
CENTRAL LIMIT THEOREM IN D[0, 1]

M.Bloznelis, V.Paulauskas

Abstract. We survey recent results on the central limit theorem for stochastically con-
tinuous processes having sample paths in the Skorokhod space D[0, 1]

Introduction

Let D ≡ D[0, 1] denote the space of real-valued functions on [0, 1] which are right-
continuous on [0, 1) with left limits on (0, 1], which is endowed with the Skorokhod
topology. The background for the theory of the weak convergence of stochastic processes
in D[0, 1] was laid in papers of Yu.V. Prokhorov (1956), A.V. Skorokhod (1956) and
N.N. Chentsov (1956 b). Later on Billingsley’s book (1968) became the most popular
reference book for the weak convergence of measures on metric spaces, in particular on
the space D.

Let Xn, n = 1, 2, . . . be a sequence of random processes with sample paths in D. It is
well-known that such a sequence converges weakly in D to a limiting process X (denoted
by Xn =⇒ X) if the finite-dimensional distributions of Xn converge to those of X and
if the sequence is tight. In Section 1 we consider refined tightness criteria in the space
D. In Section 2 these criteria are applied to establish sufficient conditions for the central
limit theorem (CLT) in D. Two applications of the CLT in D are given in Section 3:
the weak convergence of weighted empirical processes and the asymptotic distribution of
the fiber bundle strength in the fiber bundle model introduced by H.Daniels (1945). In
Section 4 an estimate of the rate of convergence in the CLT in D is presented. Results
from the sections 1 and 2 are extended to the space Dk (the Skorokhod space of k-variate
real càdlàg functions on [0, 1]k) in Section 5.

1.Tightness criteria

Assume that the process X is continuous at the point 1, i.e., P{X(1) = X(1 −
0)} = 1 and that finite-dimensional distributions L(Xn(t1), . . . , Xn(tk)) converge to
L(X(t1), . . . , X(tk)) as n → ∞, for each t1, . . . , tk ∈ [0, 1] such that P{X(ti) = X(ti −
0)} = 1, i = 1, 2, . . . , k, k = 1, 2, . . . . Suppose that there exist δ > 0, γ > 0, increasing
continuous function F on [0, 1]a nd increasing function f such that

(1) P{|Xn(s)−Xn(t)| ∧ |Xn(t)−Xn(u)| ≥ λ} ≤ λ−γ |F (u)− F (s)|f(F (u)− F (s))

for all λ > 0, for all n ≥ 1, for all 0 ≤ s ≤ t ≤ u ≤ 1 such that u− s < δ.
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Theorem 1.1. (Theorem 15.6 of Billingsley (1968)). Xn =⇒ X in D[0, 1] if (1) holds
with f(u) = cuα for some c > 0 and α > 0.

The proof of Theorem 15.6 from Billingsley (1968) is based on the estimate for the
fluctuations of partial sums of random variables, see Theorem 1.2 below.

Let ξ1, . . . , ξm be a sequence of real random variables and let Si = ξ1+· · ·+ξi (S0 = 0).
By u1, . . . , um we denote a sequence of positive numbers and write u = u1 + · · · + um.
Assume that u < 1 and consider the following two conditions.

Condition A: there exist c1, γ > 0 and increasing function f1 such that

(2) P{|Sj − Si| ∧ |Sk − Sj | ≥ λ} ≤ c1λ
−γf1


 ∑

i≤r≤k

ur


 ∑

i≤r≤k

ur,

for each 0 ≤ i ≤ j ≤ k ≤ m and for all λ > 0;
Condition B: there exist c2, γ > 0 and increasing function f2 such that for each

λ > 0

(3) P
{

max
0≤i≤j≤k≤m

|Sj − Si| ∧ |Sk − Sj | ≥ λ

}
≤ c2λ

−γf2(u)u.

Theorem 1.2. (Theorem 12.5 of Billingsley (1968)). If for some γ > 0 and α > 0 the
condition A is satisfied with f1(u) = uα, then the condition B is satisfied with the same
parameter γ and the function f2(u) = uα.

Analyzing the proof of Theorem 15.6 from Billingsley (1968) one can see that an
improvement of the estimate for the fluctuation of sums given in Theorem 1.2 leads to
corresponding improvement of the tightness criteria (Theorem 1.1). In what follows we
present a new estimate for the fluctuations of sums.

Proposition 1.1. (Bloznelis and Paulauskas (1993)). If for some positive numbers α
and γ the condition A is satisfied with the function f1(u) = log−γ−1−α(u−1), then the
condition B is satisfied with the same γ and with the function f2(u) = log−α(u−1).

An application of this proposition gives the following refinement of Theorem 15.6 from
Billingsley (1968).

Proposition 1.2. (Bloznelis and Paulauskas (1993)). Xn =⇒ X in D[0, 1] if (1) holds
with f(u) = c| log u|−γ−1−α, for some γ > 0 and some α > 0.

Further improvements of Theorem 12.5 from Billingsley (1968) and Proposition 1.1
would imply improvements of Theorem 1.1. Analysis of the proof of Theorem 15.6 ibidem
shows that in order to obtain the tightness criterion with a function f in (1), it suffices
to show that the condition A with the function f1 = f in (2) implies the condition B
with arbitrary increasing, but vanishing at zero function f2. Given γ > 0, it would be
interesting to determine the class of such functions f . So far this question seems to be
open. Another question of interest would be to determine the class of those functions
f for which (1) is sufficient for the weak convergence Xn =⇒ X. It is worthwhile to
mention here that the condition (1) with the function f(u) = c| log u|−γ is not sufficient
for the weak convergence Xn =⇒ X, see Bloznelis and Paulauskas (1993).

Further extensions and refinements of Theorem 15.6 from Billingsley are given in
Bloznelis and Paulauskas (1994 b) and in the recent paper by Genest et all (1996). In
these papers the following generalization of the condition (1) was considered:

P{|Xn(s)−Xn(t)| ∧ |Xn(t)−Xn(u)| ≥ λ} ≤ λ−γhn(s, u), 0 ≤ s ≤ t ≤ u ≤ 1
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where the function hn(s, u) is defined on {(s, u) : 0 ≤ s ≤ u ≤ 1} and is decreasing in the
first argument and increasing in the second one. Genest et all (1996) also give refined
versions of Theorem 12.5 from Billingsley and Proposition 1.1. In particular, from their
result it is not difficult to derive the analogous statement as in Proposition 1.1, but with
the functions f1(u) = c| log u−1|−γ−1| log log u−1|−γ−1−α and f2(u) = | log log u−1|−α,
for u small enough.

The tightness criteria given in Theorem 15.6 of Billingsley (1968) and its improvements
considered here are formulated in terms of the tails of increments, see (1). P.H. Bezandry
and X.Fernique (1990, 1992) proposed a new tightness criterion in D[0, 1]. This criterion
is formulated in terms of the moments of increments

∆X(s, t, u) := |X(s)−X(t)| ∧ |X(t)−X(u)|

instead of the tail probabilities.
Let m be an integer and let δ1, . . . , δm and θ1, . . . , θm be increasing continuous real

functions on [0, 1] which vanish at the origin. We assume that the functions θ1, . . . , θm

are concave and ∫ 1

0

u−2δi(u)θi(u)du < ∞, i = 1, 2, . . . ,m.

Let C be a family of random processes {{X(t), t ∈ [0, 1]}} with sample paths in D
such that for all 0 ≤ s ≤ t ≤ u ≤ 1 and for all M > 0

E∆X(s, t, u)I{∆X(s, t, u) ≥ M} ≤
m∑

i=1

δi(u− s)θi(P{∆X(s, t, u) ≥ M}).

Theorem 1.3. (Bezandry and Fernique (1992)). The family of distributions {L(X), X ∈
C} is tight in D if and only if the following two conditions hold:

(1) for each t ∈ [0, 1], the family of one-dimensional distributions {L(X(t)), X ∈ C}
is tight in R;

(2) the family of random functions {t → |X(t)−X(0)|+ |X(1)−X(1− t)|, X ∈ C}
is equicontinuous in probability at the point t = 0.

2. Central limit theorem

Let X = {X(t), t ∈ [0, 1]} be a centered stochastically continuous random process
with sample paths in D such that EX2(t) < ∞, for all t ∈ [0, 1]. Let X1, X2, . . . be
independent copies of X and Sn = n−1/2(X1 + · · ·+Xn). The process X is said to satisfy
the CLT in D if the distributions L(Sn) of Sn converge weakly to a Gaussian distribution
on D.

Probably the first general central limit theorem in D was proved in Hahn (1978), see
also Phoenix and Taylor (1973). Later on, sufficient conditions for a random process X
to satisfy the CLT in D were obtained by Juknevičiene (1985), Paulauskas and Stieve
(1990), Bezandry and Fernique (1992), Bloznelis and Paulauskas (1993), (1994 a,b,c),
Fernique (1994), etc.

Since tightness criteria in D usually are formulated in terms of two consecutive in-
crements of processes, sufficient conditions for the CLT in D are typically formulated it
terms of moments of these increments. Consider the following conditions. There exist a
continuous increasing function F on [0, 1] and increasing functions f, g such that for all
0 ≤ s ≤ t ≤ u ≤ 1

(4) E(X(s)−X(u))2 ≤ |F (u)− F (s)|1/2f(F (u)− F (s)),
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(5) E(X(s)−X(t))2(X(t)−X(u))2 ≤ |F (u)− F (s)|g(F (u)− F (s)),

(6) E(|X(s)−X(t)| ∧ 1)2(X(t)−X(u))2 ≤ |F (u)− F (s)|g(F (u)− F (s)).

Hahn (1978) showed that X satisfies the CLT in D if conditions (4) and (5) hold with
f(u) = g(u) = cuα, for some α > 0.

Note that condition (5) requires the finiteness of the fourth order moments and this is
not natural in the CLT setting. Paulauskas and Stieve (1990) proved the CLT in D under
second moment assumption only. They introduced condition (6) and showed that if (4)
is satisfied with f(u) = cuα, for some α > 1/6, and (6) is satisfied with g(u) = cuβ , for
some β > 0, then X satisfies the CLT in D. In their proofs Hahn (1978) and Paulauskas
and Stieve (1990) used the tightness criterion given in Theorem 15.6 of Billingsley (1968).
Refinements of this criterion given in Section 1 lead to more precise sufficient conditions.

Theorem 2.1. (Bloznelis and Paulauskas (1993)). Assume that, for some α > 0, X
satisfies (4) with the function f(u) = log−2,5−α(u) and that (5) is satisfied with the
function g(u) = log−5−α(u). Then X satisfies the CLT in D.

Theorem 2.1 improves the result of Hahn (1978). The following theorem provides
more precise sufficient conditions in terms of truncated moments (6).

Theorem 2.2. (Bloznelis and Paulauskas (1993)). Assume that, for some α > 0, X
satisfies (4) with the function f(u) = log−4,5−α(u) and that (6) is satisfied with the
function g(u) = log−5−α(u). Then X satisfies the CLT in D.

Bloznelis and Paulauskas (1993) construct examples which show that the power of the
logarithmic term in (5) and (6) in Theorems 2.1 and 2.2 is close to the optimal one, since
this power being less or equal to 4 does not provide the CLT.

An application of the tightness criterion due to Bezandry and Fernique (1992) gives
stronger results.

Theorem 2.3. (Bezandry and Fernique (1992)). Let X = {X(t), t ∈ [0, 1]} be a centered
stochastic process defined on the probability space (Ω,P). Assume that there exist real
continuous increasing functions δ, η and θ on [0, 1] such that δ(0) = η(0) = θ(0) = 0,
θ is concave,

E(X(s)−X(t))2 ≤ δ2(t− s), EX2(0) < ∞,

E(X(s)−X(t))2 ∧ (X(t)−X(u))2IA ≤ η2(u− s)θ(P(A)),

for all 0 ≤ s ≤ t ≤ u ≤ 1 and all measurable A ∈ Ω, and

∫ 1

0

u−5/4[log(1 + 1/u)]1/4δ(u)du < ∞,

∫ 1

0

u−3/2θ1/2(u log(1 + 1/u)/ log 2)η(u)du < ∞.

Then X has a version, say X ′, with sample paths in D and X ′ satisfies the CLT in D.

The integral conditions of the theorem contain logarithmic factors which in some cases
(e.g., where θ is a power function) are superfluous. In what follows we present the central
limit theorem which was proved independently by Bloznelis and Paulauskas (1994a) and
Fernique (1994).
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Theorem 2.4. Assume that p, q ≥ 2. Let f, g be nonnegative functions on [0, +∞)
which are nondecreasing near 0 and let F be increasing continuous function on [0, 1]. Let
X(t) be a random process with mean 0, finite second moments, and sample paths in D
satisfying

(7) E|X(s)−X(t)|p ∧ |X(t)−X(u)|p ≤ f(F (u)− F (s)),

(8) E|X(s)−X(t)|q ≤ g(F (u)− F (s)),

for all 0 ≤ s ≤ t ≤ u ≤ 1, u− s small and

(9)
∫

0

f1/p(u)u−1−1/pdu < ∞,

(10)
∫

0

g1/q(u)u−1−1/(2q)du < ∞.

Then X satisfies CLT in D.

Bloznelis and Paulauskas (1994 a) provides an example, see also Hahn (1977 a,b),
Hahn and Klass (1977) and Fernique (1994), which demonstrates that the condition (9)
is optimal in the following sense. Let f be a continuous nondecreasing positive function
on (0, 1] satisfying the condition:

∫

0

f1/p(u)u−1−1/pdu = ∞

and very weak additional condition: there exist positive constants K and α such that for
all 0 < x < y ≤ 1,

f(x)x−α ≤ Kf(y)y−α.

Then there exists a stochastically continuous process X with sample paths in D such
that (7) holds, but X does not satisfy the CLT in D. An interesting question (the answer
to which is unknown to the authors) is if the condition (10) is optimal too.

We shall briefly mention the major steps of the proof of Theorem 2.4. Firstly, we apply
the tightness criteria due to Bezandry and Fernique (1992), see Theorem 1.3 above, to
prove the weak convergence of L(Sn) in the case where the processes X1, X2, . . . have
symmetric distribution. Then we apply an analogue of the desymmetrization lemma
from Jain and Marcus (1975). Observe that the desymmetrization lemma from Jain and
Marcus (1975) cannot be applied immediately, since the addition is not continuous in D.

Lemma 2.1. (Bloznelis and Paulauskas (1994a)). Let {Xi, i ≥ 1} be a sequence of
stochastically continuous random processes with sample paths in D and let Xi be in-
dependent copies of Xi, i = 1, 2, . . . Assume that the finite-dimensional distributions
of {Xi, i ≥ 1} converge to those of some continuous random process. Assume that
{X∗

n = Xn −Xn, n ≥ 1} converges weakly to a sample continuous random process.
If, moreover,

∀ε > 0,∀η > 0, ∃δ > 0 : |t− s| < δ =⇒ P{|Xi(t)−Xi(s)| > ε} < η, ∀i ∈ N,

then the sequence {Xn, n ≥ 1} is weakly convergent.

Another application of the tightness criterion from Theorem 1.3 is the CLT in D in
the case where the limiting process is stable. It is well-known, see, e.g. Feller (1971),
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that if a random variable Z is in the domain of normal attraction of a p-stable law, then
the weak p-th moment

Λp(Z) = sup
t>0

tpP(|Z| > t)

is finite, whereas E|Z|p = +∞. Therefore, we shall formulate sufficient conditions in
terms of weak moments of increments Λp(X(u)−X(s)) and Λp(|X(s)−X(t)| ∧ |X(t)−
X(u)|).

Let f, g be nonnegative increasing functions such that f(0) = g(0) = 0. Assume that

Λp(X(s)−X(u)) ≤ g(u− s), 0 ≤ s ≤ u ≤ 1,(11)

Λp(|X(s)−X(t)| ∧ |X(t)−X(u)|) ≤ f(u− s), 0 ≤ s ≤ t ≤ u ≤ 1.(12)

Theorem 2.5. (Bloznelis (1996)). Let 1 < p < 2. Suppose that X = {X(t), t ∈ [0, 1]}
is random process such that

(i) the k-dimensional finite joint distributions of X are in the domain of normal at-
traction of a strictly p-stable measure on Rk for all 1 ≤ k < ∞;

(ii) condition (12) holds with f satisfying (9) and (11) holds with g such that

(13)
∫

0

u−1−1/(2p)g1/p(u)du < ∞.

Then the process X has a version X ′ with sample paths in D[0, 1] and the sequence
L(n−1/p(X ′

1 + · · ·+ X ′
n)) converges weakly in D to the distribution of a stable process.

Here X ′
i, i = 1, 2, . . . denote independent copies of X ′.

In Bloznelis (1996) an example is given which shows that condition (9) is close to
the optimal for 1 < p < 2. Again the answer to the question whether (13) is optimal is
unknown.

3. Two examples

Example 1. Theorem 2.4 can be applied to study the asymptotic strength distribution
of fiber bundle in the classical fiber bundle model introduced by H.Daniels (1945). It is
interesting to note that at that time there was no rigorous theory of weak convergence
of stochastic processes and only three decades later it was realized that the asymptotic
normality of the strength of a fiber bundle can be obtained as a consequence of the CLT
in the Skorokhod space D.

A classical fiber bundle consists of n parallel continuous fibers. The bundle is clamped
at both ends and elongated by increasing the distance between the clamps. In the model
equal load sharing is assumed, which means that all remaining fibers, at any stage, equally
share the total applied load. Let t be the nominal bundle strain, i.e., t = (L − L0)/L0,
where L0 is the length of the unstretched and unloaded bundle and L is the bundle
length after elongation. The problem is to characterize the maximum tensile load that
the bundle will sustain in terms of the probabilistic and mechanical characteristics of the
individual fibers.

Let Yi(t) denote the force carried by the i-th fiber when the bundle strain is t. Assume
that Yi(t) is given by the expression

Yi(t) = q(t, θi)I{ξi > t},

where q is a fixed load strain function depending on a random vector θi, ξi is a non-
negative random variable denoting the bundle strain at which fiber i breaks.
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The total force supported by the bundle is the sum of the forces carried by the indi-
vidual fibers. The bundle load is this total force divided by the number of fibers

Qn(t) = n−1
n∑

i=1

Yi(t), t ≥ 0.

Two characteristics are important for physical applications: the bundle strength which
is defined as

Q∗n(t) = sup{Qn(t) : t ≥ 0}
and the standardized bundle strength

Wn = n1/2(Q∗n − µmax),

where µmax = sup{µ(t) : t ≥ 0} and µ(t) = EYi(t), t ≥ 0. In the first step of the
asymptotic study of the quantities Q∗

n and Wn one proves the weak convergence of
normalized and centered sums

Sn = n−1/2
n∑

i=1

(Yi(t)− µ(t))

to a limiting Gaussian process. The second step is to apply the continuous mapping
theorem. We shall deal only with the weak convergence of Sn. For the second step we
refer to Phoenix and Taylor (1973) and Harlow and Yukich (1993).

We assume that the function q satisfies the Lipschitz condition in the first argument,
i.e., there exists a constant c > 0 such that

|q(t1, θ)− q(t2, θ)| ≤ c|t1 − t2|,
for all θ ∈ R and all t1, t2 ≥ 0 and that q(0, θ) ≡ 0. It is easy to show that if the distribu-
tion function of ξ is continuous, then the processes {Sn(t), t ≥ 0}, n = 1, 2, . . . converge
weakly in D[0,∞] to a sample continuous Gaussian process, say Z, see, e.g., Bloznelis
and Paulauskas (1994 c). Since, in fact, we are interested in the limiting behaviour of
the distributions of the supremum type functionals, the limit theorem in D[0,∞) is not
an appropriate tool to treat such problems because the supremum functional is not con-
tinuous on D[0,∞) and thus the continuous mapping theorem cannot be applied. This
theorem would be applicable if, e.g., we prove that the following statement C holds:

C : there exists a monotone increasing continuous function V : [0,∞] → [0, 1] with
V (0) = 0 and V (∞) = 1 such that the process Y V := {Y (V −1(t)) : t ∈ [0, 1]} satisfies
the CLT in D.

Applying Theorem 2.4 we obtain the following sufficient condition for C to hold.

Proposition 3.1. (Bloznelis and Paulauskas (1994 c)). Assume that the distribution
function of ξ is continuous and that for some α > 0,

lim
t→+∞

P{ξ > t}t2 log t(log log t)3+α = 0.

Then C holds.

If conditions of the proposition are satisfied, then an application of the continuous
mapping theorem, see Proposition 4 in Phoenix and Taylor (1973), gives the weak con-
vergence L(Wn) =⇒ L(W ), where the random variable W := supt:µ(t)=µmax

Z(t). This
improves a result of Harlow and Yukich (1993) who showed the weak convergence of
L(Wn) under a bit stronger condition Eξ2+α < ∞, α > 0.
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Example 2. We consider the weak convergence in D of weighted empirical processes

Fn(t) = n−1/p
n∑

i=1

w(t)ViI{Ui ≤ t}, n ≥ 1.

Here U1, U2, . . . are i.i.d. random variables uniformly distributed in [0, 1], V1, V2, . . . are
i.i.d. random variables from the domain of the normal attraction of a p-stable distribu-
tion, 1 < p < 2 and w : [0, 1] → [0, +∞), w(0) = 0 is a weight function. We shall assume
that the sequences {Ui, i = 1, 2, . . . } and {Vi, i = 1, 2, . . . } are independent. The prob-
lem is to describe those functions w for which the sequence L(Fn), n = 1, 2, . . . converges
weakly in D to the distribution of a stable process (weighted p-stable Lévy motion). An
application of Theorem 2.5 gives the following result.

Proposition 3.2. (Bloznelis (1996)). Assume that w(t) = t−1/pm(t), where m is posi-

tive, continuous and nondecreasing function. If, for some δ > 1/p, m(t) = O(log−δ(t−1))
as t → 0, t > 0 then the sequence L(Fn), n = 1, 2, . . . is weakly convergent.

4. Rate of convergence

In this section we consider the estimation of the rate of convergence in the CLT in D
on the class of sets {x ∈ D : supt |x(t)| ≤ a}, a ≥ 0. There is a number of papers devoted
to the estimates of the rate of convergence in the CLT for Banach space valued random
variables on different classes of sets, e.g., on the class of balls with a fixed center, etc.,
see, e.g., Paulauskas and Račkauskas (1989), Bentkus et al (1991) and references therein.
The rate of convergence in the CLT in D was considered by Paulauskas and Juknevičiene
(1988), Paulauskas and Stieve (1990), Paulauskas (1990), Bloznelis (1997).

Define the functional ‖ · ‖ : D → R, by ‖x‖ = supt∈[0,1] |x(t)|, x ∈ D. Limit theorems
for this functional are important for statistical applications. For example, if X(t) =
I{U ≤ t}−EI{U ≤ t}, where U is a random variable uniformly distributed in [0, 1], then
‖Sn‖ is the Kolmogorov-Smirnov statistics. The following result estimates the uniform
(Kolmogorov’s) distance between the distributions L(‖Sn‖) and L(‖Y ‖) in the case where
X is a D-valued random variable (càdlàg process), Xi, i = 1, 2, . . . are i.i.d. copies of X
and Sn = n−1/2(X1 + · · ·+ Xn) =⇒ Y . Here Y denotes the limiting Gaussian process.

Theorem 4.1. (Bloznelis (1997)). Let p, q ≥ 2. Let X be a centered stochastically
continuous càdlàg process. Assume that for some α > 0, the process X satisfies conditions
(7) and (8) with the functions f(u) = c · u1+α and g(u) = c · u1/2+α, respectively. Then
there exists a constant C = C(L(Y ), p, q, α) such that for each r ≥ 0

|P(‖Sn‖ ≤ r)−P(‖Y ‖ ≤ r)| ≤ C(1 + E‖X‖3)n−1/6 log2/3(n).

More general result as well as the non-uniform estimate,

sup
r>0

(1 + r3)|P(‖Sn‖ ≤ r)−P(‖Y ‖ ≤ r)| = O(n−1/6 ln2 n),

are given in Bloznelis (1997). We only mention that the proof of Theorem 4.1 is based on
the finite-dimensional approximation method developed by E.Gine, V.Bentkus, V.Pau-
lauskas, Račkauskas and others, see e.g., Paulauskas and Račkauskas (1989), V.Bentkus
et al. (1991). This method in combination with a useful lemma given in Sakhanenko
(1988) allows us to obtain an estimate of the convergence rate in Theorem 2.5 in a special
case where X(t) = V I{U ≤ t} and where V is a random variable from the domain of
normal attraction of a strictly p-stable random variable, say Z, for 1 < p < 2. Let
X ′

1, X
′
2, . . . be independent copies of the process X and put Sn = n−1/p(X ′

1 + · · ·+ X ′
n).
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Proposition 4.1. (Bloznelis (1991)). Assume that EV = 0, and that

∫

R

x2(L(V )− L(Z))(dx) = 0, ν :=
∫

R

|X|1+p|L(V )− L(Z)|(dx) < ∞.

Then L(Sn) converges weakly in D to the distribution of p-stable Lévy motion,
W = {W (t), t ∈ [0, 1]} such that L(W (1)) = L(Z) and for all r ≥ 0,

|P(‖Sn‖ ≤ r)−P(‖W‖ ≤ r)| ≤ C2 max{n−1/(2p+1), ν1/(p+1)n−1/(p(p+1))},

where C2 is a constant which depends on L(Z).

5. Central limit theorem in Dk

Let Dk ≡ Dk[0, 1] denote the Skorokhod space of k-variate càdlàg functions on [0, 1]k.
For details about the space Dk endowed with the Skorokhod topology we refer to Neuhaus
(1971) and Straf (1972).

For a random process X = {X(t), t ∈ [0, 1]k}, k ≥ 1 define

∆(i)
(a,b]X(u) = X(u1, . . . , ui−1, b, ui+1, . . . , uk)−X(u1, . . . , ui−1, a, ui+1, . . . , uk),

u = (u1, . . . , uk) ∈ [0, 1]k, 1 ≤ i ≤ k, a, b ∈ [0, 1].

A rectangle B in the unit cube T ≡ [0, 1]k is a subset of T of the form

(s, t] =
k∏

i=1

(si, ti], s = (s1, . . . , sk), t = (t1, . . . , tk) ∈ T ;

the i-th face of B is
∏

j 6=i(sj , tj ]. Disjoint rectangles B and C are neighbours if they abut
and have the same i-th face for some i. For a rectangle B = (s, t] let

X[B] = ∆(1)
(s1,t1]

. . . ∆(k)
(sk,tk]X(u)

be the increment of X around B; X[·] is a random finitely additive function on rectangles.
The set LB(T ) = {(t1, . . . , tk) ∈ T : ti = 0 for some i} is called the lower boundary of
T, and UB(T ) = {(t1, . . . , tk) ∈ T : ti = 1 for some i} is called the upper boundary of T.

We shall give an extension to the k-variate case of the tightness criterion due to
Bezandry and Fernique (1992).

Let (Ω,F , P ) denote a probability space on which the random elements under consider-
ation are defined. We say that random process X = {X(t), t ∈ T} satisfies condition (D)
on the unit cube T if there exist positive nondecreasing functions f1, . . . , fm, θ1, . . . , θm,
additionally θi is convex, 1 ≤ i ≤ m, and measures F1, . . . , Fm on T with continuous
marginal distributions such that for all neighbouring rectangles B,C ⊂ T and each A ∈ F

(14) E(|X[B]| ∧ |X[C]|)IA ≤
m∑

i=1

fi(Fi(B ∪ C))θi(P (A))

and functions fi, θi satisfy

(15)
∫ ε

0

(u)−2 logk−1(1 + u−1)
m∑

i=1

fi(u)θi(u)du < ∞.
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Condition (D) is a multidimensional analogue of the corresponding one formulated in
Bezandry and Fernique (1992).

We say that the sequence {Xn, n ≥ 1} satisfies condition (D) if each Xn satisfies (D)
with the same functions fi, θi and measures Fi, 1 ≤ i ≤ m.

Random process X with sample paths in Dk is said to be continuous at the upper
boundary of T if for each i = 1, 2, . . . , k,

(16) lim
a↑1

sup
s∈[0,1]k

∆(i)
(a,1]X(s) = 0 with probability 1.

Let U be a collection of subsets of T of the form U = U1×· · ·×Uk, where each Ui ⊂ [0, 1]
contains zero and one and has a countable complement.

Let X1, X2, . . . be a sequence of random processes with sample paths in Dk. We shall
assume that Xn vanishes along the lower boundary of T, n = 1, 2, . . . , i.e., that

(17) P (Xn(t) = 0) = 1 for all t ∈ LB(T ), n = 1, 2, . . . .

Theorem 5.1. (Bloznelis and Paulauskas (1994 d) Let Xn, n ≥ 1 and X be random
processes with sample paths in Dk and suppose that X is continuous at the upper
boundary of T. Assume that the sequence {Xn, n ≥ 1} satisfies condition (D) and each
Xn satisfies (17). If for some U ∈ U and all choices t1, . . . , tr ∈ U, r ≥ 1,

L(Xn(t1), . . . , Xn(tr)) → L(X(t1), . . . , X(tr)) as n → +∞,

then Xn =⇒ X (converges weakly in Dk).

Condition (16) appears in Bickel and Wichura (1971) and may be viewed as a multi-
dimensional analogue of the condition P{X(1) = X(1−)} = 1 of Theorems 15.4, 15.6 of
Billingsley (1968).

Let X, X1, X2, . . . be centered independent identically distributed random processes
with sample paths in Dk. Denote Sn = n−1/2(X1 + · · · + Xn). A random process X is
said to satisfy the CLT in Dk if the distributions of Sn converge weakly to a Gaussian
distribution on Dk.

Applying Theorem 5.1 we obtain the following sufficient conditions for X to satisfy
the CLT in Dk.

Theorem 5.2. (Bloznelis and Paulauskas (1994 d)). Let p, q ≥ 2 and k ≥ 1. Let
X = {X(t), t ∈ T} be a random process with EX(t) = 0, EX2(t) < ∞ for each t ∈ T.
Assume that X vanishes along the lower boundary of T, i.e., that it satisfies (17). Assume
that there exist nondecreasing non-negative functions f, g and finite measures F, G on T
with continuous marginals such that for all neighbouring rectangles B,C ⊂ T

(18) E(|X[B]| ∧ |X[C]|)p ≤ f(F (B ∪ C)),

(19) E|X[B]|q ≤ g(G(B))

and for some ε > 0

(20)
∫ ε

0

(u)−1−1/pf1/p(u) logk−1(u−1)du < ∞,

(21)
∫ ε

0

(u)−1−1/(2q)g1/q(u) logk−1(u−1)du < ∞.
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Then X has a version X ′ with sample paths in Dk and X ′ satisfies the CLT in Dk.

Note that the random process X is stochastically continuous by (19), (21). For one-
parameter processes (k = 1) Theorem 5.1 coincides with Theorem 2.4. Condition (17)
which has appeared yet in Chentsov (1956 a) and Bickel and Wicura (1971) (and is
restrictive for k ≥ 2) could be explained by the fact that (18) and (19) do not control the
behaviour of X on the boundary of T because the measures F and G have continuous
marginals.

As in the case k = 1 condition (20) is optimal in the following sense. Let f be a
nondecreasing positive function on [0, 1] for which (20) fails and such that there exist
positive constants K and α such that for all 0 < x < y ≤ 1

x−αf(x) ≤ Ky−αf(y).

Then there exists a stochastically continuous process X with sample paths in Dk such
that (17) and (18) hold but X does not satisfy the CLT in Dk.
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