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9.1 Basics

The extraction of features from multidimensional signals requires the

analysis of at least a local neighborhood. By analysis of the local neigh-

borhood a rich set of features can already be extracted. We can distin-

guish areas of constant gray values from those that contain an edge, a

texture, or just noise. Thus this chapter gives an important theoretical

basis for low-level signal processing.

9.1.1 Definition of neighborhood operators

A neighborhood operator takes the gray values of the neighborhood

around a point, performs some operations with them, and writes the

result back on the pixel. This operation is repeated for all points of

the signal. Therefore, we can write a neighborhood operation with a

multidimensional continuous signal g(x) as

g′(x) = N({g(x′)},∀(x −x′) ∈ M) (9.1)

whereM is an area, calledmask, region of support , or structure element .

The size and shape of M determines the neighborhood operation by

specifying the input values of g in the area M shifted with its origin to

the point x. The neighborhood operation N itself is not specified here.

It can be of any type; its result determines the value of the output g′

at x. For symmetry reasons the mask is often symmetric and has its

center of gravity in the origin.
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Figure 9.1: Mask or structure element with a continuous; and b digital 2-D

signals on a square lattice. The point that receives the result is marked.
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Figure 9.2: Various types of symmetric masks on 2-D lattices: a 2×2 mask;

and b 3×3 mask on a square lattice.

For digital signals a general neighborhood operation can be expressed

as

G′
m,n = N(Gm′−m,n′−n},∀ [m, n]

T
∈ M) (9.2)

or by equivalent expressions for dimensions other than two.

Although these equations do not specify in any way the type of

neighborhood operation that is performed, they still reveal the common

structure of all neighborhood operations. Thus very general strategies

can be developed to compute them efficiently [CVA2, Section 5.6].

9.1.2 Shape and symmetry of neighborhoods

As we have seen, any type of neighborhood operator is first determined

by the size of themask. With continuous signals, themaskmay take any

shape. With digital data on orthogonal lattices, the mask is normally of

rectangular shape. In any case, we must also specify the point relative

to the mask that receives the result of the operation (Fig. 9.1).

With regard to symmetry, the most natural choice is to place the

result of the operation at the pixel in the center of the mask. While this

is straightforward for continuous masks, it requires more thought for

digital signals. Natural choices for masks on an orthogonal lattice are

rectangles. Basically, there are two types of symmetric masks: masks

with an even or odd size of pixels in each direction. For odd-sized

masks, the symmetry center coincides with the central pixel and, thus,

seems to be a good choice (Fig. 9.2b). The smallest size of odd-sized
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masks includes only the directly neighboring pixels. In one, two, and

three dimensions, the mask includes 3, 9, and 27 pixels, respectively.

In contrast, even-sized masks seem not to be suitable for neighbor-

hood operations because there is no pixel that lies in the center of the

mask. With adroitness, we can apply them nevertheless, and they turn

out to be useful for certain types of neighborhood operations. The re-

sult of the neighborhood operation is simply written back to pixels that

lay between the original pixels (Fig. 9.2a). Thus, the resulting image is

shifted by half the pixel distance into every direction and the receiving

central pixel lays directly in the center of the neighborhoods. In effect,

the resulting image has one pixel less in every direction. It is very im-

portant to be aware of this shift by half the pixel distance. Therefore,

image features computed by even-sized masks should never be com-

bined with original gray values because this would lead to considerable

errors. Also, a mask must either be even-sided or odd-sized in all di-

rections for multidimensional digital signals. Otherwise, the output

lattices do not coincide.

The number of pixels contained in the masks increases consider-

ably with their size. If R is the linear size of a mask in D dimensions,

the mask has RD elements. The higher the dimension, the faster the

number of elements with the size of the mask increases. Even small

neighborhoods include hundreds or thousands of elements. Therefore,

it will be a challenging task for higher-dimensional signal processing to

develop efficient schemes to compute a neighborhood operation with

as few computations as possible. Otherwise, it would not be possible

to use them at all.

The challenge for efficient computation schemes is to decrease the

number of computations from O(RD) to a lower order. This means

that the number of computations is no longer proportional to RD but

rather to a lower order of the size R of the mask. The ultimate goal

is to achieve computation schemes that increase only linearly with the

size of the mask (O(R1)) or, even better, do not depend at all on the

size of the mask (O(R0)).

9.1.3 Operator notation

In this section, we introduce an operator notation for signal-processing

operations. It helps us tomake complex composite neighbor operations

easily comprehensible. All operators will be written in calligraphic let-

ters, such as B,D,H ,S. We write

G
′
=HG (9.3)

for an operator H , which transforms the image G into the image G′.

Note that this notation can be used for any type of signal. It can be
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used for continuous as well as digital signals and for signals of any

dimension.

Consecutive application is denoted by writing the operators one af-

ter the other. The rightmost operator is applied first. Consecutive

application of the same operator is expressed by an exponent

HH . . .H
︸ ︷︷ ︸

p times

=Hp (9.4)

If the operator acts on a single image, the operand, which is to the

right in the equations, will be omitted. In this way we can write operator

equations without targets. Furthermore, we will use braces in the usual

way to control the order of execution.

The operator notation leads to a representation-independent nota-

tion of signal-processing operations. A linear shift-invariant operator

(see Section 8.6.3) performs a convolution operation in the spatial do-

main and a complex multiplication in the Fourier domain. With the

operator notation, we can write the basic properties of the linear shift-

invariant operator (Eq. (8.65)) in an easily comprehensible way andwith-

out specifying a target as

commutativity H1H2 =H2H1

associativity H1(H2H3) = (H1H2)H3

distributivity over addition (H1 +H2)H3 =H1H2 +H2H3

(9.5)

As can be seen from these equations, other operations such as ad-

dition can also be used in the operator notation. Care must be taken

with any nonlinear operator. As soon as nonlinear operators are in-

volved, the order in which the operators are executed must strictly be

given. We retain the notation that operators are executed from the left

to the right, provided that braces are not used to change the order of

execution.

The point operation of pixelwise multiplication in the spatial do-

main is a simple example for a nonlinear operator. As this operator

occurs frequently, it is denoted by a special symbol, a centered dot

(·). A special symbol is required in order to distinguish it from succes-

sive application of operators. The operator expression B(D · D), for

instance, means: apply the operator D to the signal, square the result

pixelwise, and then apply the operator B. Without parentheses the ex-

pression BD · D would mean: apply the operator D to the image and

apply the operator BD to the image and then multiply the results point

by point. This notation thus gives precedence to the pointwise mul-

tiplication over consecutive operator execution. As a placeholder for

an object onto which an operator is acting, we will use the symbol “:.”

In this notation, the forementioned operator combination is written as

B(D : ·D :).


	Cover
	Preface
	Contributors
	Introduction
	Components of a vision system
	Imaging systems
	Signal processing for computer vision
	Pattern recognition for computer vision
	Performance evaluation of algorithms
	Classes of tasks
	References

	I Sensors and Imaging
	Radiation and Illumination
	Introduction
	Fundamentals of electromagnetic radiation
	Radiometric quantities
	Fundamental concepts of photometry
	Interaction of radiation with matter
	Illumination techniques
	References

	Imaging Optics
	Introduction
	Basic concepts of geometric optics
	Lenses
	Optical properties of glasses
	Aberrations
	Optical image formation
	Wave and Fourier optics
	References

	Radiometry of Imaging
	Introduction
	Observing surfaces
	Propagating radiance
	Radiance of imaging
	Detecting radiance
	Concluding summary
	References

	Solid-State Image Sensing
	Introduction
	Fundamentals of solid-state photosensing
	Photocurrent processing
	Transportation of photosignals
	Electronic signal detection
	Architectures of image sensors
	Color vision and color imaging
	Practical limitations of semiconductor photosensors
	Conclusions
	References

	Geometric Calibration of Digital Imaging Systems
	Introduction
	Calibration terminology
	Parameters influencing geometrical performance
	Optical systems model of image formation
	Camera models
	Calibration and orientation techniques
	Photogrammetric applications
	Summary
	References

	Three-Dimensional Imaging Techniques
	Introduction
	Characteristics of 3-D sensors
	Triangulation
	Time-of-flight (TOF) of modulated light
	Optical Interferometry (OF)
	Conclusion
	References


	II Signal Processing and Pattern Recognition
	Representation of Multidimensional Signals
	Introduction
	Continuous signals
	Discrete signals
	Relation between continuous and discrete signals
	Vector spaces and unitary transforms
	Continuous Fourier transform (FT)
	The discrete Fourier transform (DFT)
	Scale of signals
	Scale space and diffusion
	Multigrid representations
	References

	Neighborhood Operators
	Basics
	Linear shift-invariant filters
	Recursive filters
	Classes of nonlinear filters
	Local averaging
	Interpolation
	Edge detection
	Tensor representation of simple neighborhoods
	References

	Motion
	Introduction
	Basics: flow and correspondence
	Optical flow-based motion estimation
	Quadrature filter techniques
	Correlation and matching
	Modeling of flow fields
	References

	Three-Dimensional Imaging Algorithms
	Introduction
	Stereopsis
	Depth-from-focus
	References

	Design of Nonlinear Diffusion Filters
	Introduction
	Filter design
	Parameter selection
	Extensions
	Relations to variational image restoration
	Summary
	References

	Variational Adaptive Smoothing and Segmentation
	Introduction
	Processing of two- and three-dimensional images
	Processing of vector-valued images
	Processing of image sequences
	References

	Morphological Operators
	Introduction
	Preliminaries
	Basic morphological operators
	Advanced morphological operators
	References

	Probabilistic Modeling in Computer Vision
	Introduction
	Why probabilistic models?
	Object recognition as probabilistic modeling
	Model densities
	Practical issues
	Summary, conclusions, and discussion
	References

	Fuzzy Image Processing
	Introduction
	Fuzzy image understanding
	Fuzzy image processing systems
	Theoretical components of fuzzy image processing
	Selected application examples
	Conclusions
	References

	Neural Net Computing for Image Processing
	Introduction
	Multilayer perceptron (MLP)
	Self-organizing neural networks
	Radial-basis neural networks (RBNN)
	Transformation radial-basis networks (TRBNN)
	Hopfield neural networks
	Application examples of neural networks
	Concluding remarks
	References


	III Application Gallery
	Object Recognition with Intelligent Cameras
	3-D Image Metrology of Wing Roots
	Quality Control in a Shipyard
	Topographical Maps of Microstructures
	Fast 3-D Full Body Scanning for Humans and Other Objects
	Reverse Engineering Using Optical Range Sensors
	3-D Surface Reconstruction from Image Sequences
	Motion Tracking
	Tracking ``Fuzzy'' Storms in Doppler Radar Images
	3-D Model-Driven Person Detection
	Knowledge-Based Image Retrieval
	Monitoring Living Biomass with in situ Microscopy
	Analyzing Size Spectra of Oceanic Air Bubbles
	Thermography to Measure Water Relations of Plant Leaves
	Small-Scale Air-Sea Interaction with Thermography
	Optical Leaf Growth Analysis
	Analysis of Motility Assay Data
	Fluorescence Imaging of Air-Water Gas Exchange
	Particle-Tracking Velocimetry
	Analyzing Particle Movements at Soil Interfaces
	3-D Velocity Fields from Flow Tomography Data
	Cloud Classification Analyzing Image Sequences
	NOX Emissions Retrieved from Satellite Images
	Multicolor Classification of Astronomical Objects
	Model-Based Fluorescence Imaging
	Analyzing the 3-D Genome Topology
	References

	Index

