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Abstract
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rems for sums of such fields.
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1 Introduction

In a recent paper [15], we considered the self-normalization problem for the
particular spatial autoregressive process

Yt,s = aYt−1,s + bYt,s−1 + εt,s, (1)

where εt,s, (t, s) ∈ Z2 are i.i.d. random variables with Eε1,1 = 0 and Eε2
1,1 =

1, and |a|+ |b| < 1. Investigating the limit behavior of
∑n

t,s=1 Yt,s

(
∑n

t,s=1 Y 2
t,s)1/2

,

we essentially used the well-known representation of the stationary process
Yt,s,

Yt,s =
∞∑

k=0

k∑

j=0

(
k

j

)
ajbk−jεt−j,s−k+j .

It was clear that the next step in the problem of self-normalization for sums
of dependent random fields is to consider general linear fields, as it was done
for time series: in [5] self-normalization was considered for a simple AR(1)
process, and in [6] for general linear processes.

Let Xt =
∑∞

k=0 ckεt−k, t ∈ Z, be a linear process, where εi, i ∈ Z, are
i.i.d. random variables, and ci and εi are such that Xt is correctly defined (se-
ries converges a.s.) and is a stationary process. There are several approaches
to investigate sums of (dependent) random variables

∑n
t=1 Xt. One of them

is based on the so-called Beveridge–Nelson decomposition (BND) of linear
processes, which was successfully used in [6]. This decomposition is a purely
algebraic identity and can be easily formulated. Let, as usual, L denote the
lag operator (Lεi = εi−1). Then BND can be formulated as follows.

Proposition 1. ([1] or [16]). Let C(L) =
∑∞

k=0 ckL
k. Then

C(L) = C(1)− (1− L)C̃(L),

where C̃(L) =
∑∞

k=0 c̃kL
k, c̃k =

∑∞
j=k+1 cj . If p ≥ 1, then

∞∑

j=1

jp|cj |p < ∞ ⇒
∞∑

k=0

|c̃k|p < ∞ and |C(1)| < ∞.

If 0 < p < 1, then
∞∑

j=1

j|cj |p < ∞ ⇒
∞∑

k=0

|c̃k|p < ∞.
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It is important that this decomposition can be applied to an arbitrary
sequence {εi}; namely, if Xt = C(L)εt, then

a−1
n

n∑

t=1

Xt = C(1)a−1
n

n∑

t=1

εt + Rn, (2)

where Rn is of relatively simple structure. Having (2), the next step is to
prove that, under appropriate moment conditions on {εi} (which usually
are assumed to be i.i.d. or martingale differences) and on the coefficients ci,
Rn → 0 in probability or a.s. Thus, limit theorems for

∑n
t=1 Xt are reduced

to the corresponding limit theorems for
∑n

t=1 εt. Using this approach, it is
possible to prove the Law of Large Numbers (LLN), Strong LLN (SLLN),
Central Limit Theorem (CLT), and Invariance Principle (IP). The existence
of variances of εt and Xt is not essential, and it is possible to investigate the
case where εi’s are heavy-tailed. It is also possible to use BND when con-
sidering the limit behavior of

∑n
t=1 X2

t (such sums appear while considering
self-normalization, but they are also important in other problems). All these
possibilities are demonstrated in the fundamental paper [16] by Phillips and
Solo, which was inspiring for this paper.

It was not difficult to write decomposition for a general linear field (see
(4) and (12) bellow), and, as application of this decomposition, we proved
SLLN and CLT for sums

∑
t,s∈Dn

Xt,s, where Dn is some increasing sequence
of subsets of Z2, and Xt,s is a linear field. Later we found that such a decom-
position was obtained in a recent paper [10] by Marinucci and Poghosyan;
on the other hand, working on BND analogue for fields without knowing
the results of [10] had some advantage: we proved some new relations (that
were absent in [10]) between the initial coefficients of a linear field and the
coefficients in the decomposition.

It is possible to formulate results in the case of random fields over Zd;
however, since there is no essential difference for all dimensions d ≥ 2, except
the notation and formulations that are not so transparent, we restricted
ourselves mainly to the case d = 2, and only in Subsection 2.5.1 we formulate
the decomposition for general d. One can say that the situation for LLN and
CLT for linear fields is almost the same as that for linear processes, while
for SLLN and IP, we noticed some differences: even for the most simple sets,
squares, we were able to prove SLLN for random fields under the condition
E|εt,s|1+β < ∞, β > 0. On the other hand, it is clear that, for such simple
sets, the result holds for β = 0 and it is natural to expect that it can be
proved using BND. For rectangles, the situation is more complicated, see
Subsection 2.5.2. The same situation is for IP. If in [16] IP (the convergence
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to a Wiener process) was proved under a natural second-moment condition,
all our attempts to prove (we tried direct and indirect applications of BND)
an analogous result for fields failed; all calculations showed that the existence
of moments of order > 4 is needed. The same result is in the above-cited
paper [10], where IP for linear random fields (for an arbitrary d) was proved
assuming the existence of moments of innovations of order q > 2d. Thus, the
question whether the IP for linear random fields can be proved using BND
and under a second-moment condition remains open.

The paper is organized as follows. In Section 2 we formulate the obtained
results. In Subsection 2.1 BND for random fields and some properties of
coefficients are formulated. In Subsection 2.2 we directly apply BND to
prove SLLN and CLT. In Subsection 2.3, as in [16], we indirectly use BND
to obtain new results for SLLN and CLT. In Subsection 2.4 a limit theorem
for the sum

∑
t,s∈Dn

X2
t,s is formulated. In the last Subsection 2.5 various

generalizations and some directions of further research are discussed. In
Section 3 we collected auxiliary lemmas, and Section 4 contains the proofs
of the results stated in Section 2.

2 Formulation of results

2.1 Decomposition of linear random fields

Let
Xt,s =

∑

k,l≥0

ϕk,lεt−k,s−l, (t, s) ∈ Z2, (3)

be a linear random field. We assume that the i.i.d. random variables εt,s, (t, s) ∈
Z2 and coefficients ϕk,l are such that the series defining Xt,s converges a.s.
Let L = (L1, L2) be the lag operators defined by

L1εt,s = εt−1,s, L2εt,s = εt,s−1.

We denote by Lq,p the condition

∑

k,l≥0

(k∗l∗)q|ϕk,l|p < ∞,

where i∗ = i for i ≥ 1 and 0∗ = 1; we also denote Lp := Lp,p. Let

Φ(L) =
∑

k,l≥0

ϕk,lL
k
1L

l
2.
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To formulate the main result of this subsection, we need the following nota-
tion:

µ1 = Φ(1, 1) =
∑

k,l≥0

ϕk,l,

A2(L) = Φ∗(L)∆2(L), ∆2(L) = (1− L1)(1− L2),

Φ∗(L) =
∑

k,l≥0

ϕ∗k,lL
k
1L

l
2, ϕ∗k,l =

∑

i≥k+1,j≥l+1

ϕi,j ,

A1(L) = B(L1)∆1(L1) + D(L2)∆1(L2), ∆1(Li) = (1− Li),

B(L1) =
∑

j≥0

bjL
j
1, bj = ϕ∗j,−1 =

∑

i≥j+1,k≥0

ϕi,k,

D(L2) =
∑

j≥0

djL
j
2, dj = ϕ∗−1,j =

∑

i≥0,k≥j+1

ϕi,k.

.

Theorem 2. The following identity holds:

Φ(L) = µ1 + A2(L)−A1(L). (4)

The relations
∑

k,l≥0

|ϕ∗k,l|p < ∞,
∑

j≥0

|bj |p < ∞,
∑

j≥0

|dj |p < ∞, µ1 < ∞ (5)

hold if either condition Lp in the case 1 ≤ p < ∞ or condition L1,p in the
case 0 < p < 1 is satisfied.

As already mentioned, relation (4) was proved in [10], while the relation
for the coefficients is new. Since there is an interplay between the moment
conditions for innovations εt,s, (t, s) ∈ Z2, and conditions on the coeffi-
cients ϕk,l, such relations are important. In [10] the only condition on the
coefficients is formulated as

∑

k,l≥0

∑

i≥k+1,j≥l+1

|ϕi,j | < ∞,

which is essentially condition L1 in our notation.
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2.2 Direct application of the decomposition

One and probably the main application of BND of linear random fields is
limit theorems for appropriately normalized sums

∑
t,s∈Dn

Xt,s, where Dn

is some increasing sequence of subsets of Z2, and normalizing constants
depend on the cardinality of sets Dn. We shall take the most simple sets
Dn = {(i, j) ∈ Z2 : 1 ≤ i ≤ n, 1 ≤ j ≤ n}. In the last subsection we discuss
the possibility to consider more general sets, but in Subsections 2.2–2.4 the
notation

∑
t,s∈Dn

means summation over the above-written square. Let us
denote

Sn =
∑

t,s∈Dn

Xt,s, Zn =
∑

t,s∈Dn

εt,s.

Remark 3. Since the main goal of the paper is to show the reduction from
Sn (sum of dependent random variables) to Zn (sum of i.i.d. random vari-
ables), choosing simple sets Dn has the following advantage. Limit theorems
for Zn can be obtained from classical one-dimensional sequences if we take
a map h : {(i, j) : i ≥ 1, j ≥ 1} → N such that Zn = Z̃n2 , where

Z̃n =
n∑

k=1

ε̃k,

and ε̃k = εt,s if k = h(t, s).

In the sequel, we shall use this observation without mentioning.
From relation (4) we get the following result.

Proposition 4. The following relation holds:

Sn = µ1Zn + Rn, (6)

where

Rn = ξn,n − ξn,0 − ξ0,n + ξ0,0

+ ηn,n − η0,n + ζn,n − ζn,0, (7)

ξt,s = Φ∗(L)εt,s =
∑

k,l≥0

ϕ∗k,lεt−k,s−l,

ηt,n =
n∑

s=1

ε̄t,s, ε̄t,s = B(L1)εt,s =
∑

j≥0

bjεt−j,s,

ζn,s =
n∑

t=1

ε̂t,s, ε̂t,s = D(L2)εt,s =
∑

j≥0

djεt,s−j .
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From this proposition it is clear that limit theorems for Sn are reduced
to limit theorems for sums of i.i.d. random variables if we prove that, after
appropriate normalization, the remainder term Rn tends to zero (in proba-
bility or a.s.). By direct application of BND, as in [16], we mean that for
estimation of Rn, we use (7), while indirect application means the estimation
of Rn using the equality

Rn = Sn − µ1Zn,

that is, only the fact that Sn is approximated by µ1Zn. We say that SLLN
and CLT hold for Sn if

n−2Sn
a.s.−→ 0

and
n−1Sn

d−→ N(0, µ2
1),

respectively. Here N(0, σ2) stands for a normal random variable with mean
zero and variance σ2 (and, as is usual in limit theorems, the same notation
is used for the distribution of this normal random variable).

The first and rather easily obtained result can be formulated as follows.

Theorem 5. Suppose that εt,s, (t, s) ∈ Z2 are i.i.d. random variables with
Eε00 = 0, Eε2

00 = 1, condition L2 holds, and µ1 6= 0. Then SLLN and CLT
for Sn hold.

The existence of the second moment of ε0,0 is natural for CLT to hold
(most probably, it is possible to prove CLT for Sn with appropriate normal-
ization using BND under the assumption that ε0,0 belongs to the domain
of the attraction of a normal law), but this is not the case for SLLN. The
assumptions Eε00 = 0 and E|ε00| < ∞, together with some condition on
coefficients {ϕk,l}, would be natural for SLLN to hold. Such a result for
linear processes is obtained in [16]. Our result is a little bit weaker.

Theorem 6. Suppose that εt,s, (t, s) ∈ Z2 are i.i.d. random variables with
Eε00 = 0 and E|ε00|1+β < ∞ and that condition L1+β holds for some 1 ≥
β > 0. Then SLLN for Sn holds.

By direct approach it is not difficult to prove a limit theorem in the case
where innovations have infinite variance. Let us assume that ε0,0 belongs
to the normal domain of attraction of a stable random variable ηα with
0 < α < 2, Eε00 = 0, if α > 1, and ε0,0 is a symmetric random variable if
α = 1. The normal domain of attraction is assumed only for simplicity, in
order to avoid slowly varying functions in formulations. Such assumptions
mean that

n−2/αZn
d−→ ηα.
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Theorem 7. If ε0,0 satisfies the above-formulated assumptions, condition
L1,α if 0 < α < 1 or Lα if 1 ≤ α < 2 holds, and µ1 6= 0, then

n−2/αSn
d−→ µ1ηα.

In [11] such a limit result for rectangles instead of squares and under a
weaker assumption on the coefficients ϕk,l is proved in the case 1 < α < 2,
but the proof is much more involved.

2.3 Indirect application of the decomposition

In this subsection from the decomposition we use only the fact that Sn is
approximated by µ1Zn. We have the following result.

Theorem 8. Suppose that εt,s, (t, s) ∈ Z2, are i.i.d. random variables with
Eε00 = 0, and conditions

∑
k,l≥0 |ϕk,l| < ∞ and µ1 6= 0 hold. If E|ε00|2 = 1,

then CLT for Sn holds, and if E|ε00|1+β < ∞ for some 1/2 < β ≤ 1, then
SLLN for Sn holds.

2.4 Limit theorem for sums of squares

In [16] it is shown that BND can be useful to prove limit results for
∑

t X2
t ,

where {Xt, t ∈ Z} is a linear process. Similarly, decomposition (4) can
be used to investigate limit properties of

∑
Dn

X2
t,s with Xt,s being a linear

random field. Although we must admit that the notation and proofs become
more complicated, on the other hand, it is difficult to believe that there can
be a very simple approach to deal with such sums. To formulate our result,
we need some more notation. We set (always keeping in mind that ϕk,l = 0
if k < 0 or l < 0)

ψk,l,±p,±r = ϕk,lϕk±p,l±r, k, l, p, r ≥ 0,

ψ∗k,l,±p,±r =
∑

i≥k+1
j≥l+1

ψi,j,±p,±r, k, l, p, r ≥ 0,

Ψ±p,±r(L) =
∑

k,l≥0

ψk,l,±p,±rL
k
1L

l
2, Ψ∗

±p,±r(L) =
∑

k,l≥0

ψ∗k,l,±p,±rL
k
1L

l
2,

bj,±p,±r = ψ∗j,−1,±p,±r =
∑

k≥0
i≥j+1

ϕi,kϕi±p,k±r, j, p, r ≥ 0,
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dj,±p,±r = ψ∗−1,j,±p,±r =
∑

k≥0
i≥j+1

ϕk,iϕk±p,i±r, j, p, r ≥ 0.

We also define that lag operators act for product of random variables in the
following way:

Lk
1L

l
2εt,sηu,v = εt−k,s−lηu−k,v−l.

Proposition 9. a) The following formal relation holds:

X2
t,s = µ2ε

2
t,s + (A0,0(L)−B0,0(L1)− C0,0(L2))ε2

t,s (8)
+

∑∗
p,r≥1(µ±p,±r + A±p,±r(L)−B±p,±r(L1)− C±p,±r(L2))εt,sεt∓p,s∓r,

where
∑∗ means that there are four sums with all possible combinations of

signs, and, for all p, r ≥ 0,

µ2 =
∑

k,l≥0

ψ2
k,l,

µ±p,±r = Ψ±p,±r(1, 1) =
∑

k,l≥0

ψk,l,±p,±r,

A±p,±r(L) = Ψ∗
±p,±r(L)∆2(L) =

∑

k,l≥0

ψ∗k,l,±p,±rL
k
1L

l
2(1− L1)(1− L2),

B±p,±r(L1) =
∑

j≥0

bj,±p,±rL
j
1(1− L1)

C±p,±r(L2) =
∑

j≥0

dj,±p,±rL
j
2(1− L2).

b) Summing relations (8), we get
∑

Dn

X2
t,s = µ2

∑

Dn

ε2
t,s + Rn,2, (9)

where Rn,2 is obtained in obvious way, and its expression will be given in
the proof of the proposition.

The properties of the coefficients involved in (8) will be given in Lemma
15.

Relation (9) means that SLLN or CLT for squares of Xt,s is reduced for
SLLN or CLT for squares of εt,s if we are able to prove that after appropriate
normalization the remainder term in (9) tends to zero a.s. or in probability.
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As an example of the result obtained in this way, we formulate the following
theorem. Without loss of generality we may assume that, for all k, l ≥ 0,
ϕk,l 6= 0. We shall require the following technical condition: for some C̄ ≥ 1
and all k, l ≥ 0,

ϕ2
i+k,j+l ≤ C̄ϕ2

i,j . (10)

Theorem 10. Assume that Eε0,0 = 0, Eε2
0,0 = 1, and L1+ε,2 for some

ε > 0 and (10) hold. Then

n−2
∑

Dn

X2
t,s

a.s.−→ µ2 = EX2
0,0 =

∑

k,l≥0

ϕ2
k,l.

2.5 Various generalizations

In this section we present several possible generalizations of the results stated
in the previous subsections.

2.5.1 Decomposition in higher dimensions

As was mentioned, BND for general d-dimensional linear fields was written
in [10], but it seems that, for practical work with this decomposition, it is
better to write it in a little bit different form, separating terms having the
same “degree” of differencing operator 1 − Li, as this was done in (4). To
make this statement more clear, we shall write this form of decomposition
in the case d = 3. Let now L = (L1, L2, L3), let Lj be obtained from L
by dropping Lj from the latter, and let ∆3(L) = (1− L1)(1− L2)(1− L3).
Denote

Φ(L) =
∑

k,l,m≥0

ϕk,l,mLk
1L

l
2L

m
3 .

Then we have the formal decomposition

Φ(L) = Φ(1)−A3(L) + A2(L))−A1(L), (11)

where
A3(L) = Φ∗(L)∆3(L),

A2(L) =
3∑

j=1

Φ∗2,j(Lj)∆2(Lj), A1(L) =
3∑

j=1

Φ∗1,j(Lj)∆1(Lj),

Φ∗(L) =
∑

k,l,m≥0

ϕ∗k,l,mLk
1L

l
2L

m
3 , ϕ∗k,l,m =

∑

i≥k+1,j≥l+1,h≥m+1

ϕi,j,h,
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and it is clear how to write expressions for Φ∗2,j(Lj) and Φ∗1,j(Lj). For arbi-
trary d, BND has the form

Φ(L) = Φ(1) +
d∑

i=1

(−1)iAi(L), (12)

where now L = (L1, . . . , Ld), 1 = (1, . . . , 1), with obvious definitions of
polynomials Ai(L). The relations between coefficients in the general case
also can be easily obtained.

Having the decomposition (11), one can obtain limit theorems for sums∑
Dn

Xt,s,u, where now Dn = [1, n]3 ∩ Z3 (the same can be said about the
case of arbitrary d). To this aim, one can write

∑

Dn

Xt,s,u = Φ(1)
∑

Dn

εt,s,u + R̄n,

where R̄n = Rn,1 + Rn,2 + Rn,3 and Rn,i =
∑

Dn
Ai(L)εt,s,u. Each term of

the remainder R̄n has a rather simple structure (the same as that in the
case d = 2); for example, Rn,3 =

∑
Dn

A3(L)εt,s,u can be written as

ε̂n,n,n − ε̂n,n,0 − ε̂n,0,n − ε̂0,n,n + ε̂n,0,0 + ε̂0,n,0 + ε̂0,0,n − ε̂0,0,0,

where
ε̂t,s,u = Φ∗(L)εt,s,u =

∑

k,l,m≥0

ϕ∗k,l,mεt−k,s−l,u−m.

The terms Rn,1 and Rn,2 can be written similarly. Having these expressions
of R̄n, it is not difficult (under appropriate conditions) to generalize the
results of Subsections 2.2 and 2.3 (we did not consider

∑
Dn

X2
t,s,u only for

the reason that calculations became too lengthy).

2.5.2 More general regions

Now we return to the case d = 2 and discuss the possibility to consider more
general regions than squares Dn = [1, n]2 ∩ Z2. As was demonstrated, the
success of the decomposition (both in the cases d = 1 and d ≥ 2) depends on
the fact that the structure of the remainder Rn obtained after summing over
Dn is rather simple, and this fact is due to the simplicity of the boundary
of Dn (in the case d = 1, the set Dn is simply an interval, and the boundary
consists of two points). It is clear that if we take an arbitrary increasing
sequence of sets An ⊂ Z2, the structure of the remainder term Rn will be
too complicated, and application of BND (at least, the direct approach) will
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be useless. On the other hand, if instead of the squares Dn = [1, n]2 ∩ Z2

we take the rectangles Dn = [1, n1] × [1, n2] ∩ Z2, where n = (n1, n2), the
structure of the remainder term remains essentially the same. For example,
denoting

Sn =
∑

t,s∈Dn

Xt,s, Zn =
∑

t,s∈Dn

εt,s,

(6) now can be written as follows:

Sn = µ1Zn + Rn, (13)

where

Rn = ξn1,n2 − ξn1,0 − ξ0,n2 + ξ0,0

+ ηn1,n − η0,n2 + ζn1,n2 − ζn1,0. (14)

Having (14), it is not difficult to see that one can restate CLT or state
LLN for Sn assuming that min(n1, n2) → ∞ under the same moment con-
ditions and conditions on {ϕk,l} as it was done for Sn. We recall that useful
Lemma 13 is formulated for general rectangles. However, the situation is
different for SLLN, and passing from Sn to Sn is not trivial. As an example,
let us take Theorem 5. Instead of (31), now we must prove that

(n1n2)−1Rn
a.s.−→ 0

as min(n1, n2) →∞, and this will follow if we prove

∞∑

n1=1

∞∑

n2=1

P (|(n1n2)−1Rn| > ε) ≤ ∞.

There is no problem for terms with ξn1,n2 , ξ0,n2 , ξn1,0 (see (14)), but for the
terms with η or ζ, using moment inequalities, we have

P (|(n1n2)−1
∣∣

n2∑

s=1

ε̄n1,s

∣∣ > ε) ≤ ε−2(n1n2)−2
n2∑

s=1

Eε̄2
n1,s ≤ Cε−2n−2

1 n−1
2 ,

and with respect to n2, we get the divergent harmonic series. To save the
situation, one can require the stronger moment condition E|ε1,1|2+δ < ∞
or to use a little bit stronger normalization, that is, (n1n2)−1(lnn1 lnn2)−γ

with γ > 1/2. A similar situation is with another result on SLLN, and even
SLLN for Zn is different, comparing with Zn: it is known (see [18]) that

(n1n2)−1Zn
a.s.−→ 0
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iff E|ε1,1| ln |ε1,1| < ∞ (here ln t = 1 for 0 < t < e) and Eε1,1 = 0.
Between squares and general rectangles, there are intermediate possibil-

ities when we consider rectangles indexed by n and defined by means of the
relations n1 = n, n2 = g(n), where g is some integer-valued function. The
case g(n) = n gives us squares (here it is worth to mention that the remark
before Proposition 4 can be applied in the case of the increasing function g).
In other words, it is possible to consider the convergence of double-indexed
sequence Sn along some path. In [17] there is developed some general theory
of the so-called sequential and joint convergence of double-indexed processes
having a specific structure, connected with panel data in econometrics.

We intend to investigate SLLN for rectangles and even more general sets
An which are convex and have “small” boundary compared with interior
points in the nearest future.

2.5.3 Other possible directions of investigation

As was mentioned in the introduction, the motivation to look at decompo-
sition of linear fields was the problem of self-normalization, since BND of
linear processes was successfully applied for this problem in [6]. Combining
results on CLT for Sn and LLN for sums of X2

t,s (although we had formu-
lated only SLLN for such sums, it is much easier to obtain LLN), we can
get some simple result on self-normalization. However, there are still open
problems concerning self-normalization in this context, and they are left for
future research.

It was shown in [16] that BND for linear processes, which is purely an
algebraic identity and can be applied for any sequence of random variables
εi’s, is a useful tool not only in the case of the i.i.d. sequence but also for
martingale-difference sequence. Since martingales on the plane are defined
in a specific way (see, for example, [3], [19] ) and have some connection
with the operator ∆2(L), it would be interesting to explore if BND can give
similar results for linear fields generated by martingales on the plane.

It would be interesting to look if two-dimensional BND can be applied to
asymptotic analysis of panel data. In [17] linear random processes reflecting
panel data are considered in a very general setting (in our notation, εi,t and
Xi,t are m-dimensional vectors, and {ϕi,t} are m × m random matrices),
on the other hand, essentially one-dimensional linear processes of the form
Xi,t =

∑∞
s=1 ϕi,sεi,t−s are considered, and usual BND for each i is applied,

since it is assumed that the matrices {ϕi,s} are i.i.d. with respect to i.
One more promising direction of investigation is limit theorems for lin-

ear random processes and fields with values in a separable Banach space
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using BND. As an example of a result in this direction, we can provide the
following one. Let us consider linear random field (3), assuming now that
εt,s, (t, s) ∈ Z2 are i.i.d. random elements with values in a separable Banach
space B of type 2, Eε00 = 0, E||ε00||2 < ∞, and ϕk,l are linear bounded
operators in B such that

∑

k,l≥0

||ϕk,l||B < ∞

and µ1 =
∑

k,l≥0 ϕk,l 6= 0. Here || · || and || · ||B denote the norms in B and
L(B) (the Banach space of linear bounded operators in B), respectively,
and 0 stands for the null operator. For probability notions in Banach spaces
(types and cotypes, covariance operators, CLT, etc.), we refer to mono-
graphs [14] or [9]. Taking into account the previous subsection, we have the
following result.

Theorem 11. Under the above-formulated conditions, the CLT for Sn holds,
that is,

1√
n1n2

Sn
d−→ N(0, µ1Aµ∗1)

as min(n1, n2) →∞. Here N(0, C) denotes a Gaussian mean zero B-valued
random element with covariance operator C, A denotes the covariance op-
erator of ε1,1, and µ∗1 is the adjoint operator of µ1.

This result can be considered as a small generalization of Theorem 2 of
[13], where CLT was proved in the case of separable Hilbert space, and in
case d = 1 (linear processes) it coincides with Theorem 7.8 of [2] (by the
way, formulated without proof and without any reference).

In ending this section one should also mention why we do not compare
our results with those previously obtained. The main goal of the paper, as
was mentioned earlier, was demonstration that BND is useful in obtaining
the results with very simple and short proofs and that this decomposition
has a wide area of applications. Limit theorems for random fields (and
particularly, for linear ones) are investigated more than 30 years (see, for
example, [7], [8], [4]), but most papers in this field are exploiting some
mixing or weak-dependence properties, and usually it is not easy to apply
such results for linear random fields. One maybe should mention also some
disadvantages of BND. Direct application of BND usually does not allow one
to obtain optimal results, since passing from Xt,s to a new linear random
field ξt,s requires conditions stronger than needed on the coefficients ϕk,l.
Even BND itself requires the finiteness of µ1, while, for the existence of
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Xt,s in the case of innovations with second moment, the weaker condition∑
k,l≥0 ϕ2

k,l < ∞ is sufficient. Also one must note that to prove SLLN
for sums over comparatively simple sets is much more easy using ergodic
theorems. This remark can be addressed to linear processes as well - it is
very easy to prove Theorem 3.7 from [16] using ergodic theory.

3 Auxiliary lemmas

We recall that Φ(L) =
∑

k,l≥0 ϕk,lL
k
1L

l
2 and Φ∗(L) =

∑
k,l≥0 ϕ∗k,lL

k
1L

l
2, where

ϕ∗k,l =
∑

i≥k+1,j≥l+1 ϕi,j .

Lemma 12. If condition Lp for p ≥ 1 or condition L1,p for 0 < p < 1 is
satisfied, then

∑

k,l≥0

|ϕ∗k,l|p < ∞,
∑

j≥0

|bj |p < ∞,
∑

j≥0

|dj |p < ∞,
∑

k,l≥0

ϕk,l < ∞.

Proof. Since bj = ϕ∗j,−1 and dj = ϕ∗−1,j , we shall prove the first relation
only for larger summation area. The case p = 1 is trivial; therefore, we
consider p > 1. Applying Holder’s inequality with some a satisfying the
inequalities

1
q

< a <
1
q

+
1
p

= 1,

we have
∑

k,l≥−1

∣∣ ∑

i≥k+1
j≥l+1

ϕi,j

∣∣p =
∑

k,l≥−1

∣∣ ∑

i≥k+1
j≥l+1

(i∗j∗)aϕi,j(i∗j∗)−a
∣∣p

≤
∑

k,l≥−1

( ∑

i≥k+1
j≥l+1

(i∗j∗)ap|ϕi,j |p
)( ∑

i≥k+1
j≥l+1

(i∗j∗)−aq
)p/q

≤ C
∑

k,l≥−1

∑

i≥k+1
j≥l+1

(i∗j∗)ap|ϕi,j |p(k∗l∗)(1−aq)p/q

≤ C
∑

i,j≥0

(i∗j∗)ap|ϕi,j |p
i∑

k=−1

k∗(1−aq)p/q
j∑

l=−1

l∗(1−aq)p/q

≤ C
∑

i,j≥0

(i∗j∗)ap+1+(1−aq)p/q|ϕi,j |p

≤ C
∑

i,j≥0

(i∗j∗|ϕi,j |)p,
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where C is a constant, depending on p and not necessarily the same at
different places, and (−1)∗ = 1.

If 0 < p < 1, then

∑

k,l≥−1

|ϕ∗k,l|p ≤
∑

k,l≥−1

∑

i≥k+1
j≥l+1

|ϕi,j |p ≤
∑

i,j≥0

i∗j∗|ϕi,j |p.

To see that condition Lp, p > 1, implies
∑

k,l≥0 |ϕk,l| < ∞, it suffices to
write ∑

k,l≥0

|ϕk,l| = |ϕ0,0|+
∑

k≥1

|ϕk,0|+
∑

l≥1

|ϕ0,l|+
∑

k,l≥1

|ϕk,l|

and to apply Holder’s inequalities for three last terms of this equality. In the
case p < 1, without loss of generality, we may assume that all coefficients
|ϕk,l| are less than 1, and the same equality trivially gives the result. Here
we see why it is convenient to use the notation i∗ and j∗ in the conditions.
The lemma is proved.

The next lemma is a slight generalization of a similar lemma from [13].
Since the main objects of our paper are real-valued fields with d = 2, we
formulate our lemma in this setting only for the reason to keep the same
notation. Generalization to the case d > 2 and for random fields with values
in a Banach space is trivial (instead of absolute value one needs to use norm ).
The set of squares Dn ( mainly used in our paper) has to be replaced by two-
dimensional rectangles, since there is an essential difference between these
two cases in the context of the lemma. We shall use vector notations: j =
(j1, j2), n = (n1, n2), |n| = n1n2,1 = (1, 1), [−x,x] = [−x1, x1]× [−x2, x2],
similarly for the open rectangle. For vectors the operations of multiplication,
division, inequalities, taking integer part of a vector are coordinate-wise, for
example, [nx] = ([n1x1], [n2x2]). The use of this notation also indicates that
generalization to higher dimensions is not difficult. In our lemma, n → ∞
means that min(n1, n2) →∞.

Lemma 13. Let {bj, j ∈ Z2} be real numbers such that

∑

j∈Z2

|bj| < ∞ (15)

and ∑

j∈Z2

bj = 0. (16)
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Then, for 1 < p ≤ 2,

1
|n|

∑

j∈Z2

∣∣ ∑

1−j≤i≤n−j

bi
∣∣p → 0 as n →∞. (17)

Remark 14. In [13] this lemma (for elements from normed space) was
proved for p = 2 under the weaker assumption that |n| → ∞ and the
coordinates of n are nondecreasing. This allows the situation n1 → ∞, n2

is constant, while in our formulation both coordinates must tend to infinity.
Although we believe that the result of Theorem 2 from [13] remains true
under this weaker assumption on the growth of n (this also defines the
growth of summation region Dn), the proof of Lemma 1 from [13] contains
several mistakes (which we shall point out in our proof), and we do not
know how to prove this lemma under this weaker assumption on the growth
of n.

Proof. Let us denote
An =

∑

j/∈(−n,n)

|bj|.

Then from (15) it follows that An → 0 as n → ∞. (Here is the first
mistake: An does not need to tend to zero if one coordinate of n (at least
one coordinate in the case of arbitrary d > 2) remains fixed.) Again using
(15), it is easy to get

1
|n|

∑

j/∈(−2n,2n)

∣∣ ∑

1−j≤i≤n−j

bi
∣∣p ≤ 1

|n|
∑

j/∈(−2n,2n)

( ∑

1−j≤i≤n−j

|bi|
)p

≤ 1
|n|

∑

j/∈(−2n,2n)

( ∑

1−j≤i≤n−j

|bi|
)( ∑

i/∈(−n,n)

|bi|
)p−1

≤ Ap−1
n

1
|n|

∑

j∈Z2

( ∑

1−j≤i≤n−j

|bi|
)

= Ap−1
n

∑

j∈Z2

|bj| → 0 as n →∞. (18)

It remains to prove that

1
|n|

∑

j∈(−2n,2n)

∣∣ ∑

1−j≤i≤n−j

bi
∣∣p → 0 as n →∞. (19)

We introduce the function

hn(x) =
∣∣ ∑

1−[nx]≤i≤n−[nx]

bi
∣∣p
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for all x ∈ [−2,2]. From (15) and (16) we have that, for all x such that
xi 6= 0,±1, hn(x) → 0 as n →∞ (here it is essential that all coordinates of
n tend to infinity) and

|hn(x)| ≤ ( ∑

1≤i≤n

|bi−[nx]|
)p ≤ ( ∑

i∈Z2

|bi|
)p

< ∞.

Having these properties of hn(x) and using the Lebesgue dominated conver-
gence theorem, it is not difficult to get (19):

1
|n|

∑

j∈(−2n,2n−1)

∣∣ ∑

1−j≤i≤n−j

bi
∣∣p =

1
|n|

∑

j∈(−2n,2n−1)

hn(j/n)

=
∑

j∈(−2n,2n−1)

∫

[j/n,(j+1)/n]
hn(x)dx

=
∫

[−2,2]
hn(x)dx → 0 as n →∞.

In the proof of this lemma in [13], the definition of hn(x) is slightly different,
summation is over the region 1 − [|n|x] ≤ i ≤ n − [|n|x], and this allows
one to use the weaker assumption on the growth of n, but then there is a
mistake in the equality

∫

[j/|n|,(j+1)/|n|]
dx =

1
|n| ,

since, in fact, this last integral is equal to 1
|n|d . From (18) and (19) we get

(17), and the lemma is proved.
In the following lemma, we collected properties of various coefficients

present in Proposition 9.

Lemma 15. If conditions L1+ε,2 for some ε > 0 and (10) are satisfied, then
we have that the relations
∑

k,l≥0

∑

p,r≥1

(ψ∗k,l,±p,±r)
2 < ∞,

∑

j≥0

∑

p,r≥1

b2
j,±p,±r < ∞,

∑

j≥0

∑

p,r≥1

d2
j,±p,±r < ∞

(20)
hold for all combinations of signs, and

∑

k,l≥0

(ψ∗k,l,0,0)
2 < ∞,

∑

j≥0

b2
j,0,0 < ∞,

∑

j≥0

d2
j,0,0 < ∞. (21)
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If condition L1/2,2 is satisfied, then the relations

∑

p,r≥1

µ2
±p,±r < ∞ (22)

also hold for all combinations of signs.

Proof. Again, as in the proof of lemma 12, it suffices to prove the
first relation in (20), since bj,±p,±r = ψ∗j,−1,±p,±r and dj,±p,±r = ψ∗−1,j,±p,±r,
therefore, as in the proof of lemma 12, we consider larger area of summa-
tion. We start with one combination of signs (both pluses). Let us denote
I =

∑
k,l≥0 k∗l∗ϕ2

k,l. Then we can write (compare with the proof of Lemma
12)

∑

k,l≥−1

∑

p,r≥1

(ψ∗k,l,p,r)
2 =

∑

k,l≥−1

∑

p,r≥1

( ∑

i≥k+1
j≥l+1

ϕi,jϕi+p,j+r

)2

≤
∑

k,l≥−1

∑

i≥k+1
j≥l+1

ϕ2
i,j

∑

p,r≥1

∑

m≥k+1
n≥l+1

ϕ2
m+p,n+r ≤

( ∑

k,l≥−1

∑

i≥k+1
j≥l+1

ϕ2
i,j

) ∑

p,r≥1

∑

m≥0
n≥0

ϕ2
m+p,n+r

≤ I
∑

p,r≥1

∑

m≥p
n≥r

ϕ2
m,n ≤ I2.

Now we take both minuses, and it turns out that this case is much more
complicated. In the first version of the paper a simple proof was incorrect,
and we even need a stronger condition (comparing with the case with both
pluses) on the coefficients ϕi,j . Recall that ϕi,j = 0 if i < 0 or j < 0, and,
therefore, ∑

i≥k+1
j≥l+1

ϕi,jϕi−p,j−r =
∑

i≥max(k+1,p)

j≥max(l+1,r)

ϕi,jϕi−p,j−r.

Then

J =
∑

k,l≥−1

∑

p,r≥1

(ψ∗k,l,−p,−r)
2 =

∑

k,l≥−1

∑

p,r≥1

( ∑

i≥max(k+1,p)

j≥max(l+1,r)

ϕi,jϕi−p,j−r

)2

= J1 + J2 + J3 + J4,

where Ji, i = 1, . . . , 4, are obtained by dividing the summation region {p, r ≥
1} into four regions {1 ≤ p ≤ k + 1, 1 ≤ r ≤ l + 1}, {1 ≤ p ≤ k + 1, r >
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l + 1}, {p > k + 1, 1 ≤ r ≤ l + 1}, {p > k + 1, r > l + 1}, respectively. Each
term is estimated differently. Applying Hölder’s inequality, we get

J1 =
∑

k,l≥−1

k+1∑

p=0

l+1∑

r=0

( ∑

i≥k+1
j≥l+1

ϕi,jϕi+p,j+r

)2
(23)

≤
∑

k,l≥−1

k+1∑

p=0

l+1∑

r=0

∑

i≥k+1
j≥l+1

ϕ2
i,j

∑

i≥k+1
j≥l+1

ϕ2
i−p,j−r

≤
∑

k,l≥−1

∑

i≥k+1
j≥l+1

ϕ2
i,jc(k, l),

where

c(k, l) =
k+1∑

p=0

l+1∑

r=0

∑

i≥k+1
j≥l+1

ϕ2
i−p,j−r.

If for a fixed l, we denote

c1(k, l) =
∑

i≥k+1

k+1∑

p=0

ϕ2
i−p,l,

then it is easy to see that

c1(k, l) =
∑

i≥k+1

ϕ2
i,l +

∑

i≥k

ϕ2
i,l + · · ·+

∑

i≥0

ϕ2
i,l

≤
∑

k≥−1

∑

i≥k+1

ϕ2
i,l ≤

∑

k≥0

∑

i≥k+1

ϕ2
i,l +

∑

i≥0

ϕ2
i,l ≤

∑

i≥0

i∗ϕ2
i,l.

Therefore, using the estimate for c1(k, l) with l = j − r and then using the
same estimate for the sum

∑
j≥l+1

∑l+1
r=0 ϕ2

i,j−r, we get

c(k, l) =
∑

j≥l+1

l+1∑

r=0

c1(k, j − r) ≤
∑

j≥l+1

l+1∑

r=0

∑

i≥0

i∗ϕ2
i,j−r

≤
∑

i≥0

i∗
∑

j≥l+1

l+1∑

r=0

ϕ2
i,j−r ≤

∑

i≥0

∑

j≥0

i∗j∗ϕ2
i,j = I.

Having this estimate, from (23) we easily get
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J1 ≤ I
∑

k,l≥−1

∑

i≥k+1
j≥l+1

ϕ2
i,j ≤ I

∑

i≥0

∑

j≥0

i∗j∗ϕ2
i,j = I2. (24)

We estimate J4 in a different way. Without loss of generality we may assume
that, for all k, l ≥ 0, ϕk,l 6= 0. Taking β = (1 + ε)/2 > 1/2, where ε > 0 is
from conditions of the lemma, and using (10), we can write

J4 =
∑

k,l≥−1

∑

p≥k+1

r≥l+1

(∑

i≥p
j≥r

ϕi,jϕi−p,j−r

)2
(25)

=
∑

k,l≥−1

∑

p≥k+1

r≥l+1

(∑

i≥0
j≥0

ϕi,jϕi+p,j+r

)2

=
∑

k,l≥−1

∑

p≥k+1

r≥l+1

(∑

i≥0
j≥0

(i∗j∗)2βϕ2
i,j

)(∑

i≥0
j≥0

ϕ2
i+p,j+r

(i∗j∗)2β

)

≤ C̄Iβ

∑

k,l≥−1

∑

p≥k+1

r≥l+1

ϕ2
p,r

∑

i≥0
j≥0

1
(i∗j∗)2β

≤ C̄C2
βIβI,

where Iβ =
∑

k,l≥0(k
∗l∗)2βϕ2

k,l is finite due to the condition L1+ε,2 and
Cβ =

∑
j≥0(j

∗)−2β is finite due to 2β > 1.
Finally, the quantities J2 and J3 are estimated combining methods used

in estimating J1 and J4. Let us take J2. Applying Hölder’s inequality, we
get

J2 ≤
∑

k,l≥−1

k+1∑

p=0

∞∑

r=l+1

( ∑

i≥k+1
j≥0

ϕ2
i,j+r

(j∗)2β

)( ∑

i≥k+1
j≥0

(j∗)2βϕ2
i−p,j

)
(26)

=
∑

k≥−1

k+1∑

p=0

∑

i≥k+1
j≥0

(j∗)2βϕ2
i−p,j

∑

l≥−1

∞∑

r=l+1

∑

i≥k+1
j≥0

ϕ2
i,j+r

(j∗)2β
.

Recalling that 2β > 1 and using (10), we have

c2(k) :=
∑

l≥−1

∞∑

r=l+1

∑

i≥k+1
j≥0

ϕ2
i,j+r

(j∗)2β
≤ C̄

∑

l≥−1

∞∑

r=l+1

∑

i≥k+1

ϕ2
i,r

∑

j≥0

(j∗)−2β
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≤ C̄Cβ

∑

i≥k+1

∑

j≥0

j∗ϕ2
i,j .

Therefore, from (26) we get

J2 ≤ C̄Cβ

∑

k≥−1

k+1∑

p=0

∑

i≥k+1
j≥0

(j∗)2βϕ2
i−p,j

∑

i≥k+1

∑

j≥0

j∗ϕ2
i,j (27)

≤ C̄Cβ

∑

k≥−1

∑

j≥0∑
j≥0

i∗(j∗)2βϕ2
i,j

∑

j≥0∑
i≥k+1

j∗ϕ2
i,j ≤ C̄CβI1,β

∑

k≥−1

∑

i≥k+1

∑

j≥0

j∗ϕ2
i,j

≤ C̄CβI1,βI,

where I1,β =
∑

j≥0 i∗(j∗)2βϕ2
i,j .

We have shown how to estimate the first quantity in (20) with two com-
binations of signs, both pluses or both minuses. The remaining two combi-
nations of signs are dealt similarly, and we omit these calculations.

Thus, we have proved (20). Since the case for the corresponding coeffi-
cients with p = r = 0 is much more simple, we leave the proof of (21) for
the reader.

Now let us denote I1 =
∑

k,l≥0(k
∗l∗)1/2ϕ2

k,l. We can write (again com-
pare with the proof of Lemma 12)

∑

p,r≥1

µ2
p,r =

∑

p,r≥1

(∑

k≥0
l≥0

ϕk,lϕk+p,l+r

)2

=
∑

p,r≥1

( ∑

k,l≥0

(k∗l∗)1/4ϕk,l(k∗l∗)−1/4ϕk+p,l+r

)2

≤ ( ∑

k,l≥0

(k∗l∗)1/2ϕ2
k,l

) ∑

p,r≥1

∑

k,l≥0

(k∗l∗)−1/2ϕ2
k+p,l+r

= I1

∑

k,l≥0

(k∗l∗)−1/2
∑

i≥k+1
j≥l+1

ϕ2
i,j ≤ I2

1 .

Since it is easy to see that
∑

p,r≥1 µ2−p,−r =
∑

p,r≥1 µ2
p,r, we now show how
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to estimate the quantity with different signs. We have
∑

p,r≥1

µ2
p,−r =

∑

p,r≥1

(∑

k≥0
l≥r

ϕk,lϕk+p,l−r

)2
=

∑

p,r≥1

( ∑

k,l≥0

ϕk,l+rϕk+p,l

)2

=
∑

p,r≥1

( ∑

k,l≥0

k∗1/4l∗−1/4ϕk,l+rk
∗−1/4l∗1/4ϕk+p,l

)2

≤
∑

p≥1

( ∑

k,l≥0

k∗1/2l∗−1/2ϕ2
k,l+r

)∑

r≥1

( ∑

k,l≥0

k∗−1/2l∗1/2ϕ2
k+p,l

)
.

It is not difficult to get the estimate
∑

p≥1

( ∑

k,l≥0

k∗1/2l∗−1/2ϕ2
k,l+r

)
≤ I1

and similarly ∑

r≥1

( ∑

k,l≥0

k∗−1/2l∗1/2ϕ2
k+p,l

)
≤ I1.

Therefore, we get ∑

p,r≥1

µ2
p,−r < ∞

if I1 is finite. Similarly, we can deal with another combination of signs, and
thus relation (22) is proved. The lemma is proved.

4 Proofs of main results

Proof of Theorem 2. As was mentioned, relation (4) (more precisely, relation
(12)) in a slightly different form was proved in [10], and the proof of (5) is
given in Lemma 12.

Proof of Proposition 4. Using (4), we can write

Xt,s = Φ(L)εt,s = (µ1 + A2(L)−A1(L))εt,s.

Summing these equalities over Dn, we get (6) with

Rn =
∑

t,s∈Dn

(A2(L)−A1(L))εt,s.

It remains to show that this expression can be written as it was stated in
the proposition. We start with the term

Rn,1 =
∑

t,s∈Dn

A2(L)εt,s =
∑

t,s∈Dn

∆2(L)ξt,s.

23



Let us denote ∆(j)
2 (L) = (1 − Lj

1)(1 − Lj
2), j ≥ 2, ∆(1)

2 (L) = ∆2(L). It is
easy to verify that

∆2(L)ξt,s + ∆2(L)ξt−1,s + ∆2(L)ξt,s−1 + ∆2(L)ξt−1,s−1 = ∆(2)
2 (L)ξt,s,

∆(2)
2 (L)ξt,s + ∆2(L)ξt−2,s + ∆2(L)ξt−2,s−1 + ∆2(L)ξt−2,s−2

+ ∆2(L)ξt−1,s−2 + ∆2(L)ξt,s−2 = ∆(3)
2 (L)ξt,s,

and so on. Therefore, starting this process from the element ξn,n, we get

Rn,1 =
∑

t,s∈Dn

∆2(L)ξt,s = ∆(n)
2 (L)ξn,n = ξn,n − ξn,0 − ξ0,n + ξ0,0. (28)

Now, using the notation introduced in the proposition, we have

Rn,2 =
∑

t,s∈Dn

B(L1)(1− L1)εt,s =
n∑

t=1

n∑

s=1

(ε̄t,s − ε̄t−1,s)

=
n∑

t=1

(ηt,n − ηt−1,n) = ηn,n − η0,n. (29)

Similarly, we get

Rn,3 =
∑

t,s∈Dn

D(L2)(1− L2)εt,s = ζn,n − ζn,0. (30)

Since Rn =
∑3

i=1 Rn,i, (28)–(30) prove the proposition.
Proof of Theorem 5. Zn is a sum of i.i.d. random variables with finite

second moments; therefore, under an appropriate normalizing, both SLLN
and CLT for Zn hold, and to prove the theorem, we need to show that

n−2Rn
a.s.−→ 0 (for SLLN) (31)

and
n−1Rn

P−→ 0 (for CLT ). (32)

We start with the proof of (31). Since Eε2
00 = 1 and we have L2, from

Lemma 12 it follows that ξt,s = Φ∗(L)εt,s is a stationary random field and
Eξ2

t,s is finite and constant for all t, s. Thus, trivially,

n−2ξ0,0
a.s.−→ 0, (33)
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and since ∞∑

n=1

P (|n−2ξn,n| > ε) ≤ Eξ2
1,1

∞∑

n=1

ε−2n−4 < ∞,

we get
n−2ξn,n

a.s.−→ 0. (34)

Similarly, we prove

n−2ξ0,n
a.s.−→ 0, n−2ξn,0

a.s.−→ 0. (35)

To prove that
n−2ηn,n

a.s.−→ 0, (36)

we use the fact that, due to the condition
∑

j≥0 |bj |2 < ∞ proved in Lemma 12,
ε̄t,s is a stationary field with mean zero and finite second moment; moreover,
ε̄t,s and ε̄t,v are independent for s 6= v. Then

P (n−2
∣∣

n∑

s=1

ε̄n,s

∣∣ > ε) ≤ ε−2n−4
n∑

s=1

Eε̄2
n,s ≤ Cε−2n−3,

and, therefore, (36) follows. Similarly, we prove

n−2ηn,0
a.s.−→ 0, n−2ζn,n

a.s.−→ 0, n−2ζn,0
a.s.−→ 0. (37)

From (33)–(37) we get (31). Using the same Tchebyshev’s inequalities as in
the proof of (31), we get (32). The theorem is proved.

Proof of Theorem 6. Again, as in the proof of Theorem 5, we must
prove (31) under the weaker moment assumption. Since εt,s are i.i.d. mean-
zero random variables, applying the well-known moment inequality with
1 < p = 1 + β < 2 for ξt,s =

∑
k,l≥0 ϕ∗k,lεt−k,s−l, we get

E|ξt,s|p ≤ C
∑

k,l≥0

|ϕ∗k,l|pE|εt−k,s−l|p ≤ C
∑

k,l≥0

|ϕ∗k,l|p < ∞.

Hence,
∞∑

n=1

P (|n−2ξn,n| > ε) ≤ E|ξ1,1|p
∞∑

n=1

ε−pn−2p < ∞,

and we have (34). Similarly, we get (35) and (33). Applying the same
moment inequality, we have

P (n−2|ηn,n| > ε) ≤ ε−pn−2pE|ηn,n|p ≤ Cε−pn−(1+2β)E|ε̄n,1|p. (38)
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Using the condition L1+β and once more the moment inequality, we have

E|ε̄n,1|p ≤ CE|ε1,1|p
∑

j≥0

|bj |p < ∞.

Therefore,
∞∑

n=1

P (|n−2ηn,n| > ε) < ∞,

and we have (36). Similarly, we get (37), and all these relations give us (31).
We believe that the theorem also remains valid for β = 0; in the estimate

of ξn,n, we can take β = 0 with still remaining the convergent series, while
if we take β = 0 in (38), we get the divergent harmonic series

∑
n=1 n−1.

Proof of Theorem 7. Since under the assumptions of the theorem we
have a limit theorem for Zn, as in the proof of Theorem 5, we need to show
that

n−2/αRn
P−→ 0.

The assumption on ε1,1 means that

P (|ε1,1| > x) ∼ Cx−α as x →∞.

From Lemma 12 we have that
∑

k,l≥0 |ϕ∗k,l|α < ∞; therefore, applying results
on the tail behavior of weighted series of i.i.d. random variables (see Lemmas
A3 and A4 in [12]), we get

P (|ξn,n| > x) ∼ C
∑

k,l≥0

|ϕ∗k,l|αx−α as x →∞.

Hence,
n−2/αξn,n

P−→ 0.

In the same way, taking into account that, by Lemma 12,
∑

j≥0 |bj |α < ∞,
we get the relation

P (|ε̄n,s| > x) ∼ C
∑

j≥0

|bj |αx−α as x →∞.

Therefore, n−1/αηn,n converges to some stable law, and thus

n−2/αηn,n
P−→ 0.

The same arguments apply to the term with ζn,n and to other terms in Rn.
The theorem is proved.
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Proof of Theorem 8. Now we do not use BND directly but only the fact
that Xt,s is approximated by µ1εt,s. Let us denote

ωn = Sn − µ1Zn.

It is easy to see that to prove CLT for Sn it suffices to show that

n−2Eω2
n → 0. (39)

We want to apply Lemma 13, and, for this reason, we again use the following
agreement: ϕk,l = 0 if k < 0 or l < 0. Then it is not difficult to see that

ωn = Sn − µ1Zn =
∑

(i,j)∈Z2

n∑

t=1

n∑

s=1

bt−i,s−jεi,j ,

where b0,0 = ϕ0,0 − µ1 and bk,l = ϕk,l if (k, l) 6= (0, 0). Then

Eω2
n = Eε2

0,0

∑

(i,j)∈Z2

( n∑

t=1

n∑

s=1

bt−i,s−j

)2;

therefore, recalling that |n| = n2 in our case and applying Lemma 13, we
get (39).

Since SLLN for Zn easily follows, to prove SLLN for Sn, one needs to
show the convergence of the series

∞∑

n=1

P (n−2|ωn| ≥ ε),

which, after applying elementary moment inequality with 1 < p ≤ 2, will
converge if

∞∑

n=1

n−2pE|ωn|p < ∞. (40)

Again applying Lemma 13, we get

n−2E|ωn|p → 0,

and since 2p− 2 > 1 if p > 3/2, we finally get (40). The theorem is proved.

Proof of Proposition 9. Since the proof of this technical proposition is
lengthy, but not complicated, we present only the main steps, omitting the
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details. Taking the squares of both sides of equality (3), it is not difficult to
get

X2
t,s = Ψ0,0(L)ε2

t,s +
∑∗

p,r≥1Ψ±p,±r(L)εt,sεt∓p,s∓r,

where
∑∗, as in (8), means that there are four sums with all possible com-

binations of signs. Here and in what follows, we use the convention that
ϕk,l = 0 if k < 0 or l < 0. Now for each term Ψ±p,±r(L), we apply BND (4),
for example,

Ψ0,0(L) = µ2 + A0,0(L)−B0,0(L1)− C0,0(L2),

and we easily get (8). Summing these relations over Dn, we get (9), and it
remains to describe the structure of the remainder term Rn,2, which formally
can be written as
∑

(t,s)∈Dn

∑∗∗
p,r≥1(µ±p,±r+A±p,±r(L)−B±p,±r(L1)−C±p,±r(L2))εt,sεt∓p,s∓r,

where
∑∗∗ means that with four sums there is additional term with p = r =

0. Due to the presence of operators ∆2(L) and ∆(Li), this expression can
be simplified similarly as it was done when deriving relation (7). We shall
show that

Rn,2 = J0 +
4∑

i=1

4∑

j=1

J
(j)
i , (41)

where the index j corresponds to different combinations of signs ±, and the
index i corresponds to the part of the remainder obtained from different
terms. The terms J

(j)
1 are obtained by summing the quantities with µ±p,±r,

for example,

J
(1)
1 =

∑

(t,s)∈Dn

∑

p,r≥1

µp,rεt,sεt−p,s−r, J
(2)
1 =

∑

(t,s)∈Dn

∑

p,r≥1

µp,−rεt,sεt−p,s+r,

and so on. The terms J
(j)
2 are obtained by summing the quantities with

A±p,±r(L). Let us denote

ξt,s,±p,±r = Ψ∗
±p,±r(L)εt,sεt∓p,s∓r =

∑

k,l≥0

ψ∗k,l,±p,±rεt−k,s−lεt−k∓p,s−l∓r

and by ξ
(j)
t,s , j = 1, . . . , 4, the sums

∑
p,r≥1 ξt,s,±p,±r with appropriate combi-

nations of signs. We also denote ξ
(5)
t,s = ξt,s,0,0. Using the operators ∆(j)

2 (L)
as in the proof of Proposition 4, we get

J
(j)
2 =

∑

(t,s)∈Dn

∆2(L)ξ(j)
t,s = ∆(n)

2 (L)ξ(j)
n,n = ξ(j)

n,n − ξ
(j)
n,0 − ξ

(j)
0,n + ξ

(j)
0,0.
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The terms J
(j)
3 and J

(j)
4 are obtained by summing the quantities with B±p,±r(1−

L1) and C±p,±r(1 − L2), respectively. To write down these terms, we need
more notation. We set

ε̄t,s,±p,±r =
∑

j≥0

bj,±p,±rεt−j,sεt−j∓p,s∓r,

ε̂t,s,±p,±r =
∑

j≥0

dj,±p,±rεt,s−jεt∓p,s−j∓r,

and in the obvious way we define ε̄
(j)
t,s , ε̂

(j)
t,s , j = 1, 2, 3, 4, ε̄

(5)
t,s , ε̂

(5)
t,s , for

example,

ε̄
(1)
t,s =

∑

p,r≥1

ε̄t,s,p,r, ε̄
(4)
t,s =

∑

p,r≥1

ε̄t,s,−p,−r.

Again as in the proof of Proposition 4, we get

J
(j)
3 =

∑

(t,s)∈Dn

(1− L1)ε̄
(j)
t,s =

n∑

t=1

(η(j)
t,n − η

(j)
t−1,n) = η(j)

n,n − η
(j)
0,n,

J
(j)
4 =

∑

(t,s)∈Dn

(1− L2)ε̂
(j)
t,s =

n∑

s=1

(ζ(j)
n,s − η

(j)
n,s−1) = ζ(j)

n,n − ζ
(j)
n,0,

where

η
(j)
t,n =

n∑

s=1

ε̄
(j)
t,s , ζ(j)

n,s =
n∑

t=1

ε̂
(j)
t,s .

Finally, the term J0 corresponds to the case p = r = 0:

J0 =
∑

(t,s)∈Dn

(A0,0(L)−B0,0(1− L1)− C0,0(1− L2))ε2
t,s

= ∆(n)
2 (L)ξ(5)

n,n − (η(5)
n,n − η

(5)
0,n)− (ζ(5)

n,n − ζ
(5)
n,0).

We have written all terms in (41), and the proposition is proved.
Proof of Theorem 10. From (9) and (41) we see that to prove the theorem

one needs to show that all 17 terms in (41) divided by n2 tend to zero a.s.
Since all terms J

(j)
i , with different j for a fixed i are very similar, we shall

show only relations for j = 1:

n−2J
(1)
i

a.s.−→ 0. (42)
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We start with the proof of the relation

n−2J
(1)
1

a.s.−→ 0. (43)

Let us denote
εf
t−1,s−1 =

∑

p,r≥1

µp,rεt−p,s−r.

Due to Lemma 15,

E(εf
t−1,s−1)

2 =
∑

p,r≥1

µ2
p,r < ∞,

and εf is a mean-zero stationary random field; moreover, εt,s and εf
t−1,s−1

are independent. Therefore, we have

n−4E(J (1)
1 )2 = n−4E

( n∑

s,t=1

εt,sε
f
t−1,s−1

)2 = n−4
n∑

s,t=1

Eε2
t,sE(εf

t−1,s−1)
2 ≤ Cn−2,

since Eεt,sε
f
t−1,s−1εu,vε

f
u−1,v−1 = 0 if t 6= u or s 6= v. Hence, for any ε > 0,

∑

n≥1

P (n−2|J (1)
1 | ≥ ε) < ∞,

and (43) follows. Let us note that, for other values of j, we define in appro-
priate way the random fields εf

t±1,s±1 =
∑

p,r≥1 µ±p,±rεt∓p,s∓r and use the
condition ∑

p,r≥1

µ2
±p,±r < ∞.

To prove the relation
n−2J

(1)
2

a.s.−→ 0, (44)

consider
ξ(1)
n,n =

∑

p,r≥1

∑

k,l≥0

ψ∗k,l,p,rεn−k,n−lεn−k−p,n−l−r.

It is easy to see that, due to Lemma 15,

E(ξ(1)
n,n)2 =

∑

p,r≥1

∑

k,l≥0

(ψ∗k,l,p,r)
2Eε2

n−k,n−lEε2
n−k−p,n−l−r

is finite and does not depend on n. Thus, we get

n−2ξ(1)
n,n

a.s.−→ 0,
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and since the same relation for ξ
(1)
n,0, ξ

(1)
0,n, ξ

(1)
0,0 can be proved with minor

changes, we get (44). To get this relation for j = 2, 3, 4, we must consider
other combinations of signs in the expression

∑

p,r≥1

∑

k,l≥0

ψ∗k,l,±p,±rεn−k,n−lεn−k∓p,n−l∓r

and use the appropriate conditions from Lemma 15. Now consider

n−2η(1)
n,n = n−2

n∑

s=1

ε̄(1)
n,s.

It is easy to note that ε̄
(1)
n,s1 and ε̄

(1)
n,s2 are independent for s1 6= s2 and

E(ε̄(1)
n,s)

2 =
∑

p,r≥1

∑

j≥0

b2
j,p,r

is finite due to Lemma 15; therefore,

n−4E(η(1)
n,n)2 = n−4

n∑

s=1

E(ε̄(1)
n,s)

2 ≤ Cn−3.

The same relation holds for η
(1)
0,n, and we easily get

n−2J
(1)
3

a.s.−→ 0 (45)

In the same way we also prove

n−2J
(1)
4

a.s.−→ 0 (46)

for the other values j = 2, 3, 4. A final remark concerns the proof of

n−2J0
a.s.−→ 0, (47)

and this is the case j = 5 for i = 2, 3, 4, which is simpler since we have no
sum over all p, r ≥ 1 and set p = r = 0. Relations (43)–(47) give us (42),
and the theorem is proved.

Proof of Theorem 11. Essentially, we repeat the proof of Theorem 8;
therefore, we make only several remarks. We can take the one-to-one map-
ping g : {(t, s) ∈ Z2, t, s ≥ 1} → N such that, denoting ε̃n = εt,s if
g(t, s) = n and Z̃n =

∑n
k=1 ε̃k, we get that Zn = Z̃n2 . However, n−1/2Z̃n is

a normalized sum of i.i.d. random elements with mean zero and finite second
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moment in a Banach space of type 2; therefore, CLT for this sequence holds
(see, for example, [14]) with limit N(0, A), where A is the covariance oper-
ator for ε̃1 = ε1,1. Since n−1Zn is a subsequence of this weakly convergent
sequence, we get CLT for µ1n

−1Zn. Then, instead of (39), we prove

n−2E||ωn||2 → 0

using the moment inequality in a Banach space of type 2 (see, again, [14])
and Lemma 13 but now with the coefficients bk,l ∈ L(B). The theorem is
proved.
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[6] M. Juodis, A. Račkauskas, A central limit theorem for self-
normalized sums of linear processes, Statist. Probab. Lett. 77 (2007)
1535–1541.

[7] N.N. Leonenko, The central limit theorem for linear random fields,
Vychisl. Prikladnaya Mat. (Kiev) 25 (1975) 121–124 (In Russian).

32



[8] N.N. Leonenko, On the central limit theorem for some class of random
fields, Teor. Veroyatn. Matemat. Stat. (Kiev), 17 (1977) 87–93 (in
Russian).

[9] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer-
Verlag, Berlin, 1991.

[10] D. Marinucci, S. Poghosyan, Asymptotics for linear random fields,
Statist. Probab. Lett., 51 (2001) 131–141.

[11] T. McElroy, D.Politis, Limit theorems for heavy-tailed random
fields with subsampling applications, Math. Methods in Statist., 12
(2003) 3 305–328.

[12] T. Mikosh, G. Samorodnitsky, The supremum of a negative drift
random walk with dependent heavy-tailed steps. Ann. Appl. Probab.,
10 (2000) 1025–1064.

[13] A.N. Nazarova, Normal approximation for linear processes and fields
in a Hilbert space. Mat. Zametki, 68 (2000) 421–428, (in Russian, En-
glish translation Math. Notes, 68 (2000) 3 363–369).
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