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Abstract

We present a new construction of 5- and 6-sided rational Sabin and Hosaka{

Kimura like surface patches. They are based on a well known method of algebraic

geometry { blowing up base points. Corresponding 5- and 6-sided patches are more

e�cient as produced by the methods known before. A special attention is paid to

the 5-sided patches. A relationship between various approaches and the properties

of corresponding 5-sided patches are explained from a point of view of algebraic

geometry. We also describe some speci�c properties of the developed 6-sided patches.

Keywords: multisided surface patch, geometric continuity, control point, base

point.

1 Introduction

Sabin (1983, 1991) and Hosaka & Kimura (1984) de�ned 5- and 6-sided patches,

suitable for an inclusion in to the B-spline surfaces. The domains of their

patches are nonplanar regions in 5- and 6-dimensional space respectively. The

boundary of Sabin patches are conics (B�ezier curves of degree n = 2) and

boundary curves of Hosaka{Kimura patches are cubics (B�ezier curves of de-

gree n = 3). Zheng & Ball (1997) extended their approach to a case, when

boundary contains B�ezier curves of arbitrary degree n. Five-sided areas can be

parametrizied by the rational functions, so 5-sided Sabin and Hosaka{Kimura

patches are rational. For a parametrization of 6-sided area square roots are

involved. It is a disadvantage of 6-sided Sabin and Hosaka{Kimura patches {

they are nonrational. Loop & De Rose (1989) introduced S-patches. They are

rational m-sided patches de�ned over a planar m-gon for any m � 3. Later on

Loop & De Rose (1990) used S-patches for a construction of rational m-sided
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Sabin (boundary curves are conics) and Hosaka{Kimura (boundary curves

are cubics) like patches for arbitrary m � 3. Kar�ciauskas (1999) constructed

rational m-sided Sabin and Hosaka{Kimura like surface patches over planar

domain for any m � 3, m 6= 4, bounded by B�ezier curves of arbitrary degree

n. This approach produces the patches of lower degree than derived by the

previous methods of Sabin (1983), Hosaka-Kimura (1984), Loop & De Rose

(1990), Zheng & Ball (1997). Only in case m = 3, n = 2 they are of degree

4 as the original Sabin (1983) triangular patch, but possess some additional

useful properties.

Warren (1992) proposed a new method for creating rational multisided patches.

His idea was to use basis functions vanishing simultaneously on some ver-

tices of a domain triangle or rectangle { if we approach by a di�erent lines

a vertex, where all basis functions are zero, the limit points draw a space

curve. In algebraic geometry this procedure is called blowing-up base points.

In (Kar�ciauskas, 1998) 5- and 6-sided patches were investigated in more de-

tails than in the original work of Warren and the essential improvements were

made for �ve-sided patches. One goal of this paper is to construct for arbitrary

n the 5- and 6-sided Sabin and Hosaka{Kimura like patches, de�ned over the

blown-up triangle and to show that they are most e�cient. This construction

relies on the patches developed in (Kar�ciauskas, 1998). Another goal of this

paper is to describe birational geometry of two models of the blown-up plane.

Some results from this description are not used right now. But we still present

them to make more clear a structure of developed patches. The original paper

of Warren (1992) and (Kar�ciauskas, 1998) can be treated as a quick introduc-

tion to the method of blowing-up base points, applied to CAGD. Thoroughly

the methods of algebraic geometry are explained for example in the books

(Shafarevic, 1974) and (Hartshorne, 1977).

This paper is organized as follows. In Section 2 we de�ne various T -patches and

describe their main properties. Section 3 is devoted to birational geometry of

blown-up plane. There also the connections between various types of patches

are described. In Section 4 the T -patches are used for constructing Sabin and

Hosaka{Kimura-like (SHK) patches. These surface patches behave along their

boundaries like rectangular B�ezier patches and are suitable for an inclusion

into B-spline surfaces.

We use following notations. A point (x1; : : : ; xd) = (y1=y0; : : : ; yd=y0) in space

IRd is also represented in a homogeneous form (y0 : y1 : : : : : yd). Similar-

lar notations are used for the maps: rational map (g1=g0; : : : ; gd=g0) is often

written in a homogeneous form (g0 : g1 : : : : : gd). Bernstein polynomials�
n

j

�
(1� u)n�juj are denoted by Bn

j (u). For any set of functions fq, labeled by

a graph L, we set _fq = fq=
P

q0
2L
fq0 , q 2 L.
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2 T -patches

2.1 A combinatorial structure and de�nition

Five- and six-sided patches, considered in this paper, are controlled by the

same control point nets as T -patches de�ned in (Kar�ciauskas, 1999). Though

the basis functions are di�erent we also call them T -patches. This does not

lead to confusion since a situation is clear from the context.

Let W0;W1; : : : ;Wm�1;Wm = W0 be the vertices of a convex m-gon (in this

paper m = 5; 6); let W be its inner point and let n be a �xed natural number.

For each triangle with the vertices W;Ws;Ws+1, 0 � s � m� 1, the points

T s
ij =

i

n
W +

j

n
Ws+1 +

n� i� j

n
Ws; i; j � 0; i+ j � n;

linked together form its standard triangulation. All together they form a trian-

gulation ofm-gon. It is convenient to organize the labeling of this triangulation

in the following manner.

Let T n be a set of all triples (s; i; j), 0 � s � m� 1, 0 � i � n, 0 � j � n� i,

where triples (s; i; n � i) and (s + 1; i; 0) are identi�ed (the �rst index s is

treated in a cyclic fashion). There are mn(n+1)/2+1 triples in T n. Without

confusing T n can be treated as a graph of the triangulation of m-gon. This

labeling (graph) is shown in Figure 1. Notice, index s enumerates the triangles

and indices i; j come from a labeling of their standard trangulation.

It follows directly from a de�nition of T n graphs, that they have the same

symmetry group as a regularm-gon. More exactly, this means following. A map

rot : T n 7! T n, given by the formula rot((s; i; j)) = (s + 1; i; j), corresponds

to a rotation of a regular m-gon, when a vertex Ws maps to a vertex Ws+1. A

map mir : T n 7! T n, given by the formula mir((s; i; j)) = (�s�1; i; n� i� j),
corresponds to a mirror symmetry of a regular m-gon, when a vertex W0 maps

to itself. All maps from a symmetry group are the compositions of the maps

rot and mir.

Suppose, there are �xed basis functions fq, q 2 T n, on a domain D.

De�nition 1 A parametric rational 5- or 6-sided T -patch of order n over

domain D is a map F n : D! IR3 de�ned by the formula

F n(p) =

P
q2T n wqPqf

n
q (p)P

q2T n wqfn
q (p)

: (1)

The points Pq are called control points of the patch and the numbers wq
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(s+1,1,1)(s-1,1,n-2)

(s,i,n-i)=(s+1,i,0)(s-1,i,n-i)=(s,i,0)

(s,1,n-2)(s,1,1)

(s,1,n-1)=(s+1,1,0)(s-1,1,n-1)=(s,1,0)

(s+1,0,1)(s-1,0,n-1)

(s+1,0,j)(s-1,0,j)

(s,0,n)=(s+1,0,0)(s-1,0,n)=(s,0,0) (s,0,n-1)(s,0,j)(s,0,1)

Fig. 1. Combinatorial structure and labeling

are their weights. Geometrically T -patch is understood as the image F n(D).

But without confusing we often consider T -patch as a map (exactly as in

De�nition 1). It is worth to note we can use the formula (1) also in a case

when Pq are the points in IRd, d 6= 3. For example, if d = 2 we get the maps

from a plane to plane, that are useful in a investigation of various properties

of T -patches.

2.2 The domains

Blown-up triangle. Let D be a triangle with the vertices V0, V1, V2. For a point

p in a plane we denote by l0(p), l1(p), l2(p) its barycentric coordinates respect

to the triple V0, V1, V2. If it is convenient to use a�ne (or homogeneous)

coordinates we assume V0 = (0; 0) = (1 : 0 : 0), V1 = (1; 0) = (1 : 1 : 0),

V2 = (0; 1) = (1 : 0 : 1). The triangle D is a domain for both 5- and 6-sided

patches. Only location of the base points is di�erent: pentagonal patches are

de�ned via basis functions vanishing simultaneously at the vertices V1, V2;

hexagonal patches are de�ned via basis functions vanishing simultaneously at

all three vertices V0, V1, V2.

Regular domains. We assume m = 5; 6 and set � = 2�=m. By D we denote a

regular m-gon in (x; y)-plane with the vertices Rs = (cos s�; sin s�), 0 � s �
m� 1. A point of an intersection of the lines Rs�1Rs and Rs+1Rs+2 is denoted
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by Ks. We set

l̂s = �x cos(s� + �
2
)� y sin(s� + �

2
) + cos �

2
; 0 � s � m� 1 ;

k̂s = �x cos(s�)� y sin(s�) + (1 + cos�)=(2 cos�); 0 � s � m� 1:
(2)

It is easy to check that: l̂s = 0 de�nes a line RsRs+1; k̂s = 0 de�nes a line

Ks�1Ks.

2.3 Basis functions and de�nition

We de�ne various basis functions systems using the following scheme. Suppose

there are �xed m+1 functions h0; h1; : : : ; hm�1; �h. Moreover, suppose for arbi-

trary n there are �xed positive numbers knij; 0 � i � n; 0 � j � n�i, satisfying
knij = kni;n�i�j. For q = (s; i; j) 2 T n the basis functions fn

q are de�ned by the

formula

fn
q = knijh

n�i�j
s h

j
s+1

�hi: (3)

This scheme allows to get almost all known basis functions labeled by T n

graphs: formulas (5) and (7) give the basis functions from (Kar�ciauskas, 1998);

formula (9) give functions from (Kar�ciauskas, 1997); formula (11) give the

functions introduced by Krasauskas (1999); the basis functions of T -patches

for m � 5, introduced by Kar�ciauskas (1999), can be also de�ned by the

formula (3).

Now we de�ne the systems of basis functions for various type of patches still

not specifying the coe�cients knij. They are called T n
5 , T

n
6 , T̂

n
5 and T̂ n

6 patches.

� Five-sided T n
5 -patch over blown-up triangle. Let

h0 = l20; h1 = l0l1(l0 + l1); h2 = l21l2; h3 = l1l
2
2;

h4 = l0l2(l0 + l2); �h = l0l1l2:
(4)

From the formula (3) we get

fn
0;i;j = knijl

2n�i�j
0 l

i+j
1 li2(l0 + l1)

j;

fn
1;i;j = knijl

n�j
0 l

n+j
1 l

i+j
2 (l0 + l1)

n�i�j;

fn
2;i;j = knijl

i
0l

2n�i�j
1 l

n+j
2 ;

fn
3;i;j = knijl

i+j
0 l

n�j
1 l

2n�i�j
2 (l0 + l2)

j;

fn
4;i;j = knijl

n+j
0 li1l

n�j
2 (l0 + l2)

n�i�j:

(5)
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� Six-sided T n
6 -patch over blown-up triangle. Let

h0 = l20l1; h1 = l0l
2
1; h2 = l21l2; h3 = l1l

2
2;

h4 = l0l
2
2; h5 = l20l2;

�h = l0l1l2:
(6)

From the formula (3) we get

fn
2r;i;j = knijl

2n�i�j
r l

n+j
r+1 l

i
r+2; fn

2r+1;i;j = knijl
n�j
r l2n�ir+1 l

i+j
r+2: (7)

� Five-sided T̂ n
5 -patch over regular pentagon. Let

hs = l̂s+1l̂
2
s+2l̂s+3k̂s; s = 0; 1; ::; 4; �h =

4Y
s=0

l̂s: (8)

From the formula (3) we get

fn
s;i;j = knij l̂

i
sl̂
n�j
s+1 l̂

2n�i�j
s+2 l̂

n+j
s+3 l̂

i+j
s+4k̂

n�i�j
s k̂

j
s+1: (9)

� Six-sided T̂ n
6 -patch over regular hexagon. Let

hs = l̂s+1l̂
2
s+2l̂

2
s+3l̂s+4; s = 0; 1; ::; 5; �h =

5Y
s=0

l̂s: (10)

From the formula (3) we get

fn
s;i;j = l̂isl̂

n�j
s+1 l̂

2n�i�j
s+2 l̂2n�is+3 l̂

n+j
s+4 l̂

i+j
s+5: (11)

2.4 Basis functions from an algebraic point of view

Many features of T -patches (especially of 5-sided) can be explained using

the concept of the basis points from algebraic geometry. Here we give some

necessary de�nitions.

De�nition 2 The function f(x; y) has zero of multiplicity � at a point (x0; y0)

if it vanishes at (x0; y0) together with all partial derivatives up to the order ��1
and at least one partial derivative of order � does not vanish.

It is convenient to consider the zeros of the polynomials also at in�nity. If we

say a polynomial f of degree � n has at the in�nite point a zero of multiplicity

�, by a de�nition this means following: polynomial f is represented in the

homogeneous coordinates as a homogeneous polynomial of degree n; after

projective transformation an in�nite point is represented as an a�ne point

and the corresponding polynomial has at this point zero of multiplicity �. If
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fi(p) = 0 for each i then p is called base point of a rational map (x0 : x1 :

x2) 7! (f0(x0; x1; x2); : : : ; fd(x0; x1; x2)).

1. T n
5 -patches. The functions de�ned by the formula (5) are the basis for the

polynomials of degree � 3n having at the vertices V1(1 : 1 : 0), V2(1 : 0 : 1)

and in�nity points (0 : 1 : 0), (0 : 0 : 1) zeros of the multiplicity at least n.

2. T n
6 -patches. The functions de�ned by the formula (7) are the basis for the

polynomials of degree � 3n having at the vertices V0(1 : 0 : 0), V1(1 : 1 : 0),

V2(1 : 0 : 1) zeros of the multiplicity at least n.

3. T̂ n
5 -patches. The functions de�ned by the formula (9) are the basis for the

polynomials of degree � 5n having at all points Ks zeros of the multiplicity

at least 2n.

3. T̂ n
6 -patches. The functions de�ned by the formula (11) are the polynomials

of degree � 6n having at all points Ks and at three in�nite points - the

intersections of the pairs of the parallel sides of regular hexagon - zeros of the

multiplicity at least n (but are only a part of the basis for these polynomials).

2.5 Properties of T n
5 - and T

n
6 -patches

Here we list some important properties of blown-up 5- and 6-sided patches.

Most of them were announced in (Kar�ciauskas, 1998).

1. Linear independence. All systems of basis functions de�ned in Section 2.3

are linearly independent.

2. Boundary curves. If kn0j =
�
n

j

�
then a boundary of a patch consist of the

rational B�ezier curves of degree n with the control points Ps0j and the weights

ws0j, 0 � j � n (for each s corresponds one boundary curve).

3. Tangent planes along a boundary. Only the functions fn
s;0;0; f

n
s;0;1; : : : ; f

n
s;0;n

and fn
s�1;0;n�1, f

n
s;1;0; : : : ; f

n
s;1;n�1, f

n
s+1;0;1 e�ects a crossderivative along the

boundary curve, controlled by the points Ps00; Ps01; : : : ; Ps0n.

4. Convex hull property. If all weights wq are positive the patch lies in a con-

vex hull of the control points. (Su�cient conditions actually are ws00 > 0,

s = 0; 1; : : : ; m� 1, and wq � 0 for the rest q 2 T n.)

5. Implicit degree. Implicit degree of T n
5 -patch is � 5n2 and of T n

6 -patch is

� 6n2.

6. Parametric curves. An image of a general line of a domain is a rational

curve of degree n.

7. Order elevation. The coe�cients knij can be so recursively de�ned, that:

kn0j =
�
n

j

�
; there exist order elevation procedure; a sequence of the elevated

control point nets tends to the patch.

8. Symmetry property. Let P 0

q = Prot(q), w
0

q = wrot(q), P
00

q = Pmir(q), w
00

q =

wmir(q), q 2 T n. Then the control points and weights P 0

q, w
0

q and P
00

q , w
00

q de�ne

the same patch as the original control points Pq and weights wq.
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2.6 Plotting T -patches

General line in a parameter plane is mapped by a rational map (g0 : g1 :

: : : ; gd) of degree k in to a rational curve of degree k. But if a line goes

through a base point p of multiplicity at least � (all polynomials gi have

at p zero of multiplicity at least �), then an image is a curve of degree �
k � �. This simple principle of algebraic geometry is used in (Kar�ciauskas,

1999) for an e�cient plotting of T -patches de�ned over regular m-gon. So

T̂ n
5 -patch can be represented as a collection of �ve rational rectangular B�ezier

patches of bidegree (3n; 3n). For T̂ n
6 -patch there are two possibilities: standard

subdivision of domain hexagon into 6 quadrangles leads to a representation

as a collection of six rational rectangular B�ezier patches of bidegree (4n; 4n);

subdivision of a hexagon into 3 parallelograms gives a collection of three B�ezier

patches of bidegree (4n; 4n).

For an e�cient plotting of blown-up patches we subdivide domain triangle.

A subdivision depends if 5- or 6-sided patch is considered. We set Ms =

(Vs+1 + Vs+2)=2, s = 0; 1; 2, M = (V0 + V1 + V2)=3.

1. Plotting T n
5 -patches. We subdivide domain triangle into three parts: paral-

lelogram V0M2M0M1; triangle V1M0M2; triangle V2M1M0. A bilinear map bl0
de�ned by the formula bl0(u; v) = (V0(1�u)+M2u)(1�v)+(M1(1�u)+M0u)v

parametrizies a parallelogram. Moreover, its parametric lines go through the

in�nite point (0 : 1 : 0) or (0 : 0 : 1). A bilinear map bl1 de�ned by the formula

bl1(u; v) = V1(1 � v) + (M2(1 � u) +M0u)v parametrizies �rst triangle. Its

parametric lines v = const go through the in�nite point (0 : 0 : 1) and the para-

metric lines u = const go through the point V1. Similarly is de�ned a bilinear

map bl2 parametrizing second triangle. Composing bilinear parametrizations

bl0, bl1, bl2 with a map F n, de�ning a patch, we get three rectangular B�ezier

patches of bidegree (2n; 2n). A principle of this presentation is visualized in

Figure 2.

2. Plotting T n
6 -patches. We subdivide domain triangle into six triangles: their

vertices are Vs;Ms+2;M and Vs;Ms+1;M , s = 0; 1; 2. A rational bilinear map

bl0 de�ned by the formula

bl0(u; v) = (V0(1� v) + (M2(1� u) + (3=2)Mu)v)=(1 + uv=2)

parametrizies triangle with the vertices V0;M2;M . Moreover, its parametric

lines v = const go through the point V2 and the parametric lines u = const

go through the point V0. Similarly are de�ned the rational bilinear maps bls,

s = 1; : : : ; 5, parametrizing rest �ve triangles. Composing rational bilinear

parametrizations bls, s = 0; 1; : : : ; 5, with a map F n, de�ning a patch, we get

six rectangular B�ezier patches of bidegree (2n; 2n).
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Fig. 2. Plotting T n
5 -patches

3 Connection between blown-up and regular patches

3.1 Connection maps

In this section we show (Proposition 3) that T n
5 - and T

n
6 -patches, de�ned over

blown-up triangle, coincide actually with T̂ n
5 - and T̂ n

6 -patches, de�ned over

regular pentagon or hexagon. It helps to understand better the geometrical

properties of blown-up patches. On the other hand, more complicated de�ni-

tion of T n
5 - and T

n
6 -patches leads to some advantages - they can be represented

as a collection of rectangular B�ezier patches of lower degree (Section 2.6).

It was mentioned after De�nition 1 that we will use the formula (1) when

Pq 2 IRd, q 2 T n, d 6= 3. In this case it is su�cient to take n = 1. Therefore

we simplify some notations: let Ps = Ps;0;0, s = 0; 1; : : : ; m � 1, �P = P0;1;0,

k1 = k110. Moreover, we assume k100 = 1 and all wq, q 2 T 1, are equal to 1. By

M we denote barycentric center of domain triangle (M = (V0 + V1 + V2)=3).

We also set:

if two vertices V1 and V2 are blown-up { case of the formula (5) { then

eV0 = V0;
eV1 = V1;

eV2 = V1;
eV3 = V2;

eV4 = V2; (12)

if all vertices V0, V1, V2 are blown-up { case of the formula (7) { then

eV0 = V0;
eV1 = V1;

eV2 = V1;
eV3 = V2;

eV4 = V2;
eV5 = V0: (13)

Now we de�ne some useful connection maps IR2 7! IR2. They all are de�ned

by the formula (1). Only an input for this formula is di�erent in each case.

� Let: k1 = 3(
p
5 + 1)=2; the basis functions are given by the formula (9);

Ps =
eVs, s = 0; 1; : : : ; 4, �P = M , where eVs are de�ned by the formula (12).
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Corresponding map IR2 7! IR2 is denoted by H5.

� Let: k1 = 5(
p
5 � 1)=2; the basis functions are given by the formula (5);

Ps = Rs, s = 0; 1; : : : ; 4, �P is a center of a regular pentagon. Corresponding

map IR2 7! IR2 is denoted by ~H5.

� Let: k1 = 3; the basis functions are given by the formula (11); Ps = eVs, s =
0; 1; : : : ; 5, �P =M , where eVs are de�ned by the formula (13). Corresponding

map IR2 7! IR2 is denoted by H6.

The maps H5 and ~H5 are birational transformations of a plane. Moreover,

they are inverse to each other. Direct computations give the following formula

H5 = (2k̂0k̂2k̂3 : (
p
5 + 3)l̂3l̂4k̂2 : (

p
5 + 3)l̂0 l̂1k̂3): (14)

So H5 is a rational map of degree 3. The computations also show that ~H5

is a rational map of degree 2 and H6 is a rational map of degree 3. A map

H6 is not a birational transformation { generally there are three points (some

possibly complex conjugate) mapping to one point.

In order to avoid a confusion we introduce some temporary notations for

various kinds of the functions hs, �h and the coe�cients knij:

~h5s = hs, s = 0; 1; : : : ; 4, ~h55 =
�h in a case of the formula (4);

~h6s = hs, s = 0; 1; : : : ; 5, ~h66 =
�h in a case of the formula (6);

ĥ5s = hs, s = 0; 1; : : : ; 4, ĥ55 =
�h in a case of the formula (8);

ĥ6s = hs, s = 0; 1; : : : ; 5, ĥ66 =
�h in a case of the formula (10);

~knij = knij in case of the formulas (5) or (7);

k̂nij = knij in case of the formulas (9) or (11).

Let a = (
p
5+1)=2 (a is known as a golden section). Direct computations give

the following relations:

ĥ50(x; y)

~h50(H5(x; y))
= : : : =

ĥ54(x; y)

~h54(H5(x; y))
=

ĥ55(x; y)

a~h55(H5(x; y))
; (15)

ĥ60(x; y)

~h60(H6(x; y))
= : : : =

ĥ65(x; y)

~h65(H6(x; y))
=

ĥ66(x; y)

~h66(H6(x; y))
: (16)

From the formulas (15), (16), (3) and (1) we get the following proposition is

true.

Proposition 3 Let k̂nij = ai~knij, if m = 5, and k̂nij =
~knij, if m = 6. Then T n

5 -

patch coincides with the T̂ n
5 -patch and T n

6 -patch coincides with the T̂ n
6 -patch.

This proposition allows to consider blown-up patches as more usual patches

over regular domain. It helps to understand easier many features of ~T n
5 - and
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~T n
6 -patches. Take, for example, a third property from Section 2.5: only the

functions fn
s;0;0; fn

s;0;1; : : : ; f
n
s;0;n and fn

s�1;0;n�1, f
n
s;1;0; : : : ; f

n
s;1;n�1, f

n
s+1;0;1 ef-

fects a crossderivative along the boundary curve, controlled by the points

Ps00; Ps01; : : : ; Ps0n. On a regular domain it is obvious: all functions, except of

listed above, contain as a factor l̂�s with � � 2 (l̂s is de�ned by the formula(2)).

3.2 Birational geometry of blown-up triangle

It was mentioned in Section 2.5 that T n
5 - and T n

6 -patches are symmetric. It

is not obvious since their basis functions are not symmetric in a usual a�ne

plane. T̂ n
5 - and T̂

n
6 - patches are symmetric, since their basis functions are sym-

metric in an euclidian plane (it follows directly from the de�nitions). So we

get from Proposition 3 blown-up patches also are symmetric. Originally it was

proved using birational transformations of a domain triangle (in algebraic ge-

ometry known as Cremona transformations). By a de�nition birational trans-

formation means that it has an inverse rational map. Do not forget: blown-up

patches are de�ned not over standard triangle, but over triangle with two or

three blown-up vertices. Here we describe the birational transformations of

a blown-up plane. They are analog of the usual euclidian transformations of

a regular pentagon or hexagon. We additionally assume: k1 = 5 if the func-

tions are de�ned by the formula (9); k1 = 3 if the functions are de�ned by

the formulas (5) or (7). By O is denoted a center of a regular pentagon or

hexagon.

Every symmetry transformation dsym of a regular m-gon is a composition of

a rotation of an euclidian plane around O by an angle 2�=m and of mirror

symmetry respect to the line R0O. An analog gsym of any symmetry trans-

formation dsym is constructed using a following scheme. Let Rs0 = dsym(Rs).

Then Ps = eVs0, �P = M , where eVs are de�ned by the formula (12) if two ver-

tices V1, V2 are blown-up or by the formula (13) if all vertices V0, V1, V2 are

blown-up. A birational transformation gsym of a blown-up plane is de�ned by

the formula (1). The basis functions are given by the formula (5) in a case

of two blown-up vertices and by the formula (7) in a case of three blown-up

vertices. Generally, gsym is a birational transformation of degree 2. But some

of them are a�ne transformations (including also identity map). The identity

Hm � dsym = gsym � Hm, m = 5; 6, expresses a relationship between standard

symmetries and birational symmetries. It is worth to note, that for a pentagon

a map dsym can be de�ned by the formula (1) if Ps = Ps0, �P = O and the basis

functions are given by the formula (9).

A symmetry of the basis functions fn
q , de�ned by the formulas (5) or (7), is

11



expressed by the identities

(fn
q � gsym)=fn

q = (fn
q0 � gsym)=fn

q0; (17)

that are true for any gsym and q; q0 2 T n. These identities together with the

formula (1) gives self contained proof of the symmetry of blown-up patches.

Here we briey describe some properties of the transformations of a blown-up

plane.

Two blown-up points. First let us to note that if we consider projective plane

there are four blown-up points { not only the vertices V1(1 : 1 : 0), V2(1 : 0 : 1),

but also in�nite points (0 : 1 : 0) and (0 : 0 : 1). The rotation transformationgrot is given by the formula grot = ((l0+ l1)(l2+ l0) : l0(l0+ l1) : l1l2). There are

two �xed point of a rotation grot: A = (
p
5 � 2)V1 + ((3 �

p
5)=2)V1 + ((3 �p

5)=2)V2 and B = (�
p
5� 2)V1 + ((3 +

p
5)=2)V1 + ((3 +

p
5)=2)V2. A point

A lies in a domain triangle and A = H5(O); a map H5 contracts a circle going

through the points Ks to a point B; conversely, a point B is blown-up by the

map ~H5 to that circle. The map H5 contracts the lines R1R2 and R3R4 to the

points V1 and V2 respectively; conversely, the vertices V1 and V2 are blown-up

by the map ~H5 to those lines. The rotationgrot contracts a line V0V1 to a point
V1, blows-up V1 to a line V1V2, contracts that line to a point V2, blows-up V2
to a line V2V0, maps that line to a line V0V1. To a standard triangulation of a

pentagon, build from the triangles ORsRs+1, corresponds an invariant respect

to grot subdivision of a domain triangle (see left scheme in Figure 3). Curves

of this subdivision intersect each other at the point A (also at the point B,

not displayed in a scheme) and are conics, labeled 1; 2; 3; 4, or a line, labeled

0. Conic 1 is completely de�ned by the following conditions: it goes through

the points V1(1 : 1 : 0), (0 : 0 : 1), A, B and touches a line V0V1 at the vertex

V1. Conic 2 is completely de�ned by the following conditions: it goes through

the points V1(1 : 1 : 0), (0 : 1 : 0), (0 : 0 : 1), A, B and touches a line V1V2 at

the vertex V1. Similarly are de�ned the conics 3 and 4.

Three blown-up points. The rotation transformationgrot is given by the formulagrot = (l0l1 + l1l2 + l2 + l0 : l0l1 : l1l2). The point M = H6(O) is a �xed point

of a rotation grot. The map H6 contracts the lines R1R2, R3R4, R5R0 to the

points V1, V2, V0 respectively. The rotationgrot contracts a line V0V1 to a point
V1, blows-up V1 to a line V1V2, contracts that line to a point V2, blows-up V2
to a line V2V0, contracts that line to a point V0, blows-up V0 to a line V0V1.

To a standard triangulation of a hexagon, build from the triangles ORsRs+1,

corresponds an invariant respect to grot subdivision of a domain triangle (see

right scheme in Figure 3). Curves of this subdivision intersect each other at

the point M and are conics, labeled 0; 1; 2; 3; 4; 5. Conics 0 and 3 are arcs of

one conic, completely de�ned by the following conditions: it goes through the

points V1, V2, M ; touches a line V0V1 at the vertex V1; touches a line V0V2 at

12
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Fig. 3. Symmetric subdivision of blown-up triangles

the vertex V2. Similarly are de�ned other conics.

3.3 Relations with the Sabin surface

By SA5 we denote a surface in IR5 (with coordinates X1; X2; X3; X4; X5),

de�ned by equations Xs � 1 + Xs+3Xs+4 = 0, s = 1; 2; : : : ; 5 (index s is

treated in a cyclic fashion). This surface was introduced by Sabin (1983) for

a construction of 5-sided patches. A domain of the Sabin patch is a region in

SA5 with Xs � 0, s = 1; 2; : : : ; 5. The same domain was used by Hosaka and

Kimura (1984).

Now we de�ne two parametrizations of SA5. Let P0 = (0; 1; 1; 1; 0); P1 =

(0; 0; 1; 1; 1); P2 = (1; 0; 0; 1; 1); P3 = (1; 1; 0; 0; 1); P4 = (1; 1; 1; 0; 0); P5 =

(2=3; 2=3; 2=3; 2=3; 2=3) (Ps, s = 0; 1; : : : ; 4 are corner points of the Sabin

domain). Parametrization maps G5 and ~G5 are de�ned by the formula (1):

if basis functions are given by the formula (9), then k1 = 3(
p
5 + 1)=2 and a

map is denoted by G5; if basis functions are given by the formula (5), then

k1 = 3 and a map is denoted by ~G5.

Proposition 4 The maps G5 and ~G5 parametrizies the surface SA5. More-

over, ~G5 �H5 = G5.

Parametrization maps were found using standard methods of algebraic geom-

etry. We also give other explicit formulas for the maps G5 and ~G5. They are

useful in direct calculations (even with MAPLE package).

G5 = (g0 : g1 : : : : : g5), where gs+1 = ĥsĥs+1l̂s(l̂s�1+ l̂s+1� l̂s)2, s = 0; 1; : : : ; 4,

g0 = ((5
p
5� 11)=2)

Q4
i=0 ĥi (l̂s, ĥs are de�ned by the formula (2)).

~G5 = (g : v(1� v) : (1� u)2(1� v) : (1� u� v) : (1� u)(1� v)2 : u(1� u)),

where g = (1�u)(1�v) (assuming the vertices of a domain triangle are (0; 0),

(1; 0), (0; 1)).

Let us compose a map ~G5 with a map, de�ning 5-sided patch on SA5 (Sabin,

1983). After calculations with MAPLE we get that Sabin patch can be rep-

resented as T 3
5 -patch or, according to Proposition 3, as T̂ 3

5 -patch. This also

means, that basis functions of Sabin patch can be taken symmetric rational

13



cubics in IR5. We do not give here their explicit expressions. Similarly we get

that 5-sided Hosaka{Kimura patch can be represented as T 4
5 - or T̂

4
5 -patch.

3.4 Relations with S-patches

S-patches were introduced by Loop and De Rose (1989). Let us consider as

their domain only a regular pentagon. In this case an embedding E of a pen-

tagon into hyperplane X1 + X2 + X3 + X4 + X5 = 1 in IR5, used for a de�-

nition of 5-sided S-patch, can be described as follows. Let gs+1 = l̂s+1l̂s+2l̂s+3,

s = 0; 1; : : : ; 4, Q1 = (1; 0; 0; 0; 0), Q1 = (0; 1; 0; 0; 0); : : : ; Q5 = (0; 0; 0; 0; 1).

Then E =
P5

i=1 giQi=
P5

i=1 gi. An image of E we denote by LR5.

Let Y1 = X1�aX2+X3�aX4+X5+a�2, Y2 = X1+X2�aX3+X4�aX5+a�2,
Y3 = �aX1+X2+X3�aX4+X5+a�2, Y4 = X1�aX2+X3+X4�aX5+a�2,
Y5 = �aX1 + X2 � aX3 + X4 + X5 + a � 2, Y0 = (3 � 2a)(X1 + X2 + X3 +

X4 +X5 + 5a), where a = (
p
5 + 1)=2. We set L = (Y0 : Y1; : : : ; Y5).

Proposition 5 A map L maps a surface SA5 onto a surface LR5. Moreover,

E � ~H5 = L � ~G5.

It follows from Proposition 5 that 5-sided S-patches of depth n de�ned over

regular pentagon can be represented as T n
5 - or T̂

n
5 -patches.

3.5 Model surface for 6-sided patches

Here we describe a surface in IR6 which can be used for a de�nition of T n
6 - or

~T n
6 -patches. So it is like analog of a surface SA5.

Let k1 = 3, P0 = (1; 0; 0; 0; 0; 0), P1 = (0; 1; 0; 0; 0; 0); : : : ; P5 = (0; 0; 0; 0; 0; 1),
�P = (0; 0; 0; 0; 0; 0). The maps G6; ~G6 : IR

2 7! IR6 are de�ned by the formula

(1): if the basis functions are given by the formula (11) a map is denoted by

G6; if the basis functions are given by the formulas (7) a map is denoted by
~G6. Direct computation shows that G6 = ~G6 � H6. An image of G6 (or ~G6)

we denote by W6. The map ~G6 is a birational parametrization of W6. The

parametrization G6 maps generally three points to one. A surface W6 can be

de�ned by nine quadric equations gi = 0, i = 1; : : : ; 9:

gi = XiXi+3 � (X1 +X2 +X3 +X4 +X5 +X6 � 1)2=9; i = 1; 2; 3,

g3+i = XiXi+2 +Xi+1(X1 +X2 +X3 +X4 +X5 +X6 � 1)=3; i = 1; 2; : : : ; 6.

The surfaceW6 is a toric manifold. Deeper analysis of this surface from a point

of view of toric geometry is given by Krasauskas (1999).
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(s+1,0,1)(s-1,0,n-1)

(s+1,0,j)(s-1,0,j)

(s+1,1,j)(s-1,1,j)

(s,1,n-1)=(s+1,1,1)(s-1,1,n-1)=(s,1,1) (s,1,j)

(s,0,n)=(s+1,0,0)(s-1,0,n)=(s,0,0) (s,0,n-1)(s,0,j)(s,0,1)

Fig. 4. Combinatorial structure of SHK-patches

4 Sabin and Hosaka{Kimura like patches

4.1 Combinatorial structure and de�nition

For a simplicity we denote Sabin and Hosaka{Kimura like surface patches

as SHK-patches. Control points and weights of m-sided SHK-patches are

labeled by the triples (s; 0; j), (s; 1; k), 0 � s � m � 1, 0 � j � n, 1 �
k � n � 1, where (s � 1; 0; n) = (s; 0; 0) and (s � 1; 1; n � 1) = (s; 1; 1)

(index s is treated in a cyclic fashion; n is degree of the boundary curves).

A graph Hn is displayed in Figure 4. Note, Sabin pattern has only one inner

point (0; 1; 1) = (1; 1; 1) = : : : = (m � 1; 1; 1). The SHK-patches possess

following nice property: for each boundary B�ezier curve with control points

Ps0j and weights ws0j, j = 0; 1; : : : ; n, a patch can be so reparametrized, that

crossderivative along this curve is the same as crossderivative of rectangular

B�ezier patch with two layers of control points (and corresponding weights)

Ps;0;0, Ps;0;1; : : : ; Ps;0;n and Ps�1;0;n�1; Ps;1;1; : : : ; Ps+1;1;1, Ps+1;0;1. This property

is as an unformal de�nition of SHK-patch. Here we give a de�nition, that

actually outlines a method for a construction of SHK-patches.

De�nition 6 Suppose on the domain D there are �xed the functions gq, q 2
Hn, and there exist the maps res : [0; 1] � [0; 1] ! D, 0 � s � m � 1, called

15



reparametrization maps, satisfying following conditions:

(1) _gs0j(res(0; u)) = Bn
j (u); 0 � j � n;

(2) @ _gs0j(res(t; u))=@t jt=0 = �nBn
j (u); 0 � j � n;

(3) @ _gs�1;0;n�1(res(t; u))=@t jt=0 = nBn
0 (u);

(4) @ _gs+1;0;1(res(t; u))=@t jt=0 = nBn
n(u);

(5) @ _gs1j(res(t; u))=@t jt=0 = nBn
j (u); 1 � j � n� 1;

(6) _gq(res(0; u)) = 0 for all functions _gq; except of listed (1); and

@ _gq(res(t; u))=@t jt=0 forall _gq; except of listed in (1)� (5):

A rational SHK-patch of order n is a map Gn : D ! IR3 de�ned by the

formula

Gn(p) =

P
q2Hn wqPqgq(p)P
q2Hn wqgq(p)

(18)

Though De�nition 6 di�ers from that in (Kar�ciauskas, 1999), practically they

are equivalent. Obviously we have

@(Bn
0 (t)B

n
j (u))=@t jt=0 = �nBn

j (u); @(B
n
1 (t)B

n
j (u))=@t jt=0 = nBn

j (u);

Gn(p) =
P

q2Hn wqPq _gq(p)=
P

q2Hn wq _gq(p):

These identities implies, that after reparametrization a crossderivative of SHK-

patch of order n behaves like a crossderivative of B�ezier patch of bidegree

(n; n). It allows to join smoothly SHK-patches with adjacent B�ezier patches

and to build smooth spline surfaces of arbitrary topology.

A following technical lemma from (Kar�ciauskas, 1999) is essentially used in a

proof of the theorem 8.

Lemma 7 Suppose the functions hij(t; u) ,i = 0; 1, 0 � j � n, satisfy

h0j(0; u) = Bn
j (u)A(u), h1;j(0; u) = 0, @h0j=@t jt=0 = Bn

j (u)D(u),

@h1j=@t jt=0 = nBn
j (u)A(u) for some functions A(u); D(u). Then

@(h0j/
1X

i=0

nX
r=0

hir)=@t jt=0 = �nBn
j (u);

@(h1j/
1X

i=0

nX
r=0

hir)=@t jt=0 = nBn
j (u):
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4.2 Main theorem

Basis functions gq, q 2 Hn, for SHK-patches are build as the linear combina-

tions of the basis functions fn
q , q 2 T n, de�ned by the formulas (5) or (7). In

the main theorem only the functions fn
s;i;j, (s; i; j) 2 T n, with i � 1 are used.

We set kn0j =
�
n

j

�
, kn1j = 1. Following notions help to avoid possible confusion

indexing basis functions of SHK- and T -patches:

if q = (s; i; j) 2 Hn then gsij := gq;

if q = (s; i; j) 2 T n then f[s;i;j] := fn
q .

Theorem 8 Let a = n; bj = j
�
n

j

�
; cj = (n�j)

�
n

j

�
; dj = n

�
n

j

�
, 1 � j � n�1,

and

� gs00 = f[s;0;0] + af[s;1;0];

� gs0j = f[s;0;j] + bjf[s;1;j�1] + cjf[s;1;j]; 1 � j � n� 1;

� gs11 = d1
Pm�1

s=0 f[s;1;0] if n = 2;

gs11 = d1(f[s�1;1;n�2] + f[s;1;0] + f[s;1;1]) if n � 3;

gs1j = dj(f[s;1;j�1] + f[s;1;j]); 2 � j � n� 2; if n � 4:

Then a patch, de�ned by the formula (18), is a rational SHK-patch of order n.

Proof. Suppose we try to �nd the functions gq, q 2 Hn, in a form declared in

Theorem 8, but with still unknown coe�cients a, bj, cj, dj, satisfying symmetry

conditions bn�j = cj, dn�j = dj.

Step 1. Let Q0 = V1, Q1 = (V0 + 2V1)=3, Q2 = (V0 + 2V2)=3, Q3 = V2 and

Q(u) =
P3

k=0QkB
3
k(u). Reparametrization map re2 : [0; 1] � [0; 1] ! D is

de�ned by the formula re2(t; u) = (V1(1� u) + V2u)(1� t) +Q(u)t. It follows

from the second and third properties of blown-up patches (Section 2.5), that

conditions (1) and (6) from De�nition 6 are satis�ed respect to a map re2 for

arbitrary constants a, bj, cj, dj. We also de�ne the functions hij(t; u), i = 0; 1,

j = 0; 1; : : : ; n, by the formulas

h00 = (f[2;0;0] + af[2;1;0]) � re2; h0n = (f[2;0;n] + af[2;1;n�1]) � re2;
h0j = (f[2;0;j] + bjf[2;1;j�1] + cjf[2;1;j]) � re2; 1 � j � n� 1;

h10 = (f[1;0;n�1] + cn�1f[2;1;0]) � re2;
h1n = (f[3;0;1] + b1f[2;1;n�1]) � re2;
h1j = dj(f[2;1;j�1] + f[2;1;j]) � re2; 1 � j � n� 1:

(19)
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and set H =
P1

i=0

Pn
j=0 hij. Second and third properties from Section 2.5

insures, that:

@ _g20j(re2(t; u))=@t jt=0 = @(h0j=H)=@t jt=0; 0 � j � n;

@ _g1;0;n�1(re2(t; u))=@t jt=0 = @(h10=H)=@t jt=0;

@ _g301(re2(t; u))=@t jt=0 = @(h1n=H)=@t jt=0;

@ _g21j(re2(t; u))=@t jt=0 = @(h1j=H)=@t jt=0; 1 � j � n� 1:

(20)

In the next three steps it will be shown, that for the appropriate values of

a,bj, cj, dj there exist the functions A(u); D(u), satisfying the assumptions of

Lemma 7.

Step 2. Here we compute functions fq(re2(t; u)) as the polynomials respect to

t. In further computations important are only the restrictions of the functions

hij and their derivatives respect to t on t = 0. Therefore we do not include

in calculated expressions the terms containing tk, k � 2. This really does not

lead to a confusion. For a simplicity the same letter f is used for any function

f and f(re2(t; u)).

Simple calculations give l0 = (1�u)ut, l1 = (1�u)(1�u2t), l2 = u(1�(1�u)2t).
The functions fq, we are interested in, now are the same both for a 5- or 6-

sided patches, except f[1;0;n�1] and f[3;0;1]. Calculating them we get that in both

cases f[1;0;n�1] = (1� u)2n+1unt, f[3;0;1] = (1� u)nu2n+1t. Therefore there is no

di�erence in a proof between 5- or 6-sided patches. Let A(u) = (1 � u)nun.

Here is a list of the expressions fq, we are interested in:

f[20j] = A(u)
�
n

j

�
(1� u)n�juj(1� ((n+ j)(1� u)2 + (2n� j)u2)t);

f[21j] = A(u)(1� u)n�juj+1t;

f[1;0;n�1] = A(u)n(1� u)n+1t; f[301] = A(u)nun+1t:

(21)

Step 3. Obviously h0j(0; u) = A(u)Bn
j (u). For j = 1; : : : ; n� 1 simple calcula-

tion gives

@h1j=@t jt=0 = A(u)dj(1� u)n�juj:

If dj = n
�
n

j

�
, part of conditions of Lemma 7 are satis�ed. Since

@h10=@t jt=0 = A(u)n(1� u)n(1� u+ (cn�1=n)u);

one more condition @h10=@t jt=0 = A(u)nBn
0 (u) is true, if cn�1 = n. If b1 =

cn�1 = n it follows from a symmetric de�nition of the functions hij, that

@h1n=@t jt=0 = A(u)nBn
n(u)
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Step 4. Calculating in the same fashion as before we get following results:

@h00=@t jt=0 = D0(1� u)n; where

D0 = �A(u)(n(1� u)2 + 2nu2 � au); if 1 � j � n� 1, then

@h0j=@t jt=0 = Dj

 
n

j

!
(1� u)n�juj; where

Dj = �A(u)((n + j)(1 � u)2 + (2n � j)u2 � (bj=
�
n

j

�
)(1 � u) � (cj=

�
n

j

�
)u).

The expressions Dj must be independent of j (Dj = D(u)). Simplifying an

equation Dj �D0 = 0 we get it can be written in a form Z0 +Z1u = 0, where

Z0 = j � bj=

 
n

j

!
; Z1 = a� 2j + bj=

 
n

j

!
� cj=

 
n

j

!
:

Solving the system Z0 = 0, Z1 = 0 we get

bj = j

 
n

j

!
; cj = (a� j)

 
n

j

!
:

So b1 is the same as derived in Step 3. Obviously cn�1 also must coincide with

the cn�1 from Step 3. This gives an equation n(a � n + 1) = n and we get

a = n. The �nal expression for the coe�cients cj becomes cj = (n� j)
�
n

j

�
. It

follows from a symmetric de�nition of the functions hij, that @h0n=@t jt=0 =

D(u)Bn
n(u).

Step 5. In the steps 2; 3; 4 we have shown, that if a = n, bj = j
�
n

j

�
, cj =

(n � j)
�
n

j

�
, dj = n

�
n

j

�
, then for the functions from (19) are satis�ed the

conditions of Lemma 7. Therefore this lemma and the formulas (20) implies,

that the conditions 2; 3; 4; 5 of De�nition 6 are satis�ed respect to the map

re2 (the conditions 1 and 6 are satis�ed for any values of a, bj, cj, dj). Rest

of the maps res are de�ned by the formula res = grots�2 � re2 (rotation grot of
a blown-up plane was introduced in Section 3.2). It follows from a symmetry

of ~T n
5 - and

~T n
6 -patches (formula (17)), that the conditions of De�nition 6 are

satis�ed for all maps res. 2

Let us to note, that after proving the conditions of De�nition 6 respect to re2,

we can simply lift to a patch, de�ned over regular domain, and hence with

obvious symmetric properties.

4.3 Properties o SHK-patches

Here we consider some features of SHK-patches constructed using Theorem

8.
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1. Convex hull property. Since all coe�cients a, bj, cj, dj are positive, basis

functions gq, q 2 Hn, are nonnegative on a domainD. It implies SHK-patches

from Theorem 8 possess convex hull property.

2. Plotting SHK-patches. The basis functions gq, q 2 Hn, of m-sided SHK-

patch of order n are linear combinations of the basis functions of T n
m-patches.

It means SHK-patch can be represented as a T n
m-patch. Therefore: 5-sided

patch SHK-patch of order n can be represented as a collection of three ra-

tional B�ezier patches of bidegree (2n; 2n); 6-sided patch SHK-patch of order

n can be represented as a collection of six rational B�ezier patches of bide-

gree (2n; 2n). The corresponding estimations for 5- and 6-sided patches from

(Kar�ciauskas, 1999) are respectively (2n+1; 2n+1) and (3n+1; 3n+1). They

are better as the estimations for the patches derived by the methods known

before. So Theorem 8 gives most e�cient 5- and 6-sided SHK-patches.

In (Loop and De Rose, 1990) SHK-patches are constructed elevating a depth

of S-patches. The calculations show, that it is possible to construct 5-sided

SHK-patches of order 3 without elevating a depth. Such patches can be rep-

resented as a collection of �ve B�ezier patches of bidegree (6; 6). But 5-sided

patch of order 3 from Theorem 8 can be represented as a collection of three

patches of the same bidegree (so remains a little bit better). We have not done

calculations for n � 4. In any case it is clear that the estimations can not be

improved using basis functions of S-patches. The same is true for 6-sided

patches.

Remark 9 We compare various patches using following criteria: a patch is

more e�cient as another one if it can be represented as a collection of B�ezier

patches with lower bidegree. Here is possible a confusion. We compare only

the methods, that produce multisided patch as an entire algebraic manifold.

Subdivision into rectangular patches is important for its representation. The

methods producing multisided patch as a collection of smoothly joined rect-

angular patches may give lower bidegrees. On the other hand, entire patches

have, as a rule, better shape.

3. Extended SHK-patches. In Theorem 8 for a construction of SHK-patches

are used only the functions fn
s;i;j with i � 1. The functions fn

s;i;j with i � 2

have no e�ect on the position and on the crossderivatives along the boundary

of a patch. Therefore they can be treated as the additional basis functions

of SHK-patches. Some features of this additional freedom are discussed in

(Kar�ciauskas, 1999). They remain true with one di�erence in a favor for the

just derived patches: adding new basis functions does not increase a degree of

a representation.

4. Twist incompatibility. Suppose we want to �ll smoothly with SHK-patch 5-

or 6-sided hole, but at the corner Ps;0;0 there appears "twist incompatibility":

a point P s
s;1;1, insuring (with some other control points) tangent plane conti-
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nuity along boundary curve between Ps;0;0 and Ps+1;0;0, does not coincide with

a point P s�1
s�1;1;n�1, insuring tangent plane continuity along boundary curve

between Ps�1;0;0 and Ps;0;0. This problem is solved using method of variable

control points, proposed by Hosaka and Kimura (1984). One possibility is to

lift blown-up patch to a patch over regular pentagon or hexagon. In this case

the formulas for the variable control points are given in (Kar�ciauskas, 1999).

Another possibility is to work directly with blown-up patches without loosing

a symmetry property.

Let k100 = 1, k110 = 2. If m = 5, basis functions f 1
q are de�ned by the formula

(5); if m = 6, basis functions f 1
q are de�ned by the formula (7). We set

~ls = f 1
s+2;0;0 + f 1

s+3;0;0 + f 1
s+4;0;0 + f 1

0;1;0; if m = 5;

~ls = f 1
s+2;0;0 + f 1

s+3;0;0 + f 1
s+4;0;0 + f 1

s+5;0;0 + f 1
0;1;0; if m = 6;

Ls = ~ls+1
~ls+2 : : : ~ls+m�1:

If n � 3, a variable control point Ps11 is de�ned by the formula

Ps11 = (~lsP
s�1
s�1;1;n�1 +

~ls�1P
s
s;1;1)=(

~ls�1 + ~ls):

If n = 2, inner variable control point P011 is de�ned by the formula

P011 =
m�1X
s=0

LsP
s
s;1;1=

m�1X
s=0

Ls:

From an algebraic point of view plotting blown-up SHK-patches is a repeated

blown-up procedure.

5 Conclusion and future work

In this paper we have presented new construction of 5- and 6-sided Sabin

and Hosaka{Kimura like surface patches. They are called SHK-patches and

can meet surrounding rectangular patches with G1 continuity. Introduced here

method is most e�cient compared with other methods, producing a patch as

an entire surface. Thoroughly is considered a relationship with the classical

pentagonal Sabin and Hosaka-Kimura patches and S-patches from (Loop and

De Rose, 1990). We also describe new patches from the point of view of alge-

braic geometry. Main interest of a current research are rational blown-up 5-

and 6-sided patches, meeting surrounding rectangular patches with G2 conti-

nuity.
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