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Abstract

We consider random linear fields on Zd generated by ergodic or
mixing (in particular case, independent identically distributed (i.i.d.))
random variables. Our main results generalize classical Strong Law of
Large Numbers (SLLN) for multi-indexed sums of i.i.d. random vari-
ables. These results are easily obtained using ergodic theory. Also we
compare the results for SLLN obtained using ergodic theory and with
the help of the Beveridge–Nelson decomposition.
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1 Introduction

Consider a linear random field

Xt =
∑
k>0

ϕkεt−k, t = (t1, . . . , td) ∈ Zd, k = (k1, . . . , kd) ∈ Zd, (1)

where the coefficients {ϕk, k > 0, k ∈ Zd} and random variables {εt, t ∈
Zd} are such that the random field {Xt, t ∈ Zd} is well defined and is
stationary. Here and in what follows bold letters stand for vectors (multi-
dimensional or infinite-dimensional), linear operations and inequalities are
component-wise, for example, 1 = (1, . . . , 1), for x,y ∈ Rd x 6 y means
that xi 6 yi, i = 1, . . . , d.

In the paper Phillips and Solo (1992) it was demonstrated that the
so-called Beveridge–Nelson decomposition (BND) presents rather simple
method for proving limit theorems (Central Limit Theorem (CLT), Strong
Law of Large Numbers (SLLN), Law of Iterated Logarithm (LIL), and In-
variance Principle (IP)) for sums of values of linear processes. In the recent
paper Paulauskas (2009) it was demonstrated that the same BND for linear
random fields is useful when proving limit theorems for sums

∑
t∈Dn

Xt,

where Dn is some subset of Zd. Namely, this representation (exact formula-
tion in the case d = 2 see below) allows to write∑

t∈Dn

Xt = M1

∑
t∈Dn

εt + Rn,

where M1 =
∑

k>0 ϕk, and Rn in the case d = 2 and for simple sets Dn

(rectangles or squares) has not complicated form. Thus, assuming that a
linear field is generated by i.i.d. random variables {εt, t ∈ Zd}, we reduce the
investigation of the limit behavior of sum of dependent stationary random
variables to the same problem for sums of i.i.d. random variables and the
problem to show that Rn (in some sense) converges to zero. In Paulauskas
(2009) the BND for linear random fields was applied to prove CLT and
SLLN, earlier in Marinucci and Poghosyan (2001) BND was used to prove
IP. In Paulauskas (2009) it was stressed that in the case d = 2 and sets
Dn = [1, n]2 ∩Z2 this approach leads to very simple proofs, but at the same
time moment conditions for innovations εt and conditions for coefficients ϕk

are not optimal (this is the price which we pay for simplicity of proofs). In
this short note we consider SLLN on rectangles

Dn = {t ∈ Zd : 1 6 ti 6 ni, i = 1, 2, . . . , d}. (2)
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and our goal is to obtain generalization of the classical SLLN for multi-
indexed sums of i.i.d. random variables (see Smythe (1973)). The main
message of our note is that the application of the ergodic theory to prove
SLLN for linear fields gives much more general and stronger results com-
paring with ones obtained by using BND and even the proofs, based on
application of ergodic theorems, are very simple. Since the application of
BND for IP also faces some difficulties (see Paulauskas (2009) and Marin-
ucci and Poghosyan (2001)), it seems that the most successful application
of BND is for the CLT in Paulauskas (2009).

Before formulation of our results we introduce some notions from the
ergodic theory. Let Y = {Yt, t ∈ Zd} be a strictly stationary random
field. Let H = RZd

denote a space of all real-valued functions on Zd with
a σ-algebra H, generated by cylindrical sets. Denote by {Uh, h ∈ Zd} the
group of translations:

Uhxt = xt−h, x ∈ H, t,h ∈ Zd.

Let P stand for a distribution of a random field Y in H. Strict stationarity
of Y means that P is invariant with respect to translations:

PU−1
h = P.

Let T denote σ-algebra of invariant sets:

T = {A ∈ H : Uh(A) = A, ∀ h ∈ Zd}.

A random field is ergodic if σ-algebra T is trivial:

∀ A ∈ T P(A) = 0 or 1. (3)

From the ergodic theory it follows that relation (3) is equivalent to the
following relation:

∀ A,B ∈ H n−d
∑

0≤h≤n̄−1

P(A ∩ U−1
h (B)) → P(A)P(B), (4)

as n →∞, here n̄ = (n, . . . , n). For more information on ergodic theory see
Georgii (1988) or Walters (1982).

We say that a random field Y is mixing if

∀ A,B ∈ H P(A ∩ U−1
h (B)) → P(A)P(B), (5)

as ||h|| → ∞, here || · || stands for any norm in Rd. It is clear that (5) implies
(4), thus, mixing implies ergodicity of a random field. Such definitions for
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measure-preserving transformations (but in case d = 1) can be found in
Walters (1982).

While using BND approach we consider linear fields of the form (1), the
ergodic theory approach allows us to consider more general linear random
fields with summation extended not over positive quadrant bur over all Zd.
Namely, let

Yt =
∑
k∈Zd

ϕkεt−k, t ∈ Zd. (6)

We consider sums
Sn =

∑
t∈Dn

Yt, (7)

and let us denote |n| :=
∏d

i=1 ni. We say that SLLN holds for Sn, if

|n|−1Sn
a.s.→ 0, (8)

when n tends to infinity. There are several interpretations of the growth of
n. In our paper we shall use two possibilities. We shall write n →∞ if

ni →∞, i = 1, . . . , d. (9)

The second possibility of growth of n is to assume that

|n| → ∞. (10)

Evidently, (10) follows from (9), but not converse.
Let us denote by Lq,p condition

∑
k∈Zd

( d∏
i=1

(|ki|+ 1)
)q|ϕk|p < ∞

and Lp := Lp,p. If a random variable X satisfies

E|X|(ln(1 + |X|))d−1 < ∞, (11)

we shall write X ∈ L log Ld−1.

Theorem 1. Let εt, t ∈ Zd be a strictly stationary ergodic random field
with Eε0 = 0 and ε0 ∈ L log Ld−1. Suppose that condition L0,1 holds and
Sn is defined in (7). Then, if n →∞, the relation (8) holds.
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In particular, the result holds for the case where εt, t ∈ Zd are i.i.d.
random variables satisfying the same moment conditions . Therefore in the
case where Yt = εt (this will be if ϕ0 = 1, ϕk = 0 for all k 6= 0) we get
the generalization of the result of Smythe (1973) where it is shown that
if εt, t ∈ Zd are i.i.d. random variables, then SLLN for Sn =

∑
t∈Dn

εt

holds if an only if (11) is satisfied. If we consider the class of all strictly
stationary ergodic random fields, which includes a random field εt, t ∈ Zd

with i.i.d. random variables εt, therefore moment condition ε0 ∈ L log Ld−1

in our theorem is necessary, too. But as results of Rieders (1993) show, for
particular types of dependent stationary sequences situation with necessary
conditions can be different, the same can be said about random fields.

If we require stronger condition on initial random field εt, t ∈ Zd, we
get a stronger result.

Theorem 2. Let εt, t ∈ Zd be a strictly stationary mixing random field
with Eε0 = 0 and ε0 ∈ L log Ld−1. Suppose that condition L0,1 holds. Then
the relation (8) holds, if |n| → ∞.

Both formulated theorems rely on the classical ergodic theorem of
Zygmund-Fava.

Theorem A. Let εt, t ∈ Zd be a strictly stationary ergodic random field
with Eε0 = 0 and ε0 ∈ L log Ld−1. Then

Vn = |n|−1
∑
t∈Dn

εt
a.s.→ 0,

as n →∞.
As it is formulated here, this result is an easy corollary from Theorem 1.1

in Krengel (1985), p. 196, where it is formulated in more general setting - for
some operators (contractions), acting on finite measure space. Reduction to
probability space and shift operators is standard, and that the limit is zero
(in Krengel (1985) the existence of a limit is stated) follows from ergodicity
of the random field under consideration.

Having these two results on SLLN for linear random fields it is clear
that by using BND we can not get such general and strong results. Thus,
application of BND to prove SLLN for linear random fields (the same re-
mark can be applied for linear processes, too) can be justified only from
methodological point of view: if one wants (for some reasons) to avoid er-
godic theory, one can reduce the problem of SLLN for linear random fields to
the case of SLLN for multi-indexed sums of i.i.d. random variables and use
(comparatively elementary) Smythe (1973) result and elementary moment
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inequalities to estimate remainder term appearing in BND (as it was done
in Paulauskas (2009)). We formulate one more such result in the case d = 2
in the next proposition. In all aspects this result is weaker comparing with
theorems formulated above, only the moment condition is only very little
stronger than (11), but it is necessary to note that to achieve such condition
instead of the moment inequality we used a result from ergodic theory. The
obtained result is stronger than results in Paulauskas (2009), and, in a sense,
it demonstrates the limits of the BND approach in the problem. Now we
return to a linear random field defined in (1) and we denote

S
(1)
n =

∑
t∈Dn

Xt. (12)

Proposition 3. Let εt, t ∈ Z2 be i.i.d. random variables with Eε0 = 0.
Suppose that for some 1 < p 6 2 moment condition E|ε0|p < ∞ and con-
dition Lp (with summation only over positive quadrant) holds. Then, under
(10), SLLN for S

(1)
n holds.

2 Proofs

Before the proof of theorems we shall formulate BND, as it was stated in
Paulauskas (2009). Let L = (L1, L2) be lag operators, defined by formulas:

L1εt = εt1−1,t2 , L2εt = εt1,t2−1.

Let us set
Φ(L) =

∑
k>0

ϕkLk1
1 Lk2

2 .

To formulate BND we need more notation. Denote

µ1 = Φ(1, 1) =
∑
k>0

ϕk,

A2(L) = Φ∗(L)∆2(L), ∆2(L) = (1− L1)(1− L2),

Φ∗(L) =
∑
k>0

ϕ∗kLk1
1 Lk2

2 , ϕ∗k =
∑

l>k+1

ϕl,

A1(L) = B(L1)∆1(L1) + D(L2)∆1(L2), ∆1(Li) = (1− Li),

B(L1) =
∑
l>0

blL
l
1, bl = ϕ∗l,−1 =

∑
k1>l+1,k2>0

ϕk1,k2 ,
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D(L2) =
∑
l>0

dlL
l
2, dl = ϕ∗−1,l =

∑
k1>0,k2>l+1

ϕk1,k2 .

Now we can formulate BND as it was stated in Paulauskas (2009).

Proposition 4. The following identity holds

Φ(L) = µ1 + A2(L)−A1(L). (13)

The relations∑
k>0

|ϕ∗k|p < ∞,
∑
l>0

|bl|p < ∞,
∑
l>0

|dl|p < ∞, µ1 < ∞ (14)

hold if either condition Lp in case 1 6 p < ∞ or condition L1,p in case p < 1
is satisfied.

Also we shall need the following simple result.

Lemma 5. Let Yt be a random field defined in (6), d ≥ 2, a random field
εt satisfies conditions of Theorem 1 and the condition L0,1 holds. Then for
all t ∈ Zd

E|Yt|(ln(1 + |Yt))d−1 < ∞. (15)

Proof of Lemma 5. Let us denote g(x) = |x|(ln(1+|x|))d−1. This function
is convex and increasing for x ≥ 0, therefore using obvious inequality (1 +
cx) ≤ (1 + x)(1 + c) we have for all c > 0, x > 0

g(cx) ≤ 2d−2(cg(x) + xg(c)).

We must prove the boundedness of Eg(Yt). Let us denote c =
∑

k∈Zd |ϕk|,
then, using the fact that g is convex and increasing, we have

Eg(Yt) = Eg(|
∑
k∈Zd

ϕkεt−k|) 6 Eg(|
∑
k∈Zd

|ϕk||εt−k|)

= Eg(c
∑
k∈Zd

|ϕk|
c
|εt−k|)

6 2d−2
{

cEg(
∑
k∈Zd

|ϕk|
c
|εt−k|) + g(c)E

∑
k∈Zd

|ϕk|
c
|εt−k|

}
6 2d−2

{
cE

∑
k∈Zd

|ϕk|
c

g(|εt−k|) + g(c)
∑
k∈Zd

|ϕk|
c

E|εt−k|
}

6 2d−2
{

cEg(|ε0|) + g(c)E|ε0|
}

< ∞.
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The lemma is proved.

Proof of Theorem 1. Theorem 1 directly follows from Theorem A.
Namely, the random field {Yt} is strictly stationary and ergodic (as a func-
tion of a random field {εt}), EY0 = 0, from Lemma 5 it follows that
Y0 ∈ L log Ld−1. Hence we can apply Theorem A.

Proof of Theorem 2. Let, for simplicity, agree to write [0,n]c for a set
of those k ∈ (Z+)d, which satisfy k 
 n. It is easy to see that the relation

Tn := |n|−1Sn
a.s.→ 0,

when |n| → ∞, is equivalent to the following condition: for each ε > 0 there
exists n(ε) = (n(ε)

1 , . . . , n
(ε)
d ) such that

P{|Tn| < ε, ∀n ∈ [0,n(ε)]c} = 1.

At first we prove the theorem in the case d = 2. From Theorem 1 it
follows that

Tn
a.s.→ 0,

as n → ∞, that is, ni → ∞, i = 1, 2. Let Ω0, P (Ω0) = 1, be a set of
those ω, for which this relation holds. (Here (Ω,F , P ) is a probability space
on which all random variables under consideration are defined.) Let us fix
ε > 0. Then ∀ ω ∈ Ω0, there exists n(ε) = (n(ε)

1 , n
(ε)
2 ) such that, ∀ n ≥ n(ε),

|Tn| < ε. Let us take some 1 ≤ m ≤ n
(ε)
2 − 1 and consider sums

T(n1,m) =
1

n1m

∑
k≤(n1,m)

Yk =
1
m

m∑
j=1

( 1
n1

n1∑
k=1

Y(k,j)

)
.

The random field {Yn, n ∈ Z2}, as a function (under very mild conditions
on a function; in our case it is linear function) of a mixing field {εn,n ∈ Z2},
is mixing, too. Therefore for any fixed j a random process {Y(k,j), k ∈ Z} is
also mixing, hence it is ergodic, and we get

T(n1,m)
a.s.→ 0, as n1 →∞.

Let Ω1,m, P (Ω1,m) = 1 be a set of those ω for which this relation holds.
Taking the same ε > 0 we can find nε,m such that for n1 ≥ nε,m and all
ω ∈ Ω(1,m), we have |T(n1,m)| < ε. Now for some 1 ≤ r ≤ n

(ε)
1 − 1 in a

similar way we consider sums T(r,n2), and (for the same ε) we introduce a
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set Ω2,r, P (Ω2,r) = 1, and number nr,ε such that, for all ω ∈ Ω(2,r), and all

n2 ≥ nr,ε, we have |T(r,n2)| < ε. Let us take n̄(ε) = (n̄(ε)
1 , n̄

(ε)
2 ) with

n̄
(ε)
1 = max{n(ε)

1 , nε,m : m = 1, . . . , n
(ε)
2 − 1},

n̄
(ε)
2 = max{n(ε)

2 , nr,ε, r = 1, . . . , n
(ε)
1 − 1}.

Let us denote

Ω̄ = Ω0 ∩
(
∩n

(ε)
2 −1

m=1 Ω1,m

)
∩

(
∩n

(ε)
1 −1

r=1 Ω2,r

)
.

It is clear that P (Ω̄) = 1, and from construction it follows that for all ω ∈ Ω̄
and for all n ∈ [0, n̄(ε)]c,

|Tn| < ε.

Thus, we have proved the theorem in the case d = 2.

Now, using mathematical induction, we shall prove the general case d >
2. Let us assume that the statement of the theorem is true for all dimensions
k ≤ d−1, d ≥ 3. We prove then that the statement of the theorem holds for
dimension d. The proof is similar to that in the case d = 2, only notations
are more complicated. Let us denote n(k) = (n1, . . . , nk−1, nk+1, . . . , nd) and
(n(k),m) = (n1, . . . , nk−1,m, nk+1, . . . , nd), k = 1, . . . , d. Again, by using
theorem 1, we have that SLLN is valid for Sn as n →∞. Let Ω0, P (Ω0) = 1,
be a set of those ω, for which this relation holds. Let us fix ε > 0. Then,
∀ ω ∈ Ω0, there exists n(ε) = (n(ε)

1 , . . . , n
(ε)
d ) such that, ∀ n ≥ n(ε),

|Tn| < ε.

Fix some 1 ≤ k ≤ d and take some 1 ≤ m ≤ n
(ε)
k − 1. Consider sums

T(n(k),m) =
1

|n(k)|m
∑

r6(n(k),m)

Yr

=
1
m

m∑
j=1

1
|n(k)|

∑
r(k)6n(k)

Y(r(k),j),

where |n(k)| = |n|/nk. Then, by using the same argument as in the proof
of the case d = 2, we get that {Y(n(k),j),n(k) ∈ Zd−1}, for a fixed j, is also
mixing. Therefore, from the induction assumption for a fixed m we get,

T(n(k),m)
a.s.→ 0, as |n(k)| → ∞.
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Denote by Ω(k,m), P (Ω(k,m)) = 1, the set where this convergence for T(n(k),m)

holds. Taking the same ε > 0, which we fixed at the beginning of the proof,
we will find n(k)(ε,m) = (n(ε,m)

1 , . . . , n
(ε,m)
k−1 , n

(ε,m)
k+1 , . . . , n

(ε,m)
d ) such that for

all n(k) ∈ [0,n(k)(ε,m)]c and for all ω ∈ Ω(k,m), |T(n(k),m)| < ε. Then by
applying the same argument to the other coordinates we will get the set of
pairs:

{(Ω(1,m1),n(1)(ε,m1)) . . . , (Ω(d,md),n(d)(ε,md)), 1 ≤ mk ≤ n
(ε)
k − 1}.

To finish the proof we must find Ω̄, for which P (Ω̄) = 1, and n̄ε such that,
for all n ∈ [0, n̄ε]c and ω ∈ Ω̄, |Tn| < ε. This can be easily done, namely

Ω̄ = Ω0 ∩d
k=1

(
∩nε

k−1
mk=1 Ω(k,mk)

)
.

and
n̄ε = (n̄ε

1, . . . , n̄
ε
d), n̄ε

k = max
(
nε

k,max
j 6=k

nε
j,k

)
,

nε
j,k = max

m≤n
(ε)
j −1

n
(ε,m)
j .

The theorem is proved.

Proof of Proposition 3. Applying (13) to the sum in (27) we get

S
(1)
n = µ1Zn + Rn, Zn =

∑
t∈Dn

εt, (16)

where

Rn = ξn1,n2 − ξn1,0 − ξ0,n2 + ξ0,0

+ ηn1,n2 − η0,n2 + ζn1,n2 − ζn1,0, (17)

ξt = Φ∗(L)εt =
∑
k>0

ϕ∗kεt−k,

ηt1,n2 =
n2∑

t1=1

ε̄t1,t2 , ε̄t1,t2 = B(L1)εt1,t2 =
∑
l>0

blεt1−l,t2 ,

ζn1,t2 =
n1∑

t1=1

ε̂t1,t2 , ε̂t1,t2 = D(L2)εt1,t2 =
∑
l>0

dlεt1,t2−l.
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Zn is a sum of i.i.d. mean zero random variables εt with E|ε0|p < ∞,
for some 1 < p 6 2, therefore SLLN for Zn holds. Then, in order to prove
the proposition, we must prove that

|n|−1Rn
a.s.→ 0, as |n| → ∞. (18)

We have
Rn = R1

n + R2
n + R3

n, (19)

where R1
n = ξn1,n2−ξn1,0−ξ0,n2+ξ0,0, R2

n = ηn1,n2−η0,n2 , R3
n = ζn1,n2−ζn1,0,

therefore we must prove the relation (18) for each Ri
n, i = 1, 2, 3. We start

with R1
n and prove that ∑

n>1

P (||n|−1ξn| > ε) < ∞. (20)

Since εt are i.i.d. and Eεt = 0, the moment inequality for ξt =
∑

k>0 ϕ∗kεt−k

yields
E|ξt|p 6 C

∑
k>0

|ϕ∗k|pE|εt−k|p 6 C
∑
k>0

|ϕ∗k|p < ∞. (21)

Therefore, ∑
n>1

P (||n|−1ξn| > ε) 6 E|ξ1|p
∑
n>1

ε−p|n|−p < ∞, (22)

thus we get
|n|−1ξn

a.s.→ 0. (23)

Clearly, the same relation holds for ξn1,0, ξ0,n2 , ξ0,0, and we get that

R1
n

a.s.→ 0. (24)

Unfortunately, the moment inequality is too rough for other two terms
R2

n and R3
n (this was noted in Paulauskas (2009)), since, using low order

moments for ζt and ηt, we get divergent series in (20), or we must require
existence of moment of the order 2 + δ, δ > 0. Therefore we shall use one
result from ergodic theory. Let us consider random variable ηt and let us
denote

Kn =
1
|n|

ηn =
1

n1n2

n2∑
t2=1

ε̄n1,t2 . (25)
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Taking into account the definition of ε̄t, we have

Kn =
1

n1n2

n2∑
t2=1

(
∑
l>0

blεn1−l,t2) =
1

n1n2

n2∑
t2=1

(
n1∑

k=−∞
bn1−kεk,t2)

=
1
n1

n1∑
k=−∞

bn1−k(
1
n2

n2∑
t2=1

εk,t2). (26)

Therefore, denoting fk = supn2
|n−1

2

∑n2
t2=1 εk,t2 |, we get

|Kn| 6
1
n1

n1∑
k=−∞

|bn1−k| sup
n2

| 1
n2

n2∑
t2=1

εk,t2 | =
1
n1

n1∑
k=−∞

|bn1−k|fk. (27)

Applying Proposition 50.2 from Parthasarathy (1983) we get E|fk| < ∞.
Here it is worth to note that the same conclusion we can get under weaker
moment condition ε0 ∈ L log L using Exercise 50.4 from the same book, but
this moment condition is insufficient in order to get (23) by means of the
moment inequality. Note that (fk) is a sequence of i.i.d. random variables,
since for different k sequences (εk,t2 , t2 ∈ Z) are independent. Let us denote
Xn1 =

∑n1
k=−∞ |bn1−k|fk. From lemma 11 in Paulauskas (2009) we know

that
∑

l>0 |bl| < ∞, therefore

E|Xl| 6
l∑

k=−∞
|bl−k|E|fk| 6 C

l∑
k=−∞

|bl−k| < ∞. (28)

Sequence {Xn, n ≥ 1} is a stationary, ergodic (since it is generated by a
sequence of i.i.d. random variables) and with finite mean, thus we can write

1
n1

Xn1 =
1
n1

( n1∑
1

Xl −
n1−1∑

1

Xl

)
=

1
n1

n1∑
1

Xl −
1

n1 − 1

n1−1∑
1

Xl
n1 − 1

n1

a.s.→ 0,

(29)
when n1 →∞. From (27) we get that, for all n2,

Kn
a.s.→ 0, as n1 →∞. (30)

Since we need to show that Kn
a.s.→ 0, as |n| → ∞, it remains to consider the

case, where n2 →∞ and n1 stays bounded. If |n| → ∞ in a such way that
n1 is fixed and n2 →∞, then

1
n2

n2∑
t2=1

ε̄n1,t2
a.s.→ 0.
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If a sequence nk = (n1,k, n2,k), k ≥ 1 is such that 1 ≤ n1,k ≤ k0, k0 is some
fixed number and n2,k → ∞, then the sequence Knk

can be divided into
k0 subsequences in a such way, that in each subsequence the first index of
summands is fixed. Then we apply the argument used above and get the
convergence to zero a.s. of each subsequence, therefore the sequence itself
also converges to zero a.s. Thus we have proved (30), if |n| → ∞.

It is easy to see that the convergence to zero a.s. of (n1n2)−1η0,n2 can be
proved in the same way, therefore we have

R2
n

a.s.→ 0. (31)

Due to symmetry the same consideration could be applied to ζt and we get

R3
n

a.s.→ 0. (32)

Collecting (19), (24), (31), (32) we get (18), and the proposition is
proved.
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