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l.INTRODUCTION AND RESULTS In recent papers Bezandry and Fer-

nique (1990,1992), Fernique (1993) have given new convergence and tightness cri-

teria for random processes whose sample paths are right-continuous and have left-

limits. These criteria have been applied by Bezandry and Fernique, Bloznelis and

Paulauskas to prove the central limit theorem (CLT) in the Skorohod space D[0, 1].

In this paper, using recent technique of Bezandry and Fernique, we improve

some results of Bickel and Wichura (1971) on weak convergence and tightness for

multiparameter processes. The main results of the paper deals with stochastically

continuous processes and may be viewed as an extension to multidimensional case

of the weak convergence criteria due to Bezandry and Fernique (1990,1992) and of

the CLT due to Bloznelis and Paulauskas (1993), Fernique (1993).

Let X,X1, X2, ... be i.i.d. random processes with sample paths in Skoro-

hod space Dk ≡ D([0, 1]k, R). For details about the space Dk endowed with

the Skorohod topology we refer to Neuhaus (1971) and Straf (1972). Denote

Sn = n−1/2(X1 + . . . + Xn − nEX). A random process X is said to satisfy the

CLT in Dk (X ∈ CLT (Dk)) if the distributions of Sn converge weakly to a Gaus-

sian distribution on Dk. For a random process X = {X(t), t ∈ [0, 1]k}, k ≥ 1

define

∆(i)
(a,b]X(u) = X(u1, . . . ui−1, b, ui+1, . . . , uk)−X(u1, ..., ui−1, a, ui+1, ..., uk),

u = (u1, ..., uk) ∈ [0, 1]k, 1 ≤ i ≤ k, a, b ∈ [0, 1].

A rectangle B in the unit cube T ≡ [0, 1]k is a subset of T of the form

(s, t] =
k∏

i=1

(si, ti], s = (s1, ..., sk), t = (t1, ..., tk) ∈ T ;
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2 CLT FOR MULTIPARAMETER PROCESSES

the i-th face of B is
∏

j 6=i(sj , tj ]. Disjoint rectangles B and C are neighbours if they

abut and have the same i-th face for some i. For a rectangle B=(s,t] let

X(B) = ∆(1)
(s1,t1]

. . .∆(k)
(sk,tk]X(u)

be the increment of X around B; X(·) is a random finitely additive function on

rectangles. The set LB(T ) = {(t1, ..., tk) ∈ T : ti = 0 for some i} is called the

lower boundary of T , and UB(T ) = {(t1, ..., tk) ∈ T : ti = 1 for some i} is

called the upper boundary of T .

THEOREM 1. Let p, q ≥ 2 and k ≥ 1. Let X = {X(t), t ∈ T} be a random

process with EX(t) = 0, EX2(t) < ∞ for each t ∈ T . Assume X vanishes along

the lower boundary of T , i.e.,

P ( X(t) = 0 ) = 1 for all t ∈ LB(T ). (1.1)

Assume there exist nondecreasing non-negative functions f, g and finite measures

F, G on T with continuous marginals such that for all neighbouring rectangles

B, C ⊂ T

E(| X(B) | ∧ | X(C) |)p ≤ f(F (B ∪ C)), (1.2)

E | X(B) |q≤ g(G(B)) (1.3)

and for some ε > 0

∫ ε

0

(u)−1−1/pf1/p(u)logk−1(u−1)du < ∞, (1.4)

∫ ε

0

(u)−1−1/(2q)g1/q(u)logk−1(u−1)du < ∞. (1.5)

Then X has a version X ′ with sample paths in Dk and X ′ ∈ CLT (Dk).

Note that the random process X is stochastically continuous by (1.3), (1.5).

For one-parameter processes (k = 1) Theorem 1 coincides with Th.2 of Bloznelis

and Paulauskas (1993b), see also Fernique (1993). Condition (1.1) which appeared

yet in Chentsov (1956) and Bickel and Wichura (1971) (and is restrictive for k ≥ 2)
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BLOZNELIS AND PAULAUSKAS 3

could be explained by the fact that (1.2) and (1.3) do not control behaviour of X

on the boundary of T because the measures F and G have continuous marginals.

This condition may be removed if one requires X to satisfy (1.2), (1.3) on each

coordinate cube laying on the lower boundary of T , namely, if for each number

m < k, each collection {i1, ..., im} ⊂ {1, ..., k} and each m-dimensional unit cube

T (i1, ..., im) = {(t1, ..., tk) ∈ T : ti = 0 for i6∈{i1, ..., im}}

there exist functions f, g, satisfying (1.4), (1.5) with the parameter (k =)m and

measures F,G on T (i1, ..., im) with continuous marginals such that for all neigh-

bouring rectangles B, C ⊂ T (i1, ..., im) conditions (1.2), (1.3) are satisfied, c.f.,

Lachout (l988).

As in the case k = 1 conditions (1.2), (1.4) are optimal in the following sense.

EXAMPLE 1. Let f be nondecreasing positive function on [0,1] satisfying

the following two conditions:

∫ 1

0

· · ·
∫ 1

0

(
(u1 · · · uk)−1f(u1 · · · uk)

)1/p(u1 · · · uk)−1du1 · · · duk = ∞; (1.6)

there exist positive constants K and α such that for all 0 < x < y ≤ 1

x−αf(x) ≤ Ky−αf(y). (1.7)

Then there exists a stochastically continuous process X with sample paths in Dk

such that (1.2) and an analogous condition on the LB(T) (which was discussed

above) are satisfied but X 6∈ CLT (Dk).

In the proof of Theorem 1 we use a general statement about the desym-

metrization and weak convergence of sequences of stochastically continuous pro-

cesses viewed as Dk valued random elements, cf. Bloznelis and Paulauskas (1993)

and Fernique (1993).

For the sake of completeness we recall some basic facts about the space Dk , see

, e.g., Bickel and Wichura (1971) (we will abbreviate this reference by [B & W] in the

sequel). Functions x : [0, 1]k → R in Dk may be characterized by their continuity
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4 CLT FOR MULTIPARAMETER PROCESSES

properties as follows: if t ∈ T and if for 1 ≤ i ≤ k, Ri is one of the relations < and≥ ,

let Q = Q(R1, ..., Rk, t) denote the quadrant {(s1, ..., sk) ∈ T : siRiti, 1 ≤ i ≤ k}.
Then x ∈ Dk iff for each t ∈ T ,

xQ ≡ lim
s→t,s∈Q

x(s)

exists for each quadrant Q, and x(t) = xQ(≥,...,≥,t). In this sense, the functions of

Dk are ”continuous from above, with limits from below”. One can define Skorohod

distance between x and y in Dk to be

d(x,y) = inf{max{sup
t∈T

| x(t)− y(λ(t)) |, sup
t∈T

‖λ(t)− t‖}},

where the infimum is taken over all hoemorphisms λ : T → T ,

λ(t1, ..., tk) = (λ1(t1), ..., λk(tk)); λi(0) = 0, λi(1) = 1,

λi is increasing continuous, 1 ≤ i ≤ k and ‖s − t‖ = maxi | si − ti | for s, t ∈ T .

Note that Dk coincides with the usual Skorohod space D[0, 1] when k = 1.

Let (Ω,F ,P) denote a probability space on which the random elements under

consideration will be defined. We say that a random process X = {X(t), t ∈ T}
satisfies condition (A) on the unit cube T if there exist positive nondecreasing

functions f1, ..., fM , θ1, ..., θM , additionally θi is convex, 1 ≤ i ≤ M , and measures

F1, ..., FM on T with continuous marginal distributions such that for all neighbour-

ing rectangles B,C ⊂ T and each A ∈ F

E{(| X(B) | ∧ | X(C) |)IIA} ≤
M∑

i=1

fi(Fi(B ∪ C))θi(P (A)) (1.8)

and functions fi, θi satisfy

∫ ε

0

(u)−2logk−1(1 + u−1)
M∑

i=1

fi(u)θi(u)du < ∞. (1.9)

Condition(A) is a multidimensional analogue of the corresponding one formulated

in Bezandry and Fernique (1992) ( for brevity we use [B & F ] in the sequel). We say
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that X satisfies condition(B) if for each m < k and each {i1, ..., im} ⊂ {1, ..., k} X

satisfies condition(A) on the cube T (i1, ..., im). Let {Xn, n ≥ 1} be a sequence of

random processes defined on T . We say that the sequence {Xn, n ≥ 1} satisfies

condition(A) if each Xn satisfies (A) with the same functions fi, θi and measures

Fi, 1 ≤ i ≤ M .

Continuity properties of sample paths. The next theorem gives sufficient conditions

for a random process X to have sample paths in Dk.

THEOREM 2. Let X = {X(t), t ∈ [0, 1]k} be a random process satisfying

conditions (1.1) and (A). Suppose that for all ε > 0

(i) P (| X(t + h)−X(t) |> ε) → 0 as h tends to 0 ”from above”;

(ii)

P (| ∆(i)
(a,1]X(u) |> ε) → 0 as a → 1, for all i ∈ {1, ..., k} and all u ∈ UB(T ).

Then X has a version with sample paths in Dk.

Theorem 2 is an extension to multiparameter case of Theorem 1.2 of [B & F], cf.

also Theorem 4 of Bickel and Wichura (1971). Note that a stochastically continuous

random process X always satisfies conditions (i) and (ii) and condition(A) is fulfiled

if X satisfies (1.2), (1.4). Statement of Theorem 2 remains true if one replace

condition (1.1) by the weaker condition (B).

COROLLARY 3. Let X = {X(t), t ∈ T} be a stochastically conti nuous

random process satisfying (1.1) and there exist nondecreasing non-negative function

f satisfying (1.4) and measure F on T with continuous marginals such that (1.2) is

fulfilled. Then X has a version with sample paths in Dk.

Let us compare condition (1.2), (1.4) with the corresponding one of Theorem

4 of [B & W] :

∃α, γ > 0 : ∀ε > 0, P (| X(B) | ∧ | X(C) |> ε) < ε−γ(F (B ∪ C))1+α. (1.10)

If

E(| X(B) | ∧ | X(C) |)γ ≤ (F (B ∪ C))1+α. (1.11)
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6 CLT FOR MULTIPARAMETER PROCESSES

then one may check (1.10) using Tchebyshev inequality, see ,e.g., Theorem 6 ibidem.

If γ ≥ 2, then the condition (1.11) implies (1.2) ,(1.4).

Weak convergence. A random process X with sample paths in Dk is said to be

continuous at the upper boundary of T if for each i ≤ k

lim
a↑1

sup
s∈[0,1]k

∆(i)
(a,1]X(s) = 0 with probability 1. (1.12)

Let U be a collection of subsets of T of the form U = U1 × ... × Uk, where each

Ui ⊂ [0, 1] contains zero and one and has countable complement.

THEOREM 4 (cf. Th.1.3. in [B & F]). Let Xn, n ≥ 1 and X be random

processes with sample paths in Dk and suppose that X is continuous at the upper

boundary of T . Assume the sequence {Xn, n ≥ 1} satisfies condition(A) and each

Xn satisfies (1.1). If for some U ∈ U and all choises t1, ..., tr ∈ U

(Xn(t1), ..., Xn(tr)) −→D
n→∞ (X(t1), ..., X(tr)), (1.13)

converge in distribution, then Xn ⇒ X ( converge weakly in Dk).

Condition (1.12) appears in [B & W] and may be viewed as a multidimensional

analogue of the condition P (X(1) 6= limt↑1 X(t)) = 0 of Theorems 15.4, 15.6 of

Billingsley (1968). Denote

ωδ(x) = sup{| x(s)− x(t) |: s, t ∈ T, ‖s− t‖ < δ}, x ∈ Dk.

LEMMA 5 (see, e.g., Neuhaus (1971)). Let {Xn, n ≥ 1} be a sequence of

random processes with sample paths in Dk. Let Y be a continuous random process

on [0, 1]k. Assume that Xn ⇒ Y converge weakly in Dk. Then

∀ε > 0, ∀η > 0 ∃δ > 0 ∃n◦ : P (ωδ(Xn) > ε) < η, ∀n > n◦.

LEMMA 6 (cf. Lemma 2 in Bloznelis and Paulauskas (1993) and Lemma 2.3

in Fernique (1993)). Let {Xn, n ≥ 1} be a sequence of stochastically continuous

random processes with sample paths in Dk and Xn be an independent copy of
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Xn, n ≥ 1. Assume there exists a random process X with sample paths in Dk such

that (1.13) is satisfied. Assume {X∗
n = Xn − Xn, n ≥ 1} converge weakly in Dk

to sample continuous random process. If, moreover, the sequence {Xn, n ≥ 1} is

uniformly stochastically continuous:

∀ε, η > 0 ∃δ > 0 : ‖t− s‖ < δ ⇒ P (| Xn(t)−Xn(s) |> ε) < η, n ≥ 1,

then Xn ⇒ X converge weakly and X is sample continuous.

For k = 1 these lemmas are proved in Bloznelis and Paulauskas (1993). Argu-

ment used there easily extends to multidimensional case.

PROPOSITION 7. Let X = {X(t), t ∈ [0, 1]k} be a centered random

process with sample paths in D[0, 1]k. Assume X satisfies CLT in D[0, 1]k and

the limiting Gaussian r. process Y is sample continuous. Then the sequence of

processes

{Zn(s, t) =
∑

i≤ns

n−1/2Xi(t), s ∈ [0, 1], t ∈ [0, 1]k}, n ≥ 1

converge weakly in D[0, 1]k+1 to the Brownian motion WY in C[0, 1]k, generated

by Y .

We recall that WY = WY (s, t) is defined on [0, 1]k+1 and has covariance

Cov[(WY (s′, t′),WY (s′′, t′′)] = min(s′, s′′)× Cov(X(t′), X(t′′)).

The equivalence of the CLT for (separable) Banach space valued random elements

and the Invariance principle was proved by Kuelbs (1973). But the space Dk con-

sidered in Proposition 7 is not a topological linear space.

2. PROOFS

Let Fi, 1 ≤ i ≤ M be finite measures on [0, 1]k with continuous marginals. Denote

by λ the Lebesgue measure on [0, 1]k and define the measure F ′ = c(F1 + ...+FM+

+λ) , where c is the norming constant which makes F ′ to be a probability measure.

It is easy to see that (1.6) remains true if one replace fi(Fi(B∪C)) in the right-hand
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8 CLT FOR MULTIPARAMETER PROCESSES

side by f ′i(F
′(B ∪ C)), 1 ≤ i ≤ M , where the functions f ′i(u) = fi(c−1u) satisfy

(1.7) as well as fi, 1 ≤ i ≤ M . In what follows we assume without loss of generality

that F1 = ... = FM := F , and F is a probability measure with continuous and

strictly increasing marginal distribution functions (m.d.f.).

Recall some useful notation from [B & W]. Let x : [0, 1]k → R. For each

i ∈ {1, ..., k} and each t ∈ [0, 1] define

x
(i)
(t) : [0, 1]i−1 × [0, 1]k−i → R

by

x
(i)
(t)(t1, ..., ti−1, ti+1, ..., tk) = x(t1, ..., ti−1, t, ti+1, ..., tk)

and for each 0 ≤ s ≤ t ≤ u ≤ 1 set

∆(s, t, u)(x(i)) = ‖x(i)
(t) − x

(i)
(s)‖ ∧ ‖x

(i)
(u) − x

(i)
(t)‖,

where ‖x(i)
(t)‖ = sup{| x(t1, .., ti−1, t, ti+1, ..., tk) | : 0 ≤ tj ≤ 1, j 6= i}. Define the

modulus

ω′′δ (x) =
k∑

i=1

ω′′δ (x(i)),

where

ω′′δ (x(i)) = sup{∆(s, t, u)(x(i)) : 0 ≤ s ≤ t ≤ u ≤ 1, u− s ≤ δ}.

Then the following inequality is true, see [B & W],

‖x‖ ≤ ω′′1(x)+ | x(1, 1, ..., 1) |, (2.1)

provided x vanishes on the LB(T ). Here ‖x‖ = sup{| x(t) |, t ∈ T}.
LEMMA. Let k ≥ 1. Let X be a random process with sample paths in Dk

and X satisfies (1.1). Assume X satisfies condition(A). Then

∀ε, η > 0 ∃δ > 0 : P (ω′′δ (X) > ε) < η. (2.2)

Here δ = δ(ε, η, (Fi, fi, θi, 1 ≤ i ≤ M)).
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Proof. Without loss of generality we assume that F1 = F2 = ... = FM := F

and F is a probability measure with continuous and strictly increasing marginal

distribution functions. By the set-theoretic identity

D([0, 1]k, R) = D([0, 1], Dk−1)

which is valid via any one of the correspondences x(.) ↔ x
(i)
(.)(.), 1 ≤ i ≤ k, provided

on the right-hand side Dk−1 is equiped with the supremum norm, one reduce the

problem to the one-parameter case, see [B & W]. Then for one-parameter and

functional space Dk−1 valued process X
(i)
(t)(.), t ∈ [0, 1] the scheme of approximation

from [B & F] , Lemma 1.1.3 , is applied. To prove the lemma we show that

Eω′′δ (X(i)) = o(1), as δ → 0 for 1 ≤ i ≤ k.

For the sake of simplicity we consider the case of 2-dimensional time (k = 2). The

same proof carries over for general k.

Let Fi denotes i-th marginal distribution function of F . Fix i = 1. For the

one-parameter random process X(1) with values in D1 ( in Dk−1 for general k) we

use approximation as in Lemma 1.1.3 of [B & F] but with the discretization by

means of the sets

Sm = {t = F−1
1 (j · 2−m), 0 ≤ j ≤ 2m}, m ≥ 0.

Let t−m and t+m in Sm be the two nearest neighbours of t satisfying t−m < t <

t+m, t ∈ (0, 1). Let m ≥ 0 and denote

δm = min{| s− t |, s, t ∈ Sm, s 6= t};

Am,s = {ω ∈ Ω : sup
t∈Sm+1\Sm

∆(t−m, t, t+m)(X(1)) = ∆(s−m, s, s+
m)}, s ∈ Sm+1 \ Sm ;

Bm,s = {ω ∈ Ω : sup
t∈Sm\{0;1}

∆(t−m, t, t+m) = ∆(s−m, s, s+
m)}, s ∈ Sm \ {0; 1}.

We may assume that

Am,s ∩Am,t = ∅ if s 6= t. (2.3)
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Indeed, if (2.3) is not satisfied one may put Am,s = Am,s \ (
⋃

t<s Am,t) instead of

Am,s. Analogously we assume that Bm,s∩Bm,t = ∅ if s 6= t. We have, see the proof

of Theorem 1.2 and Lemma 1.3.1 in [B & F], that

ω′′δr+1
(X(1)) ≤ sup

t∈Sr\{0;1}
∆(t−r , t, t+r )(X(1))+ 2 ·

∑

m≥r

sup
t∈Sm+1\Sm

∆(t−m, t, t+m)(X(1)) ≤

≤
∑

t∈Sr\{0;1}
∆(t−r , t, t+m)(X(1))·IIBr,t

+ 2
∑

m≥r

∑

t∈Sm+1\Sm

∆(t−m, t, t+m)(X(1))·IIAm,t
:=

= I1 + I2. (2.4)

Let m and t ∈ (0, 1) be fixed and define the random processes

Y (t)
m = X

(1)
(t) −X

(1)

(t−m)
, Z(t)

m = X
(1)

(t+m)
−X

(1)
(t) .

Processes Y
(t)
m and Z

(t)
m have sample paths in D1 (in Dk−1 for general k) and by

(2.1)

∆(t−m, t, t+m)(X(1)) ≤ ω′′1(Y (t)
m ) + ω′′1(Z(t)

m )+ | Y (t)
m (1) | ∧ | Z(t)

m (1) |,

see [B & W]. Note that for one-parameter processes the equality ω′′ = ω′′ holds.

By (2.4)

Eω′′δr+1
(X(1)) ≤ EI1(Y )+EI1(Z)+EI1(Y,Z)+EI2(Y )+EI2(Z)+EI2(Y, Z), (2.5)

where

I1(Y ) =
∑

t∈Sr\{0;1}
ω′′1 (Y (t)

r ) · IIBr,t ,

I2(Y ) = 2 ·
∑

m≥r

∑

t∈Sm+1\Sm

ω′′1 (Y (t)
m ) · IIAm,t , (2.6)

I1(Z) and I2(Z) are defined analogously;

I1(Y, Z) =
∑

t∈Sr\{0;1}
| Y (t)

r (1) | ∧ | Z(t)
r (1) | ·IIBr,t ,

I2(Y, Z) = 2 ·
∑

m≥r

∑

t∈Sm+1\Sm

| Y (t)
m (1) | ∧ | Z(t)

m (1) | IIAm,t .

10
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First, estimate EI2(Y, Z). For a fixed m and t ∈ Sm+1 \ Sm

E | Y (t)
m (1) | ∧ | Z(t)

m (1) | ·IIAm,t
=

= E | X((t−m, t]× (0, 1]) | ∧ | X((t, t+m]× (0, 1]) | ·IIAm,t ≤

≤
M∑

i=1

fi(2−m) · θi(P (Am,t)), (2.7)

by condition(A), because

F ((t−m, t]× (0, 1] ∪ (t, t+m]× (0, 1]) = F1(t+m)− F1(t−m) = 2−m.

It is easy to show, see Lemma 1.0.3 in [B & F], that for a concave function θi

∑

t∈Sm+1\Sm

θi(P (Am,t)) ≤ 2m · θi(2−m), (2.8)

becasuse of
∑

t P (Am,t) ≤ 1 by (2.3). Here 2m = ]{Sm+1 \ Sm}. It follows fom

(2.7) and (2.8) that

EI2(Y,Z) ≤ 2 ·
∑

m≥r

M∑

i=1

2m · fi(2−m) · θi(2−m).

Similarly, we get the estimate

EI1(Y,Z) ≤
M∑

i=1

fi(2−(r−1)) · (2r − 1) · θi(1/(2r − 1)) ≤

≤ 2 ·
M∑

i=1

2(r−1) · fi(2−(r−1)) · θi(2−(r−1)).

By monotonicity of fi and θi one may estimate the series by the integral

EI1(Y, Z) + EI2(Y, Z) ≤ 2 ·
∫ τ

0

M∑

i=1

u−2 · fi(u) · θi(u)du, (2.9)

where τ = 2−r+2.

Now estimate EI2(Y ). Fix m ≥ 0, t ∈ (0, 1). Let F2,t denote the second

coordinate marginal distribution of measure F restricted on (t−m, t]× [0, 1],

F2,t(b)− F2,t(a) = F ((t−m, t]× (a, b]), 0 ≤ a ≤ b ≤ 1.
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Let t ∈ Sm+1 \ Sm and note that F2,t(1) − F2,t(0) = F1(t) − F1(t−m) = 2−m−1. To

estimate ω′′1 (Y (t)
m ) we use discretization as in Lemma 1.1.3 of [B & F] but by means

of the sets

Sn,t = {s = F−1
2,t (j · 2−n · 2−m−1), 0 ≤ j ≤ 2n}, n ≥ 0.

For s ∈ (0, 1) choose s−n and s+
n in Sn,t to be the nearest neighbours satisfying

s−n < s < s+
n . We argue as in the proof of Theorem 1.2. and of Lemma 1.3.1 of [B

& F] to show that

ω′′1 (Y (t)
m ) ≤ 2 ·

∑

n≥0

∑

s∈Sn+1,t\Sn,t

∆(s−n , s, s+
n )(Y (t)

m ) · IIDn,s ,

where
Dn,s = {ω : sup{∆(v−n , v, v+

n )(Y (t)
m ) : v ∈ Sn+1,t \ Sn,t}

= ∆(s−n , s, s+
n )(Y (t)

m )}, s ∈ Sn+1,t \ Sn,t

and one may assume, that Dn,s ∩Dn,t = ∅ if s 6= t, cf (2.3). Note also, that

∆(s−n , s, s+
n )(Y (t)

m ) =| X((t−m, t]× (s−n , s]) | ∧ | X((t−m, t]× (s, s+
m]) |

and F ((t−m, t]× (s−n , s+
n ]) = 2−m−1 · 2−n. Hence for each m ≥ 0 and t ∈ Sm+1 \ Sm

Eω′′1 (Y (t)
m ) · IIAm,t ≤ 2 ·

∑

n≥0

∑

s∈Sn+1,t\Sn,t

(
M∑

i=1

fi(2−m−1 · 2−n) · θi(P (Am,t ∩Dn,s))).

We argue as above, see (2.6), to show that

∑

t∈Sm+1\Sm

∑

s∈Sn+1,t\Sn,t

θi(P (Am,t ∩Dn,s)) ≤ 2n · 2m · θi(2−n · 2−m).

Now we are in position to estimate

EI2(Y ) ≤ 2 ·
∑

m≥r

∑

n≥0

[
M∑

i=1

fi(2−n−m−1) · 2n+m · θi(2−n−m)].

It is easy to show that the quantity on the right-hand side of the inequality does

not exceed

8
∫ τ

0

∫ 1

0

(u1u2)−2[
M∑

i=1

fi(u1u2) · θ(u1u2)]du1du2, where τ = 2−r+1.

12



BLOZNELIS AND PAULAUSKAS 13

The similar, but simpler approach applies also for EI1(Y ). Expectations EI1(Z)

and EI2(Z) are estimated analogously. We deduce by (2.5) that Eω′′δr+1
(X(1)) =

o(1) as δr+1 → 0, provided

∫ 1

0

∫ 1

0

(u1u2)−2[
M∑

i=1

fi(u1u2) · θi(u1u2)]du1du2 < ∞. (2.10)

If k ≥ 2 condition (2.10) is replaced by the following one

∫ 1

0

· · ·
∫ 1

0

(u1 · · · uk)−2[
M∑

i=1

fi(u1 · · · uk) · θi(u1 · · · uk)]du1 · · · du2 < ∞.

But this condition is equivalent to (1.9), see, e.g., Klamkin (1976). Lemma is proved.

Proof of Theorem 4. It follows from Lemma above that

∀ε > 0 ∃δ > 0 : Eω′′δ (Xn) < ε, n ≥ 1.

Now the statement of Theorem v4 follows from the Corollary of [B & W].

Proof of Theorem 2. Assume , without loss of generality that F1 = . . . = FM :=

F and F is a probability measure with strictly increasing m.d.f. Let k = 1. When

F is Lebesgue measure the theorem is proved in [B & F]. If F is arbitrary we use

the transformation X(t) ↔ X(F (t)) to reduce the problem to the case when F is

the Lebesgue measure.

For k ≥ 2 in the proof we use induction on k. Let F1, ..., Fk denote m.d. func-

tions of F . Following the proof of Theorem 15.7 of Billingsley (1968) we construct

a sequence {Xn, n ≥ 1} of processes with sample paths in Dk which is weakly

compact and the finitedimensional distributions of Xn converge to those of X. Fix

integer n ≥ 1 and consider the hyperplanes in Rk

Hi,j = {t = (t1, ..., tk), ti = F−1
i (j · 2−n)}, 0 ≤ j ≤ 2n, 1 ≤ i ≤ k.

These hyperplanes divide the cube [0, 1]k into rectangles Bs = [s, t), where

s = s(j1, ..., jk) = (F−1
1 (j12−n), ..., F−1

k (jk · 2−n)),

t = (F−1
1 ((j1 + 1) · 2−n), ..., F−1

k ((jk + 1) · 2−n)), 0 ≤ jr < 2n, 1 ≤ r ≤ k.

13



14 CLT FOR MULTIPARAMETER PROCESSES

Define the random process

Xn(u) =
∑

j1,...,jk

X(s(j1, ..., jk)) · II{u ∈ Bs(j1,...,jk)}, u ∈ [0, 1]k.

Here

Bs(j1,...,jk) =
{
(u1, ..., uk) : F−1

i (ji · 2−n) ≤ ui < F−1
i ((ji + 1) · 2−n), 1 ≤ i ≤ k

}
.

By conditions (i) and (ii) of the theorem we get the convergence of the finitedimen-

sional distributions of Xn to those of X. We argue as in the proof of Theorem 15.7

of Billingsley (1968) to show the weak compactness of the sequence {Xn, n ≥ 1}
and also use the Corollary of [B & F] . In fact, it is enough to show that

∀ε, η > 0 ∃δ > 0, ∃no : ∀n > no P ( ω′′δ (Xn) > ε ) < η.

To estimate this probability we follow the scheme of the proof of Lemma above.

Once again for the sake of simplicity consider the case k = 2. Let n ≥ 1 be

arbitrary. Fix i = 1 and integer m ≥ 1. Define the set Sm as above. Let t ∈ Sm+1.

As in the proof of Lemma we need to estimate E∆(t−m, t, t+m)(X(1)
n ). We follow the

proof of Lemma but with X
(1)
n instead of X(1) and we stop at the formula (2.4).

By the induction hypothesis,

Xn
(1)

(t−m)
−Xn

(1)
(t) ⇒ X

(1)

(t−m)
−X

(1)
(t) ;Xn

(1)
(t) −Xn

(1)

(t+m)
⇒ X

(1)
(t) −X

(1)

(t+m)
, as n →∞

converges weakly in D[0, 1] (in Dk−1 if k ≥ 2 is arbitrary). Observe that

‖Xn
(1)
(t) −Xn

(1)

(t−m)
‖ ≤ ‖X(1)

(t) −X
(1)

(t−m)
‖ a.s.

and

‖Xn
(1)
(t) −Xn

(1)

(t+m)
‖ ≤ ‖X(1)

(t) −X
(1)

(t+m)
‖ a.s.

Thus

∆(t−m, t, t+m)(X(1)
n ) ≤ ‖X(1)

(t−m)
−X

(1)
(t) ‖ ∧ ‖X

(1)
(t) −X

(1)

(t+m)
‖. (2.11)

14



BLOZNELIS AND PAULAUSKAS 15

Note that up the moment we have defined only two one-parameter processes

X
(1)

(t−m)
−X

(1)
(t) and X

(1)
(t) −X

(1)

(t+m)

with sample paths in D[0, 1] and we can replace ∆(t−m, t, t+m)(X(1)
n ) in (2.4) by

(2.11) and continue the calculation in the proof of Lemma but with X
(1)

(t−m)
−X

(1)
(t)

and X
(1)
(t) − X

(1)

(t+m)
instead of Xn

(1)

(t−m)
− Xn

(1)
(t) and Xn

(1)
(t) − Xn

(1)

(t+m)
.The subsequent

steps of proofs of the theorem and the Lemma coincide. We have that for each

ε > 0 there exists a δ > 0 independent of n such that Eω′′δ (Xn) < ε for each n ≥ 1

. Theorem 2 is proved.

Proof of theorem 1. First we prove that there exists a centered sample contin-

uous Gaussian random process on [0, 1]k with the same covariance as X. For each

s = (s1, ..., sk) and t = (t1, ..., tk) we have

E(X(t)−X(s))2 ≤ k(E[∆(1)
(s1,t1]

X(t1, ..., tk)]2+

+E[∆(2)
(s2,t2]

X(s1, t2, ..., tk)]2 + ... + E[∆(k)
(sk,tk]X(s1, ..., sk−1, tk)]2) ≤

≤ k ·
k∑

i=1

g2/q(Gi(ti)−Gi(si)).

Here Gi, 1 ≤ i ≤ k denote the marginal distribution functions of measure G .

Assume without loss of generality that G is probability measure with continuous

and strictly increasing marginal d.f. We have

E(X(t)−X(s))2 ≤ c · g2/q( max
1≤i≤k

| Gi(ti)−Gi(si) |).

If we denote F (t1, ..., tk) = (G−1
1 (t1), ..., G−1

k (tk)) : [0, 1]k → [0, 1]k then

E[X(F (t))−X(F (s))]2 ≤ c · g2/q(‖t− s‖).

This inequality together with (1.5) yields that the Gaussian random process with

the covariance of X is sample continuous on [0, 1]k, see Fernique (1964).

Note that the random process X satisfies the conditions of Theorem 2. The

proof of the CLT goes along the lines of the proof of Theorem 2 in Bloznelis and

15



16 CLT FOR MULTIPARAMETER PROCESSES

Paulauskas (1993) only now we use Theorem 4 instead of Theorem 1.3 of [B & F]

and Lemmas 5 and 6 instead of Lemmas 1 and 2 in Bloznelis and Paulauskas (1993).

Theorem 1 is proved.

Proof of Example 1.Since the proof goes along the lines of the proof in the case

k = 1 (see Bloznelis and Paulauskas (1993), Fernique (1993) and Hahn (1977)),only

the calculations are more complicated, we shall give the skech of the proof. To

simplify the writing we consider the case k = 2 and p = 2. At first step we

construct the process X̃ on [0, 1]2 satisfying (1.2) with a function which satisfies

(1.6) and (1.7). Let Akj = [2−k, 2−k+1)× [2−j , 2−j+1) and

In =
( ⋃

1≤j≤n

Anj

) ∪ ( ⋃

1≤j<n

Ajn

)
, n ≥ 1.

Define a sequence an =
∑n

l,m=1 f1/2(2−(l+m))2(l+m)/2. Due to (1.6) an → ∞.Now

define a function ϕ on T = [0, 1)2 by relations: ϕ(t) = 0 if t ∈ LB(T ), ϕ(t) = an for

t ∈ In. Extend this function to [0, 2)2 setting ϕ(t) = ϕ(t + (1, 1)) = ϕ(t + (0, 1)) =

ϕ(t + (1, 0)) for all t ∈ [0, 1)2. As a probability space (Ω,A, P ) take the set [0, 1)2

with the Lebesgue measure and define X̃(t, ω) = ϕ(t + ω), t ∈ [0, 1]2. It is

possible to show (here we use (1.7)) that X̃ satisfies the condition (1.2) and also

the analogous condition on the lower boundary of [0, 1]2,which is discussed after

the formulation of Theorem 1. Obviously the process X̃ has no modification in D2.

The second step is to modify the process X̃ in order to get the process in D2, which

fails to satisfy CLT. Take a function M : Ω → R+ such that

lim
n→∞

nP (ω : M(ω) ≥ √
n) = ∞

(for example, we can take M(ω) = (ω1ω2)−α with any 1/2 ≤ α ≤ 1). Now define

X̄(t, ω) = X̃(t, ω) if X̃(t, ω) ≤ M(ω) and X̄(t, ω) = M(ω) if X̃(t, ω) ≥ M(ω).

Finally, symmetrizing on the space (Ω,×{0, 1},P) , where P = P×(2−1δ0+2−1δ1),

we get the process

X(t, ω̄) = X(t, ω × l) =
{

X̄(t, ω), l=0,
−X̄(t, ω), l=1

16
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with almost all sample paths in D2. Repeating the proof of Theorem 1 in Hahn

(1977) one can show that X /∈ CLT (D2). It remains to note that

E(|X(B)| ∧ |X(C)|)2 = E(|X̄(B)| ∧ |X̄(C)|)2 ≤ E(|X̃(B)| ∧ |X̃(C)|)2.

Proof of Proposition 7. By the CLT, sequence of random processes {Sn(t) =

n−1/2(X1(t) + · · ·+ Xn(t)), n ≥ 1} is stochastically bounded, i.e.,

∀ε > 0 ∃H > 0 : P (‖Sn‖ > H) < ε, ∀n ≥ 1.

We argue as in Kuelbs (1973) p.p. 165-167 to show that given ε, δ > 0 there is an

integer r ≥ 1 such that if h = 2−r , then

P ( sup
|s′−s′′|≤h

‖Zn(s′, ·)− Zn(s′′, ·)‖ > δ) < ε, ∀n ≥ 1. (2.12)

Now fix h = 2−r so that (2.12) holds and consider the sequences of ran dom

processes

{Zn(i/(2r), t), t ∈ [0, 1]k, n ≥ 1}, 0 ≤ i ≤ 2r.

For each i the sequence {Zn(i/(2r), t), t ∈ [0, 1]k, n ≥ 1} converge weakly in Dk to

a sample continuous Gaussian r. process because X ∈ CLT (Dk) and Sn converge

weakly to a sample continuous Gaussian r. process Y . By Lemma 5 we have that

given ε, δ > 0 there is an integer no and τ > 0 such, that if n > no, then

P ( max
0≤i≤2r

sup
‖t′−t′′‖<τ

| Zn(i/(2r), t′)− Zn(i/(2r), t′′) |> δ) < ε. (2.13)

Combining (2.12) and (2.13) we obtain

P ( sup
‖u′−u′′‖<τ∧h

| Zn(u′)− Zn(u′′) |> 3δ) < 2ε,

where u′ = (s′, t′), u′′ = (s′′, t′′) ∈ [0, 1]× [0, 1]k . Proposition 7 now follows since

the finitedimensional distributions of Zn converge to the corresponding finitedimen-

sional distributions of WY .
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