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9.2 Linear shift-invariant filters

9.2.1 Linearity

Linear operators are defined by the principle of superposition. If a and

b are two complex-valued scalars, and H is an operator that maps an

image onto another image of the same dimension, then the operator is

linear if and only if

H (a : +b :) = aH : +bH : (9.6)

We can generalize Eq. (9.6) to the superposition of many inputs

H





∑

k

ak :



 =
∑

k

akH : (9.7)

The superposition property makes linear operators very useful. We

can decompose a complex image into simpler components for which

we can easily derive the response of the operator and then compose

the resulting response from that of the components.

It is especially useful to decompose an image into its individual pix-

els as discussed in Section 8.5.1.

9.2.2 Shift invariance and convolution

Another important property of an operator is shift invariance or homo-

geneity. It means that the response of the operator does not explicitly

depend on the position. If we shift a signal, the output image is the

same but for the shift applied. We can formulate this property more

elegantly with a shift operator S. For 2-D images, for example, the shift

operator is defined as

mnSGm′n′ = Gm′−m,n′−n (9.8)

An operator is then shift-invariant if and only if it commutes with the

shift operator, that is,

HS = SH (9.9)

Note that the shift operator S itself is a shift-invariant operator. An

operator that is both linear and shift-invariant is known as a linear

shift-invariant operator or short LSI operator. This important class of

operators is also known as linear time-invariant or LTI operators for

time series.

It can be proven [1] that a linear shift-invariant operator must nec-

essarily be a convolution operation in the space domain. There is no

other operator type that is both linear and shift-invariant. Thus, linear
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shift-invariant neighborhood operators share all the useful features of

convolution that were discussed in Section 8.6.3. They are commuta-

tive, associative, and distribute over addition (see also Eq. (9.5)). These

properties are very useful for an efficient design of filter operations

[CVA2, Chapter 6].

9.2.3 Point spread function

As just discussed in the previous section, an LSI filter can be repre-

sented in the space domain as a convolution operation. In two dimen-

sions the image G is convolved with another image H that represents

the LSI operator:

G′
mn =

M−1
∑

m′=0

N−1
∑

n′=0

Hm′,n′Gm−m′,n−n′ (9.10)

Because for a neighborhood operation H is zero except for a small

neighborhood, this operation can also be written as

G′
mn =

R
∑

m′=−R

R
∑

n′=−R

H−m′,−n′Gm+m′,n+n′ (9.11)

In this equation it is assumed that coefficients of H are nonzero only

in a (2R+1)× (2R+1) window. Both representations are equivalent if we

consider the periodicity in the space domain (Section 8.7.1). The latter

representation is much more practical and gives a better comprehen-

sion of the operator. For example, the following M×N matrix and 3×3

filter mask are equivalent:
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 (9.12)

For a D-dimensional signal, the convolution sum can be written with

a simplified vector indexing as also used in Section 8.4.4:

G′
n =

R
∑

n′=−R

H−n′Gn+n′ (9.13)

with n = [n1, n2, . . . , nD], R = [R1, R2, . . . , RD], where Gn is an element

of a D-dimensional signal Gn1,n2,... ,nD . The notation for the sums in this
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equation is an abbreviation for

R
∑

n′=−R

=

R1
∑

n′
1=−R1

R2
∑

n′
2=−R2

. . .

RD
∑

n′
D=−RD

(9.14)

The vectorial indexing introduced here allows writing most of the rela-

tions for arbitary dimensional signals in a simple way. Moreover, it can

also be used for skewed coordinate systems if n are regarded as the in-

dices of the corresponding lattice vectors (see Eq. (8.27), Section 8.4.2).

The filter mask is identical to another quantity known as the point

spread function, which gives the response of the filter to a point image:

P ′
n =

R
∑

n′=−R

Hn′Pn−n′ = Hn (9.15)

where

Pn =

{

1 n = 0

0 otherwise
(9.16)

The central importance of the point spread function is based on the

fact that the convolution operation is linear. If we know the response

to a point image, we can compute the response to any image, as any

image can be composed of point images as discussed in Section 8.5.1.

With respect to the analysis of time series, the point spread function is

known as the impulse response, with respect to the solution of partial

differential equations as the Green’s function [2].

9.2.4 Transfer function

The Fourier transform of the convolution mask is known as the trans-

fer function of a linear filter. The transfer function has an important

practical meaning. For each wave number, it gives the factor by which

a periodic structure is multiplied using the filter operation. This factor

is generally a complex number. Thus, a periodic structure experiences

not only a change in the amplitude but also a phase shift:

Ĝ′
v = ĤvĜv = rH exp(iϕH) rG exp(iϕG)

= rHrG exp[i(ϕH + ϕG)]
(9.17)

where the complex numbers are represented by their magnitude and

phase as complex exponentials.

Using the wave number normalized to the Nyquist limit (Eq. (8.34)

in Section 8.4.2), the transfer function is given by

ĥ(k̃) =

R
∑

n′=−R

hn′ exp(−π in′k̃) (9.18)
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for a 1-D signal and by

ĥ(k̃) =

R
∑

n′=−R

Hn′ exp(−π in′T
k̃) (9.19)

for a multidimensional signal. For a nonorthogonal, that is, skewed

lattice, the vectorial index n′ has to be replaced by the reciprocal lattice

vector (Eq. (8.29)), and Eq. (9.19) becomes

ĥ(k) =

R
∑

v=−R

Hr exp(−2π ir̂v
T
k) (9.20)

9.2.5 Symmetries

Symmetries play a central rule for linear shift-invariant filters in the

processing of higher-dimensional signal processing. This is because

of the simplified transfer function of symmetric masks. According to

Section 8.6.3, filters of even and odd symmetry have a real and purely

imaginary transfer function, respectively. The symmetry of a filter is

most generally expressed by:

HR−r = ±Hr (9.21)

This is a necessary and sufficient condition for a real or imaginary trans-

fer function. Filters normally meet a stronger symmetry condition for

each direction d:

Hr1,... ,Rd−rd,... ,rD = ±Hr1,... ,rd,... ,rD (9.22)

For separable symmetric filters, the symmetry conditions can be

expressed for each 1-D component separately:

hRd−rd
= ±hrd

(9.23)

As the transfer functions of the 1-D components of separable filters

are combined multiplicatively, an even and odd number of odd compo-

nents results in an even and odd filter according to Eq. (9.21) and thus

into a real and imaginary transfer function, respectively.

Because of the significance of separable filters for effective com-

puting of convolution operations [CVA2, Section 5.6], we focus on the

symmetry of 1-D filters. Besides odd and even symmetry, it is necessary

to distinguish filters with an even and odd number of coefficients.

The situation is straightforward for filters with an odd number of

coefficients. Then the central coefficient is the center of symmetry and

the result of a filter operation is written for the position of this central

coefficient. This symmetry is implicitly considered in Eqs. (9.13) and
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(9.18) where the central coefficient has the index 0. With this indexing

of the filter coefficients, the convolution sum and transfer function of

even 1-D filters with 2R +1 coefficients—also known as type I FIR filter

[3]—can be expressed as

g′
n = h0gn +

R
∑

n′=1

h′
n(gn+n′ + gn−n′), ĥ(k̃) = h0 +

R
∑

n′=1

2hn′ cos(n′πk̃)

(9.24)

and for odd filters with 2R + 1 coefficients or type III FIR filters as

g′
n =

R
∑

n′=1

h′
n(gn−n′ − gn+n′), ĥ(k̃) = i

R
∑

n′=1

2hn′ sin(n′πk̃) (9.25)

For filters with an even number of coefficients, there is no central

pixel. The symmetry center rather is inbetween two pixels. This means

that the results of a filter operation with such a filter are to be placed

on a grid that is shifted by half a pixel distance. Because of this shift

between the output pixel and the input pixels, the transfer function of

an even filter with 2R coefficients type II FIR filter is

ĥ(k̃) = h0 +

R
∑

n′=1

2hn′ cos((n′ − 1/2)πk̃) (9.26)

The transfer function of an odd filter with 2R coefficients or type IV FIR

filter is

ĥ(k̃) = i

R
∑

n′=1

2hn′ sin((n′ − 1/2)πk̃) (9.27)

The equations for symmetric filters for two and more dimensions

are significantly more complex and are discussed in Jähne [4].

9.2.6 LSI operators as least squares estimators

The LSI operators compute a new value at each point in a signal from a

linear combination of neighboring points. Likewise, a least squares es-

timator computes the estimate of a quantity from a linear combination

of the input values. Thus it appears that a close relationship should

exist between LSI operators and least squares estimators.

We assume that we want to fit a certain function with linear param-

eters ap

f (x) =

P−1
∑

p=0

apfp(x) (9.28)
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to the local spatial gray-value variation g(x). For 2-D digital signals,

the continuous functions fp(x) have to be replaced by matrices Fp.

All of the following equations are also valid for digital signals but it is

more convenient to stay with the continuous case. In the least squares

sense, the following error measure e2(x) should be minimized:

e2(x) =

∞
∫

−∞

w(x′)





P−1
∑

p=0

ap(x)fp(x′) − g(x +x′)





2

dDx′ (9.29)

In this integral the window function w(x′) has been introduced to limit

the fit to a local neighborhood around the point x. Therefore, the

fit coefficients ap(x) depend on the position. Normally, the window

function is an isotropic even function with a maximum at the origin

monotonically decreasing with increasing distance from the origin. We

further assume that the window function is normalized, that is,

∞
∫

−∞

w(x′)dDx′ = 1 (9.30)

For the sake of simpler equations, the following abbreviations will be

used in this section:

〈

fpgx
〉

=

∞
∫

−∞

w(x′)fp(x′)g(x +x′)dDx′

〈

fpfq

〉

=

∞
∫

−∞

w(x′)fp(x′)fq(x′)dDx′

(9.31)

Setting all derivatives of Eq. (9.29) with respect to the parameters ap(x)
zero, the following linear equation system is obtained as the standard

least squares solution of the minimization problem:

a(x) =M−1
d(x) (9.32)

with

Mp,q =
〈

fpfq

〉

, a = [a0(x), a1(x), . . . , aP−1(x)]
T

dp =
〈

fpgx
〉

The solution of Eq. (9.32) becomes most simplistic if the functions

fp(x) are orthogonal to each other, that is,
〈

fpfq

〉

= 〈f 2
p〉δp−q. Then

the matrix M is diagonal and

ap(x) =
〈

fpgx
〉

/〈

f 2
p

〉

(9.33)
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This expression can also be written as a convolution integral by using

Eq. (9.31) and substituting x′ by −x′:

ap(x) =

∞
∫

−∞

w(x′)fp(−x′)g(x −x′)dDx′ (9.34)

This means that the fit coefficient for each point is computed by con-

volving the windowed and mirrored orthonormal function with the sig-

nal.

Example 9.1: Plane fit

As a simple example we discuss the local plane fit, that is, the local

approximation of the gray-scale variation by a plane. The fit function

is

f (x) = a0 + a1x1 + a2x2, f0 = 1, f1 = x1, f2 = x2 (9.35)

It is easy to verify that these three functions are orthogonal to each

other. Therefore,

a0 =

∞
∫

−∞

w(x′)g(x −x′)dDx′

a1 = −

∞
∫

−∞

w(x′)x′
1g(x −x′)dDx′

/ ∞
∫

−∞

w(x′)x′
1
2
dDx′

a2 = −

∞
∫

−∞

w(x′)x′
2g(x −x′)dDx′

/ ∞
∫

−∞

w(x′)x′
2
2
dDx′

(9.36)

As a special case for 2-D digital signals we take a binomial 3×3 win-

dow and obtain

W =
1

16







1 2 1

2 4 2

1 2 1





 , F0 =







1 1 1

1 1 1

1 1 1







F1 = 2







−1 −1 −1

0 0 0

1 1 1





 , F2 = 2







−1 0 1

−1 0 1

−1 0 1







(9.37)

The three matrices F0, F1, and F2 are already normalized, that is,

M−1
∑

m=0

N−1
∑

n=0

Wm,n((Fp)m,n)2 = 1 (9.38)

so that the division in Eq. (9.36) is not required. Then the convolution

masks to obtain the fit coefficients a0, a1, and a2 are

1

16







1 2 1

2 4 2

1 2 1





 ,
1

8







1 2 1

0 0 0

−1 −2 −1





 ,
1

8







1 0 −1

2 0 −2

1 0 −1





 (9.39)
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and we end up with the well-known binomial smoothing mask and the

Sobel operator for the estimate of the mean and slopes of a local plane

fit, respectively.

Thus, the close relationship between LSI operators and least squares

fits is helpful in determining what kind of properties an LSI operator is

filtering out from a signal.

The case with nonorthogonal fit functions is slightly more complex.

As the matrix M (Eq. (9.32)) depends only on the fit functions and the

chosen window and not on the signal g(x), the matrix M can be in-

verted once for a given fit. Then the fit coefficients are given as a linear

combination of the results from the convolutions with all P fit func-

tions:

ap(x) =

P−1
∑

p′=0

M−1
p,p′

∞
∫

−∞

w(x′)fp′(−x′)g(x −x′)dDx′ (9.40)

9.3 Recursive filters

9.3.1 Definition

Recursive filters are a special form of the linear convolution filters. This

type of filter includes results from previous convolutions at neighbor-

ing pixels into the convolution sum. In this way, the filter becomes

directional. Recursive filters can most easily be understood if we apply

them first to a 1-D discrete signal, a time series. Then we can write

g′
n = −

S
∑

n′′=1

an′′g′
n−n′′ +

R
∑

n′=−R

hn′gn−n′ (9.41)

While the neighborhood of the nonrecursive part (coefficients h) is sym-

metric around the central point, the recursive part is asymmetric, using

only previously computed values. A filter that contains only such a re-

cursive part is called a causal filter . If we put the recursive part on

the left hand side of the equation, we observe that the recursive filter

is equivalent to the following difference equation, also known as an

ARMA(S,R) process (autoregressive-moving average process):

S
∑

n′′=0

an′′g′
n−n′′ =

R
∑

n′=−R

hn′gn−n′ with a0 = 1 (9.42)

9.3.2 Transfer function and z-transform

The transfer function of such a filter with a recursive and a nonrecursive

part can be computed by applying the discrete-space Fourier transform
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