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1. Introduction

In the paper we investigate limit distributions for normed sums

(1) b−1
n

n∑

i=1

ξi,

where ξi , i ≥ 1, are iid random convex compact (cc) sets in a given separable Banach space
and summation is defined in a sense of Minkowski. At present there exists the general theory
of random sets summation in the sense of Minkowski developed mainly during decade 1975-85 in
large part due to application of methods and results from Probability theory in Banach spaces (see
papers [G-H-Z], [G-H] and references therein). ¿From this general theory it follows particularly
that the limits in distribution of sums (1) are stable random cc sets, defined in a natural way with
respect to Minkowski addition, (see Definition 1 below). It turns out that non trivial stable cc
sets exist only with index 0 < p < 1 . Gine and Hahn (see [G-H]) obtained stochastic integral
representation of p -stable random cc sets and described their domain of attraction. Davydov and
Vershik (see [D-V]) investigated non-trivial probabilistic measures on the space of cc subsets of
d. The particular case of sums (1) where ξi are segments was considered. They found that the
limiting p -stable random cc set Yp can be represented as an integral with respect to a random
Poisson measure. Due to this representation the geometric structure of the boundary ∂Yp was
determined.

In the present paper we continue the investigation of properties of random p -stable cc sets.
The following results are obtained.

(i) For arbitrary random p -stable cc set Yp in Banach space we prove its representation as
an integral with respect to random Poisson measure (Theorem 2) and representation of Yp by Le
Page type series (Theorem 3).
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(ii) Using results from (i) we prove the invariance principle for processes

Sn(t) = b−1
n

[nt]∑

i=1

ξi, t ∈ [0, 1].

We introduce the notion of a set valued process with independent increments and prove the exis-
tence of p -stable cc sets Levy motion.

(iii) We show that in the case of segments ξi the limits of sums (1) are countable zonotopes, i.e.,
they can be represented as

∑∞
i=1[0, xi], where (xi) are random elements in . Some properties of

countable zonotopes are investigated. In particular, singularity of two countable zonotopes Yp1,σ1 ,
Yp2,σ2 in d (corresponding to values of exponents p1 , p2 and spectral measures σ1, σ2 ) is
proved in the case p1 6= p2 or σ1 6= σ2 . This result gives an answer to the question formulated
in [D-V]. Here it is appropriate to mention the recent paper [K-M] where Lorenz curves were
generalized to the multidimensional setting using random zonoids and zonotopes.

(iv) Some new simple estimates of parameters of stable laws in d , based on the above mentioned
results are suggested.

2. Preliminaries

Let denote a separable Banach space with norm || · ||. Its dual space then is denoted by ∗

and duality by f(x), f ∈ ∗, x ∈ . For subsets A,C ⊂ and a real number α ≥ 0 Minkowski
addition and positive homothetics, respectively, are defined by

A + C = {a + c : a ∈ A, c ∈ C}, αA = {αa : a ∈ A}.

Let K() be the collection of nonempty compact subsets of . It becomes a complete separable
metric space when endowed with the Hausdorff distance δ

δ(A,C) = max{sup
a∈A

inf
c∈C

||a− c||, sup
c∈C

inf
a∈A

||a− c||} =

= inf{ε > o : A ⊂ Cε, C ⊂ Aε},

where Dε = {x ∈ : δ(x,D) < ε} and δ(x, D) = inf{||x− y|| : y ∈ D} for D ⊂ . We also denote
||A|| = δ({0}, A) = sup{||a|| : a ∈ A} for A ∈ K(). Two important subsets of K() are the set
coK() of cc subsets of and the set coK0() consisting of convex sets A ∈ K() which contain 0.

Throughout the paper T = (∗1, d
∗), where ∗

1 = {f ∈ ∗ : ‖f‖∗ ≤ 1} and

d∗(f, g) =
∑

2−i|f(xi)− g(xi)|, f, g ∈ ∗
1,

where x1, x2, . . . is fixed dense set in the unit sphere 1 = {x ∈ : ||x|| = 1} and ‖ · ‖∗ is the
norm in ∗ . In what follows we shall suppress the upper subscript and shall write simply ‖ · ‖ ,
if it will cause no ambiguity. Then T is the compact metric space and C(T ) as usually denotes
the Banach space of continuous functions on T with supremum norm ‖g‖∞ = supx∈T |g(x)|.

We recall that the support function sA of a set A ∈ K() is a function on ∗
1 defined by

sA(f) = sup
x∈A

f(x), f ∈ ∗
1.
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A random compact set K in the Banach space is a Borel measurable function from a proba-
bility space (Ω,F , P ) into K(). If K ∈ coK() a.s. then K is called a random compact convex
set (random cc set).

If K(ω) is a random compact set then the support process K(f, ω), f ∈ ∗
1 is defined by

K(f, ω) = sK(ω)(f), f ∈ ∗
1, ω ∈ Ω.

The correspondence between random cc sets and support processes is isometry and preserves both
addition and multiplication by positive numbers (for details see [G-H]).

Definition 1 ([G-H]). A random compact convex set K is called p , 0 < p ≤ 2 if for any
K1,K2 independent and distributed as K and for all α, β ≥ 0

αK1 + βK2
D= (αp + βp)1/pK.

In what follows D= means equality of distributions.

Definition 2 ([D-V]). The set
∑N

k=1[0, ξk], where ξk, k = 1, . . . , N are random elements of the
Banach space , is said to be a . A in is the set

∞∑

k=1

[0, ξk],

where ξk, k = 1, . . . are random elements of the Banach space and where the series is converging
in K().

3. Representation of p -stable convex compact sets, 0 < p < 1

As proved in [G-H] the only interesting strictly stable random cc sets are those with index
0 < p < 1. Otherwise, if K is strictly p -stable random convex compact set and 1 ≤ p ≤ 2 ,
then K = {ξ} a.s., where ξ is p -stable random element in .

Let K1 = {A ∈ coK() : ||A|| = 1} and let σ be a finite Borel measure on K1. Without loss
of generality we suppose that σ is a probability distribution, that is σ(K1) = 1. Let θ be a real
positive p -stable random variable, 0 < p < 1.

By Mp we denote a positive independently scattered random measure on Borel sets of K1

such that Mp(A) D= (σ(A))1/αθ for each Borel set A. Then Mp is called a positive p -stable
random measure with controle measure σ.

Theorem 1 ([G-H]). Let 0 < p < 1. A random set K(ω) is strictly p -stable compact convex
set in if and only if

(2) K =
∫

K1

xMp(dx) a.s.,

where Mp is a positive p -stable random measure on K1 with spectral measure σ.

Representation of p -stable random cc sets via Poison integral is as follows. Earlier for the
countable zonotopes in d such representation was obtained in [D-V].

Let (S,S, n) be a measure space, and let S0 = {A ∈ S : n(A) < ∞}. A Poison random
measure N on (S,S, n) is an independently scattered σ -finite random measure such that for
each set A ∈ S0 the random variable N(A) has a Poisson distribution with mean n(A). Then
n is called the control measure of N.
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Theorem 2. Let Π be random Poisson measure on K1×+ with controle measure σ×γ, where
γ is the measure on + with the density x−1/(p+1), 0 < p < 1. Then

(3)
∫

K1

xMα(dx) D=
∫

K1×+

xΠ(dx).

Proof. The idea of the proof is rather simple: we approximate x on both sides by sequences of
some simple functions, show that for these simple functions both sides have the same distribution
and finally show that it is possible to take limits. The same construction is used in [G-H] for the
construction of stochastic integral in the left-hand side of (3).

Let us take a sequence of simple functions

(4) xn : K1 → K1

constructed in the same way as in [G-H], namely for a sequence of partitions Anj , 0 ≤ j ≤ kn of
K1 and some sequence xnj ∈ Anj we set

xn(z) = xnjAnj (z),

( here A is the indicator function of a set A ) and require that for all z ∈ K1

δ(xn(z), z) ≤ 2−n,∫

K1

δp(xn(z), z)σ(dz) −−−→
n→∞

0.

By the definition of stochastic integral we have

(5)
∫

K1

xn(z)dMp(z) =
kn∑

j=0

θnj [σ(Anj)]1/pxnj ,

where θnj are iid positive stable random variables with the same distribution as θ, defined above.
Now using functions (4) let us defined the sequence of functions

x̃n : K1 × + → K1 × +

as follows. For (x, c) ∈ K1 × + set

x̃n(x, c) = (xn(x), c).

We shall use two simple facts:
1) If µ is a Poisson measure on + with intensity density x−1−p, then

∫ ∞

0

xµ(dx) D= θ;

2) If the intensity of µ is multiplied by k then corresponding stable random variable is
multiplied by k1/p.
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Using these two facts and the construction of x̃n it is not difficult to see that

(6)
∫

K1×+

x̃n(z)Π(dz) D=
rn∑

j=1

θnj [σ(Anj)]1/pxnj .

Thus (5) and (6) show that
∫

K1

xnMp(dx) D=
∫

K1×+

x̃n(z)Π(dz).

In [G-H] it is proved that ∫

K1

xnMp(dx) D−−−→
n→∞

∫

K1

xdMp,

therefore to finish the proof of (3) it remains to check that

(7)
∫

K1×+

x̃n(z)Π(dz) D−−−→
n→∞

∫

K1×+

xΠ(dx).

Let (zj) be the support of the measure Π. Then
∫

K1×+

x̃n(z)Π(dz) =
∑

j

x̃n(zj),

∫

K1×+

xΠ(dx) =
∑

j

zj .

¿From the construction of x̃n we have

δ(zj , x̃n(zj)) ≤ ||zj ||2−n.

Therefore

(8) δ
( ∑

j

zj ,
∑

j

x̃n(zj)
) ≤ 2−n

∑

j

||zj ||.

But
∑

j ||zj || =
∫∞
0

cΠ̂(dc) < ∞ a.s. Here Π̂ is the projection of Π onto + and since the
spectral measure σ on K1 has unit mass, Π̂ is the standard Poisson measure on +. Thus from
(8) it follows (7) and the proof of (3) is complete.

To state series representation of a p -stable random cc sets we need some preparation. Let (λi)
be independent random variables with common exponential distribution , that is, P{λi > t} = e−t.

Set Γj =
∑j

i=1 λi, j ≥ 1. The sequence (Γj) defines the successive times of jumps of a standard
Poisson process.

Let η be a positive real valued random variable such that ||η||pp = Eηp < ∞ and let (ηj) be
independent copies of η. Throughout

cp =
1− p

Γ(2− p) cos (πp/2)
.
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Theorem 3. Assume that Yp is a p -stable random convex compact set in with 0 < p < 1
and corresponding spectral probability measure σ. Let (εj) be a sequence of independent random
elements on K1 having distribution σ , and assume that the sequences (Γk), (ηk) and (εk) are
independent. Then the series

(9) cp||η||−1
p

∞∑

k=1

Γ−1/p
k ηkεk,

converges almost surely in K() and this series is distributed as Yp .

Proof. Let εk(·) denote the support function of εk, k ≥ 1. Since the series
∑∞

k=1 Γ−1/p
k ηk

converges a.s. (see Theorem 1.4.5 in [S-T]) and

δ
( M∑

k=1

Γ−1/p
k ηkεk,

N∑

k=1

Γ−1/p
k ηkεk

)
=

∥∥∥
M∑

k=N+1

Γ−1/p
k ηkεk(·)

∥∥∥
∞
≤

M∑

k=N+1

Γ−1/pηk,

for M > N, it follows that the series (9) converges in K(). Moreover the support function of the
series (9) is

(10) cp||η||−1
p

∞∑

k=1

Γ−1/p
k ηkεk(·).

According to the series representation of stable elements in Banach spaces (see [R]), this series
is distributed as

∫
S

xdL′(x), where L′ is a positive p -stable independently scattered random
measure with the distribution of ε1(·) as the spectral measure and which is denoted by σ′. Here
S = U ∩ V+, V+ is the closed cone of subadditive positively homogeneous functions on T,
U = {x ∈ C(T ) : ||x||∞ = 1}. Then, according to [G-H], the series (9) has p -stable distribution
with the spectral measure σ̃(G) = σ′{sA(·) : A ∈ G}. It is easy to see that the measure σ̃
coincides with σ and this completes the proof.

4. Invariance principle for random convex compact sets

Consider the process (X(t), t ∈ [0, 1]), with values in coK(). That is, for each t ∈ [0, 1], let
X(t) be a random cc set. Note, that for the usual meaning of difference of sets, A+(B−A) 6= B,
thus it is easy to provide examples of cc sets A and B , for which there does not exists cc set C
such that A + C = B . On the other hand, if such a set exists, it is easy to see that it is unique.
This allows us to define the increment of the process in the following way.

Definition 3. Let s < t, s, t ∈ [0, 1]. The increment X(t)−X(s) of a random cc set process, if
it exists, is such a random cc set, that

X(s) + (X(t)−X(s)) = X(t) a.s.

¿From [G-H] one deduces the following criterion: in order that for a random cc process (X(t), t ∈
[0, 1]) increments could be defined the support process (X(t)(f), f ∈ T, t ∈ [0, 1]) must satisfy
the following condition

X(t)(f + g)−X(t)(f)−X(t)(g) ≤ X(s)(f + g)−X(s)(f)−X(s)(g)
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with all f, g ∈ T and s < t .
Consider the following examples. Let {ξk , k ≥ 1} , be random cc sets and {Uk, k ≥ 1} , be

another sequence of univariate random variables, independent of {ξk} . Then it is easy to see that
for processes

X(t) =
∑

k

[0,t](Uk)ξk, Sn(t) =
[nt]∑

k=1

ξk,

the notion of increment is correctly defined:

X(t)−X(s) =
∑

k

(s,t](Uk)ξk, Sn(t)− Sn(s) =
[nt]∑

k=[ns]+1

ξk.

Definition 4. Let 0 < p < 1. A cc set process {Y (t), t ∈ [0, 1]} is called p -stable cc set Levy
motion if

i) Y (0) = {0};
ii) the increments of the process (Y (t), t ∈ [0, 1]) are well defined and are independent: ran-

dom compact convex sets Y (t2) − Y (t1), . . . , Y (tn) − Y (tn−1) are independent for any
0 ≤ t1 < · · · < tn ≤ 1;

iii) if 0 ≤ s < t ≤ 1 then Y (t) − Y (s) has p -stable distribution and Y (t) − Y (s) D=
(t− s)1/pY (1).

To prove that such processes exist, let {Uk} be independent uniformly distributed random
variables on [0, 1], {εk} be iid on K1() with distribution function σ. Let 0 < p < 1 and
define

(11) Yp(t) = cp

∞∑

k=1

[0,t](Uk)Γ−1/p
k εk, t ∈ [0, 1].

As usually, the sequences (Γk), (Uk), and (εk) are assumed to be independent. The process
(Yp(t), t ∈ [0, 1]) is then the p -stable cc set Levy motion. Indeed, the increments of the process
(Yp(t), t ∈ [0, 1]) are

Yp(t)− Yp(s) = cp

∞∑

k=1

(s,t](Uk)Γ−1/p
k εk,

where s < t. It is easy to see that the increments of the process (Yp(t)) are independent on
non-intersecting intervals. Let L+(K(), ) be a set of “positively linear” functions φ : K() → (for
a definition of L+(K(), ) see [V] or [G-H]) such that

sup
A1 6=A2

|φ(A1)− φ(A2)|
δ(A1, A2)

< ∞.

Consider 0 ≤ u < s < t ≤ 1. Let φ ∈ L+(K(), ). Then for any a, b ∈
exp{i(aφ(Yp(s)− Yp(u)) + bφ(Yp(t)− Yp(s)))} =

exp{icp

∞∑

k=1

φ(εk)(a(u,s](Uk) + b(s,t](Uk))Γ−1/p
k } =

exp{−(t− u)
∫

K1

|φ(x)|pσ(dx)} =

exp{iaφ(Yp(s)− Yp(u))} exp{ibφ(Yp(t)− Yp(s))}.
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Since Yp(t)− Yp(s) and Yp(s)− Yp(u) belongs to coK() and L+(K(), ) separates the points of
coK(), this yields the independence of Yp(t)− Yp(s) and Yp(s)− Yp(u).

Furthermore
Yp(t)− Yp(s)

D= (t− s)1/pYp(1),

for each s < t, s, t ∈ [0, 1].
Let D([0, 1];K()) denote the usual Skorohod space of cadlag functions with values in K(). Let

ξ1, . . . , ξn be iid with values in coK() and let ξ1(·), . . . , ξn(·) be the corresponding support func-
tions which constitute iid random elements in the space C(T ). Let 0 < p < 1 and assume that
ξ1 belongs to the domain of attraction of a p -stable random cc set (denoted ξ1 ∈ DAp(K()) ).
Set

Sn(t) = b−1
n

[nt]∑

k=1

ξk, Sn(t)(·) = b−1
n

[nt]∑

k=1

ξk(·), t ∈ [0, 1],

where bn is the norming sequence such that

Sn(1) D−−−→
n→∞

Yp

and Yp is a p -stable random compact convex set in .

Theorem 4. If the assumptions above are satisfied then the sequence of processes (Sn(t), t ∈ [0, 1])
converges in distribution in the space D([0, 1];K()) to the process (Yp(t), t ∈ [0, 1]) , defined by
(13) .

Proof. First observe that the processes (Sn(t), t ∈ [0, 1]) converge in distribution in the space
D([0, 1];K()) if and only if (Sn(t)(·), t ∈ [0, 1]) converge in distribution in D([0, 1]; C(T )). Let

(12) Yp = cp

∞∑

k=1

Γ−1/p
k εk,

be the series representation of Yp and let εk(·) be the support function of εk, k ∈ N. Define

(13) Yp(t) = cp

∞∑

k=1

(0,t](Uk)Γ−1/p
k εk, t ∈ [0, 1].

Let (Yp(t)(·), t ∈ [0, 1]) be the support process for the process (Yp(t), t ∈ [0, 1]). To show the
convergence of the processes (Sn(t)(·), t ∈ [0, 1]) in D([0, 1];C(T )) in distribution to the process
(Yp(t)(·), t ∈ [0, 1]), we use the following result.

Lemma 1 ([G-S],Th 5, p435). Let ηn, n = 0, 1, . . . be a sequence of processes with independent
increments defined on [0, 1] with values in a Banach space (X , || · ||) and with probability one
belonging to the space D([0, 1],X ). If the finite dimensional distributions of ηn converge weakly
to those of the process η0 and for each ε > 0

lim
h→0

lim sup
n→∞

sup
|t−s|≤h

{||ηn(t)− ηn(s)|| > ε} = 0,

then
ηn

D−−−→
n→∞

η0 in D([0, 1],X ).
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The convergence of the finite dimensional distributions of (Sn(t)(·), t ∈ [0, 1]), to those of
(Yp(t)(·), t ∈ [0, 1]) easily follows from the assumption that ξ1 is in the domain of attraction of
p -stable distribution. Indeed,

Sn(t) D−−−→
n→∞

Zp(t)
D= t1/pYp

D= Yp(t).

For a positive random variable ξ set

Λp(ξ) = sup
t≥0

tpP{ξ > t}.

The following lemma can be proved in much the same way as Lemma .??. in [R].

Lemma 2. For each 0 < p < 1 there is a constant cp such that if ξ1, . . . , ξn are positive
independent random variables then

Λp(
n∑

k=1

ξk) ≤ cp

n∑

k=1

Λp(ξk).

By Lemma 2 we have

P{||Sn(t)− Sn(s)||∞ > ε} = P
{∥∥∥

[nt]∑

k=[ns]+1

ξk(·)
∥∥∥
∞

> εbn

}
≤

P
{ [nt]∑

k=[ns]+1

||ξk|| > εbn

}
≤ [nt]− [ns]

(bnε)p
Λp(||ξ1||).

Thus the tightness conditions of Lemma 1 are satisfied and this completes the proof of the theorem.

5. p -stable countable zonotopes, 0 < p < 1

• First we consider the limits of zonotopes formed by iid random variables in the domain of
attraction of stable law.

Let ξ1, . . . , ξn be iid random elements with values in . Consider the random zonotope

Zn =
n∑

k=1

[0, ξk], n ∈ N.

The following result is a generalization of Theorem 6 in [D-V] to the Banach space random cc sets.

Theorem 5. Let 0 < p < 1. If

b−1
n

n∑

k=1

ξk
D−−−→

n→∞
ηp,
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where ηp is a p -stable random element in then

b−1
n Zn

D−−−→
n→∞

Ỹp,

where Ỹp is a p -stable compact convex set in . Moreover, Ỹp is a countable zonotope, i.e.

Ỹp
D=

∞∑

k=1

[0, ε̃k],

where (ε̃k) are random elements in .

Proof. For f ∈ T by f+ we denote the positive part of the functional f, f+(x) = f(x) if
f(x) ≥ 0 and f+(x) = 0 otherwise. Since the support function of the set [0, ξ] is

[0, ξ](f) = f+(ξ), f ∈ T,

one has to prove that {f(ξ1), f ∈ T} ∈ DAp(C(T )), yields {f+(ξ1), f ∈ T} ∈ DAp(C(T )). Set

Sn(f) = b−1
n

n∑

k=1

f+(ξk), f ∈ T.

Since evidently the finite dimensional distributions of {Sn} converges it remains to check tightness
of this sequence. By Lemma 1 we have

{ sup
d∗(f,g)≤δ

|Sn(f)− Sn(g)| ≥ ε} ≤ { sup
d∗(f,g)≤δ

b−1
n

n∑

k=1

|f(ξk)− g(ξk)| ≥ ε} ≤

{ sup
||f ||≤1

b−1
n

n∑

k=1

|f(ξk)| ≥ ε/δ} ≤ {b−1
n

n∑

k=1

||ξk|| ≥ ε/δ} ≤

b−α
n ε−αδαn sup

t
tα{||ξ1|| ≥ t}.

This yields the compactness of (Sn(·)) and the first part of the theorem is proved.
Let σ′ be the spectral measure of Ỹp. By Theorem 2

Ỹp
D= cp

∞∑

k=1

Γ−1/p
k Mk,

where (Mk) are iid random elements in with distribution σ′. As always, (Γk) and (Mk) are
independent. On the other hand, according to [G-H]

lim
t→∞

ptpP
{ [0, ξk]
||ξk|| ∈ A, ||ξk|| ≥ t} = σ′(A).

But evidently σ′(A) = σ(A ∩ F), where F = {⋃x∈C [0, x] : C ∈ B(1)}. Hence, if A ∩ F = C

then σ′(A) = σ(C), where σ is the spectral measure of ηp. So, M1
D= [0, ξ], where ξ has

distribution σ.
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This theorem indicates, that the limits in distribution of zonotopes b−1
n Zn, where ξ1 ∈ DAp()

are countable stable zonotopes.

•• In this subsection is the d -dimensional Euclidean space d and ‖ · ‖ will stand for the
usual Euclidean norm. Consider two countable pi -stable zonotopes in d with spectral measures
σi, i = 1, 2. Assume that their series representations are

Yi
D=

∞∑

k=1

Γ−1/pi

k [0, ε(i)
k ],

and the corresponding distributions denote by µi, i = 1, 2.

Theorem 6. Assume that neither the measure σ1 nor the measure σ2 has atoms. Then if either
p1 6= p2 or σ1 6= σ2 the distributions µ1 and µ2 are singular.

Remark. Here it is appropriate to note, that situation with respect to equivalency or singularity
of zonotopes in d is quite different comparing with the same problem for usual stable measures
in d : since all stable measures have densities (with respect to Lebesgue measure) it is clear that
there can be equivalence of stable measures corresponding to different exponents p1 6= p2 . The
requirement that the measures σi have no atoms is essential, as the following example shows.

Example. Consider the space 2 and set

σ =
1
2
δe1 +

1
2
δe2 ,

where e1 = (1, 0), e2 = (0, 1) and δa denotes Dirac measure. Let Pi be the distribution of Zi,
where

Zi =
∞∑

k=1

Γ−1/pi

k εk, i = 1, 2

and {εk} are iid random vectors with distribution σ. Evidently

Zi
D= [0, e1]Σi

1 + [0, e2]Σi
2,

where

Σi
1 =

∞∑

k=1

Γ−1/pi

k {εk=e1}, Σi
2 =

∞∑

k=1

Γ−1/pi

k {εk=e2}, i = 1, 2.

It is easy to see that the random variables Σi
1 and Σi

2 are independent. Indeed, for any a, b ∈

exp{i(aΣi
1 + bΣi

2)} =

exp{i
∞∑

k=1

(a{εk=e1} + b{εk=e2})Γ
−1/pi

k } =

exp{−c−1/pi
pi

|a{ε1=e1} + b{ε1=e2}|p} =

exp{iaΣi
1} exp{ibΣi

2}.

Moreower, both random variables Σi
1 and Σi

2 have bounded positive densities on +. Hence, the
vector (Σi

1,Σ
i
2) have bounded positive density on 2

+. This yields, that the measures P1 and P2

are equivalent for any p1, p2 ∈ (0, 1) .
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Proof of Theorem 6.
The idea of the proof is rather simple. Having zonotopes Yi , i = 1, 2, we can restore the

sequences {Γ−1/pi

k } and {ε(i)
k } . Now, if p1 6= p2 , then µ1 and µ2 will be supported by

disjoint sets defined by relations limk γkk1/pi = 1, i = 1, 2 . In case of σ1 6= σ2 the singularity
of measures µ1 and µ2 will be implied by singularity of product-measures σ1 × σ1 × . . . and
σ2 × σ2 × . . . . Unfortunately, we were not able to prove directly the measurability of the map,
sending a countable zonotope to sequences {Γ−1/p

k } and {εk} , therefore we must use more
lengthy argument.

Consider the set for 0 < p < max(p1, p2)

Γ = {γ = (γk) ∈ `1 : γk ≥ γk+1 ≥ 0, for all k ≥ 1, and sup
k

γkk1/p < ∞ } ⊂ `1,

and the set

E = {e = (ek) : ek ∈ Sd−1 for all k ≥ 1}
equiped with the distance d(e, f) =

∑
k 2−k||ek−fk||. Consider the function Z : Γ×E → coK(d),

Z(γ, e) =
∞∑

k=1

γk[0, ek].

Claim 1. The function Z is continuous (we consider Γ× E as a metric space with l1 metric
on Γ ).

Proof. Since

d(Z(γ, e), Z(γ′, e′)) ≤
∞∑

k=1

δ(γk[0, ek], γ′k[0, e′k]) ≤
∞∑

k=1

|γk − γ′k|+
∞∑

k=1

γk|ek − e′k|

and both terms tends to zero provided γ → γ′ in `1 and e → e′ in E (noting also that
γk ≤ Ck−1/p ).

Set Z0 = Z(Γ× E) and for 0 < c < 1 consider the function ΠN,c : Z0 → Z0,

ΠN,c

( ∞∑

k=1

γk[0, ek]
)

=
∞∑

k=1

γN,c,k[0, ek],

where

γN,c,k =
{

γk if k ≤ N

(1− c)γk if k > N.

Claim 2. For each fixed N and 0 < c < 1 the function ΠN,c is continuous.

Proof. The set Γ× E is a countable union of compact sets ΓA × E, where the set

ΓA = {(γk) ∈ Γ : sup
k

γkk1/p ≤ A}.

Evidently, both functions Z and Z ◦ ΠN,c are continuous, on each set ΓA × E. We need the
following simple fact, and since we have not found relevant reference, we provide it with the proof.
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Lemma 3. Assume, that X,Y, Z are metric compact spaces and f : X → f(X) = Y is contin-
uous. If a function g : Y → Z is such that g ◦ f is continuous, then g is continuous.

Proof of Lemma 3. Let yn → y0 in Y. We prove, that g(yn) → g(y0) in Z. To this aim it suffices
to prove, that any subsequence (g(yn′)) has a subsequence such that g(yn′′) → g(y0). Let our
selected subsequence be (yn). Since yn = f(xn) and X is compact there exists a subsequence
(xn′) such that xn′ → x0. But continuity of f yields f(xn′) → f(x0). So f(x0) = y0 and we
have g(yn′) = g(f(xn′)) → g(f(x0)) = g(y0).

Lemma 3 yields the continuity of ΠN,c on each set Z(ΓA × E) and therefore on Z0 ⊂
∪A∈NZ(ΓA × E).

We need the following notations. Pi and Qi stand for the distributions of the sequences
{Γ−1/pi

k } and {ε(i)k } ,respectively, i = 1, 2 . By PN
i and QN

i we denote the distributions of the
finite sequences {Γ−1/pi

1 , . . . , Γ−1/pi

N } and {ε(i)1 , . . . , ε
(i)
N } , respectively, i = 1, 2 . We denote by

µN
i the distribution of the finite zonotope

N∑

k=1

Γ−1/pi

k [0, ε
(i)
k ], i = 1, 2.

It is clear that (Pi ×Qi)Z−1 = µi, i = 1, 2.
Note, that both measures µiΠ−1

Nc converge weakly as c → 1 to µN
i , i = 1, 2. Then (see e.g.

[D-L-S], Th. 2.7)

(14) ||µN
1 − µN

2 || ≤ lim inf
c→1

||µ1Π−1
Nc − µ2Π−1

Nc|| ≤ ||µ1 − µ2||.

Consider the function

f : (γ1, . . . γN , ε1, . . . , εN ) →
N∑

k=1

γk[0, εk],

defined on the set

BN = {(γ, ε) : γ1 > · · · > γN , ε1 6= · · · 6= εN}.
The set BN is open in RN

+ × (Sd−1)N and therefore is a countable union of increasing sequence
of compact sets, say Km. Let Xm = f(Km). The function f is continuous on Km. Applying
Theorem 3.5.3 from [S] ,it is possible to prove that the inverse function f−1 = g exists on Xm

and by Lemma 3 is continuous. Hence, the function

g :
N∑

k=1

γk[0, εk] → (γ1, . . . , γN , ε1, . . . , εN )

is continuous on the set ∪mXm.
Evidentelly, PN

i ×QN
i = µN

i g−1, i = 1, 2. Therefore, by (14)

(15) ||PN
1 ×QN

1 − PN
2 ×QN

2 || ≤ ||µ1 − µ2||.
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Now consider two cases separately.
First case, p1 6= p2 . In this case

||PN
1 − PN

2 || ≤ ||PN
1 ×QN

1 − PN
2 ×QN

2 ||
and (15) yields

||µ1 − µ2|| ≥ lim inf
N

||PN
1 − PN

2 || ≥ ||P1 − P2|| = 2.

The last equality easily follows by the fact, that the distribution P1 is concentrated on the
sequences (γk) such that limk γkk1/p1 = 1, whereas the second measure sits on the sequences
(γk) such that limk γkk1/p2 = 1.
Second case, σ1 6= σ2. In this case we have

||QN
1 −QN

2 || ≤ ||PN
1 ×QN

1 − PN
2 ×QN

2 ||

and (15) yields

||µ1 − µ2|| ≥ lim inf
N

||QN
1 −QN

2 || ≥ ||Q1 −Q2|| = 2

by Kakutani theorem (see, for example, [J-S]. p. 217).

6. Estimation of parameters of p -stable laws, 0 < p < 1

Any stable law in d (or more general Banach space) Gp is completely determined by an
exponent p ∈ (0, 2), and a spectral measure ν on Borel sets of unit sphere. We propose rather
simple estimators of these parameters of a stable laws in the case 0 < p < 1, based on Le Page
type representation of stable vectors. There is a vast literature on the estimation of parameters of
stable laws or some other parameters characterizing the tail behaviour of distributions, a reader
can consult , for example, the survey paper [MC] and references in it.

Let ξ1, ξ2, . . . , ξN be a sample of size N from a stable distribution with unknown parameter
p < 1 and unknown spectral measure ν. For our purposes we shall assume that N = n2, n ≥ 1.

• Firstly we estimate the parameter p. Let us divide the sample into n groups with n
elements in each group in the following way. If Vn1, . . . , Vnn denote n groups, each containing
of n vectors from the sample of size N = n2, then passing to the size N1 = (n+1)2 we use the
following rule:

Vn+1,i = Vn,i ∪ {ξn2+i}, i = 1, . . . , n,

Vn+1,n+1 = {ξn2+n+1, . . . , ξ(n+1)2}.

Let
M

(1)
ni = max{||ξ|| : ξ ∈ Vni}

and let M
(2)
ni denote the second norm maximal element in the same group.

¿From Le Page type representation of a stable vectors it follows that for each i

(16)
(M

(1)
ni

bn
,
M

(2)
ni

bn

) D−−−→
n→∞

(
Γ−1/p

1 ,Γ−1/p
2

)
,
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where bn = n1/p in the case of a sample from stable distribution. In the case of sample from
distribution in the domain of attraction of a stable law bn will be norming constants in limit
theorem. Here Γi =

∑i
j=1 λj , λ1, λ2, . . . being iid random variables with standard exponential

distribution. Set

κni = M
(2)
ni /M

(1)
ni , Sn =

n∑

i=1

κni.

Theorem 7. For any d ≥ 1 , as n →∞

(17) n−1Sn
a.s.−−−→

n→∞
p

1 + p
.

Therefore the quantity Sn/(n−Sn) presents consistent and asymptotically unbiased estimator
of parameter p, 0 < p < 1.

Remark. The proposed estimator does not depend neither on the dimension d nor on spectral
measure ν.

Proof. From (16) it follows that for all i

κni
D−−−→

n→∞

( λ1

λ1 + λ2

)1/p

.

Since 0 ≤ κni ≤ 1 then for any integer m

(18) Eκm
ni −−−→

n→∞
E

( λ1

λ1 + λ2

)m/p

.

Simple calculations show that

(19) E
( λ1

λ1 + λ2

)1/p

=
p

p + 1
.

Random variables κn1, . . . , κnn are independent and identically distributed. Let an = Eκn1.
Since 0 ≤ κni ≤ 1 there exists an absolute constant C such that

P
{|n−1Sn − an| > ε

} ≤ ε−4n−4E|Sn − nan|4 ≤
Cε−4n−2E|κn1|4 ≤ Cε−4n−2.

Taking ε = εn = n−1/8 and applying Borel-Cantelli lemma we get that with probability 1 for all
sufficiently large n

|n−1Sn − an| ≤ n−1/8.

This means that n−1Sn − an → 0 a.s. and this together with (18) and (19) proves (17). The
theorem is proved.

•• Next we consider an estimator of the spectral measure ν. We shall assume that ν is
normed so that ν{||x|| = 1} = 1. Set

ξni = ξj = ξj(n,i),
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where j(n, i) is such that M
(1)
ni = ||ξj(n,i)|| and set

θni =
ξni

||ξni|| , i = 1, . . . , n.

Random vectors θn1, . . . , θnn are iid. Again from the representation of stable law by Le Page type
series it follows that for each i

θni
D−−−→

n→∞
ν.

Therefore for any Borel set B on unit sphere Sd−1 such that ν(∂B) = 0 we have

B(θni)
D−−−→

n→∞ B(γ),

where γ is a random vector with the distribution ν. This yields

(20) B(θni) −−−→
n→∞

ν(B).

The last step is again to apply strong law of large numbers, thus we get that with probability one

(21) n−1
n∑

i=1

B(θni)− B(θn1) −−−→
n→∞

0.

(20) and (21) proves the following result.

Theorem 8. The empirical distribution based on sample θn1, . . . , θnn is consistent estimator for
the spectral measure ν, that is, for any B ∈ B(Sd−1) such that ν(∂B) = 0 we have

n−1
n∑

i=1

B(θni)
a.s.−−−→

n→∞
ν(B).

••• Now we return to Theorem 7 and show that with appropriate normalization our estimator
of the parameter p is asymptotically normal (in the case of samples from stable distribution).
Again, we shall deal not with estimator Sn/(n−Sn) but with more convienent statistics n−1Sn.
It is easy to see that having confidence interval for p(1 + p)−1 say

an − bn <
p

1 + p
< an + bn

we easily get confidence interval for p

an − bn

1− an + bn
< p <

an + bn

1− an − bn
.

Here, of course, we assumed that an + bn < 1. Now we shall prove the following result.
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Theorem 9. Let Sn be defined as in Theorem 7. Then

(22) n(n−1Sn − p(p + 1)−1)
( n∑

j=1

κ2
nj − n−1S2

n

)−1/2 D−−−→
n→∞

N(0, 1).

Remark. One can take more simple expression on the left-hand side of (22), namely n−1/2(n−1Sn−
p(p + 1)−1), but then the limit normal law will have variance σ2 = p((p + 1)2(p + 2))−1. This
means that limit law would be dependent on unknown parameter p. Therefore we used in (22)
self-normalized type sum.

Proof of Theorem 9. From the proof of Theorem 7 we have that

an = κn1 =
p

p + 1
+ γn,

where γn → 0 as n →∞. Since

√
n(n−1Sn − p(p + 1)−1) = n−1/2

n∑

i=1

(κni − an) +
√

nγn,

n−1
n∑

i=1

κ2
ni − (n−1Sn)2 = n−1

n∑

i=1

(κni − an)2,

it is easy to see that in order to prove (22) we need to show the following three relations:

n−1/2
n∑

i=1

(κni − an) D−−−→
n→∞

N(0, σ2);(23)

n−1/2γn → 0;(24)

n−1
n∑

i=1

(κni − an)2 P−−−→
n→∞

σ2.(25)

(23) follows from the CLT applied to triangular array {κni, 1 ≤ i ≤ n} of iid in each row random
variables, taking into account the limit relation

σ2
n := (κni − an)2 → σ2 = p((p + 1)2(p + 2))−1,

which follows from (19) and limit value is obtained evaluating (λ1/(λ1 + λ2))2/p.
(25) follows from LLN for the triangular array {(κni−an)2, 1 ≤ i ≤ n}, applying, for example,

criterion (4.8.4) given in [H]. Having (23) and (25) by the well known result (see, for example, [B])
we get convergence of the joint distributions:

(
n−1/2

n∑

i=1

(κni − an), n−1
n∑

i=1

(κni − an)2
) D−−−→

n→∞
(N(0, σ2), σ2).

This relation together with (24) proves the theorem. Therefore it remains to prove (24).
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Let G(x) = P{||ξ1|| > x}. It is well-known (see, for example, [Br] or [L-W-Z]) that

κn1
D= G−1

( Γ2

Γn+1

)(
G−1

( Γ1

Γn+1

))−1

,

where G−1 is inverse function for (continuous) function G. In [F] it is given asymptotic expansion
for the distribution density of the norm of a strictly p -stable random vector, which allows us to
write

G(x) = c1x
−p + c2x

−2p + O(x−3p), as x →∞.

Here ci, i = 1, 2 are constants depending on p and on ν{||x|| = 1}. Using Lagrange theorem
on expansions of inverse function (see, for example, [M] p.340) we can write

G−1(t) = b1t
−1/p + b2t

1−1/p + O(t2−1/p), as t → 0,

where b1 = c
1/p
1 , b2 is some function of ci, i = 1, 2. This implies that for sufficiently small δ

and some constants C3, C4

(26) 1− C4t ≤ G−1(t)b−1
1 t1/p ≤ 1 + C3t, if 0 < t < δ.

Now we are ready to estimate the quantity

|γn| = |an − p(p + 1)−1| =
∣∣∣
(
G−1

( Γ2

Γn+1

)(
G−1

( Γ1

Γn+1

))−1)
− p

p + 1

∣∣∣.(27)

Let Rn+1
+ = {x = (x1, . . . , xn+1) : xi ≥ 0, i = 1, . . . , n + 1}, Σn = x1 + · · ·+ xn;

A2,n = {x ∈ Rn+1
+ : (x1 + x2)/Σn ≥ δ}, Ac

2,n = Rn+1
+ \A2,n,

where δ is from (26). Now

(
G−1

( Γ2

Γn+1

)(
G−1

( Γ1

Γn+1

))−1)
=

∫
n+1
+

G−1
(x1 + x2

Σn+1

)(
G−1

( x1

Σn+1

))−1

e−Σn+1dx = I1 + I2,(28)

where
I1 =

∫

A2,n

, I2 =
∫

Ac
2,n

.

Since
G−1

(x1 + x2

Σn+1

)(
G−1

( x1

Σn+1

))−1

≤ 1,

then

(29) I1 ≤
{ λ1 + λ2

λ1 + · · ·+ λn+1
> δ

}
≤ δ−1 λ1 + λ2

Γn+1
=

2
δ(n + 1)

.
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Taking into account that for x ∈ Ac
2,n it holds x1Σ−1

n+1 ≤ (x1 + x2)Σ−1
n+1 < δ, we can apply (26)

to the integrand and we get

(30) a1 ≤ G−1
(x1 + x2

Σn+1

)(
G−1

( x1

Σn+1

))−1

≤ a2,

where

a1 =
( x1

x1 + x2

)1/p Σn+1 − C4(x1 + x2)
Σn+1 + C1x1

,

a2 =
( x1

x1 + x2

)1/p Σn+1 + C3(x1 + x2)
Σn+1 − C4x1

,

We recall that ∫

Rn+1
+

( x1

x1 + x2

)1/p

e−Σn+1dx =
( λ1

λ1 + λ2

)1/p

=
p

p + 1
,

therefore, using (30) it is not difficult to get the following estimates from above and below:

I2 ≤ p

p + 1
+ I

(1)
2 ,(31)

I2 ≥ p

p + 1
− I

(2)
2 − I

(3)
2 ,(32)

where

I
(1)
2 =

∫

Ac
2,n

( x1

x1 + x2

)1/p Σn+1 + C3(x1 + x2)
Σn+1 − C4x1

e−Σn+1dx,

I
(2)
2 =

∫

A2,n

( x1

x1 + x2

)1/p

e−Σn+1dx,

I
(3)
2 =

∫

Ac
2,n

( x1

x1 + x2

)1/p Σn+1 + C4(x1 + x2)
Σn+1 + C3x1

e−Σn+1dx,

I
(2)
2 can be estimated in the same way as in (29). For x ∈ Ac

2,n we have x1 < δΣn+1 and

Σn+1−C4x1 ≥ Σn+1(1−C4δ), therefore I
(1)
2 and I

(3)
2 can be estimated by (Γ2/Γn+1) = 2/(n+1)

multiplied by some constant, depending on δ, C3 and C4. Thus we have

(33) I
(j)
2 = O(n−1), j = 1, 2, 3.

Collecting (27)–(29), (31)–(33) we get γn = O(n−1). Now (24) follows and the theorem is proved.
In Theorems 7 - 9 we took n =

√
N, but it is possible to consider more general function

n = n(N), if at the beginning we group all sample of size N into n(N) groups, each containing
m = m(N) elements, where nm = N. Then denoting the groups by Vm1, . . . , Vmn, we define

M
(1)
mi = max{||ξ|| : ξ ∈ Vmi}, i = 1, 2, . . . , n

and similarly we define M
(2)
mi and κmi = M

(2)
mi (M

(1)
mi )

−1. Choosing m as independent variable
we get n as function of m, so let us denote lm = Nm−1 and define

Sm =
lm∑

i=1

κmi.
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Assuming that m = m(N) →∞ and m/N → 0 as N →∞, we can generalize (17) and get

l−1
m Sm

P−−−−→
N→∞

p

p + 1
.

In a similar way we can generalize Theorem 8. More complicated is generalization of Theorem 9.
This and some other problems, not discussed in this section are beyond the scope of the present
paper and will be addressed in detail elswhere.
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