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Motivation: LOFAR/LOIS Application
• Geographically distributed set of electromagnetic 

sensors and emitters
• Data products: Raw data streams (beams)
• Very high data volume and rate
• Complex numerical data 
• Continuous queries: filtering, reduction, 

combining of data streams
• User-defined computational functions
� Problem:

High–performance processing of distributed 
continuous queries over many data streams.  
Utilizing GRID infrastructure for achieving high-
performance



How stream data are different?
Streams peculiarities:
• Infinite
• Representation of substreams of limited size: windows
• Continuous Queries (CQs)
• Immediate processing of elements, followed by

archiving or deletion
• Order preserving and non blocking processing
• Stream specific operations, e.g., windows join, moving 

average
• DBMS techniques for streams: approximate query 

answering, adaptivity, data reduction, multi-query 
optimization



GRID Computing
• Heterogeneous sets of clusters of computers
• For applications with much need for CPU 

cycles
• Toolkits (e.g. GLOBUS, CONDOR-G) provide 

transparent access to GRID clusters 
• Batch processing 

(upload – compute – download)
• High data volume bottleneck



GSDM as a Computational GRIDs 
Application

High data flow rate and large data volumes 
require high performance

�Parallelism and distribution 
Varying computer resource needs because of 

varying number of queries and streams, 
varying stream rates

�Dynamic resource allocation

�Computational GRID infrastructure



GSDM: GRID Stream Database 
Manager for Scientific Data

• Approach
– Distributed and parallel
– Stream-oriented
– Main-memory Object-Relational DBMS
– Utilization of GRID infrastructure for achieving 

high-performance
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GSDM Distributed Architecture

Four types of nodes
• Metadata manager
• Coordinator server
• Working node
• Application



Metadata and Coordinator Server

Functions:
• store metadata about the system
• decompose, install and activate CQs
• assign queries to working nodes
• start and kill working nodes 
• coordinate processing at working nodes



System Metadata
• Type GSDM

– name(GSDM) -> Charstring
– working_node(GSDM) -> Boolean
– coordinator(GSDM) -> Boolean
– cur_load(GSDM) -> Real

• Type Query
– qid(Query)->Charstring 
– query_string(Query)-> Charstring
– producers(Query) -> Bag of GSDM
– consumers(Query) -> Bag of GSDM
– installed(Query,GSDM) -> Boolean
– active (Query,GSDM)-> Boolean



Working Node
• Function: to process continuous queries over 

streams
• List of active CQ 
• CQ Execution loop

– Stream Consumer receives pushed data and incoming 
commands

– scheduler picks next CQ ready for execution
– executes the CQ over current stream windows
– Continuous Query Producer sends streamed result to 

the consumer (application or working node)



GSDM Working Node Architecture
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GSDM Command Line 
User Interface 

�Commands sent from application 
�Executed at coordinator

• monitor(Charstring qstring) -> Charstring qid;
• run(Charstring qid) -> Boolean;
• stop(Charstring qid) -> Boolean;
• status(Charstring qid) -> <Charstring qstring, 

Charstring prodname>;



GSDM Communication Primitives
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Current status

– GSDM prototype architecture
– Initial GSDM prototype implementation 
– Formulation of continuous queries with

user-defined computational functions from
space physics

– UDP receiver of radio on the Internet
– Data beam simulator



Related Work in Stream DBMS
• Relatively low stream rates, centralized architectures
• Relational representations and relational operations 

modified for stream processing: selection, join, 
aggregations

Our system
• High rates of LOIS/LOFAR streams
• Distributed architecture
• User-defined functions over non-relational data 

representations



GSDM requirements for GRID

• Interactive job: users can install and stop 
CQs interactively

• Accessibility & security issues
– Data delivery directly to the working nodes, 

e.g. inside of clusters
– High-performance communication between 

GSDM servers running on different GRID 
resources



Next steps

• Evaluation of initial prototype 
implementation and development

• Optimization of distributed stream 
database queries

• Utilize GRID infrastructure functionality 
for resource brokering and management

• New GRID services for streaming data 



GSDM Demo Scenario 
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Demo scenario
• Database schema

– start_udp_consumer(char s) -> integer;
– stop_udp_consumer() -> integer;
– change_udp_scale(real i) -> integer;
– get_udp_packet() -> 

< vector of complex, vector of complex, vector of complex >;

• Example CQ
create function visualized_fft()->boolean

as select repaint(v,6.0)

from vector of real v, vector of complex x,

vector of complex y, vector of complex z

where v= vect_log_magnitude(fft(windowed_fft(x)))
and get_udp_packet()= <x,y,z>;


