(a, n, r) − r

α
ζ ′
a(a, n, α)

ζ(a, n, r)

ζ(a, n, α)

]
,

where

ζ ′
a(a, n, r) = −

n∑
i=1

r(1 − ai)r−1iai−1.

To prove the lemma, it suffices to show that the expression in square brackets is nonnegative,
i.e. that

ζ ′
a(a, n, r)

ζ ′
a(a, n, α)

≤ r

α

ζ(a, n, r)

ζ(a, n, α)
,

or ∑n
i=1(1 − ai)r−1iai−1∑n
i=1(1 − ai)α−1iai−1

≤
∑n

i=1(1 − ai)r∑n
i=1(1 − ai)α

. (4.22)

We shall prove (4.22) by induction on n. For n = 1, it becomes the identity, (1 − a)r−α =
(1 − a)r−α, which is valid for any a, 0 ≤ a ≤ 1.

Let us demonstrate the induction step n → n + 1, or the inequality

∑n+1
i=1 (1 − ai)r−1iai−1∑n+1
i=1 (1 − ai)α−1iai−1

≤
∑n+1

i=1 (1 − ai)r∑n+1
i=1 (1 − ai)α

. (4.23)
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To this end, let

A :=
n∑

i=1

(1 − ai)r−1iai−1, B :=
n∑

i=1

(1 − ai)α−1iai−1,

C :=
n∑

i=1

(1 − ai)r , D :=
n∑

i=1

(1 − ai)α,

whence (4.22) becomes A/B ≤ C/D, while (4.23) can be written as

A + (1 − an+1)r−1(n + 1)an

B + (1 − an+1)α−1(n + 1)an
≤ C + (1 − an+1)r

D + (1 − an+1)α
. (4.24)

Using AD ≤ BC, (4.24) is implied by the following inequality:

A(1 − an+1)α + D(1 − an+1)r−1(n + 1)an

≤ B(1 − an+1)r + C(1 − an+1)α−1(n + 1)an.

By substituting the full expressions for A, B, C, and D into this inequality and using elementary
transformations, it becomes

n∑
i=1

[(1 − an+1)r−α − (1 − ai)r−α](1 − ai)α−1[(1 − an+1)iai−1 − (n + 1)an(1 − ai)]

≥ 0. (4.25)

Note that each term of this sum is nonnegative. Indeed, (1 − an+1)r−α − (1 − ai)r−α ≥ 0 and
(1 − ai)α−1 ≥ 0 for any a ∈ [0, 1], i with 1 ≤ i ≤ n, and r ≥ α. It remains to show that

(1 − an+1)iai−1 − (n + 1)an(1 − ai) ≥ 0. (4.26)

The left-hand side of (4.26) can be written as ai−1h(a), with

h(a) := (n + 1 − i)an+1 + i − (n + 1)an+1−i .

Note that h(1) = 0 and

h′(a) = (n + 1)(n + 1 − i)an − (n + 1)(n + 1 − i)an−i

= (n + 1)(n + 1 − i)(an − an−i )

≤ 0

for a ∈ [0, 1] and i ≤ n + 1. Therefore, h(a) ≥ 0 for a ∈ [0, 1]. This proves (4.26), (4.25),
and the induction step n → n + 1. Lemma 4.2 is thus proved.

Proof of Lemma 3.3. We use Lemma 4.1 with Z̃ := Z(A, U) and �̃ := �(A, U).
Condition (4.5) follows from Lemma 3.4 and conditions (4.6) and (4.7) follow from Lemma 3.5.
Thus, (4.8) holds and, in turn, implies the tail behavior of Y .
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Let us now prove (3.5). Choose λ = 1 and an r such that 1 < r < α. Using E[ε] = 0,
E[|ε|r ] < ∞, 0 ≤ A ≤ 1, the inequality |sin(x)− x| < 2|x|r (1 < r < 2), and (2.3), we obtain∣∣∣∣n E

[
sin

(
Y

n

)]∣∣∣∣ = n

∣∣∣∣E
[

E

[
n−1

U∑
i=1

Ai−1εi − sin

(
n−1

U∑
i=1

Ai−1εi

) ∣∣∣∣ A, U

]]∣∣∣∣
≤ 2n1−r E

[
E

[∣∣∣∣
U∑

i=1

Ai−1εi

∣∣∣∣
r ∣∣∣∣ A, U

]]

≤ 4n1−r E[|ε|r ] E

[ U∑
i=1

Ar(i−1)

]

≤ 4n1−r E[|ε|r ] E[U ]
= o(1),

as r > 1. This proves (3.5), completing the proof of Lemma 3.3.

Acknowledgement

The authors are deeply obliged to an anonymous referee whose numerous comments and
suggestions helped to considerably improve the first version of the paper.

References

Blanchard, O. J. (1979). Speculative bubbles, crashes and rational expectations. Econom. Lett. 3, 387–389.
Brandt, A. (1986). The stochastic equation Yn+1 = AnYn + Bn with stationary coefficients. Adv. Appl. Prob. 18,

211–220.
Breiman, L. (1965). On some limit theorems similar to the arc-sin law. Theory Prob. Appl. 10, 323–331.
Chistyakov, G. P. and Götze, F. (2004). Limit distributions of Studentized means. Ann. Prob. 32, 28–77.
Christoph, G. and Wolf, W. (1992). Convergence Theorems with a Stable Limit Law (Math. Res. 70). Akademie-

Verlag, Berlin.
Cox, D. R. (1984). Long-range dependence: a review. In Statistics: an Appraisal, eds H. A. David and H. T. David,

Iowa State University Press, pp. 55–74.
Davidson, J. and Sibbertsen, P. (2005). Generating schemes for long memory processes: regimes, aggregation and

linearity. J. Econometrics 128, 253–282.
Dehling, H. and Philipp, W. (2002). Empirical process techniques for dependent data. In Empirical Process Tech-

niques for Dependent Data, eds H. Dehling, T. Mikosch and M. Sørensen, Birkhäuser, Boston, MA, pp. 3–113.
Diebold, F. X. and Inoue, A. (2001). Long memory and regime switching. J. Econometrics 105, 131–159.
Feller, W. (1966). An Introduction to Probability Theory and Its Applications, Vol. 2. John Wiley, New York.
Gourieroux, C. and Jasiak, J. (2001). Memory and infrequent breaks. Econom. Lett. 70, 29–41.
Granger, C. W. J. and Hyung, N. (2004). Occasional structural breaks and long memory, with application to the

S&P 500 absolute stock returns. J. Emp. Finance 11, 399–421.
Heyde, C. C. and Yang, Y. (1997). On defining long-range dependence. J. Appl. Prob. 34, 939–944.
Jensen, M. J. and Liu, M. (2006). Do long swings in the business cycle lead to strong persistence in output? J. Monetary

Econom. 53, 597–611.
Karlsen, H. A. (1990). Existence of moments in a stationary difference equation. Adv. Appl. Prob. 22, 129–146.
Leipus, R. and Surgailis, D. (2003). Random coefficient autoregression, regime switching and long memory. Adv.

Appl. Prob. 35, 737–754.
Leipus, R. and Viano, M.-C. (2003). Long memory and stochastic trend. Statist. Prob. Lett. 61, 177–190.
Leipus, R., Paulauskas, V. and Surgailis, D. (2005). Renewal regime switching and stable limit laws. J. Econo-

metrics 129, 299–327.
Liu, M. (2000). Modeling long memory in stock market volatility. J. Econometrics 99, 139–171.
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