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1. Introduction

In the paper we investigate limit distributions for normed sums

(1) bglzgiv
=1

where §;, ¢ > 1, are iid random convex compact (cc) sets in a given separable Banach space
and summation is defined in a sense of Minkowski. At present there exists the general theory
of random sets summation in the sense of Minkowski developed mainly during decade 1975-85 in
large part due to application of methods and results from Probability theory in Banach spaces (see
papers [G-H-Z], [G-H] and references therein). ;jFrom this general theory it follows particularly
that the limits in distribution of sums (1) are stable random cc sets, defined in a natural way with
respect to Minkowski addition, (see Definition 1 below). It turns out that non trivial stable cc
sets exist only with index 0 < p < 1. Gine and Hahn (see [G-H]) obtained stochastic integral
representation of p -stable random cc sets and described their domain of attraction. Davydov and
Vershik (see [D-V]) investigated non-trivial probabilistic measures on the space of cc subsets of
4. The particular case of sums (1) where &; are segments was considered. They found that the
limiting p-stable random cc set Y, can be represented as an integral with respect to a random
Poisson measure. Due to this representation the geometric structure of the boundary 9Y, was
determined.

In the present paper we continue the investigation of properties of random p -stable cc sets.
The following results are obtained.

(i) For arbitrary random p -stable cc set Y, in Banach space we prove its representation as
an integral with respect to random Poisson measure (Theorem 2) and representation of Y, by Le
Page type series (Theorem 3).
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(ii) Using results from (i) we prove the invariance principle for processes

[nt]

Sn(t) =b,"> &, telo,1].
i=1

We introduce the notion of a set valued process with independent increments and prove the exis-
tence of p -stable cc sets Levy motion.

(iii) We show that in the case of segments ¢; the limits of sums (1) are countable zonotopes, i.e.,
they can be represented as >~ [0,z;], where (z;) are random elementsin . Some properties of
countable zonotopes are investigated. In particular, singularity of two countable zonotopes Y}, o, ,
Yp,.0, In 4 (corresponding to values of exponents p; , p2 and spectral measures oy, o9 ) is
proved in the case p; # ps or o1 # oz . This result gives an answer to the question formulated
in [D-V]. Here it is appropriate to mention the recent paper [K-M] where Lorenz curves were
generalized to the multidimensional setting using random zonoids and zonotopes.

(iv) Some new simple estimates of parameters of stable laws in ¢ , based on the above mentioned
results are suggested.

2. Preliminaries

Let denote a separable Banach space with norm || - ||. Its dual space then is denoted by *
and duality by f(z), f € *, x €. For subsets A,C C and a real number a > 0 Minkowski

addition and positive homothetics, respectively, are defined by
A+C={a+c:acAceC}, aA={aa:ac A}

Let K() be the collection of nonempty compact subsets of . It becomes a complete separable
metric space when endowed with the Hausdorff distance ¢

5(A,C) = inf |ja — inf |ja —c||} =
(A4,0) max{igg inf [la CII,igg int [la - c[[}
=inf{e >0: AC C*,C C A%},

where D ={z € :0(z,D) <e} and d(z,D) =inf{||lz —y||:y € D} for D C. We also denote

[|Al| = 0({0}, A) = sup{||a|| : @ € A} for A € K(). Two important subsets of () are the set

coK () of cc subsets of and the set coky() consisting of convex sets A € K() which contain 0.
Throughout the paper T = (5,d*), where 7 ={f€*:|f|* <1} and

d*(f,9) =D 27" [f(x:) —g(xi)|, fg€r,

where z1,z9,... is fixed dense set in the unit sphere | = {z € : ||z|| =1} and | -||* is the

norm in * . In what follows we shall suppress the upper subscript and shall write simply | - ||,

if it will cause no ambiguity. Then T is the compact metric space and C(7T') as usually denotes

the Banach space of continuous functions on 7' with supremum norm ||g||ec = sup,cr |g(z)|.
We recall that the support function ss of aset A € K() is a function on ] defined by

sa(f) =sup f(z), feq.

z€A
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A random compact set K in the Banach space is a Borel measurable function from a proba-
bility space (2, F,P) into K(). If K € coK() a.s. then K is called a random compact convex
set (random cc set).

If K(w) is arandom compact set then the support process K(f,w),f €7 is defined by

K(f,w) =sgw(f), fel, wel

The correspondence between random cc sets and support processes is isometry and preserves both
addition and multiplication by positive numbers (for details see [G-H]).

Definition 1 ([G-H]). A random compact conver set K is called p, 0 < p < 2 if for any
K1, Ky independent and distributed as K and for all o, >0

aKl—i-ﬁKQ 2 (Oép—l-ﬂp)l/pK.

In what follows 2 means equality of distributions.

Definition 2 ([D-V]). The set Zszl[O,ﬁk], where &g,k =1,...,N are random elements of the
Banach space , is said to be a . A in  is the set

Z [Oa fk]a

k=1
where &g,k =1,... are random elements of the Banach space and where the series is converging

in IC().

3. Representation of p -stable convex compact sets, 0 <p <1

As proved in [G-H] the only interesting strictly stable random cc sets are those with index
0 < p < 1. Otherwise, if K is strictly p -stable random convex compact set and 1 < p < 2,
then K = {¢} a.s., where ¢ is p -stable random element in .

Let K1 ={A € coK() :||A|| =1} and let o be a finite Borel measure on ;. Without loss
of generality we suppose that o is a probability distribution, that is (K1) =1. Let 6 be a real
positive p -stable random variable, 0 < p < 1.

By M, we denote a positive independently scattered random measure on Borel sets of K

such that M, (A) 2 (0(A))/*0 for each Borel set A. Then M, is called a positive p -stable

random measure with controle measure o.

Theorem 1 ([G-H]). Let 0 <p < 1. A random set K(w) is strictly p -stable compact convex
set in  if and only if

(2) K = zMy(dz) a.s.,
K1

where M, is a positive p -stable random measure on Ky with spectral measure o.

Representation of p -stable random cc sets via Poison integral is as follows. Earlier for the
countable zonotopes in ¢ such representation was obtained in [D-V].

Let (S,S8,n) be a measure space, and let So = {A € S : n(A) < o}. A Poison random
measure N on (S,8,n) is an independently scattered o -finite random measure such that for
each set A € Sy the random variable N(A) has a Poisson distribution with mean n(A). Then
n is called the control measure of N.
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Theorem 2. Let II be random Poisson measure on K1 X 1 with controle measure o Xy, where
~ is the measure on o with the density =P+ 0 <p<1. Then

D

(3) /’C () 2 /’C )

Proof. The idea of the proof is rather simple: we approximate x on both sides by sequences of
some simple functions, show that for these simple functions both sides have the same distribution
and finally show that it is possible to take limits. The same construction is used in [G-H] for the
construction of stochastic integral in the left-hand side of (3).

Let us take a sequence of simple functions

(4) Tp - ICl — ’Cl

constructed in the same way as in [G-H], namely for a sequence of partitions A,;,0 <j <k, of
K1 and some sequence z,; € A,; we set

xn(z) = TnjAn,; (Z)a
(‘here 4 is the indicator function of a set A ) and require that for all z € K4
0(wn(2),2) <277,

/ 0P (x,(2),2)o(dz) —— 0.
K1

n—oo

By the definition of stochastic integral we have
kn

(5) /,< n(2)AMy(2) = 3 O [0(Ang)] /P,

J=0

where 0,,; are iid positive stable random variables with the same distribution as 6, defined above.
Now using functions (4) let us defined the sequence of functions

%nIIC1X+—>K:1X+
as follows. For (z,c) € K1 x 4 set
In(z,c) = (xp(z),C).

We shall use two simple facts:
1) If p is a Poisson measure on , with intensity density x~!7P, then

| outan) 2
0

2) If the intensity of p is multiplied by %k then corresponding stable random variable is
multiplied by k/7.



STABLE CONVEX SETS 5

Using these two facts and the construction of z,, it is not difficult to see that

(© [ ICL O SN e

Thus (5) and (6) show that

[IS]

/}C My () /}C | BEnE)

In [G-H] it is proved that
/ 2o M,y (dz) —2— [ zdM,,
K1

n—oo ’Cl
therefore to finish the proof of (3) it remains to check that

(7) /K | E) 2 2T1(dz).

n— 00 Kix 4

Let (z;) be the support of the measure II. Then

/ BN = T EG),
/;<1x+ 2ll(dr) =) 2.

J
i From the construction of z, we have
0(zj, Tn(25)) < |l25][27".

Therefore

(8) 5(27«%2%(%‘)) ST"ZH%‘H'

J

But ZszjH = fooo cf[(dc) < oo a.s. Here II is the projection of II onto , and since the

spectral measure o on K; has unit mass, II is the standard Poisson measure on +. Thus from
(8) it follows (7) and the proof of (3) is complete.

To state series representation of a p -stable random cc sets we need some preparation. Let (\;)
be independent random variables with common exponential distribution , that is, P{\; > ¢t} =e™".
Set I'; =>7_, A\;, j>1. Thesequence (I';) defines the successive times of jumps of a standard
Poisson process.

Let 1 be a positive real valued random variable such that |[n||) = En? < oo and let (n;) be
independent copies of 7. Throughout

1-p
I'(2 = p) cos (mp/2)

Cp:
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Theorem 3. Assume that Y, is a p -stable random convex compact set in  with 0 < p < 1
and corresponding spectral probability measure o. Let (g;) be a sequence of independent random
elements on K1 having distribution o , and assume that the sequences (I'y), (nr) and (ex) are
independent. Then the series

o0
- ~1
() epllnlly > T Pnker,
k=1
converges almost surely in KC() and this series is distributed as Y, .
Proof. Let ei(+) denote the support function of e, k > 1. Since the series Y -, F;l/pnk
converges a.s. (see Theorem 1.4.5 in [S-T]) and

M N M
(ST e YT men) = || X0 T e
k=1 k=1

k=N+1

M
> Ve,

<
LS
k=N+1
for M > N, it follows that the series (9) converges in (). Moreover the support function of the
series (9) is

o0
— —1
(10) eollnlly ST Paer ().
k=1

According to the series representation of stable elements in Banach spaces (see [R]), this series
is distributed as [qxdL’(x), where L' is a positive p -stable independently scattered random
measure with the distribution of £;(-) as the spectral measure and which is denoted by o’. Here
S =UnVt, VT is the closed cone of subadditive positively homogeneous functions on T,
U={zxeC(T):||z|lcc =1}. Then, according to [G-H], the series (9) has p -stable distribution
with the spectral measure o(G) = o'{sa(-) : A € G}. It is easy to see that the measure o
coincides with o and this completes the proof.

4. Invariance principle for random convex compact sets

Consider the process (X(t),t € [0,1]), with values in colC(). That is, for each t € [0,1], let
X (t) be arandom cc set. Note, that for the usual meaning of difference of sets, A+ (B— A) # B,
thus it is easy to provide examples of cc sets A and B , for which there does not exists cc set C
such that A+ C = B . On the other hand, if such a set exists, it is easy to see that it is unique.
This allows us to define the increment of the process in the following way.

Definition 3. Let s <t,s,t €[0,1]. The increment X(t) — X(s) of a random cc set process, if
it exists, s such a random cc set, that

JFrom [G-H] one deduces the following criterion: in order that for a random cc process (X (t),t €
[0,1]) increments could be defined the support process (X (t)(f),f € T,t € [0,1]) must satisfy
the following condition

XO(f +9) = XO)(f) - X(t)(9) < X(s)(f +9) — X(s)(f) — X(s)(9)
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with all f,geT and s<t.

Consider the following examples. Let {{ , k > 1}, be random cc sets and {Uy, k > 1}, be
another sequence of univariate random variables, independent of {{;} . Then it is easy to see that
for processes

[nt]
X = a0 Sult)=>_ &,
k k=1
the notion of increment is correctly defined:
[nt]
X(t) = X(5) =Y (s (Uk)ék, Snlt) = Suls) = D &
k k=[ns]+1

Definition 4. Let 0 <p < 1. A cc set process {Y (t),t € [0,1]} is called p -stable cc set Levy
motion if

i) Y(0) = {0}

ii) the increments of the process (Y (t),t € [0,1]) are well defined and are independent: ran-
dom compact convex sets Y (ta) — Y (t1),...,Y (tn) — Y(tn—1) are independent for any
0<t; < <ty <1

i) if 0 < s <t <1 then Y(t) —Y(s) has p -stable distribution and Y (t) — Y (s)
(t — s)/PY (1).

19

To prove that such processes exist, let {Up} be independent uniformly distributed random
variables on [0,1], {ex} be iid on K;() with distribution function o. Let 0 < p < 1 and
define

(11) Yp(t) = ¢ Y 100Uy Per, te0,1].
k=1

As usually, the sequences (I'y),(Ug), and (g) are assumed to be independent. The process
(Y,(t),t € [0,1]) is then the p -stable cc set Levy motion. Indeed, the increments of the process
(Yp(t>7t S [07 1]) are

[ee]

—1
Yp(t) = Yp(s) = ¢ O (5.0 (U)Ty Per,
k=1

where s < t. It is easy to see that the increments of the process (Y,(t)) are independent on

non-intersecting intervals. Let LT (K(),) be a set of “positively linear” functions ¢ : K() — (for
a definition of LT (K(),) see [V] or [G-H]) such that

[¢(A1) — ¢(A2)|

su < o0
A1¢II)42 5(A17A2)

Consider 0 <u<s<t<1. Let ¢ € LT(K(),). Then for any a,b €
exp{i(ad(Yp(s) = Yp(u)) +bp(Yy(t) — Yp(s)))} =

exp{icy, Y (k) ((us (U) + bis (U))T; 7} =
k=1

exp{—(t — ) /K 6(2) Po(d)} =

exp{iag(Yy(s) — Yp(u))} exp{ibd(Yy(t) — Y, (s))}-
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Since Y,(t) —Y,(s) and Y,(s) —Y,(u) belongs to cok() and L*(K(),) separates the points of
coK(), this yields the independence of Y, (t) — Y, (s) and Y,(s) — Y, (u).
Furthermore

D
Y,(t) = Yo(s) = (t—s)/PY,(1),
for each s <t,s,te|0,1].

Let D([0,1];/C()) denote the usual Skorohod space of cadlag functions with values in /C(). Let
&1,...,&, beiid with values in coC() and let & (¢),...,&n(-) be the corresponding support func-
tions which constitute iid random elements in the space C(T'). Let 0 < p < 1 and assume that
& belongs to the domain of attraction of a p -stable random cc set (denoted & € DA, (K()) ).

Set
[nt] [nt]

—b—lzgk, S, (t —b—lzgk e [0,1],

where b,, is the norming sequence such that

Snu(1) —2— Y,

n—oo
and Y, is a p-stable random compact convex set in .

Theorem 4. If the assumptions above are satisfied then the sequence of processes (Sy(t),t € [0,1])
converges in distribution in the space D([0,1];K()) to the process (Y,(t),t € [0,1]), defined by
(13) .

Proof. First observe that the processes (S5,(t),t € [0,1]) converge in distribution in the space
D([0,1]; K£()) if and only if (S, (¢)(-),t € [0,1]) converge in distribution in D([0,1]; C(T")). Let

-1
(12) Y=, 3 Ty Per,
k=1

be the series representation of Y, and let £4(-) be the support function of 5, k & N. Define

(13) }/p(t) =¢p Z (Ovt](Uk)Flzl/p&“k, t e [0, 1].
k=1

Let (Y,(¢)(-),t € [0,1]) be the support process for the process (Y,(t),t € [0,1]). To show the
convergence of the processes (5, (t)(-),t € [0,1]) in D([0,1];C(T")) in distribution to the process
(Y,(t)(+),t € [0,1]), we use the following result.

Lemma 1 ([G-S],Th 5, p435). Let n,,n =0,1,... be a sequence of processes with independent
increments defined on [0,1] with values in a Banach space (X,||-||) and with probability one
belonging to the space D([0,1], X). If the finite dimensional distributions of n, converge weakly
to those of the process mg and for each € >0

lim limsup sup {Hnn() nn(s)|| > e} =0,

=0 nooo |t—s|<

then

n—0o0
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The convergence of the finite dimensional distributions of (S, (¢)(-),t € [0,1]), to those of
(Y,(t)(-),t € [0,1]) easily follows from the assumption that &; is in the domain of attraction of
p -stable distribution. Indeed,

Su(t) —— Z,(t) 2 /7Y,

n—oo

2 Y, ().

For a positive random variable £ set
Ap(€) = suptP P{& > t}.
>0

The following lemma can be proved in much the same way as Lemma .77, in [R].

Lemma 2. For each 0 < p < 1 there is a constant c, such that if &i,...,&, are positive
independent random variables then

n

AP(Z &) < cp Z Ap (&)
k=1

k=1

By Lemma 2 we have

[nt]

PUISH®) = Su(@)lloo >} = P{|| Y &) >eba} <
k=[ns]+1
[nt]
P{ 3 lallzen}s Il

Thus the tightness conditions of Lemma 1 are satisfied and this completes the proof of the theorem.

5. p-stable countable zonotopes, 0 <p <1

e First we consider the limits of zonotopes formed by iid random variables in the domain of
attraction of stable law.
Let &1,...,&, beiid random elements with values in . Consider the random zonotope

n

Zn =Y [0,&], neN.

k=1
The following result is a generalization of Theorem 6 in [D-V] to the Banach space random cc sets.
Theorem 5. Let 0 <p<1. If

n
-1 j : D
bn gk T]pu
1 n—00
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where m, s a p -stable random element in  then

b Z, —2 Y,

n—oo

where S~fp is a p -stable compact convex set in . Moreover, ?p 1s a countable zonotope, i.e.
Y, = ) [0,&]
k=1

where () are random elements in .

Proof. For f € T by f* we denote the positive part of the functional f, f*(z) = f(z) if
f(z) >0 and f*(z) =0 otherwise. Since the support function of the set [0,¢] is

[O7§](f) - f+(§>7 fEeT,

one has to prove that {f(&),f €T} € DA,(C(T)), yields {f* (&), f €T} e DA,(C(T)). Set
H=b"> (&), feT.
k=1

Since evidently the finite dimensional distributions of {S,} converges it remains to check tightness
of this sequence. By Lemma 1 we have

{ sup [Su(f) = Sn(g)l =} <{ sup b IZ\f k) —9(&k)| = e} <

d*(f,9)<6s d*(f.9)<
{||§1|1\I<)1b 1Zlf &)l > e/} < {b, 12\!& | >¢/6} <

b, “e”*6¢ nsupto‘{||£1|\ > t}.
t

n

This yields the compactness of (S,(-)) and the first part of the theorem is proved.
Let o’ be the spectral measure of Y,. By Theorem 2

o
Yy, 2 cp > T VP My,
k=1

where (M},) are iid random elements in  with distribution o’. As always, (I'y) and (M) are
independent. On the other hand, according to [G-H]

i P{ T € 4l > 1) = o(4).

t—oo 1]

But evidently o'(A) = o(ANF), where F = {{U,cc[0,2] : C € B(1)}. Hence, if ANF =C

then o¢'(A) = 0(C), where o is the spectral measure of 7,. So, M 2 [0,¢], where £ has
distribution o.
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This theorem indicates, that the limits in distribution of zonotopes b, 'Z,,, where & € DA,()
are countable stable zonotopes.

ee In this subsection is the d -dimensional Euclidean space ¢ and ||| will stand for the
usual Euclidean norm. Consider two countable p; -stable zonotopes in ¢ with spectral measures
oi, ©=1,2. Assume that their series representations are

D > —1/p; 7
Y 2 3 170,60,
k=1

and the corresponding distributions denote by wu;, ¢=1,2.

Theorem 6. Assume that neither the measure o1 nor the measure oo has atoms. Then if either
p1 # p2 or o1 # 09 the distributions py and ps are singular.

Remark. Here it is appropriate to note, that situation with respect to equivalency or singularity
of zonotopes in ¢ is quite different comparing with the same problem for usual stable measures
in ?: since all stable measures have densities (with respect to Lebesgue measure) it is clear that
there can be equivalence of stable measures corresponding to different exponents p; # ps . The
requirement that the measures o; have no atoms is essential, as the following example shows.

2

Ezxample. Consider the space “ and set

1 1
g = 5561 + 55627
where e; = (1,0),e2 = (0,1) and ¢, denotes Dirac measure. Let P; be the distribution of Z;,
where

Zi=Y T, Pen i=12
k=1

and {ex} are iid random vectors with distribution o. Evidently

[1S]

Z; = [0,e1]%] + [0, e2] 25,

where . _
@ —1/pi i —1/p; )
1= Zrk & {ex=e1}r =2 7= Zrk P (ep=e)y ©=1,2.
k=1 k=1
It is easy to see that the random variables E?l and E; are independent. Indeed, for any a,b €
exp{i(aX} +bX})} =

o0

. —1/p;
eXp{Z Z(a{€k=61} + b{€k=€2})rk /P } =
k=1

exp{_c;l/pi a{€1:€1} + b{€1=62}|p} =

exp{ia¥} exp{ib¥h}.

Moreower, both random variables X! and Y% have bounded positive densities on ;. Hence, the

vector (X%,3%) have bounded positive density on i This yields, that the measures P; and Po

are equivalent for any pq,ps € (0,1) .
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Proof of Theorem 6.

The idea of the proof is rather simple. Having zonotopes Y;, i = 1,2, we can restore the
sequences {T;l/pi} and {85;)} . Now, if p; # po, then p; and pe will be supported by
disjoint sets defined by relations limyyzk'/Pi =1, i=1,2. In case of oy # 0o the singularity
of measures p; and ps will be implied by singularity of product-measures o1 x o1 X ... and
02 X 02 X ... . Unfortunately, we were not able to prove directly the measurability of the map,
sending a countable zonotope to sequences {F,;l/ P} and {ex}, therefore we must use more
lengthy argument.

Consider the set for 0 < p < max(p1,p2)

F={yv=(w) €l :v >Yk+1 >0, forall k>1, and Sup%lcl/p < oo }Cl,
k

and the set

E={e=(ex):e, 8% foral k> 1}
equiped with the distance d(e, f) = >, 27%||ex— fx||. Consider the function Z : T x E — cok (%),

e) = Z V[0, ex].
k=1

Claim 1. The function Z is continuous (we consider T' X E as a metric space with 1y metric
on I').

Proof. Since
o o oo
d(Z(v.€), Z Z (710, ex], 1[0, €1]) Z %—%ﬂ‘FZWHGk—eH
k=1 k=1 k=1

and both terms tends to zero provided v — 4 in ¢; and e — ¢ in E (noting also that
Y < Ck™HP).

Set Zo=Z(I' x E) and for 0 < c¢ <1 consider the function Ily.: Zy — Zo,

[e.e] o0
Iy, ( > wlo, €k]> = Nekl0sexl,
k=1 k=1

where
B { Yk ifk<N
TN-ek = (1—c¢)y ifk>N.
Claim 2. For each fited N and 0 <c <1 the function lly . is continuous.

Proof. The set I' x E is a countable union of compact sets I'y x E, where the set
Ta = {(3) € T : supyk!/? < A},
k

Evidently, both functions Z and Z olly . are continuous, on each set I'y x E. We need the
following simple fact, and since we have not found relevant reference, we provide it with the proof.
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Lemma 3. Assume, that X,Y,Z are metric compact spaces and f: X — f(X) =Y is contin-
wous. If a function g:Y — Z s such that go f is continuous, then g is continuous.

Proof of Lemma 3. Let y, — yo in Y. We prove, that ¢(y,) — ¢g(yo) in Z. To this aim it suffices
to prove, that any subsequence (g(y,/)) has a subsequence such that g¢(y,~) — g(yo). Let our
selected subsequence be (y,). Since y, = f(z,) and X is compact there exists a subsequence
(xny) such that z,, — xo. But continuity of f yields f(x,) — f(zo). So f(zo) =yo and we

have g(yn/) = g(f(znr)) — 9(f(20)) = 9(yo).

Lemma 3 yields the continuity of Ily,. on each set Z(I'y x E) and therefore on Zy C
UnenZ(T4 x E).

We need the following notations. P; and (); stand for the distributions of the sequences
{F;l/pi} and {e,(;)} respectively, i = 1,2 . By P! and QI we denote the distributions of the
finite sequences {I‘l_l/pi, - ,F;,l/pi} and {egl), e ,eg\?} , respectively, ¢ = 1,2 . We denote by
ulN the distribution of the finite zonotope

N .
ST, i=1,2.
k=1

It is clear that (P; x Q;)Z ' = p;, i =1,2.
Note, that both measures ,uiﬂj}lc converge weakly as ¢ — 1 to u,i=1,2. Then (see e.g.
[D-L-S], Th. 2.7)

(14) 112" = '] < Mo inf || TTg — paTe]| < [la = prol.

Consider the function

folvm, YN E1y-- -y EN) — [0, ex],

T

defined on the set

By ={(v,e):m1 > >N, e1# - #en}

The set By is open in R_]X x (S9N and therefore is a countable union of increasing sequence
of compact sets, say K,,. Let X,, = f(K,,). The function f is continuous on K,,. Applying
Theorem 3.5.3 from [S] ,it is possible to prove that the inverse function f~! =g exists on X,,
and by Lemma 3 is continuous. Hence, the function

g: ’yk[oagk]_>(’}/17"‘7’YN7€17"')5N)

N

is continuous on the set U,, X,,.
Evidentelly, PN x QN = uNg=!, i =1,2. Therefore, by (14)

(15) 1P % QY — By x QY] < |l — pa -
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Now consider two cases separately.
First case, p; # po . In this case

1P = P < IPY = QY — Py x Q7 ||
and (15) yields

s = ool > Tinnnf [P — P|| > || Py = Pyl =2

The last equality easily follows by the fact, that the distribution P; is concentrated on the
sequences (7) such that limy vek'/Pt = 1, whereas the second measure sits on the sequences
(v%) such that limg yekt/P2 = 1.

Second case, o; # 0. In this case we have

QY — QI < I x Q1 = P x Q|
and (15) yields

[l11 = paf| > liminf [|QY — Q5[ > [|@1 — Q| =2

by Kakutani theorem (see, for example, [J-S]. p. 217).

6. Estimation of parameters of p -stable laws, 0 <p <1

Any stable law in ¢ (or more general Banach space) G, is completely determined by an
exponent p € (0,2), and a spectral measure v on Borel sets of unit sphere. We propose rather
simple estimators of these parameters of a stable laws in the case 0 < p < 1, based on Le Page
type representation of stable vectors. There is a vast literature on the estimation of parameters of
stable laws or some other parameters characterizing the tail behaviour of distributions, a reader
can consult , for example, the survey paper [MC]| and references in it.

Let &1,&,...,&n be a sample of size N from a stable distribution with unknown parameter
p < 1 and unknown spectral measure v. For our purposes we shall assume that N =n?,n > 1.

e Firstly we estimate the parameter p. Let us divide the sample into n groups with n
elements in each group in the following way. If Vi,1,...,V,, denote n groups, each containing
of n vectors from the sample of size N = n?, then passing to the size N7 = (n+1)? we use the
following rule:

Vn+1,i = Vn,i U {§n2+z‘},i =1,...,n,
Vn+17n+1 = {§n2+n+17 cee 7§(n+1)2}-

Let .
MY = max{||¢]] : € € Vi)

and let Mg) denote the second norm maximal element in the same group.
JFrom Le Page type representation of a stable vectors it follows that for each ¢

MY MO\ s,
” (L ML) o (o

n—oo
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where b, = n'/P in the case of a sample from stable distribution. In the case of sample from
distribution in the domain of attraction of a stable law b, will be norming constants in limit
theorem. Here I'; = 22:1 Aj, A1, Az2,... being iid random variables with standard exponential
distribution. Set

n
=1

Theorem 7. Forany d>1, as n — o0

17 -1g _as. P
(17) nS o T

Therefore the quantity S, /(n—S,) presents consistent and asymptotically unbiased estimator
of parameter p, 0<p<1.

Remark. The proposed estimator does not depend neither on the dimension d nor on spectral
measure .

Proof. From (16) it follows that for all 4

/
S <A1A+1A2)1 "

Since 0 < kp; <1 then for any integer m

)\1 m/p
18 Ex™ E( ) .
(18) Ul Gy
Simple calculations show that
A 1/p

(1) B2 ) o2

A1+ A2 p+1
Random variables kp1,...,%n, are independent and identically distributed. Let a, = Ekn1.

Since 0 < k,; <1 there exists an absolute constant C' such that

P{]nilsn — an| > 5} < 6747174E‘Sn — nan]4 <

Ce ™ n ?E|rm|* < Ce™*n 2.

Taking € =¢, =n~1/8

sufficiently large n

and applying Borel-Cantelli lemma we get that with probability 1 for all

=18, — an| < n=1/8,

This means that n~1S,, —a, — 0 a.s. and this together with (18) and (19) proves (17). The
theorem is proved.

ee Next we consider an estimator of the spectral measure r. We shall assume that v is
normed so that v{||z|| =1} =1. Set

§ni = &5 = &j(nyi)>
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where j(n,i) is such that MTS) = [|§jm,»|| and set

gni

0, = , 1=1,...,n.
" il
Random vectors 0,1, ...,60,, areiid. Again from the representation of stable law by Le Page type
series it follows that for each i
Gm L V.
n—oo

Therefore for any Borel set B on unit sphere S?~! such that v(0B) =0 we have

5(0ni) —— B(7),

n—oo

where ~ is a random vector with the distribution v. This yields

(20) B(bni) —— v(B).

n—oo

The last step is again to apply strong law of large numbers, thus we get that with probability one

n
21 -t 0ni) — 5(On 0.
(21) n ;B( ) — B(0n1) o
(20) and (21) proves the following result.
Theorem 8. The empirical distribution based on sample 6,1,...,0,, is consistent estimator for

the spectral measure v, that is, for any B € B(SY™!) such that v(0B) =0 we have

n! Zg(em) 2>, v(B).

n—o0o

eee Now we return to Theorem 7 and show that with appropriate normalization our estimator
of the parameter p is asymptotically normal (in the case of samples from stable distribution).
Again, we shall deal not with estimator S,,/(n—S,) but with more convienent statistics n=1S,,.
It is easy to see that having confidence interval for p(1+ p)~! say

an—bn<%<an+bn

we easily get confidence interval for p

an—bn an+bn

— < p < /.
1—a,+b, P 1—a, —b,

Here, of course, we assumed that a, + b, < 1. Now we shall prove the following result.
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Theorem 9. Let S, be defined as in Theorem 7. Then

(22) n(n= S, —p(p+1)" Z/{w —n'S2)" 12 _D | N(0,1).

n—oo
=1

Remark. One can take more simple expression on the left-hand side of (22), namely n~=/2(n=15,,—
p(p+1)~1), but then the limit normal law will have variance o2 = p((p + 1)?(p + 2))~!. This
means that limit law would be dependent on unknown parameter p. Therefore we used in (22)
self-normalized type sum.

Proof of Theorem 9. From the proof of Theorem 7 we have that
ap = Kp1 = P + Tns

p+1

where 7, — 0 as n — oo. Since

VS, —pp+ 1)) =072y (ki — an) + Vi,
=1

n

—1 2 -1 —1

n E Ko — Sn) g /im—an ,
=1

it is easy to see that in order to prove (22) we need to show the following three relations:

23 —1/2 i — N(0
(23) ; K a )E) ( U)
(24) n~Y%y, —0;

(25) 2 (i — an)? —— o2

(23) follows from the CLT applied to triangular array {kni,1 <i <n} ofiid in each row random
variables, taking into account the limit relation

0721 1= (Kni — an)2 — 0= p((p+ 1)2(17 + 2))_17

which follows from (19) and limit value is obtained evaluating (A1/(A\1 + A2))?/P.

(25) follows from LLN for the triangular array {(kn; —a,)?,1 <i <n}, applying, for example,
criterion (4.8.4) given in [H]. Having (23) and (25) by the well known result (see, for example, [B])
we get convergence of the joint distributions:

< 1/22 Kni — On ), 12 Fni — dn ) —— (N(0702)702)'

n—oo

This relation together with (24) proves the theorem. Therefore it remains to prove (24).
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Let G(z) = P{||&]|| > =}. It is well-known (see, for example, [Br] or [L-W-Z]) that

D 1y I 1y I -1
Fm = G (rn+1)<G rn+1)> ’

where G~1 is inverse function for (continuous) function G. In [F] it is given asymptotic expansion
for the distribution density of the norm of a strictly p -stable random vector, which allows us to
write

Gx)=cx P +cx  +0(x %), as z — oo

Here ¢;, ©=1,2 are constants depending on p and on v{||z|| = 1}. Using Lagrange theorem
on expansions of inverse function (see, for example, [M] p.340) we can write

G7Ht) = byt 7P f oot VP L O(27P), as t— 0,

where by = ci/ P by is some function of ¢;, i = 1,2. This implies that for sufficiently small &

and some constants C3, Cy
(26) 1—Cyt <G by HYP <14 Cst, if 0<t <.

Now we are ready to estimate the quantity

Ynl = lan —plp+ 1)1 =

27 (e E) (e ) ) -2

IS} | Y Cp+1l

Let RV ={ZT=(z1,...,20p41) 12 >0,i=1,....,n+1}, S, =a1+ -+ 2,
(= n+1 . c _ pn+l
Ap ={T € R : (w1 +x2)/X, 20}, A5, = R \Ag,,

where ¢ is from (26). Now

(G () (67 () ) =

I‘n+1 11n+1
_1,T1+ T2 _1/ T1 -1 _
28 Gli(Gl—) Sntiqg = I + I,
( ) ﬁ“ ( Y1 ) (2n+1) ¢ v Lk
where
Il = / ; I2 - /
A2,n S,n
Since N )
—1/%1 T X2 _ T -
G-t (G i ) <1,
( Y1 ) (En—i-l)
then
A1+ A2 1AL+ e 2
29 I <{ > 5} <! - .
(29) L O VRTINS W - | Y d(n+1)
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Taking into account that for T € A5, it holds 12,11 < (21 +22)E, 1, < J, we can apply (26)
to the integrand and we get

_1/%1 + X2 —1, T1 -1
(30) w<G ()@ g ) e

where

( T )1/p Ynt1 — Cy(z1 + x2)

ay =

1 + o Ypt1+Cizy

a0 — ( T )1/1’ Y41+ Cs(z1 + x2)
2 T + T Ypt1 — Cazy

/ < T )1/176_2”“@: ( Al )l/P _ P ’
R1+1 I +l‘2 )\1—1—)\2 p—l—l

therefore, using (30) it is not difficult to get the following estimates from above and below:

We recall that

p (1)
31 I < I

p (2) (3)
2 Iy > - 157 -1
(32) 2_p+1 2 2
where

6_2”+1df,

( T )1/p2n+1 + Cs(x1 + x2)
T+ T2 Y1 — Cymy

JAR /
A;,n
1/p
152) _ / < I ) e—En+1 df,
Ay, L1+ T2

= /
A

152) can be estimated in the same way as in (29). For z € A5, we have z; < 0¥,1; and

Ynt1—Cazq > 341 (1-Cy0), therefore Iél) and Iég) can be estimated by (I'y/T,+1) = 2/(n+1)
multiplied by some constant, depending on §, C53 and C4. Thus we have

e~ Entidz,

( T )1/” Y41+ C4(iU1 + x3)
T+ X2 Ypt1 + Cszy

c
2,n

(33) I =om™), j=1,2,3.

Collecting (27)—(29), (31)—(33) we get v, = O(n~'). Now (24) follows and the theorem is proved.
In Theorems 7 - 9 we took n = /N, but it is possible to consider more general function

n =n(N), if at the beginning we group all sample of size N into n(N) groups, each containing

m =m(N) elements, where nm = N. Then denoting the groups by Vy,1,..., Viun, we define

MY = max{[|¢]|: £ € Vi), i=1,2,....n

and similarly we define ani) and Ky = Mr(fz)(Mfr}Z) )~1. Choosing m as independent variable

we get n as function of m, so let us denote I,, = Nm~! and define

lm
Sm: E Kmi-
=1
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Assuming that m = m(N) — oo and m/N — 0 as N — oo, we can generalize (17) and get

_ p
1S —— 2

In a similar way we can generalize Theorem 8. More complicated is generalization of Theorem 9.
This and some other problems, not discussed in this section are beyond the scope of the present
paper and will be addressed in detail elswhere.
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