
GRID Stream Database Management
for Scientific Applications

Milena Ivanova (Koparanova)
and Tore Risch

IT Department, Uppsala University, Sweden

Outline
• Motivation
• Stream Data Management
• Computational GRIDs
• GSDM Distributed Architecture
• Project status
• Next steps
• GSDM Demo

Motivation: LOFAR/LOIS Application

Data Fabric with
13000 nodes

on-line hybrid data processing cluster

User post processing

Data Processing Plant

Control Center(s)

Motivation: LOFAR/LOIS Application
• Geographically distributed set of electromagnetic

sensors and emitters
• Data products: Raw data streams (beams)
• Very high data volume and rate
• Complex numerical data
• Continuous queries: filtering, reduction,

combining of data streams
• User-defined computational functions
� Problem:

High–performance processing of distributed
continuous queries over many data streams.
Utilizing GRID infrastructure for achieving high-
performance

How stream data are different?
Streams peculiarities:
• Infinite
• Representation of substreams of limited size: windows
• Continuous Queries (CQs)
• Immediate processing of elements, followed by

archiving or deletion
• Order preserving and non blocking processing
• Stream specific operations, e.g., windows join, moving

average
• DBMS techniques for streams: approximate query

answering, adaptivity, data reduction, multi-query
optimization

GRID Computing
• Heterogeneous sets of clusters of computers
• For applications with much need for CPU

cycles
• Toolkits (e.g. GLOBUS, CONDOR-G) provide

transparent access to GRID clusters
• Batch processing

(upload – compute – download)
• High data volume bottleneck

GSDM as a Computational GRIDs
Application

High data flow rate and large data volumes
require high performance

�Parallelism and distribution
Varying computer resource needs because of

varying number of queries and streams,
varying stream rates

�Dynamic resource allocation

�Computational GRID infrastructure

GSDM: GRID Stream Database
Manager for Scientific Data

• Approach
– Distributed and parallel
– Stream-oriented
– Main-memory Object-Relational DBMS
– Utilization of GRID infrastructure for achieving

high-performance

Working
Node 1

Query
Coordinator 1

Application Application

Data Beam1 Data Beam 2

Query
Coordinator 2

GRID

CQ1 CQ2

Metadata
Manager

Working
Node 3

Working
Node 2

Working
Node 4

Data Beam 3

Working
Node 5

Legend:
denotes
data flow

GSDM Scenario

GSDM Distributed Architecture

Four types of nodes
• Metadata manager
• Coordinator server
• Working node
• Application

Metadata and Coordinator Server

Functions:
• store metadata about the system
• decompose, install and activate CQs
• assign queries to working nodes
• start and kill working nodes
• coordinate processing at working nodes

System Metadata
• Type GSDM

– name(GSDM) -> Charstring
– working_node(GSDM) -> Boolean
– coordinator(GSDM) -> Boolean
– cur_load(GSDM) -> Real

• Type Query
– qid(Query)->Charstring
– query_string(Query)-> Charstring
– producers(Query) -> Bag of GSDM
– consumers(Query) -> Bag of GSDM
– installed(Query,GSDM) -> Boolean
– active (Query,GSDM)-> Boolean

Working Node
• Function: to process continuous queries over

streams
• List of active CQ
• CQ Execution loop

– Stream Consumer receives pushed data and incoming
commands

– scheduler picks next CQ ready for execution
– executes the CQ over current stream windows
– Continuous Query Producer sends streamed result to

the consumer (application or working node)

GSDM Working Node Architecture

GSDM
Working

Node

Data
sourcesBeam 2

Application

Beam 1 GSDM
Stream

Stream
Consumer

Plug-ins
Query Executor

Continuous Query Manager

Stream
Consumer

Stream
Consumer

Cont Q
Producer

Cont Q
Producer

Query Executor

Continuous Query Manager

Stream
Consumer

GSDM Command Line
User Interface

�Commands sent from application
�Executed at coordinator

• monitor(Charstring qstring) -> Charstring qid;
• run(Charstring qid) -> Boolean;
• stop(Charstring qid) -> Boolean;
• status(Charstring qid) -> <Charstring qstring,

Charstring prodname>;

GSDM Communication Primitives

Metadata and
Coordinator

Working
Node

User Node

Monitor
Query

Start node
Register WN

Install query qid, qstring
Installed qid
Activate qid

Activated qid
Deactivate qid

Deactivated qid
Uninstall qid

Uninstalled qid

Status
QidQid Run

Qid

Kill node

Current status

– GSDM prototype architecture
– Initial GSDM prototype implementation
– Formulation of continuous queries with

user-defined computational functions from
space physics

– UDP receiver of radio on the Internet
– Data beam simulator

Related Work in Stream DBMS
• Relatively low stream rates, centralized architectures
• Relational representations and relational operations

modified for stream processing: selection, join,
aggregations

Our system
• High rates of LOIS/LOFAR streams
• Distributed architecture
• User-defined functions over non-relational data

representations

GSDM requirements for GRID

• Interactive job: users can install and stop
CQs interactively

• Accessibility & security issues
– Data delivery directly to the working nodes,

e.g. inside of clusters
– High-performance communication between

GSDM servers running on different GRID
resources

Next steps

• Evaluation of initial prototype
implementation and development

• Optimization of distributed stream
database queries

• Utilize GRID infrastructure functionality
for resource brokering and management

• New GRID services for streaming data

GSDM Demo Scenario

Working Node 1

Metadata and
Coordinator
Server

Application (UI)
CQ

Name Server

Application
GSDM

CQ Results

Demo scenario
• Database schema

– start_udp_consumer(char s) -> integer;
– stop_udp_consumer() -> integer;
– change_udp_scale(real i) -> integer;
– get_udp_packet() ->

< vector of complex, vector of complex, vector of complex >;

• Example CQ
create function visualized_fft()->boolean

as select repaint(v,6.0)

from vector of real v, vector of complex x,

vector of complex y, vector of complex z

where v= vect_log_magnitude(fft(windowed_fft(x)))
and get_udp_packet()= <x,y,z>;

