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Abstract

We present a new control point scheme of non-rectangular rational m-sided sur-

face patches (m � 3; m 6= 4). They are called T -patches and are used for a con-

struction of rational m-sided Sabin and Hosaka{Kimura like patches. There are no

restrictions on m and on degree of boundary B�ezier curves. General construction

deals with a case m � 5. Triangular patches (m = 3) have some speci�c properties.

Main features of the introduced m-sided patches are described.

Keywords: multisided surface patch, geometric continuity, control point.

1 Introduction

There are various methods for constructingm-sided patches withm 6= 4. They

can be categorized as recursive subdivision, surface splitting, data blending

and control point schemes. Overviews of those various methods are given, for

example, by Varady (1987) and Malraison (1998). We present a new control

point scheme for m-sided patches.

The original surface patches of Sabin (1983, 1991) and Hosaka & Kimura

(1984) are de�ned over nonplanar 3-,5- and 6-sided areas in 3-, 5- and 6-

dimensional space respectively. They are suitable for a smooth joining to rect-

angular B�ezier patches. The boundary of Sabin and Hosaka{Kimura patches

are B�ezier curves of degree 2 and 3 respectively. Zheng & Ball (1997) extended

their approach to a case, when boundary contains B�ezier curves of arbitrary

degree n. The 3- and 5-sided areas can be parametrizied by the rational func-

tions, so 3- and 5-sided Sabin and Hosaka{Kimura patches are rational. For a

1The author would like to acknowledge the support of grant of the Lithuanian

Studies and Science Fund.
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parametrization of 6-sided area square roots are involved. It is a disadvantage

of 6-sided Sabin and Hosaka{Kimura patches { they are nonrational. Loop

& De Rose (1989) introduced S-patches. They are rational m-sided patches

de�ned over planar m-gon for any m � 3. Later on Loop & De Rose (1990)

used S-patches for a construction of rational m-sided Sabin (boundary curves

are conics) and Hosaka{Kimura (boundary curves are cubics) like patches for

arbitrary m � 3.

In this paper we construct rational m-sided Sabin and Hosaka{Kimura like

surface patches over planar domain for any m � 3, m 6= 4, bounded by B�ezier

curves of arbitrary degree n. Our approach produces the patches of lower

degree as derived by the previous methods of Sabin (1983), Hosaka-Kimura

(1984), Loop & De Rose (1990), Zheng & Ball (1997). Only in case m = 3,

n = 2 they are of degree 4 as the original Sabin (1983) triangular patch, but

possess some additional useful properties. This paper is organized as follows.

In Section 2 we de�ne T -patches and describe their main properties. Then

T -patches are used for a construction of surface patches, that behave along

their boundaries like rectangular B�ezier patches. We call them SHK-(Sabin{

Hosaka{Kimura like) patches. Formal de�nition of SHK-patches and some

important technical results are given in Section 3. Later on a case m � 5

is considered: in Section 3.2 main theorem is formulated; in Section 3.3 main

properties of derived SHK-patches are described. A proof of the main theorem

is given in Section 4. Section 5 is devoted to the triangular patches. In Section 6

spline surfaces are briey discussed.

We use following notations: u0 = 1 � u, u1 = u; Bn

j
(u) =

�
n

j

�
u
n�j

0 u
j

1 (Bn

j
(u)

are Bernstein polynomials). For any set of functions fq, labeled by a graph L,
we set _fq = fq=

P
q02L fq0 , q 2 L.

2 T -patches

2.1 A combinatorial structure and de�nition

Let W0;W1; : : : ;Wm�1;Wm =W0 be the vertices of a convex m-gon; let W be

its inner point and let n be a �xed natural number. For each triangle with the

vertices W;Ws;Ws+1, 0 � s � m� 1, the points

T
s

ij
=

i

n
W +

j

n
Ws+1 +

n� i� j

n
Ws; i; j � 0; i+ j � n;

linked together, form its standard triangulation. All together they form a trian-

gulation ofm-gon. It is convenient to organize the labeling of this triangulation

in the following manner.
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(s+1,1,1)(s-1,1,n-2)

(s,i,n-i)=(s+1,i,0)(s-1,i,n-i)=(s,i,0)

(s,1,n-2)(s,1,1)

(s,1,n-1)=(s+1,1,0)(s-1,1,n-1)=(s,1,0)

(s+1,0,1)(s-1,0,n-1)

(s+1,0,j)(s-1,0,j)

(s,0,n)=(s+1,0,0)(s-1,0,n)=(s,0,0) (s,0,n-1)(s,0,j)(s,0,1)

Fig. 1. Combinatorial structure and labeling

m=6 , n=3 , d=1m=5 , n=2 , d=0m=3 , n=4 , d=2

Fig. 2. Various cases of T n

d
subgraphs

Let T n be a set of all triples (s; i; j), 0 � s � m� 1, 0 � i � n, 0 � j � n� i,

where triples (s; i; n � i) and (s + 1; i; 0) are identi�ed (the �rst index s is

treated in a cyclic fashion). There are mn(n+1)/2+1 triples in T n. Without

confusing T n can be treated as a graph of the triangulation of m-gon. This

labeling (graph) is visualized in Figure 1.

We also set T n

d
= T n n f(s; i; j) j i � d+1g, 0 � d � n, (obviously T n

n
= T n);

In Figure 2 there are shown some cases of T n

d
subgraphs. The vertices, included

in T n

d
, are plotted as the bigger disks.

Now we assume m � 5 and set � = 2�=m. By D we denote a regular m-gon

in (x; y)-plane with the vertices Vs = (cos s�; sin s�), 0 � s � m� 1. Polygon

D is a domain for m-sided rational patches still to be de�ned (see Figure 3).
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C=0

=0s-1l =0s+1l

=0sl
s+1Ks-1K

sK

s+2Vs-1V

s+1VsV

Fig. 3. Domain of m-sided patches

A point of an intersection of the lines Vs�1Vs and Vs+1Vs+2 is denoted by Ks.

We also set

ls(x; y) = �x cos(s� +
�

2
)� y sin(s� +

�

2
) + cos

�

2
; 0 � s � m� 1;

C(x; y) =
cos2 �

2

cos2 �
� x

2 � y
2
:

It is easy to check that:

� ls is zero on the edge VsVs+1 and takes positive values on the other points

of a domain D;

� C = 0 de�nes a circle through the points Ks, 0 � s � m � 1, and C takes

positive values on D.

Suppose there are �xed positive numbers kn
ij
; 0 � i � n; 0 � j � n � i,

satisfying kn
ij
= k

n

i;n�i�j
. Let Rs = f0; 1; : : : ; m� 1g n fs� 1; s; s+1g, 0 � s �

m� 1. The functions fn;d
q
; q = (s; i; j) 2 T n

d
are de�ned by the formula

f
n;d

q
= k

n

ij
C

d�i
l
i+j

s�1l
i

s
l
n�j

s+1 (
Y
r2Rs

lr)
n
: (1)
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De�nition 1 A parametric rational m-sided T -patch of order n and of depth

d is a map F n

d
: D ! IR3 de�ned by the formula

F
n

d
(p) =

P
q2T

n

d

wqPqf
n;d

q
(p)P

q2T
n

d

wqf
n;d
q (p)

: (2)

The points Pq are called control points of the patch and the numbers wq

are their weights. Geometrically T -patch is understood as the image F n

d
(D).

But without confusing we often consider T -patch as a map (exactly as in

De�nition 1). It follows directly from the formula (2) that

F
n

d
(p) =

P
q2T

n

d

wqPq
_fn;d
q

(p)P
q2T

n

d

wq
_f
n;d
q (p)

: (3)

Remark 2 Since fn;n
q

= C
n�d

f
n;d

q
, q 2 T n

d
, obviously is true

F
n

d
(p) =

X
q2T

n

d

wqPqf
n;n

q
(p)=

X
q2T

n

d

wqf
n;n

q
(p):

So we can use in a de�nition of a map F
n

d
only the functions fn;n

q
; q 2 T n

d
.

But the formula (2) is more convenient since the functions fn;d
q

, q 2 T n

d
, do

not have a common factor.

2.2 Main properties of T -patches

Proposition 3 The functions fn;d
q

have the properties:

(1) fn;d
q

(p) � 0 and
P

q2T
n

d

f
n;d

q
(p) > 0 for p 2 D;

(2) only the functions f
n;d

s00 ; f
n;d

s01 ; : : : ; f
n;d

s0n are nonzero on the edge VsVs+1;

(3) only the functions f
n;d

s;0;0; f
n;d

s;0;1; : : : ; f
n;d

s;0;n and f
n;d

s�1;0;n�1; f
n;d

s;1;0; : : : ; f
n;d

s;1;n�1;

f
n;d

s+1;0;1 have nonzero crossderivatives along the edge VsVs+1;

Proof. The �rst property follows directly from the formula (1) and a positiv-

ity of the functions ls and C on D. The second property follows from a fact,

that all functions, except the of listed in statement (2), contain as a factor ls
(ls is zero on VsVs+1). The third property is true, since all functions, except of

listed in statement (3), contain as a factor l�
s
with � � 2. 2

Proposition 4 (1) If kn0j =
�
n

j

�
the map F

n

d
restricted on the edge VsVs+1

de�nes a rational B�ezier curve of degree n with the control points Ps0j and the

weights ws0j, 0 � j � n.

(2) If all weights wq are positive a patch lies in a convex hull of the control

points Pq.
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Proof. (1) It follows from Proposition 3(2), that

_f
n;d

s0j (Vsu0 + Vs+1u1) = f
n;d

s0j (Vsu0 + Vs+1u1)=
nX

j0=0

f
n;d

s0j0(Vsu0 + Vs+1u1):

Assuming kn0j =
�
n

j

�
, using the identities (derived by direct calculation)

ls�1(Vsu0 + Vs+1u1) = 2 sin� sin �

2
u1;

ls+1(Vsu0 + Vs+1u1) = 2 sin� sin �

2
u0

(4)

and well known identity
P

n

r=0B
n

r
(u) = 1 we get _f

n;d

s0j (Vsu0 + Vs+1u1) = B
n

j
(u).

Together with the formula (3) and Proposition 3(2) it implies �rst statement

is true.

(2) We denote gq(p) = wqf
n;d

q
(p)=

P
q02T

n

d

wq0f
n;d

q0
(p). If wq � 0 then gq(p) � 0.

Since F
n

d
(p) =

P
q2T

n

d

gq(p)Pq and
P

q2T
n

d

gq(p) = 1, it follows convex hull

property is true for T -patches. 2

Proposition 5 The functions fn;d
q
; q 2 T n

d
; are linearly independent.

Proof. Let d = n. Since a statement of this proposition does not depend of

a choice of numbers kn
ij
, we simply take kn

ij
= 1. Let G =

P
q2T n �qf

n;n

q
and

assume G = 0. We will show by an induction all �q are zero.

From (1), (4) and the assumption G = 0 we get for s = 0; 1; : : : ; m� 1

G(Vsu0 + Vs+1u1) = E
n

s
(2 sin� sin

�

2
)n(

nX
j=0

�s0ju
n�j

0 u
j

1) = 0;

where Es = C(Vsu0 + Vs+1u1)
Y
r2Rs

lr(Vsu0 + Vs+1u1):

Since Es 6= 0 and the functions u
n�j

0 u
j

1 are linearly independent, all �s0j must

be zero. It means G =
P

q2T n
nT

n

0
�qf

n;n

q
= 0. From (1) we get for i � 1

f
n;n

s;i;j
= (l0l1 : : : lm�1)f

n�1;n�1
s;i�1;j :

Identifying T n n T n

0 with T n�1 (a triple (s; i; j) as a label from T n n T n

0 is

considered as a label (s; i� 1; j) from T n�1) we can write

G = (l0l1 : : : lm�1)(
X

q2T n�1

�qf
n�1;n�1
q

) = 0:

This implies
P

q2T n�1 �qf
n�1;n�1
q

= 0. Carrying on we get all �q are zero.

Since fn;n
q

= C
n�d

f
n;d

q
, q 2 T n

d
, we get that the functions fn;d

q
, q 2 T n

d
, are

also linearly independent. 2
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sbil

v

u

O

s-1M

sM

d
nF

s-1K

sK

s-1V

s+1VsV

Fig. 4. Plotting T -patches

Proposition 6 (Plotting T -patches). m-sided T -patch of order n and depth

d can be represented as a collection of m rational B�ezier patches of bidegree

((m� 3)n+ d; (m� 3)n+ d).

Proof. From a formula (1) we get degree of fn;d
q

is (m�2)n+2d. This means

a general line L is mapped by F n

d
into a rational curve of degree (m�2)n+2d.

The functions ls�1(x; y); ls+1(x; y); C(x; y) are zero at the point Ks. From the

formula (1) we get a minimum of the sum of their powers in f
n;d

q
, q 2 T n

d
, is

n+ d. This means every function fn;d
q

has at the point Ks zero of multiplicity

� n+d. (By a standard de�nition a function f(x; y) has at a point (x0; y0) zero

of multiplicity � if it vanishes at (x0; y0) together with all partial derivatives

up to the order �� 1 and at least one partial derivative of order � does not

vanish.) It implies a restriction of every function f
n;d

q
on a �xed line L, going

through Ks, has the same linear factor Z into a power � n + d. Canceling

factor Zn+d from a numerator and denominator of the restriction of F n;d

q
on

L we get a degree of a curve is (m� 2)n+ 2d� (n + d) = (m� 3)n + d. For

s = 0; 1; : : : ; m� 1 we de�ne the bilinear maps bils : [0; 1]� [0; 1]! D by the

formula

bils(u; v) =
Vs(1� u)(1� v) +Msu(1� v) +Ms�1(1� u)v +Ouv

(1� u)(1� v) + u(1� v) + (1� u)v + u sin2 �
;

whereMs is a middle point of the edge VsVs+1 and O { a center of D. The lines

bils(const; v) go through the point Ks and the lines bils(u; const) go through

the point Ks�1. It follows from the above considerations a map F n

d
(bils(u; v))

represents two parameter family of the rational curves of degree (m�3)n+d. So

we have almost �nished a proof. A rest is only the technical details. Carefully

caring on we get an e�cient algorithm for plotting T -patches. A principle of

this presentation is visualized in Figure 4. 2
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(s+1,0,1)(s-1,0,n-1)

(s+1,0,j)(s-1,0,j)

(s+1,1,j)(s-1,1,j)

(s,1,n-1)=(s+1,1,1)(s-1,1,n-1)=(s,1,1) (s,1,j)

(s,0,n)=(s+1,0,0)(s-1,0,n)=(s,0,0) (s,0,n-1)(s,0,j)(s,0,1)

Fig. 5. Combinatorial structure of SHK-patches

Fig. 6. Sabin and Hosaka{Kimura patterns

3 SHK-patches

3.1 Minimal combinatorial structure and de�nition

We assume here m � 3. For a �xed natural number m by Hn we denote a set

of triples (s; 0; j), (s; 1; k), 0 � s � m � 1, 0 � j � n, 1 � k � n � 1, where

(s � 1; 0; n) = (s; 0; 0) and (s � 1; 1; n � 1) = (s; 1; 1) (index s is treated in

a cyclic fashion). A graph Hn is shown in Figure 5. The cases n = 2 (Sabin

pattern) and n = 3 (Hosaka{Kimura pattern) are shown in Figure 6. Note

Sabin pattern has only one inner point (0; 1; 1) = (1; 1; 1) = : : : = (m�1; 1; 1).
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Rational m-sided SHK-patch will be constructed using various sets of basis

functions gq 2 Hn. Control points of a SHK-patch we denote by Pq and the

weights by wq, q 2 Hn. Control points of a rational B�ezier patch of bidegree

n � n
0 we denote by Brr0 and corresponding weights by wrr0, 0 � r � n,

0 � r
0 � n

0. (Using the same letter w for both type patches does not lead to a

confusion since their sets of labels are di�erent.) For a control point Q 2 IR3 of

any patch and its weight w we set Q = (wQ;w). A point Q 2 IR4 is considered

as a homogeneous control point of a patch.

De�nition 7 A m-sided patch with the control points Pq and the weights wq,

q 2 Hn, is a rational SHK-patch of order n if the following conditions are

satis�ed:

(1) boundary curves are rational B�ezier curves of degree n with the control

points Ps0j and the weights ws0j, 0 � j � n, 0 � s � m� 1;

(2) it is tangent plane continuous to a adjacent rational rectangular B�ezier

patch of bidegree (n; n0) with P s0j = Bj0, 0 � j � n, if

P s;1;j + kBj1 = (k + 1)P s;0;j, 1 � j � n� 1,

P s�1;0;n�1 + kB01 = (k + 1)P s;0;0, P s+1;0;1 + kBn1 = (k + 1)P s;0;n

for some �xed k > 0.

In practice as a rule we have n = n
0, k = 1 and all weights are equal to 1.

In this case the condition (2) simply means the control points of a common

boundary curve are middle points of the edges, formed by the corresponding

control points of the next layer of each patch.

Proposition 8 Suppose on the domain D there are �xed the functions gq,

q 2 Hn, and there exist the maps res : [0; 1] � [0; 1] ! D, 0 � s � m � 1,

called reparametrization maps, satisfying following conditions:

(1) res(0; u) = Vsu0 + Vs+1u1;

(2) _gs0j(res(0; u)) = B
n

j
(u), 0 � j � n;

(3) @ _gs0j(res(t; u))=@t jt=0 = �nBn

j
(u), 0 � j � n;

(4) @ _gs�1;0;n�1(res(t; u))=@t jt=0 = nB
n

0 (u);

(5) @ _gs+1;0;1(res(t; u))=@t jt=0 = nB
n

n
(u);

(6) @ _gs1j(res(t; u))=@t jt=0 = nB
n

j
(u), 1 � j � n� 1;

(7) _gq(res(0; u)) = 0 for all functions _gq, except of listed in (2), and

@ _gq(res(t; u))=@t jt=0 for all _gq, except of listed in (2)-(6).

Then the map Gn : D! IR3 de�ned by the formula

G
n(p) =

P
q2Hn wqPqgq(p)P
q2Hn wqgq(p)

(5)

is a rational SHK-patch of order n.

Proof. Formally self contained proof would be longer. Unformally it is very
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simple. Obviously we have

@(Bn

0 (t)B
n

j
(u))=@t jt=0 = �nBn

j
(u); @(Bn

1 (t)B
n

j
(u))=@t jt=0 = nB

n

j
(u);

G
n(p) =

P
q2Hn wqPq _gq(p)=

P
q2Hn wq _gq(p):

These identities and the assumptions of the proposition implies, that after

reparametrization a crossderivative of m-sided patch behaves like a cross-

derivative of B�ezier patch of bidegree (n; n). The standard arguments of the

theory of B�ezier patches show the proposition is true. 2

A following technical lemma is essentially used in the proofs of the theorems

10 and 13.

Lemma 9 Suppose the functions hij(t; u) ,i = 0; 1, 0 � j � n, satisfy

h0j(0; u) = B
n

j
(u)A(u), h1;j(0; u) = 0, @h0j=@t jt=0 = B

n

j
(u)D(u),

@h1j=@t jt=0 = nB
n

j
(u)A(u) for some functions A(u); D(u). Then

@(h0j/
1X

i=0

nX
r=0

hir)=@t jt=0 = �nBn

j
(u);

@(h1j/
1X

i=0

nX
r=0

hir)=@t jt=0 = nB
n

j
(u):

A proof of lemma is very simple: we calculate the derivatives respect to t

and use the assumptions of lemma together with the well known identityP
n

r=0B
n

r
(u) = 1.

3.2 Main theorem

We again assume m � 5. Basis functions gq, q 2 Hn, for SHK-patches are

build as the linear combinations of the basis functions fn;d
q

, q 2 T n

d
, de�ned by

the formula (1). In the main theorem we use only the functions fn;1
q

, q 2 T n

1 ,

and set kn0j =
�
n

j

�
, 0 � j � n, kn1r = 1, 0 � r � n � 1. In order to avoid

confusion indexing these two type of functions the following notions are used:

if q = (s; i; j) 2 Hn then gsij := gq;

if q = (s; i; j) 2 T n

1 then f[s;i;j] := f
n;1
q

.

Theorem 10 Let a =
n

sin 2� sin�
, bj =

j

�
n

j

�
sin 2� sin�

, cj =
(n� j)

�
n

j

�
sin 2� sin�

,

dj =
n

�
n

j

�
(2 cos� + 1)

sin2 2�
, 1 � j � n� 1, and for s = 0; 1; : : : ; m� 1

10



� gs00 = f[s;0;0] + af[s;1;0];

� gs0j = f[s;0;j] + bjf[s;1;j�1] + cjf[s;1;j], 1 � j � n� 1;

� gs11 = d1
P

m�1
s=0 f[s;1;0] if n = 2;

gs11 = d1(f[s�1;1;n�2] + f[s;1;0] + f[s;1;1]) if n � 3;

gs1j = dj(f[s;1;j�1] + f[s;1;j]), 2 � j � n� 2, if n � 4.

Then a patch, de�ned by the formula (5), is a rational SHK-patch of order n.

3.3 Properties of SHK-patches

Here we consider some features of SHK-patches constructed using main the-

orem.

1. Convex hull property. Since all coe�cients a, bj, cj, dj in the main theorem

are positive the functions gq, q 2 Hn, are nonnegative on D. The same argu-

ments, as in Proposition 4, show a patch lies in a convex hull of the control

points Pq if all weights wq are positive.

2. Plotting SHK-patches. Since basis functions gq, q 2 Hn, are linear combi-

nations of the functions fq, q 2 T
n

1 , SHK-patch of order n can be represented

as a T -patch of order n and depth 1. So it follows from Proposition 6 m-sided

SHK-patch of order n can be represented as a collection of m rational B�ezier

surface patches of bidegree ((m� 3)n+ 1; (m� 3)n+ 1).

3. Comparing with S-patches. It follows from a de�nition (see Loop & De

Rose (1989)) the basis functions of m-sided S-patch of a depth d are of degree

d(m � 2) and have at the points Ks zeros of multiplicity � d. (Warning:

depth of T -patches has a quite di�erent meaning as a depth of S-patches.)

The same arguments as in Proposition 6 show S-patch can be represented as

a collection of m rational B�ezier patches of bidegree (d(m � 3); d(m � 3)).

Loop & De Rose (1990) constructed SHK-patches of orders 2 and 3 as S-

patches of depth 5 and 6 respectively. So the bidegrees of the B�ezier patches are

(5(m�3); 5(m�3)) and (6(m�3); 6(m�3)) respectively. The estimations from

a previous paragraph are correspondingly (2m�5; 2m�5) and (3m�8; 3m�8).

So SHK-patches constructed in this paper are more e�cient (in a sense of

degree of representation).

4. Twist incompatibility. Suppose we want to �ll smoothly with SHK-patch

m-sided hole, but at the corner Vs 2 D there appears a \twist incompatibil-

ity": a point P s

s;1;1, insuring (with some other control points) tangent plane

continuity along the edge VsVs+1, does not coincide with a point P s�1
s�1;1;n�1,

insuring tangent plane continuity along the edge Vs�1Vs. This problem of in-

compatibility is solved using method of variable control points, proposed by

Hosaka and Kimura (1984).
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If n � 3 a variable control point Ps11 is de�ned by the formula

Ps11 =
lsP

s�1
s�1;1;n�1 + ls�1P

s

s;1;1

ls�1 + ls
: (6)

If n = 2 we set Ls = ls+1ls+2 : : : ls+m�1, 0 � s � m � 1, and de�ne variable

inner control point P011 by the formula

P011 =

P
m�1
s=0 LsP

s

s;1;1P
m�1
s=0 Ls

: (7)

5. Extended SHK-patches. In Theorem 10 for a construction of SHK-patches

there are used only the functions fq, q 2 T n

1 . It follows from Proposition

3 the functions fq, q 2 T n n T n

1 , have no e�ect on the position and on the

crossderivatives along the boundary of T -patch. So we can add to the graphHn

any label from T n n T n

1 . No doubt, we do it keeping combinatorial symmetry

of a patch. Straightforward approach - to add entire subgraph T n n T n

1 -

is shown on the left examples in Figure 8 (cases n = 2; 3). Corresponding

control point nets fascinates, probably, only a spiders community. From a

designers point of view better approach would be to combine symmetrically

the functions fq, q 2 T n n T n

1 , and only those combinations consider as the

additional basis functions. A simplest possibility is to add only one new basis

function. Corresponding patterns are displayed on the right in Figure 8. But

it follows from Proposition 6, that adding new basis functions increases a

degree of representation. So in practice we have to �nd a compromise between

additional shape control and increasing degree of extended SHK-patch.

The SHK-patch of order 2 (Sabin like patch) needs a special consideration.

In this case there is only one additional function f[0;2;0]. Adding a new control

point would destroy a natural structure of Sabin net. Better approach is to add

the function f[0;2;0] in a symmetric fashion to the original basis functions from

the main theorem. Therefore the modi�ed basis functions for SHK-patches

of order 2 are rede�ned by the formulas

gs00 := gs00 + a0f[0;2;0]; gs01 := gs01 + a1f[0;2;0]; 0 � s � m� 1;

gs11 := gs11 + a2f[0;2;0];

(8)

where a0, a1, a2 are any real (in practice nonnegative) numbers. A method of

symmetric adding the functions fq, q 2 T
nnT n

1 , to the original basis functions

is also valid for SHK-patches of order � 3.

12



Fig. 7. Examples of the extended SHK-patterns

4 Proof of the main theorem

4.1 Reparametrization maps

Let z0 =
2

3
; z1 =

8 cos3 �� 4 cos2 �� 1

3 + 6 cos�
. For s = 0; 1; : : : ; m� 1 we set

Q
s

0 = Vs�1; Q
s

1 = z0Vs�1 + z1Vs + (1� z0 � z1)O;

Q
s

2 = z0Vs+2 + z1Vs+1 + (1� z0 � z1)O; Q
s

3 = Vs+2;

where O is a center of D. For s = 0; 1; : : : ; m � 1 we de�ne the cubic curves

macs and reparametrization maps res : [0; 1]� [0; 1]! D by the formulas

macs(u) =
P3

k=0Q
s

k
B

3
k
(u);

res(t; u) = (Vsu0 + Vs+1u1)(1� t) + macs(u)t:
(9)

On a left in Figure 7 there are displayed a cubic macs together with its control

points and the (full) lines res(t; const). On a right picture there are also shown

the (dashed) lines, connecting a point Ks with the points Vs(1 � const) +

Vs+1const. We set:

�l�2 = ls�2(res(0; u)); �l�1 = ls�1(res(0; u)); �l1 = ls+1(res(0; u));

�l2 = ls+2(res(0; u)); C = C(res(0; u));

~l�1 = @ls�1(res(t; u))=@t jt=0;
~l0 = @ls(res(t; u))=@t jt=0;

~l1 = @ls+1(res(t; u))=@t jt=0;
eC = @C(res(t; u))=@t jt=0:

13



Fig. 8. Reparametrization with cubic macs

Direct computation gives the following important identities:

�l�1 = 2 sin� sin
�

2
u1;

�l1 = 2 sin� sin
�

2
u0;

�l�2 = 2 sin� sin
�

2
(2u1 cos� + 1); �l2 = 2 sin� sin

�

2
(2u0 cos� + 1);

~l0 =
sin2 2�

2 sin� sin 3�
2

C; �l�2
�l2 = sin2 2�C;

~l�1 =
2 sin 2� sin2 �

2

sin 3�
2

u1(2 cos�+ (2 cos 2� + 5)u1 � (2 cos 2�+ 4)u21);

~l1 =
2 sin 2� sin2 �

2

sin 3�
2

u0(2 cos� + (2 cos 2� + 5)u0 � (2 cos 2�+ 4)u20):

(10)

Remark 11 At the moment the author knows only experimental justi�cation

of cubics macs (consider mac as a "magic cubic"):

(1) the main theorem was �rst proved using MAPLE package for the most

important values n = 2; 3; 4;

(2) it was found in the "sledgehammered" cases n = 2; 3; 4 a crossderivative

of constructed SHK-patches is governed by the "magic cubic" macs;

(3) author (1999) shows how the classical pentagonal Sabin patch can be rep-

resented as a T -patch of order 3; in this case it was checked a crossderivative

is also governed by the macs;

(4) the mentioned observations suggest to base a proof on the cubics macs and

it really does the trick.

4.2 Reduction and scheme of a proof

Suppose we try to �nd the functions gq, q 2 H
n, in a form, declared in Theorem

10, but with still unknown coe�cients a; bj; cj; dj, satisfying natural symmetry

conditions bn�j = cj, dn�j = dj.
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For s = 0; 1; : : : ; m� 1 we set

h0j(t; u) = gs0j(res(t; u)); 0 � j � n;

h1j(t; u) = gs1j(res(t; u)); 1 � j � n� 1;

h10(t; u) = gs�1;0;n�1(res(t; u)); h1n(t; u) = gs+1;0;1(res(t; u)):

(11)

Our task is to show, that for the appropriate values of a,bj , cj, dj there exist

the functions A(u); D(u), satisfying the assumptions of Lemma 9.

According to Proposition 3 only the functions

f[s;0;j]; 0 � j � n; (12)

f[s;1;j]; 0 � j � n� 1; (13)

f[s�1;0;n�1]; f[s+1;0;1]; (14)

have nonzero crossderivatives along the edge VsVs+1 and only the functions

from (12) are nonzero on it. So �nding the coe�cients a, bj, cj, dj we can set

h00 = (f[s;0;0] + af[s;1;0]) � res; h0n = (f[s;0;n] + af[s;1;n�1]) � res;

h0j = (f[s;0;j] + bjf[s;1;j�1] + cjf[s;1;j]) � res; 1 � j � n� 1;

h10 = (f[s�1;0;n�1] + cn�1f[s;1;0]) � res;

h1n = (f[s+1;0;1] + b1f[s;1;n�1]) � res;

h1j = dj(f[s;1;j�1] + f[s;1;j]) � res; 1 � j � n� 1:

(15)

For a simplicity in (15) the same letter h is used as in (11). Though the

functions de�ned by the formulas (11) and (15) are, in general, di�erent, the

restrictions of these functions and of their crossderivatives are equal on t = 0

(just what exactly is needed).

In the next two steps we will �nd the coe�cients a, bj, cj, dj, insuring the

assumptions of Lemma 9 are satis�ed. Then Lemma 9, together with the just

mentioned properties of the functions from (12), (13) and (14) will imply all

conditions of Proposition 8 are satis�ed. This will end a proof of Theorem 10.

4.3 Step 1: calculation of of the coe�cients dj, b1, cn�1

4.3.1 Canceling �rst unessential factor

Let Ys = f0; 1; : : : ; m� 1g n fs� 2; s� 1; s; s+1; s+2g, 0 � s � m� 1. Using

the formula (1) we get the functions fq from (12), (13) and 14) can be written
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in a form fq = �fqM , where M = l
n�1
s�2 l

n�1
s+2

Q
r2Ys

l
n

r
,

�f[s;0;j] =
�
n

j

�
l
j

s�1l
n�j

s+1Cls�2ls+2; 0 � j � n;

�f[s�1;0;n�1] = nlsl
n

s+1Cls+2;
�f[s+1;0;1] = nlsl

n

s�1Cls�2;

�f[s;1;j] = lsl
j+1
s�1l

n�j

s+1 ls�2ls+2; 0 � j � n� 1:

(16)

So we can write hij(t; u) = �hij(t; u)M(res(t; u)). The functions �hij are de�ned

by the formulas (15), where hij is replaced by �hij and fq is replaced by �fq. It

follows from (16), that �h1j(0; u) = 0, 0 � j � n. Suppose

�h0j(0; u) = B
n

j
(u) �A(u); @�h1j=@t jt=0 = nB

n

j
(u) �A(u):

Then we get

h0j(0; u) = B
n

j
(u)A(u); @h1j=@t jt=0 = nB

n

j
(u)A(u);

where A(u) = �A(u)M(res(0; u)). This means we can consider instead of hij
more simple functions �hij. In Section 4.3.2 we set for a simplicity hij := �hij.

4.3.2 End of the step 1

� Using the formulas from (10) we get for i = 0; 1; : : : ; m� 1

h0j(0; u) =
�
n

j

�
�l
j

�1
�l
n�j

1 C�l�2
�l2 =

�
n

j

�
2n sinn � sinn �

2
sin2 2�C

2
u
j

1u
n�j

0

= A(u)Bn

j
(u); where A(u) = 2n sinn � sinn �

2
sin2 2�C

2
:

� Di�erentiating the function h10 respect to t and using the formulas from

(10) we get

@h10=@t jt=0 = n~l0�l
n

1C
�l2 + cn�1

~l0�l
n

�1
�ln1
�l�2

�l2 = A(u)(sin �

2
= sin 3�

2
)

(2n cos�+ n + (cn�1 sin
2 2�� 2n cos�)u)un0 :

Let cn�1 = 2n cos�= sin2 2�. Then a trigonometric identity sin(3�=2) =

(2 cos� + 1) sin(�=2) implies @h10=@t jt=0 = nA(u)Bn

0 (u). If b1 = cn�1 =

2n cos�= sin2 2� it follows from a symmetric de�nition of the functions hij,

that @h1n=@t jt=0 = nA(u)Bn

n
(u).

� Di�erentiating the function h1j, 1 � j � n � 1, respect to t and using the

formulas from (10) we get

@h1j=@t jt=0 = dj
~l0�l

j

�1
�l
n�j+1
1

�l�2
�l2 + dj

~l0�l
j+1
�1

�l
n�j

1
�l�2

�l2

= djA(u)(sin
�

2
sin2 2�= sin 3�

2
)u

n�j

0 u
j

1:
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If dj =
�
n

j

�
n sin 3�

2
=(sin2 2� sin �

2
) =

�
n

j

�
n(2 cos� + 1)= sin2 2� then

@h1j=@t jt=0 = nA(u)Bn

j
(u).

4.4 Step 2: calculation of the coe�cients a, bj, cj

4.4.1 Canceling second unessential factor

Let Rs = f0; 1; : : : ; m � 1g n fs � 1; s; s + 1g, 0 � s � m � 1. Using the

formula (1) we get the functions fq from (12) and (13) can be written in a

form fq = �fqN , where N =
Q

r2Rs
l
n

r
,

�f[s;0;j] =
�
n

j

�
l
j

s�1l
n�j

s+1C; 0 � j � n;

�f[s;1;j] = lsl
j+1
s�1l

n�j

s+1 ; 0 � j � n� 1:
(17)

The functions gs0j, 0 � j � n, are linear combinations only of the functions

fq from (12) and (13). So we can write h0j(t; u) = �h0j(t; u)N(res(t; u)). The

functions �h0j are de�ned by the formulas (15), where h0j is replaced by �h0j

and fq is replaced by �fq. Suppose

�h0j(0; u) = B
n

j
(u) �A(u); @�h0j=@t jt=0 = B

n

j
(u) �D(u):

Then we get @h0j=@t jt=0 = B
n

j
(u)D(u), where

D(u) = �D(u)N(res(0; u)) + �A(u)@N(res(t; u))=@t jt=0:

This means we can consider instead of h0j more simple functions �h0j. In Section

4.4.2 we set for a simplicity h0j := �h0j.

4.4.2 End of the step 2

Here we similarly as in Section 4.3.2 di�erentiate the functions h0j, 0 � j � n,

respect to t and use the formulas (10). Since the expressions for the derivatives

of h0j are more complicated we set for a simplicity

E�1 = 2 cos�+ (2 cos 2� + 5)u1 � (2 cos 2�+ 4)u21;

E1 = 2 cos�+ (2 cos 2� + 5)u0 � (2 cos 2�+ 4)u20;

L = 2n sinn�1
� sinn �

2
= sin 3�

2
:

� @h00=@t jt=0 = n�ln�1
1

~l1C + �ln1
eC + a~l0�l�1

�ln1 = D0B
n

0 (u), where

D0 = L(n sin 2� sin
�

2
E1C + sin� sin

3�

2
eC + a sin2 2� sin� sin

�

2
Cu1):
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� if 1 � j � n� 1 then

@h0j=@t jt=0 =
�
n

j

�
(j�l

j�1
�1

~l�1
�l
n�j

1 C + (n� j)�l
j

�1
�l
n�j�1
1

~l1C + �l
j

�1
�l
n�j

1
eC)

+bj~l0�l
j

�1
�l
n�j+1
1 + cj

~l0�l
j+1
�1

�l
n�j

1 = DjB
n

j
(u); where

Dj = L(j sin 2� sin �

2
CE�1 + (n� j) sin 2� sin �

2
CE1 + sin� sin 3�

2
eC

+sin2 2� sin� sin �

2
C(bju0 + cju1)=

�
n

j

�
):

� The expressions Dj must be independent of j (Dj = D(u)). So Dj = D0

gives an equation

jE�1 + (n� j)E1 + sin� sin 2�(bju0 + cju1)=
�
n

j

�
=

nE1 + a sin 2� sin�u1:

This equation can be written in a form Z0 + Z1u = 0, where

Z0 = �j + sin� sin 2�(bj=
�
n

j

�
);

Z1 = 2j � sin� sin 2�((bj � cj)=
�
n

j

�
+ a):

Solving the system Z0 = 0; Z1 = 0 we get

bj = j

�
n

j

�
=(sin� sin 2�); cj = (a sin� sin 2�� j)

�
n

j

�
=(sin� sin 2�):

So b1 is the same as b1 derived in Section 4.3.2. Obviously cn�1 also must

coincide with cn�1 from Section 4.3.2. This gives an equation

(a sin� sin 2�� n+ 1)n=(sin� sin 2�) = 2n cos�= sin2 2�:

Solving it we get a = n=(sin� sin 2�). The �nal expression for the coe�-

cients cj becomes cj = (n�j)
�
n

j

�
=(sin� sin 2�). It follows from a symmetric

de�nition of the functions hij that @h0n=@t jt=0 = D(u)Bn

n
(u).

5 Triangular patches

5.1 Triangular T -patches

In this section a domain D is a triangle with the vertices V0, V1, V2. It is

convenient to use barycentric coordinates for the patches de�ned over triangle

domain. Therefore we change the notations for the functions ls. Every point V

in a plane, containing triangleD, can be written in a form V = l0V0+l1V1+l2V2
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with l0+l1+l2 = 1. The functions l0, l1, l2 are called the barycentric coordinates

of a point V . If D is a standard triangle in (x; y)-plane with the vertices

V0 = (0; 0), V1 = (1; 0), V2 = (0; 1), then l0 = 1� x� y, l1 = x, l2 = y.

For s = 0; 1; 2 and any real number e we set

Ms = l
2
s
+ l

2
s+1 + 2elsls+1; Ns = l

2
s
+ l

2
s+1 + l

2
s+2 + 2els(ls+1 + ls+2):

The functions fn
q
, q = (s; i; j) 2 T n, are de�ned by the formulas

f
n

(s;0;0) = Nsl
n

s
; f

n

(s;0;j) =
�
n

j

�
Msl

j

s+1l
n�j

s
; 1 � j � n� 1;

f
n

(s;i;j) = l
i+j

s+1l
i

s+2l
n�j

s
; i � 1; 0 � j � n� i:

(18)

The index d is dropped from a notation of the functions fn
q
, since they are

independent od d. De�nition 1 from Section 2 is also valid for a triangle domain

D if in the formula (2) the functions fn;d
q

are replaced by the functions fn
q
.

After this replacement the propositions 3, 5, 4 from Section 2.2 remains true

(their proofs are similar). Since Ns jls+2=0 = Ms jls+2=0 we get a map F
n

d
,

restricted to the edge VsVs+1, de�nes a rational B�ezier curve of degree n with

the control points Ps0j and the weights ws0j. It follows from the formulas (18)

the maximum of the degrees of fn
q
, q 2 T n

d
, is n+2d. This implies a triangular

T -patch of order n and depth d can be represented as a rational triangular

B�ezier patch of degree n+ 2d.

Remark 12 Involving e in the de�nition of the functions fn
q
creates on the

lines ls = 0 the basis points (maybe complex) of the map F n

d
. (If m = 3 there

are no points Ks). This simulation really does the trick in the construction of

triangular SHK-patches.

5.2 Triangular SHK-patches

In the triangular version of the main theorem we also use only the functions

f
n

q
, q 2 T n

1 . For the reasons, explained at the beginning of Section 3.2, we keep

introduced there indexing notations. So if q = (s; i; j) 2 T n

1 we set f[s;i;j] := f
n

q
.

Theorem 13 Let a = n(1� 2e) + 2e, bj =
�
n

j

�
(j(1� 2e) + 2e),

cj =
�
n

j

�
((n� j)(1� 2e) + 2e), dj = n

�
n

j

�
, 1 � j � n� 1, and for s = 0; 1; 2

� gs00 = f[s;0;0] + af[s;1;0];

� gs0j = f[s;0;j] + bjf[s;1;j�1] + cjf[s;1;j], 1 � j � n� 1;

� gs11 = d1(f[0;1;0] + f[1;1;0] + f[2;1;0]) if n = 2;

gs11 = d1(f[s�1;1;n�2] + f[s;1;0] + f[s;1;1]) if n � 3;

gs1j = dj(f[s;1;j�1] + f[s;1;j]), 2 � j � n� 2, if n � 4.

Then a patch de�ned by the formula (5) is a rational SHK-patch of order n.
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Proof. This proof is similar to the proof of the main theorem: �rst we de�ne

the cubics macs and reparametrization maps res; the coe�cients a, bj, cj,

dj, insuring the conditions of Lemma 9 are satis�ed, are found step by step;

Lemma 9 implies the conditions of Proposition 8 are satis�ed and it will �nish

a proof.

For s = 0; 1; 2 we set

Q
s

0 = Vs+2; Q
s

1 = (1� 4e
3
)Vs + (2e

3
� 1

3
)Vs+1 + (1

3
+ 2e

3
)Vs+2;

Q
s

2 = (2e
3
� 1

3
)Vs + (1� 4e

3
)Vs+1 + (1

3
+ 2e

3
)Vs+2; Q

s

3 = Vs+2:

The cubic curves macs and the reparametrization maps res are de�ned, as in

Section 4.1, by the formula (9). In Figure 9 there are displayed the examples

of the cubics macs together with the lines res(t; const). Some values of e are

special: if e = 1 the cubic macs degenerates to a line; if e = 0:5 the lines

res(t; const) go through the vertex Vs+2. Note ls+2(res(0; u)) = 0. We set:

�l0 = ls(res(0; u)); �l1 = ls+1(res(0; u)); ~l0 = @ls(res(t; u))=@t jt=0;

~l1 = @ls+1(res(t; u))=@t jt=0;
~l2 = @ls+2(res(t; u))=@t jt=0;

N0 = Ns(res(0; u)); M 0 =Ms(res(0; u)); M 2 = Ms+2(res(0; u));

fN0 = @Ns(res(t; u))=@t jt=0;
fM0 = @Ms(res(t; u))=@t jt=0;

A(u) = 1 + 2(e� 1)u0u1:

Direct computation gives the following important identities:

�l0 = u0;
�l1 = u1;

~l0 = u0E0;
~l1 = u1E1;

~l2 = A(u);

E0 = (4� 6e)u0u1 + (2e� 1)u1 � 1;

E1 = (4� 6e)u0u1 + (2e� 1)u0 � 1;

fN0 = 2((e� 1)u40 + (1� 6e + 4e2)u30u1 + (�4 + 7e� 6e2)u20u
2
1

+ (1� 6e + 4e2)u0u
3
1 � u

4
1);

fM0 = 2(�u40 + (1� 7e+ 2e2)u30u1 + (�4 + 6e� 8e2)u20u
2
1

+ (1� 7e+ 2e2)u0u
3
1 � u

4
1);

N0 = M 0 = A(u); M 2 = u
2
0;
fN0 � fM0 = 2eu0A(u):

(19)

Similar arguments as in Section 4.2 show the functions hij can be de�ned by

the formulas (15). In the items 2{5 we simply di�erentiate the functions hij
respect to t and use the identities from (19).
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e = 1.5e = 1e = 0.5e = 0

Fig. 9. Cubics macs for a triangle domain

1. Since �l0 = u0, �l1 = u1, N0 =M 0 = A(u), we get for j = 0; 1; : : : ; n

h0j(0; u) =
�
n

j

�
A(u)u

n�j

0 u
j

1 = A(u)Bn

j
(u).

2. @h10=@t jt=0 = n~l2�l
n�1
0 M2 + cn�1

~l2�l
n

0
�l1 = A(u)nun0(1� u+ ucn�1=n): If

cn�1 = n then @h10=@t jt=0 = A(u)nBn

0 (u). If b1 = cn�1 = n it follows from

a symmetric de�nition of the functions hij that @h1n=@t jt=0 = A(u)nBn

n
(u).

3. For j = 1; : : : ; n� 1 we get

@h1j=@t jt=0 = dj(~l2�l
j

1
�l
n�j+1
0 +~l2�l

j+1
1

�l
n�j

0 ) = djA(u)u
n�j

0 u
j

1. If dj = n

�
n

j

�
then

@h1j=@t jt=0 = A(u)nBn

j
(u).

4. @h00=@t jt=0 =
fN0
�ln0 + n�ln�1

0
~l0N0 + a~l2�l

n

0
�l1 = D0B

n

0 (u), where

D0 =
fN0 + nA(u)E0 + aA(u)u1.

5. For j = 1; : : : ; n� 1 we get

@h0j=@t jt=0 =
�
n

j

�
(fM0

�l
j

1
�l
n�j

0 + j�l
j�1
1

~l1�l
n�j

0 M0 + (n� j)�l
n�j�1
0

~l0�l
j

1M 0)

+bj~l2�l
j

1
�l
n�j+1
0 + cj

~l2�l
j+1
1

�l
n�j

0 = DjB
n

j
(u); where

Dj =
fM0 + jA(u)E1 + (n� j)A(u)E0 + A(u)(bju0 + cju1)=

�
n

j

�
:

6. The expressions Dj must be independent of j (Dj = D(u)). The last identity

from (19) fN0� fM0 = 2eu0A(u) implies, that equation Dj�D0 = 0 contains

as a factor A(u). Simple calculations show, that after cancellation of the

factor A(u) this equation can be written in a form Z0 + Z1u = 0, where

Z0 = �2e+ j(2e� 1) + bj=

�
n

j

�
;

Z1 = 2e� a� 2j(2e� 1)� (bj + cj)=
�
n

j

�
:

Solving the system Z0 = 0; Z1 = 0 we get

bj =
�
n

j

�
(j(1� 2e) + 2e); cj =

�
n

j

�
(a+ j(2e� 1)):

So b1 is the same as b1 from the item 2. Obviously cn�1 also must coincide

with cn�1 from the item 2. This gives an equation n(a+(n�1)(2e�1)) = n.

Solving it we get a = n(1�2e)+2e. The �nal expression for the coe�cients

cj becomes cj =
�
n

j

�
((n � j)(1 � 2e) + 2e). It follows from a symmetric

de�nition of the functions hij that @h0n=@t jt=0 = D(u)Bn

n
(u). 2
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5.3 Properties of triangular SHK-patches

A content of this section is similar to that of Section 3.3. We do not consider

here extended structures, since everything from Section 3.3.5 is also valid for

the triangular patches.

1. Convex hull property. The SHK-patches possess obviously convex hull prop-

erty if all basis functions gq are nonnegative on D. They are nonnegative for all

orders n if 0 � e � 0:5 (it follows from the expressions for a, bj, cj, dj). Deeper

analysis shows, that for the special values n we can take a wider range for e,

insuring nonnegativity of basis functions gq: for n = 2 we get 0 � e � 1:5; for

n = 3 { 0 � e � 1.

2. Degree of SHK-patch. It follows from the formulas (18) the basis functions

of SHK-patch of order n have degree n+2. This means triangular SHK-patch

of order n can be represented as a rational triangular B�ezier patch of degree

n+2. Degrees of triangular SHK-patches of orders 2 and 3, derived by Loop

& De Rose (1990) are respectively 5 and 6. Theorem 13 gives the patches of

degrees 4 and 5 respectively. So let us compare the patches of orders 2 and

3 from Theorem 13 with the original triangular Sabin and Hosaka{Kimura

patches.

3. Comparing with Sabin patch. Suppose in IR3 with a coordinate system

(u; v;w) is �xed a domain triangle D with the vertices V0 = (1; 0; 0), V1 =

(0; 1; 0); V2 = (0; 0; 1). Then l0 = u, l1 = v, l2 = w. Let n = 2 and e = 1. Since

l0 + l1 + l2 = 1 on D it follows from Theorem 13 that for s = 0; 1; 2

gs00 = l
2
s
(1� 2ls+1ls+2); gs01 = 2lsls+1(1� ls+2); gs11 = 4l0l1l2:

We set h2s = gs00, h2s+1 = gs01, s = 0; 1; 2, h6 = g011. Let us consider the

functions hi = hi(u; v; w), 0 � i � 6, as the functions in IR3. Then they

coincide with the basis functions of the original Sabin patch, de�ned on a

curved triangular domain u; v; w � 0, u + v + w � 2uvw = 1. For the control

points Pi, 0 � i � 6, and a real number r by S(r) we denote a triangular

patch, de�ned on the domain

u; v; w � 0; u+ v + w � ruvw = 1 (20)

via map (u; v; w) 7!
P6

i=0 hiPi=
P6

i=0 hi. Direct calculations show they all are

tangent to each other along a common boundary. But S(2) is the original

Sabin patch and S(0) { patch from Theorem 13 with e = 1. So we get one

parameter family of SHK-patches of order 2 (Sabin like patches). Theorem 13

gives another one parameter family of Sabin like patches. These two families

consist, in general, of the di�erent patches. They all are of degree 4 and they

have one common patch with e = 1. The experiments show that for suitable
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values of e the energy of SHK-patch is less then the energy of the Sabin patch.

It indicates e is an important shape parameter.

4. Comparing with Hosaka{Kimura patch. Similar results we get for Hosaka{

Kimura like patches. If n = 3 and e = 1 then

gs00 = l
3
s
(1� 3ls+1ls+2); gs01 = 3l2

s
ls+1(1� ls+2 � ls+2ls+1);

gs02 = 3lsl
2
s+1(1� ls+2 � ls+2ls); gs11 = 9l2

s
ls+1ls+2:

For s = 0; 1; 2 we set h3s = gs00, h3s+1 = gs02, h3s+2 = gs02, h9+s = gs11.

The functions hi = hi(u; v; w), as the functions in IR3, coincide with the basis

functions of Hosaka{Kimura patches �hi , except of \inner" functions h9, h10,

h11. Corresponding basis functions �h9, �h10, �h11 of Hosaka{Kimura have a form
�hi = hi � 2(uvw)2 + 4(uvw)3=3, i = 9; 10; 11. Similarly as in the previous

case we de�ne on the domain (20) triangular Hosaka{Kimura like patches

via map (u; v; w) 7!
P11

i=0
~hiPi=

P11
i=0

~hi, where ~hi = hi, 0 � i � 8, ~hi =

hi+(r=2)(�2(uvw)2+4(uvw)3=3), i = 9; 10; 11. So we get a family of patches

of degree 9, connecting original Hosaka{Kimura patch (r = 2) with a patch of

degree 5 (r = 0) from Theorem 13.

5. Integral patches. Integral SHK-patches we get when a denominator in for-

mula (5) sums to 1. This is impossible for m � 5, since all functions gq are

zero at the points Ks (base points of a map Gn). For triangle patches, if e = 1,

base points of Gn are in�nite points. So only in this case we could get integral

patches. For example, it is true (denominator in formula (5) is equal to 1) if:

(case n = 2) inner weight w011 = 2 and other weights are equal to 1;

(case n = 3) inner weights w011 = w111 = w211 = 5=3 and other weights are

equal to 1;

For n > 3 we get integral patches if additional basis functions are involved

(extended SHK-patches). So triangular SHK-patch itself can be integral.

But adjacent rectangular B�ezier patches in a smooth spline surface must be

rational. This means in applications the integral SHK-patches do not play an

important role.

7. Twist incompatibility. Actually everything from Section 3.3.4 is true for the

triangular patches. Since the notations of ls are di�erent for triangular patches

the formula (6) becomes Ps11 = (ls�1P
s�1
s�1;1;n�1 + ls+1P

s

s;1;1)=(ls�1 + ls+1). The

formula (7) remains true if we set Ls = lsls+1.

6 Spline surfaces

Already a de�nition of SHK-patches suggests they will be used for a construc-

tion of spline surfaces, containing non rectangular patches. Such spline surfaces
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can be constructed using already known generalized B-spline schemes (see

Sabin (1983), Loop & De Rose (1990)). Generalized biquadratic scheme pro-

duces surfaces, build from the biquadratic B�ezier patches and SHK-patches

of order 2 (Sabin like patches). Generalized bicubic scheme produces surfaces,

build from the bicubic B�ezier patches and SHK-patches of order 3 (Hosaka{

Kimura like patches). Bicubic scheme can be also applied for a construction

of the interpolating spline surfaces. One of the standard methods of creating

generalized biquadratic and bicubic schemes is a repeated application of the

bicubic and biquadratic subdivision algorithms (see Cattmull & Clark (1978),

Doo & Sabin (1978)).

The mentioned methods produce compatible data at the corners of the ad-

jacent patches (no \twist incompatibility"). But if a surface is constructed

by some other methods a \twist incompatibility" may arise at the corners of

the patches. In this cases for a smooth �lling of m-sided holes we use SHK-

patches with variable inner control points (they can be treated as m-sided

Gregory patches). Lodha (1993) applied this method for SHK-patches, de-

veloped by Loop & De Rose (1990).

7 Conclusion and future work

In this paper we have introduced new control point scheme for rationalm-sided

surface patches (T -patches). They are basis for a construction of rational

m-sided Sabin{Hosaka{Kimura like (SHK) patches for arbitrary m � 3,

m 6= 4, with boundary B�ezier curves of arbitrary degree n. Derived SHK-

patches can meet surrounding rectangular patches with C
1 continuity and

possess convex hull property.

In preprint (1999) it is shown, that 5- and 6-sided patches, derived by author

(1998), give even more e�cient representation of 5- and 6-sided SHK-patches.

Hence we do not consider here a relationship with the classical pentagonal

Sabin and Hosaka-Kimura patches. Main interest of a current research of the

author are rationalm-sided patches, meeting surrounding rectangular patches

with G
2 continuity. It would be also interesting to understand a geometric

origin of \magic" cubics.

References

[1] Cattmull, E. and Clark, J. (1978), Recursively generated B-spline surfaces on

arbitrary topological meshes, Computer-Aided Design 10, 350{355.

[2] Doo, D. and Sabin, M.A. (1978), Behavior of recursive subdivision surfaces near

extraordinary points, Computer-Aided Design 10, 356{360.

24



[3] Gregory, J.A, Lau, V.K.H. and Zhou, J. (1990), Smooth parametric surfaces and

n-sided patches, in: Computation of Curves and Surfaces, Kluwer, 497{498.

[4] Hosaka, M. and Kimura, F. (1984), Non-four-sided patch expressions with

control points, Computer Aided Geometric Design 1, 75{86.

[5] Kar�ciauskas, K. (1998), Rational m-sided surface patches, in: Cripps, R., ed.,

The Mathematics of Surfaces VIII, Information Geometers, 355{368.

[6] Kar�ciauskas, K. (1999), On rational �ve- and six-sided patches, preprint (in

preparation).

[7] Lodha, J. (1993) Filling N -sided holes, in: Falcidieno, B. and Kunii, T.L., eds.,

Modelling in Computer Graphics: Methods and Applications, Springer Verlag,

319{345,

[8] Loop, Ch. and De Rose, T. (1989), A multisided generalization of B�ezier

surfaces, ACM Transactions on Graphics 8, 204{234.

[9] Loop, Ch. and De Rose, T. (1990), Generalized B-spline surfaces of arbitrary

topology, Computer Graphics 24, 347{356.

[10] Malraison, P. (1998) A bibliography for n-sided surfaces, in: Cripps, R., ed.,

The Mathematics of Surfaces VIII, Information Geometers, 419{430.

[11] Sabin, M.A. (1983), Non rectangular surfaces for inclusion in B-spline surfaces,

in: Hagen, T., ed., Eurographics'83, 57-69.

[12] Sabin, M.A. (1991), A symmetric domain for a 6-sided patches, in: Bowyer,

A., ed., Computer-Aided Surface Geometry and Design { The Mathematics of

Surfaces IV, Clarendon Press, Oxford, 185{193.

[13] Varady, T. (1987), Survey and new results in n-sided patch generation, in:

Martin, R.R., ed., The Mathematics of Surfaces II, OUP, 203{236.

[14] Zheng, J.J. and Ball, A.A. (1997), Control point surfaces over non-four-sided

areas, Computer Aided Geometric Design 14, 807{821.

25


